図面 (/)

この項目の情報は公開日時点(2020年1月30日)のものです。
また、この項目は機械的に抽出しているため、正しく解析できていない場合があります

図面 (5)

課題

解決手段

本開示は、1つまたは複数の体細胞(例えば、部分的に分化した体細胞または完全分化/最終分化した体細胞)をより低い分化状態(例えば、多能性状態または多分化能状態)に再プログラミングする方法に関する。さらなる実施形態では、本発明はまた、本発明の方法によって産生された再プログラミングされた体細胞、かかる細胞の使用、および体細胞の再プログラミングに有用な薬剤同定方法に関する。本発明は、選択マーカー発現が、マーカーが連結する内因性多能性遺伝子の発現と実質的に適合するような様式で1つまたは複数の内因性多能性遺伝子が選択マーカーに作動可能に連結する操作された体細胞を提供する。

概要

背景

発明の背景
胚発生および細胞分化一方向性経路と考えられている。これは、細胞細胞運命の決定中に発生能を段階的に喪失するからである。以下の多能性幹細胞の2つのカテゴリーが現在公知である:胚性幹細胞および胚性生殖細胞。胚性幹細胞は、に直接由来する多能性幹細胞である。胚性生殖細胞は、中絶胎児の胎児組織に直接由来する多能性幹細胞である。簡潔にするために、胚性幹細胞および胚性生殖細胞を、本明細書中集合的に「ES」細胞という。

哺乳動物種における体細胞核移植(SCNT実験成功により、分化した成体細胞後成的状態は固定していないが、卵母細胞細胞質中に存在する因子による再プログラミングには依然として柔軟であることが証明された(Byrneら,2007;Jaenisch and Young,2008;Wakayama and Yanagimachi,2001)。しかし、ヒト体細胞クローン化する試みに関連する非効率および倫理上の懸念が、卵母細胞を用いずに核再プログラミングするための代替法研究分野拍車をかけている(Jaenisch and Young,2008)。実際、体細胞胚性癌細胞または胚性(ES)細胞への融合により、体細胞ゲノムが後成的にリセットされるが、これには4N多能性細胞の生成が含まれ、かかる細胞の潜在的治療用途は限られている(Cowanら,2005;Tadaら,2001)。

それにもかかわらず、ES細胞との融合による体細胞の再プログラミングにより、ES細胞が、卵母細胞の細胞質と同様に、核再プログラミングを誘導することができる因子を含むことが示唆された。重要な功績はYamanaka and colleaguesによって達成され、彼らは4つの転写因子であるOct4、Sox2、Klf4、およびc−Mycの形質導入による線維芽細胞誘導性多能性幹(iPS)細胞への直接再プログラミングに成功した(Takahashi and Yamanaka,2006)。最初に得られたiPS細胞は正常でなかったが、いくつかのグループが胚由来のES細胞と後成的および発生的に識別不可能なiPS細胞の生成によって直接再プログラミング技術を何度か進歩させた(Maherali,2007;Meissnerら,2007;Okitaら,2007;Wernigら,2007)。さらに、c−Mycのトランスジェニック発現は再プログラミングに重要でないことが見出されたが、再プログラミング効率を加速および増強させた(Nakagawaら,2008;Wernigら,2008)。最後に、ヒトiPS細胞を定義された因子の体細胞への形質導入によって生成することができることも示されている(Parkら,2008;Takahashiら,2007;Yuら,2007)。

今まで行われた研究にもかかわらず、定義した因子を使用して最終的に分化した細胞を多能性に再プログラミングすることができるかどうか、または、体性幹細胞などの少ししか分化していない細胞が多能性への核再プログラミングを受けることができるのかどうかについては依然として知られていない。さらに、ドナー細胞進行性分化がin vitroでの再プログラミング効率に影響を及ぼすかどうかは不明である。

概要

体細胞の再プログラミングの提供。本開示は、1つまたは複数の体細胞(例えば、部分的に分化した体細胞または完全分化/最終分化した体細胞)をより低い分化状態(例えば、多能性状態または多分化能状態)に再プログラミングする方法に関する。さらなる実施形態では、本発明はまた、本発明の方法によって産生された再プログラミングされた体細胞、かかる細胞の使用、および体細胞の再プログラミングに有用な薬剤同定方法に関する。本発明は、選択マーカーの発現が、マーカーが連結する内因性多能性遺伝子の発現と実質的に適合するような様式で1つまたは複数の内因性多能性遺伝子が選択マーカーに作動可能に連結する操作された体細胞を提供する。

目的

本発明は、選択マーカーの発現が、マーカーが連結する内因性多能性遺伝子の発現と実質的に適合するような様式で1つまたは複数の内因性多能性遺伝子が選択マーカーに作動可能に連結する操作された体細胞を提供する

効果

実績

技術文献被引用数
0件
牽制数
0件

この技術が所属する分野

ライセンス契約や譲渡などの可能性がある特許掲載中! 開放特許随時追加・更新中 詳しくはこちら

請求項1

B細胞多能性細胞再プログラミングする方法であって、該方法は、(a)該B細胞を、外因的に導入されたOct−4、Sox−2、Klf、およびC/EBPαと接触させる工程、ならびに(b)該細胞を、細胞増殖に適切な条件下で該細胞の再プログラミングを開始するのに十分な期間維持する工程を含み、ここで、該再プログラミングされた細胞が、(i)内因性Oct4およびNanogを発現し、(ii)SCIマウスに注射した場合に内胚葉中胚葉、および外胚葉の特徴を有する組織分化し、(iii)内因性多能性遺伝子に作動可能に連結された選択マーカーを含まない、方法。

請求項2

外因性Oct−4、Sox−2、Klf、およびC/EBPαポリペプチドまたはポリヌクレオチドが、前記B細胞に導入される、請求項1に記載の方法。

請求項3

外因性Oct−4、Sox−2、Klf、およびC/EBPαポリヌクレオチドが、前記細胞に導入される、請求項2に記載の方法。

請求項4

前記外因的に導入されたポリヌクレオチドが、c−Mycをコードしない、請求項3に記載の方法。

請求項5

前記外因的に導入されたポリヌクレオチドが、トランスフェクションによって導入される、請求項3に記載の方法。

請求項6

前記外因的に導入されたポリヌクレオチドが、ウイルス感染によって導入される、請求項3に記載の方法。

請求項7

前記外因的に導入されたポリヌクレオチドのうちの少なくとも1つを機能的に不活化する工程をさらに含む、請求項3に記載の方法。

請求項8

前記細胞における部位特異的リコンビナーゼを導入することまたは前記細胞における部位特異的リコンビナーゼを発現させることによって前記外因的に導入されたポリヌクレオチドの少なくとも一部を切り出す工程をさらに含む、請求項3に記載の方法。

請求項9

前記工程(b)が、5−アザシチジントリコスタチンA(TSA)、およびバルプロ酸からなる群から選択される再プログラミング薬で前記細胞を維持する工程をさらに含む、請求項1に記載の方法。

請求項10

前記再プログラミング薬で培養された前記細胞の少なくとも50%が、DNA脱メチル化耐性を示す、請求項9に記載の方法。

請求項11

前記再プログラミング薬で培養された前記細胞が、DNAメチルトランスフェラーゼIの発現を少なくとも50%減少させる、請求項9に記載の方法。

請求項12

前記B細胞が、最終分化B細胞である、請求項1に記載の方法。

請求項13

請求項1〜12のいずれか一項に記載の方法から得られた単離されたヒト多能性細胞の精製調製物

請求項14

前記細胞が、遺伝的に改変されていない、請求項13に記載の細胞の精製調製物。

請求項15

前記細胞が、少なくとも1つの遺伝子改変を含む、請求項13に記載の細胞の精製調製物。

請求項16

前記細胞が、細胞療法を必要とする個体に対して自源性または異質遺伝子性である、請求項13に記載の細胞の精製調製物。

技術分野

0001

関連する出願への相互参照
本願は、2008年3月12日に出願された米国仮特許出願第61/036,065号、2007年7月12日に出願された米国仮特許出願第60/959,341号、および2007年4月7日に出願された米国仮特許出願第60/922,121号の利益を主張する。これらの出願の明細書は、本明細書中に参考として援用される。

0002

政府支援
本願は、全体または一部において、国立衛生研究所からの補助金第5−RO1−HDO45022号、同第5−R37−CA084198号および同第5−RO1−CA087869号により支援された。米国政府は、本発明における一定の権利を有する。

背景技術

0003

発明の背景
胚発生および細胞分化一方向性経路と考えられている。これは、細胞細胞運命の決定中に発生能を段階的に喪失するからである。以下の多能性幹細胞の2つのカテゴリーが現在公知である:胚性幹細胞および胚性生殖細胞。胚性幹細胞は、に直接由来する多能性幹細胞である。胚性生殖細胞は、中絶胎児の胎児組織に直接由来する多能性幹細胞である。簡潔にするために、胚性幹細胞および胚性生殖細胞を、本明細書中で集合的に「ES」細胞という。

0004

哺乳動物種における体細胞核移植(SCNT実験成功により、分化した成体細胞後成的状態は固定していないが、卵母細胞細胞質中に存在する因子による再プログラミングには依然として柔軟であることが証明された(Byrneら,2007;Jaenisch and Young,2008;Wakayama and Yanagimachi,2001)。しかし、ヒト体細胞クローン化する試みに関連する非効率および倫理上の懸念が、卵母細胞を用いずに核再プログラミングするための代替法研究分野拍車をかけている(Jaenisch and Young,2008)。実際、体細胞胚性癌細胞または胚性(ES)細胞への融合により、体細胞ゲノムが後成的にリセットされるが、これには4N多能性細胞の生成が含まれ、かかる細胞の潜在的治療用途は限られている(Cowanら,2005;Tadaら,2001)。

0005

それにもかかわらず、ES細胞との融合による体細胞の再プログラミングにより、ES細胞が、卵母細胞の細胞質と同様に、核再プログラミングを誘導することができる因子を含むことが示唆された。重要な功績はYamanaka and colleaguesによって達成され、彼らは4つの転写因子であるOct4、Sox2、Klf4、およびc−Mycの形質導入による線維芽細胞誘導性多能性幹(iPS)細胞への直接再プログラミングに成功した(Takahashi and Yamanaka,2006)。最初に得られたiPS細胞は正常でなかったが、いくつかのグループが胚由来のES細胞と後成的および発生的に識別不可能なiPS細胞の生成によって直接再プログラミング技術を何度か進歩させた(Maherali,2007;Meissnerら,2007;Okitaら,2007;Wernigら,2007)。さらに、c−Mycのトランスジェニック発現は再プログラミングに重要でないことが見出されたが、再プログラミング効率を加速および増強させた(Nakagawaら,2008;Wernigら,2008)。最後に、ヒトiPS細胞を定義された因子の体細胞への形質導入によって生成することができることも示されている(Parkら,2008;Takahashiら,2007;Yuら,2007)。

0006

今まで行われた研究にもかかわらず、定義した因子を使用して最終的に分化した細胞を多能性に再プログラミングすることができるかどうか、または、体性幹細胞などの少ししか分化していない細胞が多能性への核再プログラミングを受けることができるのかどうかについては依然として知られていない。さらに、ドナー細胞進行性分化がin vitroでの再プログラミング効率に影響を及ぼすかどうかは不明である。

課題を解決するための手段

0007

発明の要旨
本発明は、選択マーカーの発現が、マーカーが連結する内因性多能性遺伝子の発現と実質的に適合するような様式で1つまたは複数の内因性多能性遺伝子が選択マーカーに作動可能に連結する操作された体細胞を提供する。本発明はまた、これらの操作された体細胞を含むトランスジェニックマウスを提供する。

0008

本発明はまた、体細胞をより低い分化状態に再プログラミングする方法を提供する。一定の方法では、本発明の操作された体細胞を、薬剤で処理する。次いで、選択マーカーを発現する細胞を選択し、多能性について評価する。薬剤での処理は、クロマチン構造を変化させる薬剤との細胞の接触であり得るか、少なくとも1つの多能性遺伝子との細胞のトランスフェクションであり得るか、その両方であり得る。

0009

本発明は、さらに、体細胞をより低い分化状態に再プログラミングする薬剤を同定する方法を提供する。一定の方法では、上記の操作された体細胞を、候補薬と接触させる。次いで、選択マーカーを発現する細胞を選択し、多能性の特徴について評価する。多能性の特徴の少なくともサブセットの存在は、薬剤が体細胞を低分化状態に再プログラミングすることができることを示す。次いで、本発明によって同定された薬剤を使用して、体細胞の薬剤との接触によって体細胞を再プログラミングすることができる。

0010

本発明はまた、体細胞中の少なくとも1つの内因性多能性遺伝子を発現させる遺伝子を同定する方法を提供する。一定の方法では、操作された体細胞を、ES細胞などの多能性細胞から調製したcDNAライブラリートランスフェクトする。次いで、適切な選択マーカーを発現する細胞を選択し、適切な内因性多能性遺伝子の発現を試験する。内因性多能性遺伝子の発現は、細胞中でのその発現によって内因性多能性遺伝子が直接または間接的に発現するタンパク質をcDNAがコードすることを示す。

0011

本発明は、遺伝的に改変されていない体細胞から再プログラミングされた体細胞を誘導する方法を提供する。本発明は、遺伝子選択を使用しないか、いくつかの実施形態では、化学的選択を使用しないで再プログラミングされた体細胞を誘導する方法を提供する。再プログラミングされた体細胞は、例えば、再プログラミング薬の非操作体細胞への導入および/または非操作体細胞中でのかかる薬剤の発現ならびに細胞内に外因性遺伝子材料が存在する必要がない種々の方法のうちのいずれかによる再プログラミングされた細胞の選択によって本発明の非操作体細胞に由来する。

0012

いくつかの実施形態では、本方法は、再プログラミングされない体細胞集団から再プログラミングされた体細胞を同定するための形態学的基準を使用する。いくつかの実施形態では、本方法は、ES様状態に再プログラミングされないか部分的にのみ再プログラミングされた細胞集団からES様状態に再プログラミングされた体細胞を同定するための形態学的基準を使用する。

0013

いくつかの実施形態では、本方法は、少なくともいくつかの再プログラミングされた体細胞を含む細胞集団から少なくともいくつかの再プログラミングされない体細胞を排除するための補体媒介溶解を使用する。

0014

本発明は、さらに、かかる治療を必要とする個体の容態を治療する方法を提供する。一定の実施形態では、体細胞を個体から得て、細胞が所望の細胞型に発生するのに適切な条件下において本発明の方法によって再プログラミングする。次いで、所望の細胞型の再プログラミングされた細胞を回収し、個体に導入して容態を処置する。一定のさらなる実施形態では、個体から得た体細胞は、1つまたは複数の遺伝子に変異を含む。これらの例では、一定の実施形態では、個体から得た体細胞を、最初に、1つまたは複数の正常な遺伝子を細胞に戻し、その結果得られた細胞が正常な内因性遺伝子を保有するように処置し、次いで、個体に導入するように本方法を修正する。

0015

一定のさらなる実施形態では、個体から得た体細胞を、その個体からの除去後に1つまたは複数の遺伝子が発現するように操作する。細胞を、遺伝子または遺伝子を含む発現かセットの細胞への導入によって操作することができる。遺伝子またはその一部を、部位特異的リコンビナーゼ部位に隣接させることができる。

0016

遺伝子は、再プログラミングされた細胞の同定、選択、および/または生成に有用な遺伝子であり得る。一定の実施形態では、遺伝子は、細胞内のDNAメチル化を減少させる発現産物をコードする。例えば、遺伝子は、DNAメチルトランスフェラーゼ(例えば、DNAメチルトランスフェラーゼ1、3a、または3b(Dnmt1、3a、3b)の発現を干渉するRNAをコードすることができる。RNAは、短いヘアピンRNA(shRNA)またはミクロRNA前駆体であり得る。一定の実施形態では、RNAは、細胞内でプロセシングされてDnmt1、3a、または3bの発現を阻害する短い干渉RNA(siRNA)またはミクロRNA(miRNA)が得られる前駆体である。一定の実施形態では、遺伝子は、正の選択および負の選択に使用可能なマーカーをコードする。

0017

一定の実施形態では、遺伝子は、再プログラミングされた状態の開始および/または維持に寄与する遺伝子である。一定の実施形態では、遺伝子は、その発現産物が再プログラミングされた状態の開始に寄与する(一定の実施形態では、再プログラミングされた状態の維持に必要である)が、再プログラミングされた状態の維持に重要でない遺伝子である。これらの例では、一定の実施形態では、本方法は、再プログラミング後に操作された細胞を処置して遺伝子発現を減少または排除する工程を含む。再プログラミングされた細胞が再プログラミング後にin vitroまたはin vivoで分化する方法では、遺伝子発現を減少または排除する処置を、再プログラミングした細胞が分化する前または後に行うことができる。処置は、例えば、細胞中のリコンビナーゼの導入または発現によって導入した遺伝子の少なくとも一部を切り出す工程を含み得る。一定の実施形態では、遺伝子は、その発現産物が再プログラミングされた状態の維持に寄与する(一定の実施形態では、再プログラミングされた状態の維持に必要である)が、一旦再プログラミングされた細胞が所望の細胞型に分化すると重要でない遺伝子である。これらの実施形態では、本方法は、操作された再プログラミングされた細胞をその分化後に処置して遺伝子発現を減少または排除する工程を含むことができる。

0018

一定の他の実施形態では、本発明の方法を使用して、機能器官を必要とする個体を処置することができる。本方法では、機能器官を必要とする個体から体細胞を得て、本発明の方法によって再プログラミングして再プログラミングされた体細胞を産生する。次いで、かかる再プログラミングされた体細胞を、再プログラミングされた体細胞の所望の器官への発生に適切な条件下で培養し、次いで、個体に導入する。本方法は、以下の容態のいずれか1つの治療に有用である:神経学的容態、内分泌容態、構造的容態、骨の容態、血管の容態、泌尿器の容態、消化管の容態、外皮の容態、血液の容態、自己免疫性の容態、炎症容態、または筋肉の容態。

0019

本発明はまた、クローン化した動物を産生する方法を提供する。本方法では、所望の特徴を有する動物から体細胞を得て、本発明の方法を使用して再プログラミングし、1つまたは複数の再プログラミングされた多能性体細胞(「RPSC」)を産生する。次いで、RPSCをレシピエント胚に挿入し、得られた胚を培養して、レシピエント雌への移植に適切なサイズの胚を産生し、次いで、レシピエント雌に移入して妊娠した雌を得る。妊娠した雌を、胚を出産予定日まで保有するのに適切な条件下で維持してキメラ動物子孫を産生し、次いで、野生型動物と交配してクローン化した動物を得る。

0020

一定の実施形態では、あるいは、RPSCを、さらなるクローニングに使用するために凍結保存することができる。一定の他の実施形態では、標的変異などの遺伝子改変(genetic modification)を、レシピエント胚への挿入前にRPSCに導入することができる。

0021

本発明はまた、クローン化したトリを産生する方法を提供する。本方法では、所望の特徴を有するトリから体細胞を単離し、本発明の方法を使用して再プログラミングして、1つまたは複数の再プログラミングされた多能性体細胞(「RPSC」)を産生する。次いで、RPSCを胚に発生できないに挿入し、次いで、得られた卵をインキュベートしてRPSCの遺伝子型を有するトリ子孫を産生し、それにより、クローン化したトリを産生する。

0022

上記の全ての実施形態を本発明の全ての異なる態様に適用可能であると認識される。必要に応じて任意の上記実施形態を1つまたは複数の他のかかる実施形態と自由に組み合わせることができることも意図する。

0023

本明細書中に記載のように、4つの転写因子(Oct4、Sox2、Klf4、およびc−Myc)のトランスジェニック発現および誘導発現を使用して、マウスBリンパ球を再プログラミングした。これらの因子は、B細胞受容体が部分的な再構成を受けた非最終分化B細胞を多能性状態に変換するのに十分であった。成熟B細胞の再プログラミングには、骨髄転写因子CCAAT/エンハンサー結合タンパク質α(C/EBPα)(B細胞同一性を維持する転写状態を妨害する能力について公知)のさらなる異所性発現が必要であった。複数のiPS株は、非完全分化および完全分化した成熟Bリンパ球の両方にクローン的に由来し、このiPS株は、成体キメラを生じ、四倍体胚盤胞に注射した場合に後期胚を生じ、生殖系列に寄与した。本明細書中に記載の作業により、最終分化した成体細胞の多能性への直接核再プログラミングについての決定的証拠が得られる。

0024

したがって、1つの実施形態では、本発明は、分化した体細胞を多能性状態に再プログラミングする方法であって、分化した体細胞を細胞の多能性状態への再プログラミングに寄与する少なくとも1つの再プログラミング薬と接触させる工程、細胞を、細胞の増殖および少なくとも1つの再プログラミング薬の活性に適切な条件下で細胞の再プログラミングの開始に十分な期間維持する工程、および少なくとも1つの再プログラミング薬を機能的に不活化する工程を含む、方法に関する。

0025

別の実施形態では、本発明は、分化した体細胞を多能性状態に再プログラミングする方法であって、分化した体細胞の多能性状態への再プログラミングに寄与する少なくとも1つの外因的に導入した因子を含む分化した体細胞を準備する工程、細胞を、細胞の増殖および少なくとも1つの外因的に導入した因子の活性に適切な条件下で少なくとも1つの内因性多能性遺伝子の活性化に十分な期間維持する工程、および少なくとも1つの外因的に導入した因子を機能的に不活化する工程を含む、方法に関する。

0026

さらなる実施形態では、本発明は、多能性状態に再プログラミングされた分化した体細胞を選択する方法であって、分化した体細胞の多能性状態への再プログラミングに寄与する少なくとも1つの外因的に導入した因子を含む分化した体細胞を準備する工程、細胞を、細胞の増殖および少なくとも1つの外因的に導入した因子の活性に適切な条件下で少なくとも1つの内因性多能性遺伝子の活性化に十分な期間維持する工程、少なくとも1つの外因的に導入した因子を機能的に不活化する工程、および1つまたは複数の多能性のマーカーを示す細胞と示さない細胞とを区別または識別する工程を含む、方法に関する。1つの実施形態では、1つまたは複数の多能性のマーカーを示す細胞と示さない細胞との区別または識別は、1つまたは複数の多能性のマーカーを示す細胞の選択または富化および/または1つまたは複数の多能性のマーカーを示さない細胞の淘汰を含む。

0027

本発明のいくつかの実施形態では、分化した体細胞は、部分的に分化している。本発明の他の実施形態では、分化した体細胞は完全に分化している。

0028

本発明のいくつかの実施形態では、分化した体細胞は造血分化系の細胞であり、いくつかの実施形態では、分化した体細胞は末梢血から得る。本発明の1つの実施形態では、分化した体細胞は免疫系細胞である。1つの実施形態では、分化した体細胞はマクロファージである。1つの実施形態では、分化した体細胞はリンパ球系細胞である。本発明の他の実施形態では、分化した体細胞は、B細胞(未熟(例えば、プロB細胞またはプレB細胞)または成熟(例えば、非ナイーブ)B細胞など)である。

0029

本発明のいくつかの実施形態では、少なくとも1つの外因的に導入した因子はポリヌクレオチドである。他の実施形態では、少なくとも1つの外因的に導入した因子はポリペプチドである。1つの実施形態では、少なくとも1つの外因的に導入した因子は、Oct4、Sox2、Klf−4、Nanog、Lin28、c−Myc、およびその組み合わせからなる群から選択される。本発明の特定の実施形態では、分化した体細胞は、外因的に導入したOct4、Sox2、およびKlf−4、外因的に導入したOct4、Sox2、Klf−4、およびc−Mycを含む。

0030

本発明の1つの実施形態では、少なくとも1つの外因的に導入した因子は、Oct4、Sox2、Klf−4、c−Myc、およびその組み合わせからなる群から選択され、分化した体細胞は、分化した体細胞の脱分化を誘導することができる少なくとも1つの外因的に導入した因子(例えば、ポリヌクレオチドまたはポリペプチド)をさらに含む。いくつかの実施形態では、分化した体細胞の脱分化を誘導することができる因子は、B細胞後期特異的マーカーを下方制御する少なくとも1つのポリヌクレオチド、Pax5発現を阻害する少なくとも1つのポリヌクレオチド、B細胞後期特異的マーカーを下方制御する少なくとも1つのポリペプチド、Pax5発現を阻害する少なくとも1つのポリペプチド、およびその組み合わせからなる群から選択される。本発明の1つの実施形態では、分化した体細胞の脱分化を誘導することができる因子は、C/EBPαまたはC/EBPαのヒトホモログである。

0031

本発明の特定の実施形態では、少なくとも1つの外因的に導入した因子を、ベクター(例えば、誘導ベクターまたは条件的に発現されるベクター)を使用して導入する。1つの態様では、少なくとも1つの外因的に導入した因子を、メチル化媒介サイレンシングに供さないベクターを使用して導入する。さらに別の実施形態では、少なくとも1つの外因的に導入した因子を、ウイルスベクターレトロウイルスベクターまたはレンチウイルスベクターなど)を使用して導入する。

0032

本発明の1つの実施形態では、分化した体細胞を、造血性サイトカインおよび成長因子の存在下で維持するか、骨髄間質細胞を含む培地上で培養する。

0033

本発明のいくつかの実施形態では、内因性多能性遺伝子は、Nanog、Oct4、Sox2、およびその組み合わせからなる群から選択される。他の実施形態では、内因性多能性遺伝子を、選択マーカー(抗生物質耐性遺伝子または発光マーカーなど)と同時発現する。特定の実施形態では、分化した体細胞は、少なくとも1つの内因性多能性遺伝子の発現を調節する発現調節エレメントに作動可能に連結された選択マーカーをコードする少なくとも1つのポリヌクレオチドをさらに含む。特定の実施形態では、分化した体細胞は、Oct4遺伝子座、Nanog遺伝子座、またはOct4遺伝子座、およびNanog遺伝子座の両方に選択遺伝子を含む。一定の実施形態では、少なくとも1つの外因的に導入した因子を誘導ベクターを使用して導入し、少なくとも1つの外因的に導入した因子を機能的に不活化する工程は、細胞が維持される条件をベクターの誘導発現に不適切にすることを含む。

0034

本発明のいくつかの実施形態では、多能性のマーカーは、多能性遺伝子の発現、その発現が多能性遺伝子の発現の直接または間接的な結果である遺伝子の発現、アルカリホスファターゼの発現、SSEA1の発現、SSEA3の発現、SSEA4の発現、TRAF−60の発現、Nanogの発現、Oct4の発現、Fxb15の発現、ES細胞またはES細胞コロニーに特徴的な形態学、出産予定日まで生存するキメラの形成に関与する能力、SCIDマウスに注射した場合に内胚葉中胚葉、および外胚葉の特徴を有する細胞に分化する能力、2つの活性なX染色体の存在、DNAメチル化に対する耐性、およびその組み合わせからなる群から選択される。

0035

本発明はまた、本発明の方法よる再プログラミングされた分化した体細胞に由来する単離多能性細胞に関する。特に、本発明は、再プログラミングされた分化した体細胞に由来する少なくとも70%の多能性細胞を含む精製体細胞集団に関する。

0036

本発明は、さらに、(a)分化した体細胞の多能性状態への再プログラミングに寄与する少なくとも1つの外因的に導入した因子を含む分化した体細胞を準備する工程、(b)細胞を、細胞の増殖および少なくとも1つの外因的に導入した因子の活性に適切な条件下で少なくとも1つの内因性多能性遺伝子の活性化に十分な期間維持する工程、(c)少なくとも1つの外因的に導入した因子を機能的に不活化する工程、および(d)1つまたは複数の多能性のマーカーを示す細胞を示さない細胞と区別する工程を含む方法によって産生された単離多能性細胞に関する。

0037

本発明はまた、(a)分化した体細胞の多能性状態への再プログラミングに寄与する少なくとも1つの外因的に導入した因子を含む分化した体細胞を準備する工程、(b)細胞を、細胞の増殖および少なくとも1つの外因的に導入した因子の活性に適切な条件下で少なくとも1つの内因性多能性遺伝子の活性化に十分な期間維持する工程、(c)少なくとも1つの外因的に導入した因子を機能的に不活化する工程、および(d)1つまたは複数の多能性のマーカーを示す細胞と示さない細胞とを区別する工程を含む方法によって産生された再プログラミングされた分化した体細胞に由来する少なくとも70%の多能性細胞を含む精製体細胞集団に関する。

0038

別の態様では、本発明は、体細胞から多能性細胞を産生する方法であって、(a)1つまたは複数の体細胞の多能性状態への再プログラミングに寄与する少なくとも1つの外因的に導入した因子をそれぞれ含む1つまたは複数の体細胞を準備する工程であって、外因的に導入した因子を、メチル化誘導サイレンシングに供さない誘導ベクターを使用して導入する、準備する工程、(b)1つまたは複数の細胞を、細胞の増殖および少なくとも1つの外因的に導入した因子の活性に適切な条件下で細胞の再プログラミングの開始または少なくとも1つの内因性多能性遺伝子の活性化に十分な期間維持する工程、(c)少なくとも1つの外因的に導入した因子を機能的に不活化する工程、(d)多能性のマーカーを示す1つまたは複数の細胞を選択する工程、(e)多能性のマーカーを示す1つまたは複数の細胞を使用してキメラ胚を生成する工程、(f)キメラ胚から1つまたは複数の体細胞を得る工程、(g)1つまたは複数の体細胞を、細胞の増殖および少なくとも1つの外因的に導入した因子の活性に適切な条件下で細胞の再プログラミングの開始または少なくとも1つの内因性多能性遺伝子の活性化に十分な期間維持する工程、および(h)1つまたは複数の多能性のマーカーを示す細胞と示さない細胞との間で区別する工程を含む、方法に関する。特定の実施形態では、本方法により、再プログラミングされた分化した体細胞に由来する少なくとも70%の多能性細胞を含む精製体細胞集団が得られる。

0039

本発明はまた、(a)1つまたは複数の体細胞の多能性状態への再プログラミングに寄与する少なくとも1つの外因的に導入した因子をそれぞれ含む1つまたは複数の体細胞を準備する工程であって、外因的に導入した因子を、メチル化誘導サイレンシングに供さない誘導ベクターを使用して導入する、準備する工程、(b)1つまたは複数の細胞を、細胞の増殖および少なくとも1つの外因的に導入した因子の活性に適切な条件下で細胞の再プログラミングの開始または少なくとも1つの内因性多能性遺伝子の活性化に十分な期間維持する工程、(c)少なくとも1つの外因的に導入した因子を機能的に不活化する工程、(d)多能性のマーカーを示す1つまたは複数の細胞を選択する工程、(e)多能性のマーカーを示す1つまたは複数の細胞を使用してキメラ胚を生成する工程、(f)キメラ胚から1つまたは複数の体細胞を得る工程、(g)1つまたは複数の体細胞を、細胞の増殖および少なくとも1つの外因的に導入した因子の活性に適切な条件下で少なくとも1つの内因性多能性遺伝子の活性化に十分な期間維持する工程、および(h)1つまたは複数の多能性のマーカーを示す細胞と示さない細胞とを区別する工程を含む方法によって産生された単離多能性細胞に関する。

0040

本発明の好ましい実施形態では、本方法により、再プログラミングされた分化した体細胞に由来する少なくとも70%(例えば、70%、75%、80%、85%、90%、95%、99%)の多能性細胞を含む精製体細胞集団が得られる。特定の実施形態では、多能性細胞は遺伝的に同種である。

0041

本発明はまた、(a)1つまたは複数の体細胞の多能性状態への再プログラミングに寄与する少なくとも1つの外因的に導入した因子をそれぞれ含む1つまたは複数の体細胞を準備する工程であって、外因的に導入した因子を、メチル化誘導サイレンシングに供さない誘導ベクターを使用して導入する、準備する工程、(b)1つまたは複数の細胞を、細胞の増殖および少なくとも1つの外因的に導入した因子の活性に適切な条件下で細胞の再プログラミングの開始または少なくとも1つの内因性多能性遺伝子の活性化に十分な期間維持する工程、(c)少なくとも1つの外因的に導入した因子を機能的に不活化する工程、(d)多能性のマーカーを示す1つまたは複数の細胞を選択する工程、(e)多能性のマーカーを示す1つまたは複数の細胞を使用してキメラ胚を生成する工程、(f)キメラ胚から1つまたは複数の体細胞を得る工程、(g)1つまたは複数の体細胞を、細胞の増殖および少なくとも1つの外因的に導入した因子の活性に適切な条件下で細胞の再プログラミングの開始または少なくとも1つの内因性多能性遺伝子の活性化に十分な期間維持する工程、および(h)1つまたは複数の多能性のマーカーを示す細胞と示さない細胞とを区別する工程を含む方法によって産生された、再プログラミングされた分化した体細胞に由来する少なくとも70%の多能性細胞を含む精製体細胞集団に関する。

0042

本発明はまた、分化した免疫細胞を多能性状態に再プログラミングする方法であって、(a)それぞれ誘導ベクターの調節下で、外因的に導入したOct4、Sox2、Klf−4、およびc−Mycを含み、外因的に導入したC/EBPαをさらに含む分化した免疫細胞を準備する工程、(b)細胞を、細胞の増殖およびOct4、Sox2、Klf−4、c−Myc、およびC/EBPαの活性に適切な条件下で内因性のNanogおよび/またはOct4の活性化に十分な期間維持する工程、および(c)外因的に導入したOct4、Sox2、Klf−4、およびc−Mycを機能的に不活化する工程を含む、方法を含む。本方法の1つの実施形態では、誘導ベクターをメチル化誘導サイレンシングに供さない。

0043

本発明はまた、(a)それぞれ誘導ベクターの調節下で、外因的に導入したOct4、Sox2、Klf−4、およびc−Mycを含み、外因的に導入したC/EBPαをさらに含む分化した免疫細胞を準備する工程、(b)細胞を、細胞の増殖およびOct4、Sox2、Klf−4、c−Myc、およびC/EBPαの活性に適切な条件下で内因性のNanogおよび/またはOct4の活性化に十分な期間維持する工程、および(c)外因的に導入したOct4、Sox2、Klf−4、およびc−Mycを機能的に不活化する工程を含む方法によって産生された、再プログラミングされた分化した免疫細胞に由来する少なくとも70%の多能性細胞を含む精製免疫細胞集団に関する。

0044

本発明はまた、再プログラミング薬を同定する方法であって、(a)1つまたは複数の体細胞の多能性状態への再プログラミングに寄与する少なくとも1つの外因的に導入した因子をそれぞれ含む1つまたは複数の体細胞を準備する工程であって、外因的に導入した各因子を、メチル化誘導サイレンシングに供さない誘導ベクターを使用して導入し、その発現を異なるインデューサーによって誘導される調節エレメントによって調節する、準備する工程、(b)1つまたは複数の細胞を、細胞の増殖および少なくとも1つの外因的に導入した因子の活性に適切な条件下で細胞の再プログラミングまたは少なくとも1つの内因性多能性遺伝子の活性化に十分な期間維持する工程、(c)少なくとも1つの外因的に導入した因子を機能的に不活化する工程、(d)多能性のマーカーを示す1つまたは複数の細胞を選択する工程、(e)多能性のマーカーを示す1つまたは複数の細胞を使用してキメラ胚を生成する工程、(f)キメラ胚から1つまたは複数の体細胞を得る工程、(g)1つまたは複数の体細胞を、細胞の増殖および少なくとも1つの外因的に導入した因子の活性に適切な条件下で維持する工程であって、少なくとも1つの外因的に導入した因子の活性のみでは少なくとも1つの内因性多能性遺伝子の活性化に不十分である、維持する工程、(h)(g)の体細胞を1つまたは複数の候補再プログラミング薬と接触させる工程、および(i)1つまたは複数の多能性を示す1つまたは複数の候補再プログラミング薬と接触した細胞を同定する工程であって、(g)の体細胞を1つまたは複数の多能性のマーカーを示すように誘導する候補再プログラミング薬を再プログラミング薬と同定する、同定する工程を含む方法に関する。
本発明は、例えば以下の項目を提供する。
(項目1) 体細胞をより低い分化状態に再プログラミングする薬剤を同定する方法であって、
(a)体細胞を候補再プログラミング薬と接触させる工程であって、前記体細胞がDNAメチル化減少に感受性である、接触させる工程、および
(b)前記薬剤が体細胞を再プログラミングしない場合に予想されるよりも多数の細胞がDNAメチル化減少に耐性であるかどうかを決定する工程であって、前記候補再プログラミング薬が体細胞を再プログラミングしない場合に予想されるよりも多数の細胞がDNAメチル化減少に耐性を示す場合、前記候補再プログラミング薬は再プログラミング薬として同定される、決定する工程を含む、方法。
(項目2) DNAメチル化減少条件下で培養物中の細胞を維持する工程および前記薬剤が体細胞を再プログラミングしない場合に予想されるよりも多数の細胞が生存するかどうかを決定する工程を含む、項目1に記載の方法。
(項目3)ゲノムDNAのメチル化を減少させるように細胞を処理する工程を含む、項目1に記載の方法。
(項目4)DNAメチルトランスフェラーゼの発現または活性を阻害する工程を含む、項目1に記載の方法。
(項目5) 前記細胞をDNAメチルトランスフェラーゼ活性を阻害する薬剤と接触させる工程を含む、項目4に記載の方法。
(項目6) 前記細胞中の干渉RNAの発現を逆に誘導する工程であって、前記干渉RNAがDNAメチルトランスフェラーゼの発現を阻害する、誘導する工程を含む、項目4に記載の方法。
(項目7) 前記DNAメチルトランスフェラーゼがDNAメチルトランスフェラーゼIである、項目4に記載の方法。
(項目8) 前記細胞のゲノムDNA中のメチル化CpG配列の平均数を少なくとも10%減少させるように前記細胞を処理する工程を含む、項目1に記載の方法。
(項目9) 前記細胞中のDNMT1タンパク質をコードするmRNA平均レベルを少なくとも50%減少させる工程を含む、項目1に記載の方法。
(項目10) 前記細胞中のDNMT1タンパク質の平均レベルを少なくとも50%減少させる工程を含む、項目1に記載の方法。
(項目11) 前記細胞中のDNMT1メチルトランスフェラーゼ活性の平均レベルを少なくとも50%減少させる工程を含む、項目1に記載の方法。
(項目12) DNAメチル化減少条件下で培養物中の細胞を適切な期間維持する工程であって、前記期間後の生細胞存在数が、薬剤が体細胞を再プログラミングしない場合に予想されるよりも多いことは、前記候補薬が体細胞をES様状態に再プログラミングすることを示す、維持する工程を含む、項目1に記載の方法。
(項目13) 前記期間が5日間と30日間との間である、項目12に記載の方法。
(項目14) 前記期間後の生細胞の存在が細胞を薬剤と接触させなかった場合の少なくとも2倍であることは、前記候補薬が体細胞をES様状態に再プログラミングすることを示す、項目12に記載の方法。
(項目15) 前記候補再プログラミング薬が体細胞を再プログラミングしない場合、前記細胞の少なくとも80%は20日後に増殖を停止するか死滅すると予想される、項目1に記載の方法。
(項目16) 前記細胞がヒト細胞である、項目1に記載の方法。
(項目17) 前記細胞が有糸分裂終了していない、項目1に記載の方法。
(項目18) 体細胞をES様状態に再プログラミングする再プログラミング薬を同定する方法であって、
(a)体細胞を項目1に記載の方法にしたがって同定された再プログラミング薬と接触させる工程、および
(b)前記細胞がDNA脱メチル化耐性の増加以外のES細胞の少なくとも1つの特徴を示すかかどうかを決定し、前記特徴を示す場合、候補薬を、体細胞をES様状態に再プログラミングする薬剤であると同定する工程
を含む、方法。
(項目19) さらなる特徴が、(i)SCIDマウスに注射した場合に内胚葉、中胚葉、および外胚葉の特徴を有する細胞に分化する能力;(ii)内因性のOct4、Nanog、または両方の発現;(iii)ES細胞マーカーの発現;(iv)出産予定日(term)まで生存するキメラの形成に関与する能力からなる群から選択される、項目18に記載の方法。
(項目20) 前記ES細胞マーカーが、アルカリホスファターゼ(AP)、SSEA−1、SSEA−3、およびSSEA−4からなる群から選択される、項目19に記載の方法。
(項目21) ES様状態に再プログラミングされた可能性が増加する体細胞を同定する方法であって、
(a)体細胞を準備する工程であって、前記体細胞の少なくともいくつかがES様状態に少なくとも部分的に再プログラミングされている、準備する工程、および
(b)DNA脱メチル化耐性である細胞を選択し、それにより、ES様状態に再プログラミングされた可能性が増加する細胞を同定する工程
を含む、方法。
(項目22) 工程(b)で選択された細胞がES様状態に再プログラミングされている、項目21に記載の方法。
(項目23) 前記体細胞が外因的に導入した多能性遺伝子を発現する、項目21に記載の方法。
(項目24) 前記方法が細胞を再プログラミング薬と接触させる工程を含む、項目21に記載の方法。
(項目25) 細胞を評価してDNA脱メチル化耐性以外のES細胞の1つまたは複数の特徴を示すかどうかを決定する工程をさらに含む、項目21に記載の方法。
(項目26) 前記体細胞が内因性DNAメチルトランスフェラーゼにターゲティングしたRNAi薬を可逆的に発現する、項目21に記載の方法。
(項目27) 選択された体細胞中のRNAi薬の発現を阻害し、それにより、選択された体細胞のゲノムDNAがメチル化されるようになる工程をさらに含む、項目26に記載の方法。
(項目28) 2つの転写活性X染色体を有する細胞を選択する工程をさらに含む、項目21に記載の方法。
(項目29) ES細胞マーカーを発現する細胞を選択する工程をさらに含む、項目21に記載の方法。
(項目30) 前記ES細胞マーカーが、アルカリホスファターゼ(AP)、SSEA−1、SSEA−3、およびSSEA−4からなる群から選択される、項目29に記載の方法。
(項目31) ES様状態に少なくとも部分的に再プログラミングされた可能性が増加する体細胞を同定する方法であって、
(a)DNA脱メチル化に感受性である体細胞を準備する工程、
(b)体細胞を再プログラミングすることができる1つまたは複数の処置に前記細胞を供する工程、
(c)細胞を処置してゲノムDNAのメチル化を減少させる工程、
(d)培養物中の細胞を一定期間維持する工程、および
(e)前記期間後に生存する細胞を同定し、それにより、ES様状態に少なくとも部分的に再プログラミングされた可能性が増大する細胞を同定する工程
を含む、方法。
(項目32) 工程(e)で同定された前記細胞がES様状態に再プログラミングされている、項目31に記載の方法。
(項目33) 工程(b)の少なくとも1つの処置が、再プログラミング薬である小分子と前記細胞を接触させる工程を含む、項目31に記載の方法。
(項目34) 工程(b)の少なくとも1つの処置が細胞を遺伝子でトランスフェクトすることを含み、前記遺伝子が任意選択的に多能性遺伝子である、項目31に記載の方法。
(項目35) 前記処置が、Oct−4、Nanog、Sox−2、c−Myc、およびKlf4からなる群から選択される少なくとも2つの遺伝子で前記細胞をトランスフェクトする工程を含む、項目31に記載の方法。
(項目36) 細胞を評価してDNA脱メチル化耐性以外のES細胞の1つまたは複数の特徴を示すかどうかを決定する工程をさらに含む、項目31に記載の方法。
(項目37) ES細胞マーカーを発現する細胞を選択する工程をさらに含む、項目31に記載の方法。
(項目38) 前記ES細胞マーカーが、アルカリホスファターゼ(AP)、SSEA−1、SSEA−3、およびSSEA−4からなる群から選択される、項目37に記載の方法。
(項目39) 2つの転写活性X染色体を有する細胞を選択する工程をさらに含む、項目31に記載の方法。
(項目40) ES様状態に再プログラミングした体細胞を同定する方法であって、
(a)細胞集団を準備する工程であって、前記細胞集団の少なくともいくつかがES様状態に少なくとも部分的に再プログラミングされており、前記細胞が、選択マーカーの発現が内因性多能性遺伝子の発現に実質的に適合するような様式で、内因性多能性遺伝子の発現を調節する発現調節エレメントに作動可能に連結された選択マーカーをコードするDNAを含む、準備する工程、および
(b)選択マーカーを発現する細胞を同定し、それにより、ES様状態に再プログラミングされた体細胞を同定する工程
を含む、方法。
(項目41) 前記内因性多能性遺伝子がOct−4またはNanogである、項目40に記載の方法。
(項目42) ES細胞またはES細胞コロニーの形態学的特徴を有する細胞または細胞のコロニーを選択する工程をさらに含む、項目40に記載の方法。
(項目43) 工程(a)の細胞が、Oct−4、Sox−2、c−Myc、Klf4、およびその組み合わせからなる群から選択される1つまたは複数の外因的に導入した遺伝子を含む、項目40に記載の方法。
(項目44) 単離された多能性の再プログラミングされた哺乳動物体細胞精製調製物であって、前記細胞が、(a)内因性のOct4およびNanogを発現し、(b)SCIDマウスに注射した場合に内胚葉、中胚葉、および外胚葉の特徴を有する組織に分化し、(c)少なくとも1つの遺伝子改変(genetic modification)を有し、(d)外因的に導入した多能性遺伝子または内因性多能性遺伝子に作動可能に連結された選択マーカーを発現しない、精製調製物。
(項目45) 少なくとも50%の細胞がDNA脱メチル化耐性をである、項目44に記載の細胞の精製調製物。
(項目46) DNAメチルトランスフェラーゼI発現が少なくとも50%減少する条件下で前記細胞が生存する、項目44に記載の細胞の精製調製物。
(項目47) 前記細胞が前記体細胞のドナーまたは前記体細胞の前駆細胞のドナーと遺伝的に適合し、前記ドナーが細胞療法を必要とする個体である、項目44に記載の精製調製物。
(項目48) 再プログラミングされた体細胞を生成する方法であって、
(a)体細胞のES様状態への再プログラミングに寄与する少なくとも1つの外因的に導入した遺伝子を含む体細胞を準備する工程であって、前記細胞は、前記細胞が(i)DNA脱メチル化に耐性であり、(ii)内因性Oct4を発現し、(c)SCIDマウスに注射した場合に内胚葉、中胚葉、および外胚葉の特徴を有する組織に分化する、ES様状態に再プログラミングされている、準備する工程、および
(b)少なくとも1つの前記外因的に導入した遺伝子を機能的に不活化する工程
を含む、方法。
(項目49) 前記細胞が、Oct−4、Sox−2、c−Myc、およびKlf4をコードする外因的に導入した遺伝子を含む、項目48に記載の方法。
(項目50) 工程(b)が、前記細胞中への部位特異的リコンビナーゼの導入または前記細胞中の部位特異的リコンビナーゼの発現によって前記外因的に導入した遺伝子の少なくとも一部を切り出す工程を含む、項目48に記載の方法。
(項目51) 体細胞をより低い分化状態に再プログラミングする薬剤を同定する方法であって、
(a)2つのX染色体を含む体細胞を準備する工程であって、そのうちの1つが不活性である、準備する工程、
(b)体細胞を候補再プログラミング薬と接触させる工程、
(c)培養物中で前記細胞を維持する工程、
(d)前記培養物中で前記候補薬が体細胞を再プログラミングしない場合に予想されるよりも多数の細胞がその不活性X染色体再活性化するかどうかを決定する工程であって、前記候補再プログラミング薬が体細胞を再プログラミングしない場合に予想されるよりも多数の細胞がその不活性X染色体を再活性化する場合に前記候補薬を再プログラミング薬として同定する、決定する工程
を含む、方法。
(項目52) 前記方法が、
(a)2つのX染色体を含む体細胞を準備する工程であって、そのうちの1つが不活性であり、前記X染色体の一方が選択マーカー遺伝子の機能的対立遺伝子を含み、前記X染色体の他方が選択マーカー遺伝子の機能的対立遺伝子を含まない、準備する工程、
(b)選択マーカーを発現しない細胞を選択し、それにより、選択マーカー遺伝子を含むX染色体が不活性である細胞を選択する工程、
(c)工程(b)で選択した体細胞を候補再プログラミング薬と接触させる工程、
(d)選択マーカー遺伝子の機能的対立遺伝子を含むX染色体が不活性なままである場合に予想されるよりも多数の細胞が選択マーカーを発現するかどうかを決定し、それにより、候補再プログラミング薬が体細胞を再プログラミングしない場合に予想されるよりも多数の細胞がその不活性X染色体を再活性化するかどうかを決定する工程、および
(e)候補再プログラミング薬が体細胞を再プログラミングしない場合に予想されるよりも多数の細胞がその不活性X染色体を再活性化する場合、前記候補薬を再プログラミング薬と同定する工程
を含む、項目51に記載の方法。
(項目53) 前記方法が、細胞を候補再プログラミング薬と接触させた後に選択マーカーの機能的形態を発現する細胞を選択し、それにより、その不活性X染色体が再活性化された細胞を選択する工程を含む、項目52に記載の方法。
(項目54) 前記選択マーカーが正の選択および負の選択に適切である、項目52に記載の方法。
(項目55) 工程(b)が選択マーカーの機能的形態を発現する細胞が実質的に生存しない条件下で細胞を維持することを含み、工程(d)が選択マーカーの機能的形態を発現しない細胞が実質的に生存しない条件下で細胞を維持することを含む、項目52に記載の方法。
(項目56) 前記遺伝子が、X染色体上に存在する内因性遺伝子である、項目52に記載の方法。
(項目57) 前記遺伝子がヒポキサンチングアニンホスホリボシルトランスフェラーゼ(HPRT)をコードする、項目52に記載の方法。
(項目58) 前記遺伝子の機能的対立遺伝子を欠くX染色体が前記遺伝子を不活化する操作された遺伝子の変化を含む、項目52に記載の方法。
(項目59) 前記方法が、
(a)2つのX染色体を含む体細胞を準備する工程であって、そのうちの1つが不活性であり、前記X染色体の一方が、その発現を選択することができる第1の選択マーカー遺伝子の機能的対立遺伝子およびその発現を選択することができる第2の選択マーカー遺伝子の機能的形態を含み、前記X染色体の他方が各前記遺伝子の機能的対立遺伝子を欠く、準備する工程、
(b)前記第1の選択マーカーの機能的形態を発現しない細胞を選択し、それにより、機能的対立遺伝子を含むX染色体が不活性である細胞を選択する工程、
(c)体細胞を候補再プログラミング薬と接触させる工程、
(d)前記第2の選択マーカーの機能的形態を発現する細胞を選択し、それにより、その不活性なX染色体を再活性化した細胞を選択する工程、
(e)前記候補再プログラミング薬が体細胞を再プログラミングしない場合に予想されるよりも多数の細胞が不活性なX染色体を再活性化するかどうかを決定する工程、および
(f)前記候補再プログラミング薬が細胞を再プログラミングしない場合に予想されるよりも多数の細胞がその不活性X染色体を再活性化する場合に前記候補薬を再プログラミング薬として同定する工程
を含む、項目51に記載の方法。
(項目60) 体細胞のES様状態への再プログラミングに適切な再プログラミング薬を同定する方法であって、
(a)体細胞を項目51に記載の方法にしたがって同定した再プログラミング薬と接触させる工程、および
(b)前記細胞が2つの転写活性X染色体を有すること以外のES細胞の少なくとも1つの特徴を示すかどうかを決定して、前記特徴を示す場合、前記候補薬を、体細胞をES様状態に再プログラミングする薬剤であると同定する工程
を含む、方法。
(項目61) さらなる特徴が、(i)SCIDマウスに注射した場合に内胚葉、中胚葉、および外胚葉の特徴を有する細胞に分化する能力、(ii)内因性のOct4、Nanog、または両方の発現;(iii)ES細胞マーカーの発現;(iv)出産予定日まで生存するキメラの形成に関与する細胞の能力からなる群から選択される、項目60に記載の方法。
(項目62) ES様状態に再プログラミングされた可能性が増加する体細胞を同定する方法であって、
(a)2つのX染色体を含む体細胞を準備する工程であって、その一方が不活性である、準備する工程、
(b)前記細胞を体細胞を再プログラミングすることができる1つまたは複数の処理に供する工程、および
(c)不活性なX染色体が活性になった細胞を同定し、それにより、ES様状態に再プログラミングされた可能性が増加する細胞を同定する工程
を含む、方法。
(項目63) 前記方法が、前記細胞を評価して前記細胞が2つの転写活性X染色体を有すること以外のES細胞の1つまたは複数の特徴を示すかどうかを決定する工程をさらに含む、項目62に記載の方法。
(項目64) 工程(b)が、再プログラミング薬である小分子と前記細胞を接触させる工程を含む、項目62に記載の方法。
(項目65) 工程(b)が、前記細胞を多能性遺伝子でトランスフェクトする工程を含む、項目62に記載の方法。
(項目66) 前記体細胞が2つのX染色体を含み、そのうちの1つが不活性であり、前記X染色体の一方が選択マーカー遺伝子の機能的対立遺伝子を含み、前記X染色体の他方が選択マーカー遺伝子の機能的対立遺伝子を含まない、項目62に記載の方法。
(項目67) 前記選択マーカー遺伝子が内因性遺伝子である、項目66に記載の方法。
(項目68) 前記体細胞が2つのX染色体を含み、そのうちの1つが不活性であり、前記X染色体の両方が選択マーカー遺伝子の機能的対立遺伝子を含む、項目62に記載の方法。
(項目69) ES様状態に再プログラミングされた可能性が増加する体細胞を同定する方法であって、
(a)2つのX染色体を含む体細胞を準備する工程であって、そのうちの1つが不活性であり、前記細胞の不活性なX染色体が正の選択および負の選択の両方に有用な選択マーカー遺伝子の機能的対立遺伝子を含み、前記活性なX染色体が前記マーカー遺伝子の機能的対立遺伝子を含まない、準備する工程、
(b)前記細胞を、体細胞を再プログラミングすることができる1つまたは複数の処理に供する工程、および
(c)選択マーカー遺伝子を発現する細胞を選択し、それにより、不活性なX染色体が転写的に活性になり、ES様状態に再プログラミングされた可能性が増加する細胞を選択する工程
を含む、方法。
(項目70) 前記選択マーカー遺伝子が、前記X染色体上に通常存在する内因性遺伝子である、項目69に記載の方法。
(項目71) 前記選択マーカー遺伝子がHPRTをコードする、項目69に記載の方法。
(項目72) 前記活性なX染色体が選択マーカー遺伝子の非機能的対立遺伝子を含み、前記非機能的対立遺伝子が前記対立遺伝子を不活化する変異または操作された変化を有する、項目69に記載の方法。
(項目73)(i)2つのX染色体を含む体細胞を準備する工程であって、そのうちの1つが不活性であり、前記X染色体の一方が選択マーカー遺伝子の機能的対立遺伝子を含み、前記X染色体の他方が選択マーカー遺伝子の機能的対立遺伝子を含まない、準備する工程、
(ii)選択マーカー遺伝子を発現しない細胞を選択し、それにより、不活性なX染色体が選択マーカー遺伝子の機能的対立遺伝子を含む細胞を選択する工程、
(iii)工程(ii)の細胞を体細胞を再プログラミングすることができる1つまたは複数の処理に供する工程、および
(iv)選択マーカー遺伝子を発現する細胞を選択し、それにより、不活性なX染色体が転写的に活性になった細胞を選択する工程
を含む、項目69に記載の方法。
(項目74) 前記体細胞が2つのX染色体を含み、そのうちの1つが不活性であり、前記X染色体の両方が正の選択および負の選択の両方に有用な選択マーカー遺伝子の機能的対立遺伝子を含み、前記方法が、
(a)選択マーカー遺伝子を発現しない細胞を選択し、それにより、第1のX染色体が転写的に不活性である細胞集団を得る工程、
(b)前記細胞を、体細胞を再プログラミングすることができる1つまたは複数の処理に供する工程、
(c)前記第1のX染色体上の選択マーカー遺伝子を機能的に不活化する工程、および
(d)選択マーカー遺伝子を発現する細胞を選択し、それにより、前記第2のX染色体が転写的に活性である細胞を選択する工程
を含む、項目62に記載の方法。
(項目75) 前記選択マーカー遺伝子が前記X染色体上に通常存在する内因性遺伝子である、項目74に記載の方法。
(項目76) 工程(c)が部位特異的リコンビナーゼを使用して選択マーカー遺伝子を機能的に不活化する工程を含む、項目74に記載の方法。
(項目77) 体細胞をより低い分化状態に再プログラミングする薬剤を同定する方法であって、
(a)体細胞を候補再プログラミング薬と接触させる工程であって、前記体細胞がDNAメチル化減少に感受性である、接触させる工程、および
(b)DNAメチル化減少に耐性である細胞の量を決定する工程であって、コントロールと比較した場合、DNAメチル化減少に耐性である細胞の量の増加が、候補薬が再プログラミング薬であることを示す、決定する工程
を含む、方法。
(項目78) ES様状態に再プログラミングした可能性が増加する体細胞を誘導する方法であって、
(a)細胞の化学的選択に有用な遺伝子改変を含まない体細胞を準備する工程であって、前記細胞の少なくともいくつかが、ES様状態に少なくとも部分的に再プログラミングされている、準備する工程、および
(b)ES細胞またはES細胞コロニーの形態的特徴を有する細胞または細胞のコロニーを選択する工程
を含む、方法。
(項目79) 前記体細胞が遺伝的に改変されていない、項目78に記載の方法。
(項目80) 準備した前記体細胞が、前記細胞の化学的選択に有用なDNA構築物を含まない、項目78に記載の方法。
(項目81) 準備した前記体細胞が、前記細胞の遺伝的または化学的選択に有用なDNA構築物を含まない、項目78に記載の方法。
(項目82) 前記体細胞が、少なくとも1つの外因的に導入した再プログラミング薬を含む、項目78に記載の方法。
(項目83) 前記外因的に導入した再プログラミング薬が、タンパク質形質導入または前記タンパク質をコードする構築物一過性トランスフェクションによって導入されたタンパク質である、項目82に記載の方法。
(項目84) 工程(a)の体細胞が、1つまたは複数の外因的に導入した多能性遺伝子またはかかる遺伝子によってコードされるタンパク質を含む、項目78に記載の方法。
(項目85) 前記体細胞がOct−4、Sox−2、c−Myc、およびKlf4からなる群から選択される少なくとも2つの非内因性タンパク質を含むか発現する、項目78に記載の方法。
(項目86) 工程(a)の体細胞が、Oct−4、Sox−2、c−Myc、Klf4、およびその組み合わせからなる群から選択される1つまたは複数の外因的に導入した遺伝子を含む、項目78に記載の方法。
(項目87) 工程(a)の少なくともいくつかの細胞がES様状態に再プログラミングされている、項目78に記載の方法。
(項目88) 選択された前記細胞が、以下の特徴:(i)SCIDマウスに注射した場合に内胚葉、中胚葉、および外胚葉の特徴を有する細胞に分化する能力、(ii)内因性のOct4、Nanog、または両方の発現、(iii)ES細胞マーカーの発現、および(iv)出産予定日まで生存するキメラの形成に関与する能力の少なくとも3つを示す、項目78に記載の方法。
(項目89) 前記ES細胞マーカーが、アルカリホスファターゼ(AP)、SSEA−1、SSEA−3、SSEA−4、およびTRAF−60からなる群から選択される、項目88に記載の方法。
(項目90) 同定された前記細胞を1つまたは複数の選択工程に供して、ES様細胞をES様状態に再プログラミングされない細胞から分離する工程をさらに含む、項目78に記載の方法。
(項目91) 前記1つまたは複数の選択工程が、
(a)ES様状態に再プログラミングされない細胞を溶解するのに十分な補体成分の存在下での細胞の補体媒介溶解に耐性を示す細胞を選択する工程、
(b)体細胞ではなくES細胞に特徴的な細胞表面マーカーの発現に基づいた細胞選別工程、
(c)DNA脱メチル化に耐性である細胞を選択する工程、
(d)2つの活性なX染色体を有する細胞を選択する工程、および
(e)前記コロニーを継代またはサブクローニングする工程、および前記コロニーの細胞の子孫からES様形態を有する細胞または細胞コロニーを同定する工程から選択される、項目90に記載の方法。
(項目92) ES様状態に再プログラミングされた体細胞を同定する方法であって、
(a)細胞集団を準備する工程であって、その少なくともいくつかがES様状態に再プログラミングされており、前記細胞が内因性多能性遺伝子の発現を調節する発現調節エレメントに作動可能に連結された選択マーカーをコードするDNAを含まない、準備する工程、および
(b)ES細胞またはES細胞コロニーに特徴的な形態を有する細胞または細胞コロニーを同定する工程
を含む、方法。
(項目93) 前記細胞のコロニー由来の細胞または少なくともいくつかの細胞を、かかる形態を欠く集団中の他の細胞と区別する工程をさらに含む、項目92に記載の方法。
(項目94) 工程(a)の細胞が、Oct−4、Sox−2、c−Myc、Klf4、およびその組み合わせからなる群から選択される1つまたは複数の外因的に導入した遺伝子を含む、項目92に記載の方法。
(項目95) ES様状態に再プログラミングされた体細胞を同定する方法であって、
(a)1つまたは複数の再プログラミング薬を細胞に導入する工程であって、前記再プログラミング薬が前記細胞の少なくともいくつかをES様状態に再プログラミングするのに十分である、導入する工程、
(b)前記細胞を、ES様細胞を含むコロニーが発生するのに適切な期間培養物中で維持する工程、および
(c)化学的選択または遺伝的選択を使用せずにES様細胞の少なくとも1つのかかるコロニーを同定する工程
を含む方法。
(項目96) 工程(a)が、Oct−4、Sox−2、c−Myc、Klf4、およびその組み合わせからなる群から選択される1つまたは複数の遺伝子を細胞に導入することを含む、項目95に記載の方法。
(項目97) ES様状態に再プログラミングされた体細胞を同定する方法であって、
(a)体細胞集団を準備する工程であって、その少なくともいくつかがES様状態に再プログラミングされており、前記細胞が、内因性多能性遺伝子の発現を調節する発現調節エレメントに作動可能に連結された選択マーカーをコードするDNAを含まない、準備する工程、
(b)(i)細胞溶解に十分な補体成分および(ii)ES様状態に再プログラミングしない体細胞の細胞表面に存在するが、ES細胞によって存在しないか有意でないレベルで発現するマーカーに特異的に結合する補体結合抗体の存在下にて培養物中で前記細胞を維持する工程、および
(c)工程(b)を生存する細胞を単離する工程
を含む、方法。
(項目98) 前記マーカーがMHCクラスI抗原である、項目97に記載の方法。
(項目99) 前記有意でないレベルが、体細胞の型と同型生物由来の線維芽細胞によって発現される平均レベルの10倍より小さい、項目97に記載の方法。
(項目100) 単離された多能性の再プログラミングされた哺乳動物体細胞の精製調製物であって、前記細胞が、(a)内因性のOct4およびNanogを発現し、(b)SCIDマウスに注射した場合に内胚葉、中胚葉、および外胚葉の特徴を有する組織に分化し、(c)内因性多能性遺伝子に作動可能に連結された選択マーカーをコードするDNAを含まない、精製調製物。
(項目101) 前記細胞が遺伝的に改変されていない、項目100に記載の細胞の精製調製物。
(項目102) 前記細胞が前記体細胞のドナーまたは前記体細胞の前駆細胞のドナーと遺伝的に適合し、前記ドナーが細胞療法を必要とする個体である、項目100に記載の細胞の精製調製物。
(項目103) 再プログラミングされた体細胞を誘導する方法であって、
(a)前記細胞のES様状態への再プログラミングに寄与する少なくとも1つの外因的に導入した遺伝子またはタンパク質を含む体細胞を準備する工程であって、前記細胞が、(i)DNA脱メチル化に耐性を示し、(ii)内因性Oct4を発現し、(c)SCIDマウスに注射した場合に内胚葉、中胚葉、および外胚葉の特徴を有する組織に分化するES様状態に前記細胞が再プログラミングされている、準備する工程、
(b)遺伝的選択または化学的選択を使用せずにES様細胞を単離する工程、および
(c)少なくとも1つの前記外因的に導入した遺伝子を機能的に不活化する工程
を含む、方法。
(項目104) 前記細胞が、Oct−4、Sox−2、c−Myc、およびKlf4をコードする外因的に導入した遺伝子またはこれらのタンパク質を含む、項目103に記載の方法。
(項目105) 工程(b)が、前記細胞における部位特異的リコンビナーゼの導入または前記細胞における部位特異的リコンビナーゼの発現によって前記外因的に導入した遺伝子の少なくとも一部を切り出す工程を含む、項目103に記載の方法。
(項目106) 再プログラミングされた細胞を誘導する方法であって、(i)遺伝的に改変されていない細胞集団を準備する工程であって、その少なくともいくつかがES様状態に部分的または完全に再プログラミングされている、準備する工程、(ii)補体媒介溶解を使用して部分的または完全に再プログラミングされた細胞を富化して、少なくともいくつかの非再プログラミング細胞を排除する工程、および(iii)形態的基準を使用して、再プログラミングされた細胞またはかかる細胞を含むコロニーを同定する工程を含む、方法。
(項目107) 体細胞が、化学的選択または遺伝的選択に有用なマーカーをコードする核酸構築物で遺伝的に改変されない、ES様状態に再プログラミングされた単離体細胞。
(項目108) 前記細胞が遺伝的に改変されない、項目107に記載の単離体細胞。
(項目109) 少なくとも90%の細胞がES様状態に再プログラミングされており、化学的選択または遺伝的選択に有用なマーカーをコードする核酸構築物で遺伝的に改変されない、精製体細胞集団。
(項目110) 前記細胞が遺伝的に改変されていない、項目32に記載の精製体細胞集団。
(項目111) 準備した前記体細胞を、マウス、ラットウサギ家畜ペット(companion animal)、霊長類、またはヒトから得る、項目78に記載の方法。
(項目112) 前記体細胞を、マウス、ラット、ウサギ、家畜、ペット、霊長類、またはヒトから得る、項目109に記載の精製体細胞集団。
(項目113) 分化した体細胞を多能性状態に再プログラミングする方法であって、
(a)分化した体細胞を前記細胞の多能性状態への再プログラミングに寄与する少なくとも1つの再プログラミング薬と接触させる工程、
(b)前記細胞を、前記細胞の増殖および前記少なくとも1つの再プログラミング薬の活性に適切な条件下で前記細胞の再プログラミングの開始に十分な期間維持する工程、および
(c)前記少なくとも1つの再プログラミング薬を機能的に不活化する工程
を含む、方法。
(項目114) 分化した体細胞を多能性状態に再プログラミングする方法であって、
(a)分化した体細胞の多能性状態への再プログラミングに寄与する少なくとも1つの外因的に導入した因子を含む分化した体細胞を準備する工程、
(b)前記細胞を、前記細胞の増殖および前記少なくとも1つの外因的に導入した因子の活性に適切な条件下で少なくとも1つの内因性多能性遺伝子の活性化に十分な期間維持する工程、および
(c)前記少なくとも1つの外因的に導入した因子を機能的に不活化する工程
を含む、方法。
(項目115) 多能性状態に再プログラミングされた分化した体細胞を選択する方法であって、
(a)分化した体細胞の多能性状態への再プログラミングに寄与する少なくとも1つの外因的に導入した因子を含む分化した体細胞を準備する工程、
(b)前記細胞を、前記細胞の増殖および前記少なくとも1つの外因的に導入した因子の活性に適切な条件下で少なくとも1つの内因性多能性遺伝子の活性化に十分な期間維持する工程、
(c)前記少なくとも1つの外因的に導入した因子を機能的に不活化する工程、および
(d)1つまたは複数の多能性のマーカーを示す細胞と示さない細胞とを区別する工程を含む、方法。
(項目116) 前記分化した体細胞が部分的に分化している、項目113、114、または115に記載の方法。
(項目117) 前記分化した体細胞が完全に分化している、項目113、114、または115に記載の方法。
(項目118) 前記分化した体細胞が造血性系列細胞である、項目113、114、または115に記載の方法。
(項目119) 前記分化した体細胞を末梢血から得る、項目113、114、または115に記載の方法。
(項目120) 前記分化した体細胞が免疫系細胞である、項目113、114、または115に記載の方法。
(項目121) 前記分化した体細胞がマクロファージである、項目113、114、または115に記載の方法。
(項目122) 前記分化した体細胞がリンパ球系細胞である、項目113、114、または115に記載の方法。
(項目123) 前記分化した体細胞がB細胞である、項目113、114、または115に記載の方法。
(項目124) 前記部分的に分化した細胞が未熟B細胞である、項目116に記載の方法。
(項目125) 前記未熟B細胞がプレB細胞またはプロB細胞である、項目116に記載の方法。
(項目126) 前記完全に分化した細胞が成熟B細胞である、項目117に記載の方法。
(項目127) 前記完全に分化した細胞が非ナイーブ成熟B細胞である、項目117に記載の方法。
(項目128) 前記少なくとも1つの外因的に導入した因子がポリヌクレオチドである、項目114または項目115に記載の方法。
(項目129) 前記少なくとも1つの外因的に導入した因子がポリペプチドである、項目114または項目115に記載の方法。
(項目130) 前記少なくとも1つの外因的に導入した因子が、Oct4、Sox2、Klf−4、Nanog、Lin28、c−Myc、およびその組み合わせからなる群から選択される、項目114または項目115に記載の方法。
(項目131) 前記分化した体細胞が、外因的に導入したOct4、Sox2、およびKlf−4を含む、項目114または項目115に記載の方法。
(項目132) 前記分化した体細胞が、外因的に導入したOct4、Sox2、Klf−4、およびc−Mycを含む、項目114または項目115に記載の方法。
(項目133) 前記少なくとも1つの外因的に導入した因子が、Oct4、Sox2、Klf−4、c−Myc、およびその組み合わせからなる群から選択され、前記分化した体細胞が、前記分化した体細胞の脱分化を誘導することができる少なくとも1つの外因的に導入した因子をさらに含む、項目123に記載の方法。
(項目134) 前記分化した体細胞の脱分化を誘導することができる少なくとも1つの外因的に導入した因子がポリヌクレオチドである、項目133に記載の方法。
(項目135) 前記分化した体細胞の脱分化を誘導することができる少なくとも1つの外因的に導入した因子がポリペプチドである、項目133に記載の方法。
(項目136) 前記分化した体細胞が外因的に導入した遺伝子であるOct4、Sox2 およびKlf−4を含み、前記分化した体細胞の脱分化を誘導することができる少なくとも1つの外因的に導入した因子をさらに含む、項目123に記載の方法。
(項目137) 前記分化した体細胞の脱分化を誘導することができる少なくとも1つの外因的に導入した因子がポリヌクレオチドである、項目136に記載の方法。
(項目138) 前記分化した体細胞の脱分化を誘導することができる少なくとも1つの外因的に導入した因子がポリペプチドである、項目136に記載の方法。
(項目139) 前記分化した体細胞が、外因的に導入した遺伝子であるOct4、Sox2、Klf−4、およびc−Mycを含み、前記分化した体細胞の脱分化を誘導することができる少なくとも1つの外因的に導入した因子をさらに含む、項目123に記載の方法。
(項目140) 前記分化した体細胞の脱分化を誘導することができる少なくとも1つの外因的に導入した因子がポリヌクレオチドである、項目139に記載の方法。
(項目141) 前記分化した体細胞の脱分化を誘導することができる少なくとも1つの外因的に導入した因子がポリペプチドである、項目139に記載の方法。
(項目142) 前記分化した体細胞の脱分化を誘導することができる因子が、B細胞後期特異的マーカーを下方制御する少なくとも1つのポリヌクレオチド、Pax5発現を阻害する少なくとも1つのポリヌクレオチド、B細胞後期特異的マーカーを下方制御する少なくとも1つのポリペプチド、Pax5発現を阻害する少なくとも1つのポリペプチド、およびその組み合わせからなる群から選択される、項目133に記載の方法。
(項目143) 前記分化した体細胞の脱分化を誘導することができる因子が、B細胞後期特異的マーカーを下方制御する少なくとも1つのポリヌクレオチド、Pax5発現を阻害する少なくとも1つのポリヌクレオチド、B細胞後期特異的マーカーを下方制御する少なくとも1つのポリペプチド、Pax5発現を阻害する少なくとも1つのポリペプチド、およびその組み合わせからなる群から選択される、項目136に記載の方法。
(項目144) 前記分化した体細胞の脱分化を誘導することができる因子が、B細胞後期特異的マーカーを下方制御する少なくとも1つのポリヌクレオチド、Pax5発現を阻害する少なくとも1つのポリヌクレオチド、B細胞後期特異的マーカーを下方制御する少なくとも1つのポリペプチド、Pax5発現を阻害する少なくとも1つのポリペプチド、およびその組み合わせからなる群から選択される、項目139に記載の方法。
(項目145) 前記分化した体細胞の脱分化を誘導することができる因子が、C/EBPαまたはC/EBPαのヒトホモログである、項目133に記載の方法。
(項目146) 前記分化した体細胞の脱分化を誘導することができる因子が、C/EBPαまたはC/EBPαのヒトホモログである、項目136に記載の方法。
(項目147) 前記分化した体細胞の脱分化を誘導することができる因子が、C/EBPαまたはC/EBPαのヒトホモログである、項目139に記載の方法。
(項目148) 前記少なくとも1つの外因的に導入した因子を、ベクターを使用して導入する、項目114または項目115に記載の方法。
(項目149) 前記少なくとも1つの外因的に導入した因子を、誘導ベクターまたは条件的に発現されるベクターを使用して導入する、項目114または項目115に記載の方法。
(項目150) 前記少なくとも1つの外因的に導入した因子を、メチル化媒介サイレンシングに供さないベクターを使用して導入する、項目114または項目115に記載の方法。
(項目151) 前記少なくとも1つの外因的に導入した因子を、ウイルスベクターを使用して導入する、項目114または項目115に記載の方法。
(項目152) 前記少なくとも1つの外因的に導入した因子を、レトロウイルスベクターを使用して導入する、項目114または項目115に記載の方法。
(項目153) 前記少なくとも1つの外因的に導入した因子を、レンチウイルスベクターを使用して導入する、項目114または項目115に記載の方法。
(項目154) 前記分化した体細胞を、造血性サイトカインおよび成長因子の存在下で維持する、項目118に記載の方法。
(項目155) 前記分化した体細胞を、造血性サイトカインおよび成長因子の存在下で維持する、項目123に記載の方法。
(項目156) 前記分化した体細胞を、骨髄間質細胞を含む培地上で培養する、項目118に記載の方法。
(項目157) 前記分化した体細胞を、骨髄間質細胞を含む培地上で培養する、項目123に記載の方法。
(項目158) 前記内因性多能性遺伝子が、Nanog、Oct4、Sox2、およびその組み合わせからなる群から選択される、項目114または項目115に記載の方法。
(項目159) 前記内因性多能性遺伝子が、選択マーカーと同時発現する、項目114または項目115に記載の方法。
(項目160) 前記選択マーカーが、抗生物質耐性遺伝子または発光マーカーである、項目159に記載の方法。
(項目161) 前記分化した体細胞が、前記少なくとも1つの内因性多能性遺伝子の発現を調節する発現調節エレメントに作動可能に連結された選択マーカーをコードする少なくとも1つのポリヌクレオチドをさらに含む、113、114、または115に記載の方法。
(項目162) 前記分化した体細胞が、Oct4遺伝子座中、Nanog遺伝子座中、またはOct4遺伝子座中およびNanog遺伝子座中の両方に選択遺伝子を含む、項目113、114、または115に記載の方法。
(項目163) 前記少なくとも1つの外因的に導入した因子を誘導ベクターを使用して導入し、前記少なくとも1つの外因的に導入した因子を機能的に不活化する工程が、前記細胞が維持される条件を前記ベクターの誘導発現に不適切にすることを含む、項目113、114、または115に記載の方法。
(項目164) 前記少なくとも1つの多能性のマーカーが、多能性遺伝子の発現、その発現が多能性遺伝子の発現の直接または間接的な結果である遺伝子の発現、アルカリホスファターゼの発現、SSEA1の発現、SSEA3の発現、SSEA4の発現、TRAF−60の発現、Nanogの発現、Oct4の発現、Fxb15の発現、ES細胞またはES細胞コロニーに特徴的な形態、出産予定日まで生存するキメラの形成に関与する能力、SCIDマウスに注射した場合に内胚葉、中胚葉、および外胚葉の特徴を有する細胞に分化する能力、2つの活性なX染色体の存在、DNAメチル化に対する耐性、およびその組み合わせからなる群から選択される、項目115に記載の方法。
(項目165) 再プログラミングされた分化した体細胞に由来する単離多能性細胞。
(項目166) 再プログラミングされた分化した体細胞に由来する少なくとも70%の多能性細胞を含む精製体細胞集団。
(項目167) (a)分化した体細胞の多能性状態への再プログラミングに寄与する少なくとも1つの外因的に導入した因子を含む分化した体細胞を準備する工程、
(b)前記細胞を、前記細胞の増殖および前記少なくとも1つの外因的に導入した因子の活性に適切な条件下で少なくとも1つの内因性多能性遺伝子の活性化に十分な期間維持する工程、
(c)前記少なくとも1つの外因的に導入した因子を機能的に不活化する工程、および
(d)1つまたは複数の多能性のマーカーを示す細胞を示さない細胞と区別する工程
を含む方法によって産生された単離多能性細胞。
(項目168)(a)分化した体細胞の多能性状態への再プログラミングに寄与する少なくとも1つの外因的に導入した因子を含む分化した体細胞を準備する工程、
(b)前記細胞を、前記細胞の増殖および前記少なくとも1つの外因的に導入した因子の活性に適切な条件下で少なくとも1つの内因性多能性遺伝子の活性化に十分な期間維持する工程、
(c)前記少なくとも1つの外因的に導入した因子を機能的に不活化する工程、および
(d)1つまたは複数の多能性のマーカーを示す細胞と示さない細胞とを区別する工程を含む方法によって産生された、再プログラミングされた分化した体細胞に由来する少なくとも70%の多能性細胞を含む精製体細胞集団。
(項目169) 体細胞から多能性細胞を産生する方法であって、
(a)1つまたは複数の体細胞の多能性状態への再プログラミングに寄与する少なくとも1つの外因的に導入した因子をそれぞれ含む1つまたは複数の体細胞を準備する工程であって、前記外因的に導入した因子を、メチル化誘導サイレンシングに供さない誘導ベクターを使用して導入する、準備する工程、
(b)前記1つまたは複数の細胞を、前記細胞の増殖および前記少なくとも1つの外因的に導入した因子の活性に適切な条件下で少なくとも1つの内因性多能性遺伝子の活性化に十分な期間維持する工程、
(c)前記少なくとも1つの外因的に導入した因子を機能的に不活化する工程、
(d)多能性のマーカーを示す1つまたは複数の細胞を選択する工程、
(e)前記多能性のマーカーを示す1つまたは複数の細胞を使用してキメラ胚を生成する工程、
(f)前記キメラ胚から1つまたは複数の体細胞を得る工程、
(g)前記1つまたは複数の体細胞を、前記細胞の増殖および前記少なくとも1つの外因的に導入した因子の活性に適切な条件下で少なくとも1つの内因性多能性遺伝子の活性化に十分な期間維持する工程、および
(h)1つまたは複数の多能性のマーカーを示す細胞と示さない細胞との間で区別する工程
を含む、方法。
(項目170)(a)1つまたは複数の体細胞の多能性状態への再プログラミングに寄与する少なくとも1つの外因的に導入した因子をそれぞれ含む1つまたは複数の体細胞を準備する工程であって、前記外因的に導入した因子を、メチル化誘導サイレンシングに供さない誘導ベクターを使用して導入する、準備する工程、
(b)前記1つまたは複数の細胞を、前記細胞の増殖および前記少なくとも1つの外因的に導入した因子の活性に適切な条件下で少なくとも1つの内因性多能性遺伝子の活性化に十分な期間維持する工程、
(c)前記少なくとも1つの外因的に導入した因子を機能的に不活化する工程、
(d)多能性のマーカーを示す1つまたは複数の細胞を選択する工程、
(e)前記多能性のマーカーを示す1つまたは複数の細胞を使用してキメラ胚を生成する工程、
(f)前記キメラ胚から1つまたは複数の分化した体細胞を得る工程、
(g)前記1つまたは複数の分化した体細胞を、前記細胞の増殖および前記少なくとも1つの外因的に導入した因子の活性に適切な条件下で少なくとも1つの内因性多能性遺伝子の活性化に十分な期間維持する工程、および
(h)1つまたは複数の多能性のマーカーを示す細胞と示さない細胞とを区別する工程を含む方法によって産生された単離多能性細胞。
(項目171) (a)1つまたは複数の体細胞の多能性状態への再プログラミングに寄与する少なくとも1つの外因的に導入した因子をそれぞれ含む1つまたは複数の体細胞を準備する工程であって、前記外因的に導入した因子を、メチル化誘導サイレンシングに供さない誘導ベクターを使用して導入する、準備する工程、
(b)前記1つまたは複数の細胞を、前記細胞の増殖および前記少なくとも1つの外因的に導入した因子の活性に適切な条件下で少なくとも1つの内因性多能性遺伝子の活性化に十分な期間維持する工程、
(c)前記少なくとも1つの外因的に導入した因子を機能的に不活化する工程、
(d)多能性のマーカーを示す1つまたは複数の細胞を選択する工程、
(e)前記多能性のマーカーを示す1つまたは複数の細胞を使用してキメラ胚を生成する工程、
(f)前記キメラ胚から1つまたは複数の分化した体細胞を得る工程、
(g)前記1つまたは複数の分化した体細胞を、前記細胞の増殖および前記少なくとも1つの外因的に導入した因子の活性に適切な条件下で少なくとも1つの内因性多能性遺伝子の活性化に十分な期間維持する工程、および
(h)1つまたは複数の多能性のマーカーを示す細胞と示さない細胞とを区別する工程を含む方法によって産生された、再プログラミングされた分化した体細胞に由来する少なくとも70%の多能性細胞を含む精製体細胞集団。
(項目172) 分化した免疫細胞を多能性状態に再プログラミングする方法であって、
(a)それぞれ誘導ベクターの調節下で、外因的に導入したOct4、Sox2、Klf−4、およびc−Mycを含み、外因的に導入したC/EBPαをさらに含む分化した免疫細胞を準備する工程、
(b)前記細胞を、前記細胞の増殖およびOct4、Sox2、Klf−4、c−Myc、およびC/EBPαの活性に適切な条件下で内因性のNanogおよび/またはOct4の活性化に十分な期間維持する工程、および
(c)外因的に導入したOct4、Sox2、Klf−4、およびc−Mycを機能的に不活化する工程
を含む、方法。
(項目173) 前記誘導ベクターがメチル化誘導サイレンシングに供されない、項目172に記載の方法。
(項目174)(a)それぞれ誘導ベクターの調節下で、外因的に導入したOct4、Sox2、Klf−4、およびc−Mycを含み、外因的に導入したC/EBPαをさらに含む分化した免疫細胞を準備する工程、
(b)前記細胞を、前記細胞の増殖およびOct4、Sox2、Klf−4、c−Myc、およびC/EBPαの活性に適切な条件下で内因性のNanogおよび/またはOct4の活性化に十分な期間維持する工程、および
(c)外因的に導入したOct4、Sox2、Klf−4、およびc−Mycを機能的に不活化する工程
を含む方法によって産生された、再プログラミングされた分化した免疫細胞に由来する少なくとも70%の多能性細胞を含む精製免疫細胞集団。
(項目175) 再プログラミング薬を同定する方法であって、
(a)1つまたは複数の体細胞の多能性状態への再プログラミングに寄与する少なくとも1つの外因的に導入した因子をそれぞれ含む1つまたは複数の体細胞を準備する工程であって、前記外因的に導入した各因子を、メチル化誘導サイレンシングに供さない誘導ベクターを使用して導入し、その発現を異なるインデューサーによって誘導される調節エレメントによって調節する、準備する工程、
(b)前記1つまたは複数の細胞を、前記細胞の増殖および前記少なくとも1つの外因的に導入した因子の活性に適切な条件下で前記細胞を再プログラミングするか少なくとも1つの内因性多能性遺伝子の活性化に十分な期間維持する工程、
(c)前記少なくとも1つの外因的に導入した因子を機能的に不活化する工程、
(d)多能性のマーカーを示す1つまたは複数の細胞を選択する工程、
(e)前記多能性のマーカーを示す1つまたは複数の細胞を使用してキメラ胚を生成する工程、
(f)前記キメラ胚から1つまたは複数の体細胞を得る工程、
(g)前記1つまたは複数の体細胞を、前記細胞の増殖および前記少なくとも1つの外因的に導入した因子の活性に適切な条件下で維持する工程であって、前記少なくとも1つの外因的に導入した因子の活性のみでは少なくとも1つの内因性多能性遺伝子の活性化に不十分である、維持する工程、
(h)(g)の体細胞を1つまたは複数の候補再プログラミング薬と接触させる工程、および
(i)1つまたは複数の多能性のマーカーを示す前記1つまたは複数の候補再プログラミング薬と接触した細胞を同定する工程であって、(g)の体細胞を1つまたは複数の多能性のマーカーを示すように誘導する候補再プログラミング薬を再プログラミング薬と同定する、同定する工程
を含む、方法。

図面の簡単な説明

0045

図1は、誘導性Oct4対立遺伝子の略図である。第1の組込みベクターである誘導性Oct4組込みベクターは、テトラサイクリン誘導性プロモーター(Tet−Op)によって駆動するOct4遺伝子を含む。Tet−Op−Oct4カセットは、5’でスプライスアクセプターダブルポリシグナル(SA−dpA)と隣接し、3’でSV40ポリAテール(SV40−pA)と隣接している。第2の組込みベクターであるテトラサイクリンアクチベーター組込みベクターは、野生型アクチベーターよりもドキシサイクリン(Dox)誘導に応答するテトラサイクリンアクチベーターの変異形態(M2−rtTA)を含む(Urlingerら,Proc Natl Acad Sci USA 97(14):7963 2000))。
図2A〜2Bは、Oct4およびNanog選択iPS細胞の生成を示す。図2Aに示すように、IRES−GfpNeo融合カセットを、Oct4エクソン5のBclI部位顆粒に挿入する。正確にターゲティングされたES細胞クローンを、5’外側プローブ(5’external probe)を使用したNcoI消化DNAのサザン分析によってスクリーニングした。Nanog遺伝子を、Mitsuiら,Cell 113(5):631(2003)に記載のようにターゲティングした。図2Bは、感染およびneo選択の4週間後のOct4およびNanogneo MEFのAP陽性コロニーおよび強いSSEA1陽性コロニーの総数(左のスケール)および比率(右のスケール)を示す。
図3は、マウスB細胞分化系におけるOCT4、Sox2、Klf4、およびc−Mycのトランスジェニック誘導発現、特に、B細胞分化系由来の再プログラミング細胞のために本研究で使用したストラテジーを示す略図を示す。
図4は、再プログラミング効率を測定するための実験の略図を示す。3×106個のCD19+成体B細胞にC/EBPα−NeoR構築物をコードするレトロウイルスを感染させ、24時間後、IgMIgD+成熟成体B細胞を分類し、OP9間質細胞株を予めプレートした96ウェルプレート中に単一細胞としてプレートした。実験を通して、細胞を馴化培地+Dox+LIF中で成長させた。6日目に、培養ウェルピューロマイシンおよびネオマイシン選択に5日間供し、それにより、C/EBPαを感染させたトランスジェニックB細胞のみを成長させた。20日目に、薬物耐性細胞を含むウェルを、FACS分析によってNanog−GFP発現についてスクリーニングした。その後、陽性とスコアリングされたウェルを、ES培地中のMEF上で継代し、iPS細胞株中で成長させた。

0046

発明の詳細な説明
体細胞核の別の細胞型への後成性のリワイヤリング(rewiring)の概念に関連する核再プログラミングを、異なるアプローチによって行うことができる。最近確立された体細胞を多能性に再プログラミングするためのストラテジーは、体細胞中の定義した転写因子の直接異所性発現を含む(Okitaら,2007;Takahashi and
Yamanaka,2006;Wernigら,2007)。この因子発現の強制は、培養物中で比較的長期間にわたって起こる一連の確率的事象を開始するようであり、この事象により、最終的に、安定な多能性状態を獲得したほんのわずかな細胞が生成される(Jaenisch and Young,2008)。形質導入された因子は、再プログラミング過程初期に必要であり(Brambrinkら,2008;Stadtfeldら,2008)、その間に、この因子は内因性多能性遺伝子と相互作用し(Boyerら,2005;Lohら,2006)、後成的変化を段階的に誘導し、その後に内細胞塊由来ES細胞の後成的状態と識別不可能な安定な後成的状態を維持することができる。この過程の間に、de novoメチルトランスフェラーゼであるDnmt3aおよびDnmt3bも活性化するようになり、同様に、ウイルス形質導入因子をメチル化およびサイレンシングする。外因性因子のサイレンシングは、iPS細胞のその後の分化に不可欠である(Brambrinkら,2008;Takahashiら,2007;Wernigら,2007;Stadfeldら,2008)。

0047

B細胞分化系に沿った細胞の発生では、重鎖および軽鎖免疫グロブリン遺伝子座中での連続的な固有の遺伝子DNA再構成は、B細胞成熟の異なる連続した段階に遺伝的に印をつける(Jungら,2006)。プロB発生期の細胞は、免疫グロブリン再構成(V(可変)、D(多様性)、およびJ(連結)遺伝子セグメントアセンブリに関与する過程)を開始する。重鎖遺伝子座IgH)のアセンブリは、軽鎖遺伝子座(IgL)のアセンブリに先行する(Jungら,2006)。さらに、IgH遺伝子座の再構成は連続的であり、DHとJHとの連結は、VHセグメントとDHJHセグメントとの再構成前の両対立遺伝子上で起こる(Papavasiliouら,1997)。VH−DHJH可変遺伝子領域の産生的アセンブリは、次の段階への分化を直接シグナル伝達し、ここで、IgL鎖は、一般にIgλの再構成に先行してIgκ再構成とアセンブリする(Papavasiliouら,1997)。産生的IgL鎖の生成により、最終的に機能的な軽鎖および重鎖タンパク質が会合して、これらが共に細胞表面上にB細胞受容体を形成する。得られたB細胞は周囲に移動することができ、ここで同族抗原遭遇した際に適切な免疫学的機能を発揮することができる(Schlissel,2003)。

0048

本明細書中に記載の作業では、異なる連続的に獲得された遺伝子「フィンガープリント」を保有するこの高秩序発生経路由来の細胞を使用した。フィンガープリントにより、各モノクローナルiPS株を生成することができるドナーB細胞核の発生段階を正確に遡及的に評価することができるであろう。特に、本明細書中に記載のように、iPS細胞を、再プログラミング因子であるOct4、Sox2、c−Myc、およびKlf4での形質導入によってプロB細胞およびプレB細胞から生成し、C/EBPα(十分に特徴づけられた骨髄転写因子)のさらなる過剰発現によって成熟B細胞から生成した。この作業により、再プログラミングされた細胞がドナー非最終分化B細胞および成熟した最終分化したB細胞に特徴的な遺伝子再構成を有し、成体キメラマウスを生成して生殖系列に寄与することが示される。これらの結果は、再プログラミング因子の特定の組み合わせによって最終分化した細胞のゲノムを多能性状態にリセットすることができることを示す。

0049

本明細書中に記載の作業により、成体マウスから得た最終分化した成熟B細胞をin vitroでES様細胞に直接再プログラミングすることができるという決定的な証拠が得られる。最終的に首尾よく再プログラミングされたドナーB細胞集団は、以下の後成的変化および遺伝子変化に関与する複雑な分化経路を完了した:造血性B細胞分化系およびその後のB細胞分化系への最初の関与;産生的な重鎖および軽鎖の再構成の獲得;成体マウスにおける末梢リンパ系器官再配置するための骨髄からの脱出、および、得られた細胞株の1つで認められるように、抗原刺激に応答したB細胞受容体遺伝子の可変領域中の体細胞超変異の獲得。したがって、Oct4、Sox2、Klf−4、c−Myc、およびC/EBPα転写因子の強い異所性発現により、完全分化したリンパ球系細胞の多能性への再プログラミングを、30個の細胞中で約1個の細胞という比較的高頻度で誘導した。

0050

重要なことには、本明細書中に記載の結果は、B細胞分化系におけるOct4、Sox2、Klf4、およびc−Myc導入遺伝子の類似の誘導レベル下で、非最終分化B細胞および最終分化したB細胞がこれらの因子と異なって応答することを証明する。完全分化した成熟Bリンパ球の多能性への強い再プログラミングは、C/EBPα転写因子(通常、顆粒球の細胞運命決定で役割を果たす)を最初に過剰発現した場合に達成された(Ramji and Foka,2002)。Thomas Graf and colleagues(Xieら,2004)は、C/EBPαの過剰発現は、Pax5機能の阻害によるB細胞後期特異的マーカー(例えば、CD19)の下方制御および初期B細胞レギュレーター(EBFlおよびE2A転写因子)の消滅の促進によってB細胞をマクロファージ様細胞に変換することを示した。さらに、C/EBPαは、骨髄性転写ネットワーク成分の上方制御を誘導した(Laiosaら,2006;Xieら,2004)。これらの所見は、再プログラミング機構の理解に関連し、マウス成熟Bリンパ球の再プログラミング過程の誘導におけるC/EBPαの極めて重要な役割が示唆される。これにより、以下の多数の相互に非排他的な可能性が示唆される。

0051

1)C/EBPαは、成熟B細胞の同一性を維持するB細胞転写ネットワークの重要なレギュレーターを交差拮抗する(cross−antagonize)ことができる。これはB細胞のより低い分化状態への脱分化を容易にし、それにより、Oct4、Sox2、Klf4、およびc−Myc導入遺伝子誘導性再プログラミングを行うことができる。この説明は、神経幹細胞および角化細胞幹細胞は同一分化系から得た他のより分化した細胞よりも効率的に再プログラミングされたので、ドナー細胞の分化状態が核移植による再プログラミング効率に影響を及ぼすことが知られているという所見と一致する(Blellochら,2006;Liら,2007)。成熟B細胞中でのPax5の条件付き欠失によっていくつかの成熟B細胞マーカーが脱分化および喪失したので(Cobaledaら,2007a)、Pax5の欠失もまたOct4、Sox2、Klf4、およびc−Mycによる多能性への再プログラミングに対して成熟B細胞を感作するかもしれない。

0052

2)C/EBPαは、成熟B細胞を異なる後成的状態を有するマクロファージ様細胞(Xieら,2004)に変換することができる。この異なる後成的状態がおそらくOct4、Sox2、Klf4、および/またはc−Mycの標的遺伝子への近づきやすさを増強することが可能であり、それにより、多能性状態を支配する内因性自己調節ループの有効な誘導を容易にするであろう(Boyerら,2005;Lohら,2006)。

0053

3)C/EBPα媒介過剰発現は、成熟B細胞を懸濁液中での成長状態からOP9細胞の存在下で接着細胞になるまで移行することができ、この発現はその再プログラミングにおいて律速事象であり得る。

0054

4)最後に、実施例で使用した組み合わせ以外の因子の組み合わせにより、異なる培養条件下で成熟Bリンパ球を再プログラミングすることができる。

0055

出願人は、体細胞(例えば、部分的または完全に分化した体細胞)を再プログラミングして多能性細胞または多分化能細胞を生成する新規の方法を発明した。本発明の方法は先行技術の方法(体細胞核移植が含まれるが、これらに限定されない)を含むことを意図しないことに留意すべきである。すなわち、体細胞の核の卵母細胞のインタクトな細胞質との接触(すなわち、除核卵母細胞への体細胞の核の導入)による体細胞の再プログラミングは本発明の範囲内に含まれない。本発明のいくつかの実施形態が、通常含まれる細胞質から単離された体細胞の核を再プログラミングし、任意選択的にその後に同一または異なる細胞型の除核細胞に核を導入する方法を含む一方で、これらの実施形態は、再プログラミング薬が除核卵母細胞である方法を含まない。出願人は、単独または他の因子および/または条件と組み合わせて体細胞を再プログラミングする薬剤を同定する新規の方法も発明した。

0056

本発明の一定の方法は、ES細胞(例えば、背景に記載の従来の方法を使用して生成したES細胞)と体細胞との間で相違する特徴を使用する。これらの特徴により、ES細胞を再プログラミングされていない体細胞と識別し、一定の方法において再プログラミングされた細胞(誘導多能性細胞)を同定するための根拠として使用する。

0057

1つのかかる特徴は、体細胞と比較してES細胞がゲノムDNAの脱メチル化を生き残る能力の増大である。体細胞を再プログラミングすることができる任意の種々の方法で処理し、この細胞をDNA脱メチル化を行う手順に供する。本発明の一定の実施形態では、この手順を生き抜くことができる体細胞を、この手順を生き抜くことができない細胞と比較して再プログラミングされているか再プログラミングされる可能性が増加すると同定する。本発明の一定の実施形態では、少なくとも一部の細胞がDNA脱メチル化に耐性を示すようになった(すなわち、DNAメチル化条件下で生き抜くことができる)候補再プログラミング薬(例えば、処置または因子)を、体細胞の再プログラミングに有用な薬剤と同定する。

0058

ES細胞を体細胞と識別するES細胞の別の特徴は、ES細胞が2つの転写活性X染色体を含むのに対して、体細胞中の1つのX染色体は、通常、大部分または完全に転写的に不活性であることである(Avner,P.and Heard,E.,Nature Reviews Genetics,2:59−67,2001;Eggan,K.ら,Science,290(5496):1578−81,2000を参照のこと)。本発明の1つの実施形態によれば、体細胞を、再プログラミングすることができる任意の種々の方法で処理する。処理は、例えば、候補再プログラミング薬(例えば、処理または因子)との細胞の接触であり得る。本発明の一定の実施形態では、両X染色体が転写的に活性である細胞を一方のみのX染色体が転写的に活性である細胞と比較して再プログラミングされるか再プログラミングされる可能性が増加すると同定する。本発明の一定の実施形態では、2つの転写活性X染色体を有する少なくとも一部の細胞が得られた候補再プログラミング薬(例えば、処理または因子)を、体細胞の再プログラミングに有用な処理と同定する。いくつかの実施形態では、本方法の1つの工程はたった1つの転写活性X染色体を有する細胞の選択を含み、本方法のその後の工程は、その不活性なX染色体が活性化された細胞の選択を含む。

0059

一定の他の方法は、出願人によってデザインされた操作体細胞を活用する。この操作際細胞は、典型的に多能性に関連する内因性遺伝子(「多能性遺伝子」)を、内因性多能性遺伝子の発現が実質的に選択マーカーの発現に適合する様式で選択マーカーに作動可能に連結するように操作されている。多能性遺伝子は一般に多能性細胞のみで発現して体細胞で発現しないので、内因性多能性遺伝子の発現は、首尾の良い再プログラミングを示す。内因性多能性遺伝子に作動可能に連結された選択マーカーを有することにより、稀にしか起こり得ない潜在的に再プログラミングされた体細胞を選択するための強力な機構が得られる。得られた細胞を、他の多能性の特徴について代替的または付加的に評価して、体細胞が多能性に首尾よく再プログラミングされたかどうかを確認することができる。

0060

したがって、1つの実施形態では、本発明は、1つまたは複数の体細胞(例えば、部分的に分化したか、完全/最終的に分化した体細胞)をより低い分化状態(例えば、多能性状態または多分化能状態)に再プログラミングする方法に関する。一般に、本方法は、体細胞または単離体細胞核を、細胞の多能性状態への再プログラミングに寄与する少なくとも1つの再プログラミング薬と接触させる工程、細胞を、細胞の増殖および再プログラミング薬の活性に適切な条件下で内因性多能性遺伝子の活性化に十分な期間維持する工程、および再プログラミング薬を機能的に不活化する(例えば、再プログラミング薬を不活化または除去する)工程を含む。さらなる実施形態では、本発明はまた、本発明の方法によって産生された再プログラミングされた体細胞およびこの細胞の使用に関する。

0061

本発明の方法の使用による多能性または多分化能細胞の生成は、少なくとも2つの利点を有する。第1に、本発明の方法により、患者に特異的な細胞である自己多能性細胞を生成することが可能である。細胞療法における自己細胞の使用により、免疫学的拒絶の影響を受ける可能性がより高い非自己細胞の使用を超える大きな利点が得られる。対照的に、自己細胞は、有意な免疫学的応答を誘発する可能性がより低い。第2に、本発明の方法により、胚、卵母細胞、および/または核移植テクノロジーを使用しないで多能性細胞を生成することが可能である。
専門用語
本明細書中で使用される場合、詞「a」、「an」、および「the」は、明確に反対に示されない限り、複数形が含まれると理解すべきである。反対に示されないか、文脈から明らかでない限り、群の1つまたは複数のメンバーの間に「または」を含む請求項または説明は、1つか、1つを超えるか、全ての群のメンバーが所与生成物または過程に存在するか、生成物または過程中で使用されるか、そうでなければ生成物または過程に関連することを満たすと見なされる。一般に、本発明または本発明の態様が特定の要素、特徴などを含むという場合、本発明の一定の実施形態または本発明の態様は、かかる要素、特徴などからなるか本質的になると理解されるべきである。簡潔にするために、これらの実施形態は、あらゆる場合に、本明細書中に具体的に正確に引用して記載されていない。特定の排除を明細書中で引用するかどうかと無関係に、本発明の任意の実施形態(例えば、先行技術内に見出される任意の実施形態)を特許請求の範囲から明確に排除することができるとも理解すべきである。例えば、任意の薬剤を候補再プログラミング薬組から排除することができ、任意の遺伝子を多能性遺伝子組から排除することができる。

0062

範囲が与えられた場合、本発明は終点が含まれる実施形態、両方の終点が排除された実施形態、および一方の終点が含まれ、且つ他方の終点が排除された実施形態を含む。他で示さない限り、両方の終点が含まれると見なすべきであろう。さらに、他で示さないか、そうでなければ文脈から明らかでなく、且つ当業者に理解されない限り、範囲として示される値は、本発明の異なる実施形態中に示した範囲内の任意の特定の値または部分的な範囲(文脈上明らかに示されない限り、範囲の下限の単位の1/10まで)と見なすことができると理解すべきである。一連の数値を本明細書中に示す場合、本発明は、一連の値中の任意の2つの値によって定義される任意の中間の値または範囲に同様に関連する実施形態を含み、最低値を最小とし、最高値を最大とすることができるとも理解される。本明細書中で使用する場合、数値には、百分率として示した値が含まれる。数値の前に「約」または「およそ(approximately)」を示す本発明の任意の実施形態について、本発明には、正確な値を引用した実施形態が含まれる。数値の前に「約」または「およそ」を示さない本発明の任意の実施形態について、本発明には、値の前に「約」または「およそ」を示す実施形態が含まれる。他で示されていないか、そうでなければ文脈から明らかでない場合、「およそ」または「約」には、一般に、いずれかの方向に(数値より大または小)数値の1%またはいくつかの実施形態では5%の範囲内に含まれる数値が含まれる(かかる数値が可能な数値の100%を許されないほど超える場合を除く)。

0063

さらに、他で示さないか、矛盾または不一致が生じることが当業者に明らかでない限り、本発明が、列挙した1つまたは複数の請求項由来の1つまたは複数の制限、要素、節、記述用語などが、同一の基本請求項に依存した別の請求項(または、関連する場合、任意の他の請求項)に導入される全ての変形形態、組み合わせ、および置換物(permutation)を含むと理解すべきである。要素がリスト(例えば、マーカッシュグループまたは類似の形式)として存在する場合、要素の各下位集団も開示され、任意の要素を群から除去することができると理解すべきである。

0064

一定の請求項が便宜上従属形態で存在するが、任意の従属請求項を、独立請求項およびかかる請求項が従属する任意の他の請求項の制限を含むように独立形式に書き換えることができ、かかる書き換えた請求項は、独立形式で書き換えられる前の従属請求項(補正または非補正のいずれか)の全てに関して等価であると見なされるべきである。明確に逆に示されない限り、1つを超える行為を含む特許請求の範囲に記載の任意の方法中で、方法の行為の順序は必ずしも方法の行為が引用される順序に制限されないが、本発明は順序がこのようにして制限される実施形態を含むとも理解されるべきである。上記の全ての実施形態を本発明の全ての異なる態様に適用可能であることを意図する。必要に応じて任意の上記実施形態を1つまたは複数の他のかかる実施形態と自由に組み合わせることができることも意図される。
体細胞
本発明の体細胞は、初代細胞(非不死化細胞)(動物から新たに単離された細胞など)であり得るか、細胞株(不死化細胞)に由来し得る。細胞を、被験体からの単離後に細胞培養物中で維持することができる。一定の実施形態では、細胞を、本発明の方法で使用する前に、1回または1回を超えて(例えば、2〜5回、5〜10回、10〜20回、20〜50、50〜100回、またはそれ以上)継代する。いくつかの実施形態では、細胞は、本発明の方法で使用する前に、わずか1回、2回、5回、10回、20回、または50回継代されるであろう。細胞を、凍結融解などを行うことができる。本発明の一定の実施形態では、体細胞を、雌から得る。使用される体細胞は、未変性体細胞または操作した体細胞(すなわち、遺伝的に変化した体細胞)であり得る。

0065

本発明の体細胞は、典型的には、哺乳動物細胞(例えば、ヒト細胞、霊長類細胞、またはマウス細胞など)である。体細胞を、周知の方法によって得ることができ、生きた体細胞を含む任意の器官または組織(例えば、血液、骨髄、皮膚、膵臓肝臓、腸、心臓生殖器膀胱腎臓尿道、他の泌尿器など)から得ることができる。本発明で有用な哺乳動物体細胞には、セルトリ細胞内皮細胞顆粒膜上皮細胞ニューロン膵島細胞表皮細胞、上皮細胞、肝細胞毛嚢細胞、角化細胞、造血細胞メラノサイト軟骨細胞リンパ球(BおよびTリンパ球)、赤血球、マクロファージ、単球単核球心筋細胞、および他の筋細胞などが含まれるが、これらに限定されない。本明細書中で使用する場合、用語「体細胞」には、成体幹細胞も含まれる。成体幹細胞は、特定組織の全ての細胞型を生じることができる細胞である。成体幹細胞の例には、造血幹細胞、神経幹細胞、および間葉系幹細胞が含まれる。

0066

いくつかの実施形態では、細胞を、所望の細胞型中で唯一または主に発現することが公知の内因性マーカーの発現に基づいて選択する。例えば、ビメンチン線維芽細胞マーカーである。他の有用なマーカーには、種々のケラチン細胞接着分子カドヘリンなど)、フィブロネクチンCD分子などが含まれる。体細胞集団の平均的な細胞周期は、18時間と96時間との間(例えば、24〜48時間、48〜72時間など)であり得る。いくつかの実施形態では、少なくとも90%、95%、98%、99%、またはそれを超える細胞は、24、48、72、または96時間などの所定の期間内に分裂すると予想されるであろう。

0067

本発明の方法を使用して、1つまたは複数の体細胞(例えば、体細胞のコロニーまたは集団)を再プログラミングすることができる。いくつかの実施形態では、本発明の細胞集団は、少なくとも90%の細胞が目的の表現型または特徴を示すという点で実質的に均一である。いくつかの実施形態では、少なくとも95%、96%、97%、98%、99%、99.5%、99.8%、99.9、99.95%、またはそれを超える細胞が目的の表現型または特徴を示す。本発明の一定の実施形態では、体細胞は分裂する能力を有する(すなわち、体細胞は有糸分裂後ではない)。細胞は、例えば、当該分野で公知の標準的な培養条件下にて培養物中で維持した場合に18〜72時間(例えば、24〜48時間)の平均細胞周期(すなわち、細胞が1つの細胞分裂周期を完了するために必要な期間)を有し得る。

0068

本発明の分化した体細胞は、部分的または完全に分化している。分化は、低特殊化細胞がより特殊化された細胞型になる過程である。細胞分化は、細胞のサイズ、形状、極性代謝活性、遺伝子発現、および/またはシグナル反応性の変化を含未み得る。例えば、造血幹細胞は、分化して、全ての血液細胞型(骨髄(単球およびマクロファージ、好中球好塩基球好酸球、赤血球、巨核球血小板樹状細胞)およびリンパ系分化系(T細胞、B細胞、NK細胞)が含まれる)を生じる。分化経路に沿った進行中に、細胞の最終的な運命はより固定するようになる。本明細書中に記載の作業によって示されるように、部分的に分化した体細胞(例えば、プレB細胞およびプロB細胞などの未熟B細胞)および完全に分化した体細胞(例えば、成熟B細胞、非ナイーブ成熟B細胞)の両方を本明細書中に記載のように再プログラミングして、多分化能細胞または多能性細胞(「誘導多能性細胞」としても公知)を産生することができる。
再プログラミングおよび多能性細胞
細胞の分化状態は連続する範囲であり、この範囲の一方の終点が最終分化状態であり、他方の終点が脱分化状態(多能性状態)である。本明細書中で使用する場合、再プログラミングは、体細胞の分化状態を変化させるか逆行する過程をいい、分化状態は部分分化または最終分化のいずれかであり得る。再プログラミングには、体細胞の分化状態の完全な逆行および部分的逆行が含まれる。言い換えれば、本明細書中で使用する場合、用語「再プログラミング」は、低分化状態に向かう範囲に沿った細胞の分化状態の任意の移動を含む。例えば、再プログラミングには、多分化能細胞の多能性細胞への逆行および最終的に分化した細胞の多分化能細胞または多能性細胞のいずれかへの逆行が含まれる。1つの実施形態では、体細胞の再プログラミングは、体細胞を多能性状態まで逆戻させる。別の実施形態では、体細胞の再プログラミングは、体細胞を多分化能状態まで逆戻りさせる。したがって、本明細書中で使用する場合、用語「低分化状態」は、相対的用語であり、完全な脱分化状態および部分的な分化状態が含まれる。

0069

多能性細胞は、長期間(例えば、1年超)in vitroで分裂する能力を有し、3つ全ての胚葉(内胚葉、中胚葉、および外胚葉)に由来する細胞に分化する固有の能力を有する細胞である。多能性細胞は、特定の組織に固有の明らかに異なる形態学的表現型、細胞学的表現型、または機能的表現型を有する全範囲娘細胞に分化する可能性を有する。対照的に、多能性細胞の子孫は、その分裂可能性が段階的に制限され、細胞によってはたった1つの運命しか持たない。多分化能細胞は、3つ全ての胚葉由来のいくつかであるが全てではない細胞に分化することができる細胞である。したがって、多分化能細胞は、部分的に分化した細胞である。成体幹細胞はまた、多分化能であるか部分的に分化した細胞である。公知の成体幹細胞には、例えば、造血幹細胞および神経幹細胞が含まれる。
再プログラミング薬での体細胞の処理
本明細書中に記載のように、1つまたは複数の(例えば、集団またはコロニー)体細胞(例えば、分化した体細胞)を、細胞の再プログラミングに寄与する少なくとも1つの再プログラミング薬または因子で処理するか接触させる。用語「接触する」、「接触」、「処理する」、「処理」などを、本明細書中で交換可能に使用し、細胞を任意の種類の過程または条件に供することまたは細胞に対して任意の種類の手順を実施することを含む。処理は、非限定的な例として、公知の再プログラミング薬または候補再プログラミング薬(例えば、細胞のクロマチン構造を変化させる薬剤、DNAメチル化を減少させる薬剤、ヒストンアセチル化を減少させる薬剤)との細胞の接触、再プログラミング薬をコードするポリヌクレオチドでの細胞のトランスフェクション、および/またはかかる細胞が典型的に維持される標準的な培養条件と異なる条件下での細胞の培養であり得る。例えば、温度またはpHを変化させることができる。複数の公知の再プログラミング薬または候補再プログラミング薬を、共に/同時にまたは連続的に使用することができる。別の実施形態では、本発明の方法は、さらに、薬剤または因子での細胞の処理工程の反復を含む。処理の繰り返しで使用される薬剤は、第1の処理で使用される薬剤と同一でも異なっていても良い。本発明の再プログラミング薬は、ポリヌクレオチド、ポリペプチド、小分子などであり得る。

0070

細胞を、再プログラミング因子または再プログラミング薬と種々の期間接触させることができる。いくつかの実施形態では、細胞を、薬剤と1時間と30日間の間薬剤と接触させる。いくつかの実施形態では、細胞を、薬剤と細胞の再プログラミングまたは内因性多能性遺伝子の活性化に十分な期間接触させる。例えば、期間は、1日間、5日間、7日間、10日間、12日間、14日間、または20日間であり得る。再プログラミング薬を除去または不活化し、その後に多能性細胞を富化するために選択を実施するか、多能性の特徴について細胞を評価することができる。

0071

本発明のいくつかの実施形態によれば、体細胞を再プログラミング薬または再プログラミング因子と接触させた後、体細胞を、細胞の増殖および再プログラミング薬または再プログラミング因子の活性に適切な条件下で細胞の再プログラミングまたは少なくとも1つの内因性多能性遺伝子の活性化に十分な期間維持する。細胞を再プログラミングが起こっている間の種々の期間培養物中で維持し、その後に再プログラミングされた細胞を選択または富化することができる。したがって、一定の方法では、再プログラミング薬または再プログラミング因子と接触した体細胞を、培養物中で3日間を超えて維持し、その後に再プログラミングされた細胞を同定または選択する。いくつかの方法では、この細胞を、培養物中で少なくとも4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21日間またはそれ以上の期間(例えば、3〜5週間)維持し、その後に再プログラミングされた細胞を同定または選択する。

0072

さらに、本発明の特定の実施形態では、1つまたは複数の再プログラミング薬と接触させた体細胞を、記載の方法にしたがって、細胞の増殖に適切な条件下で維持する。特定の細胞型の維持および増殖に適切な条件は、当業者に明らかであろう。特殊化された培養培地を商業的供給源から得ることができるか、増殖の増強に必要であるか望ましい因子を標準的な培養培地に添加することができる。さらなる因子または薬剤を培養培地に添加して、例えば、細胞中の誘導エレメントの発現を誘導するか特定の薬剤に感受性を示す細胞の成長を阻害することもできる。

0073

非限定的な例として、DNAメチル化インヒビターおよびヒストン脱アセチル化インヒビターは、本発明の方法で使用することができる2つの薬剤クラスである。例示的薬剤には、5−アザシチジンTSA、およびバルプロ酸が含まれる。本明細書中に記載のように、DNAメチル化インヒビターはまた、DNAメチル化インヒビターが再プログラミングに寄与するかどうかと無関係に、再プログラミングされた細胞を同定するのに有用である。したがって、本発明のいくつかの実施形態では、再プログラミング薬はDNAメチル化インヒビターではない。例えば、再プログラミング薬は、DNAメチル化に検出可能な影響を及ぼさないか、DNAメチル化を1%未満減少させる。いくつかの実施形態では、再プログラミング薬は、DNAメチル化を5%未満減少させ、そして/またはDNMT1、3a、および/または3b活性を1%未満または5%未満阻害する。

0074

本発明の一定の実施形態では、再プログラミング薬または再プログラミング因子を、細胞に外因的に導入する。「外因的に導入する」を、(典型的には、人の手を含む過程によって)細胞または細胞の外側由来の細胞の先祖に導入され、そして/または本来はこの細胞型で見出されないか、異なる配列、文脈、および/または異なる量で見出されるポリヌクレオチド(または他の物質(小分子またはタンパク質が含まれるが、これらに限定されない))をいうために当該分野でのその意味と共に一貫して使用する。

0075

いくつかの実施形態では、再プログラミング薬を、ウイルス形質導入(例えば、レトロウイルス形質導入またはレンチウイルス形質導入)を使用して細胞に導入する。特定の実施形態では、使用ベクターを、メチル化誘導サイレンシングに供さない。いくつかの実施形態では、ベクターは非複製ベクターであり、いくつかの実施形態では、ベクターは非組込みベクターである。特定の実施形態では、ベクターは、細胞ゲノムから切り出すことができる(例えば、切り出し後の細胞ゲノムがベクターの組み込み前に細胞のゲノムに実質的に類似するか同一であるように切り出すことができる)組み込みベクターである。いくつかの実施形態では、再プログラミング薬を、タンパク質自体または細胞を再プログラミングするための他の再プログラミング薬との組み合わせのいずれかで有効なタンパク質をコードする核酸構築物のタンパク質導入または一過性トランスフェクションを使用して細胞に導入する。任意選択的に、細胞を電場に供し、そして/または再プログラミング薬の取り込みを増加させるための細胞透過性を増強する薬剤と接触させる。いくつかの実施形態では、Oct4、Sox2、Klf4、Nanog、Lin28、およびc−Mycの少なくとも1つを、かかる方法を使用して体細胞に外因的に導入することができる。1つの実施形態では、Oct4、Sox2、およびKlf4を細胞に導入する一方で、別の実施形態では、Oct4、Sox2、Klf4、およびc−Mycを細胞に導入する。別の実施形態では、Oct4、Sox2、Nanog、およびLin28を細胞に導入する。

0076

細胞の多能性状態に影響を及ぼし、したがって候補再プログラミング薬である遺伝子には、多能性遺伝子、クロマチンリモデリングに関与する遺伝子、および多能性の維持に重要な遺伝子(LIF、BMP、およびPD098059など)が含まれる(Cell,115:281−292(2003);Philos Trans R Soc Lond
B Biol Sci.2003 Aug 29;358(1436):1397−402)。Thomsonらは、成体ヒト細胞の再プログラミングのためのレンチウイルス系を使用してOct4、Sox2、Nanog、およびLin28を使用した(Thomsonら,Science 5854:1224−1225(11/23/2007))。細胞が多能性であることに無関係に影響を及ぼし得る他の遺伝子には、一定の癌遺伝子(c−mycなど)が含まれる。他の遺伝子には、テロメラーゼ(例えば、テロメラーゼの触媒サブユニットをコードする遺伝子)が含まれる。さらに他の遺伝子には、Sox1、Sox2、Sox3、Sox15、Sox18、FoxD3、Stat3、N−Myc、L−Myc、Klf1、Klf2、Klf4、およびKlf5が含まれる。目的の他の遺伝子には、多分化能または多能性に関連しており、そして/または多分化能細胞または多能性細胞中で天然に発現するミクロRNA前駆体をコードする遺伝子が含まれる。任意選択的に、細胞が分化し、そして/または成体体細胞中で発現しない場合、遺伝子は下方制御される。目的の他のポリヌクレオチドには、多分化能細胞または多能性細胞中で天然に発現する内因性ミクロRNAの標的である遺伝子にターゲティングしたshRNAなどのRNAi薬をコードするポリヌクレオチドが含まれる。

0077

さらに、体細胞中でさらなる因子を過剰発現するか外因的に発現して、再プログラミングを容易にすることができる。例えば、細胞のより低い分化状態への誘導を補助する因子を、細胞中に発現することができる。本明細書中に記載のように、C/EBPαは、成熟B細胞の再プログラミングを補助することが示されている。C/EBPαファミリーの他のメンバー(C/EBPαのヒトホモログ)は、同様に有用であり得る。

0078

本発明の実施形態を通して、他で示されないか、文脈から示唆されない限り、コードされたポリペプチドを、このポリペプチドをコードするポリヌクレオチドの外因性導入の代わりまたはこれに加えて細胞に外因的に導入することができると理解されるであろう。さらに、本明細書中の「遺伝子」に対する言及は、他で示されないか、文脈から示唆されない限り、遺伝子の内因性調節エレメントを含むか含んでおらず、イントロン配列エレメントを含むか含んでいない遺伝子のコード配列を含むことを意図すると理解されるであろう。

0079

外因的に導入したポリヌクレオチドを、いくつかの方法で発現することができる。1つの実施形態では、外因的に導入したポリヌクレオチドを、ポリヌクレオチドの内因性染色体遺伝子座と異なる染色体遺伝子座から発現することができる。かかる染色体遺伝子座は、開いたクロマチン構造を有する遺伝子座であり得、体細胞に不必要な遺伝子を含む。言い換えれば、望ましい染色体遺伝子座は、その破壊によって細胞が死滅しない遺伝子を含む。例示的な染色体遺伝子座には、例えば、マウスROSA 26遺伝子座およびII型コラーゲン(Col2al)遺伝子座が含まれる(Zambrowiczら,1997を参照のこと)。外因的に導入したポリヌクレオチドを、必要に応じてその発現を調節することができるように誘導性プロモーターから発現することができる。

0080

別の実施形態では、外因的に導入したポリヌクレオチドを、個別またはcDNA発現ライブラリーの一部として細胞に一過性にトランスフェクトすることができる。1つの実施形態では、cDNA発現ライブラリーを、多能性細胞(胚性幹細胞、卵母細胞、卵割球、内細胞塊細胞、胚性生殖細胞、胚様体(胚)細胞、桑実胚由来細胞奇形腫奇形癌腫)細胞、および胚発生過程の後期由来の多分化能の部分的に分化した胚性幹細胞が含まれるが、これらに限定されない)から調製することができる。候補再プログラミング薬を、かかるライブラリーから同定することができる。

0081

cDNAライブラリーを、従来の技術によって調製する。簡潔に述べれば、mRNAを目的の生物から単離する。RNA指向性DNAポリメラーゼを、テンプレートとしてmRNAを使用した第1の鎖合成のために使用する。第2の鎖合成を、cDNA産物が得られるDNA指向性DNAポリメラーゼを使用して行う。cDNAのクローニングを容易にする従来のプロセシング後、cDNAが少なくとも1つの調節配列と作動可能に連結されるように、cDNAを発現ベクターに挿入する。cDNAライブラリーと共に使用するための発現ベクターの選択は、特定のベクターに制限されない。マウス細胞での使用に適切な任意の発現ベクターが適切である。1つの実施形態では、cDNA発現構築物からの発現を駆動するプロモーターは誘導性プロモーターである。用語「調節配列」には、プロモーター、エンハンサー、および他の発現調節エレメントが含まれる。例示的な調節配列は、Goeddel;Gene Expression Technology:Methodsin Enzymology,Academic Press,San Diego,CA(1990)に記載されている。例えば、DNA配列に作動可能に連結された場合にDNA配列の発現を調節する広範な種々の発現調節配列のいずれかをこれらのベクター中で使用して、cDNAを発現することができる。かかる有用な発現調節配列には、例えば、SV40の初期および後期プロモーター、tetプロモーター、アデノウイルスまたはサイトメガロウイルス最初期プロモーター、lac系、trp系、TACまたはTRC系、その発現がT7RNAポリメラーゼによって指示されるT7プロモーター、λファージの主なオペレーターおよびプロモーター、fdコートタンパク質の調節領域、3−ホスホグリセリン酸キナーゼまたは他の解糖酵素のプロモーター、酸性ホスファターゼのプロモーター(例えば、Pho5)、酵母α−接合因子のプロモーター、バキュロウイルス系の多面体プロモーター、および原核細胞または真核細胞またはそのウイルスの遺伝子発現を調節することが公知の他の配列、ならびにその種々の組み合わせが含まれる。発現ベクターのデザインが形質転換すべき宿主細胞の選択および/または発現が望まれるタンパク質の型などの要因に依存し得ると理解すべきである。さらに、ベクターのコピー数、そのコピー数を調節する能力、およびベクターによってコードされる任意の他のタンパク質(抗生物質マーカーなど)の発現も考慮すべきである。

0082

外因的に導入したポリヌクレオチドを、誘導性プロモーターから発現することができる。本明細書中で使用する場合、用語「誘導性プロモーター」は、インデューサー(化学的因子および/または生物学的因子など)の非存在下で、発現を指示しないか、作動可能に連結された遺伝子(cDNAが含まれる)の低レベルの発現を指示し、インデューサーに応答して、発現を指示する能力が増強されるプロモーターをいう。例示的な誘導性プロモーターには、例えば、重金属CRCBoca Raton,Fla.(1991),167−220;Brinsterら.Nature(1982),296,39−42)、熱ショックホルモン(Leeら.P.N.A.S.USA(1988),85,1204−1208;(1981),294,228−232;Klockら.Nature(1987),329,734−736;Israel and Kaufman,Nucleic AcidsRes.(1989),17,2589−2604)に応答するプロモーター、化学的因子(グルコースラクトースガラクトース、または抗生物質(例えば、テトラサイクリンまたはドキシサイクリン(doxycycline))など)に応答するプロモーターが含まれる。

0083

テトラサイクリン誘導性プロモーターは、抗生物質に応答する誘導性プロモーターの例である。Gossenら,2003を参照のこと。テトラサイクリン誘導性プロモーターは、1つまたは複数のテトラサイクリンオペレーターに作動可能に連結されたミニマルプロモーターを含む。テトラサイクリンまたはそのアナログの1つの存在により、転写アクチベーターがテトラサイクリンオペレーター配列に結合し、それにより、ミニマルプロモーターを活性化し、それゆえに、会合したcDNAが転写される。テトラサイクリンアナログには、テトラサイクリンと構造相同性を示し、且つテトラサイクリン誘導性プロモーターを活性化することができる任意の化合物が含まれる。例示的なテトラサイクリンアナログには、例えば、ドキシサイクリン、クロロテトラサイクリン、およびアンヒドロテトラサイクリンが含まれる。テトラサイクリン抑制プロモーターも使用する。

0084

上記方法を使用して、体細胞中で本明細書中に記載の任意の外因的に導入したポリヌクレオチドを発現することができる。例えば、上記方法を使用して、内因性DNAメチルトランスフェラーゼをターゲティングしたRNAi薬をコードするポリヌクレオチドを発現することができるか、上記方法を使用して、部位特異的リコンビナーゼを発現することができる。

0085

出願人は、外因的に導入した因子が多能性表現型の維持に不必要であり得ることを発見した。例えば、外因的に導入したポリヌクレオチドであるOct4、Sox2、およびKlf4の発現は、多能性表現型の維持に不必要である。したがって、本発明は、再プログラミング後に再プログラミングされた体細胞を改変して、細胞のES様表現型を保持しながら1つまたは複数の導入した因子(例えば、ポリヌクレオチド)を非機能性にすることができるという認識を含む。

0086

本発明の一定の実施形態では、導入したポリヌクレオチドを非機能的にすることにより、細胞への癌遺伝子の導入に関連する潜在的な懸念材料を軽減する。したがって、本発明は、1つまたは複数のポリヌクレオチドを体細胞に導入する工程であって、1つまたは複数のポリヌクレオチドが少なくとも一部の細胞をES様状態に再プログラミングする、導入する工程、ES様状態に再プログラミングされた細胞を同定する工程、および1つまたは複数の導入したポリヌクレオチドを機能的に不活化する工程を含む。細胞を、導入したポリヌクレオチドの不活化前に適切な期間培養物中で維持することができる。1つの実施形態では、細胞が多能性のマーカーまたは特徴を示し始めるか、内因性多能性遺伝子(例えば、Oct−4および/またはNanog)を発現し始めるか、内因性多能性遺伝子の下流標的を発現し始めるのに十分な期間を選択することができる。一定の実施形態では、外因的に導入したポリヌクレオチドを誘導調節エレメントによって調節し、このエレメントのインデューサーの除去によって機能的に不活化する。

0087

機能的不活化は、導入したポリヌクレオチドの除去または切り出しを含むことも意図する。一定の実施形態では、1つまたは複数の導入したポリヌクレオチドの少なくとも一部を、部位特異的リコンビナーゼ部位に隣接させる。導入したポリヌクレオチドを、細胞中でのリコンビナーゼの発現または細胞へのリコンビナーゼの導入によって機能的に不活化することができる。得られた再プログラミングされた体細胞は、任意の外因的に導入したコード配列および/または調節エレメントを欠き得る。細胞は、組換え後に残存する1つまたは複数の部位を含むことを除き、非操作体細胞と同一であり得る。
多能性マーカー
1つまたは複数の再プログラミング薬で処理した体細胞を、培養物中で細胞の再プログラミングの開始に十分な期間維持する。処置細胞集団を、種々の方法で分析して、再プログラミングの有無を同定することができる。すなわち、処理細胞集団を、さらに処理または分析して、再プログラミング過程を開始した細胞を選択または富化するか、再プログラミング過程を開始し始めなかった細胞を淘汰するか減少させることができる。処理した体細胞集団を評価して、再プログラミングされた(例えば、多能性)細胞の1つまたは複数のマーカーまたは特徴を示さない細胞を同定することができる。例えば、細胞集団を評価して、再プログラミングの表現型マーカー、機能的マーカー、または遺伝子マーカー(1つまたは複数の多能性遺伝子の発現および多能性遺伝子の発現の結果としてその発現が直接または間接的に活性化される1つまたは複数の遺伝子の発現が含まれる)を同定することができる。非限定的な例として、細胞集団を評価して、アルカリホスファターゼの発現、SSEA1の発現、SSEA3の発現、SSEA4の発現、TRAF−60の発現、Nanogの発現、Oct4の発現、Fxb15の発現、ES細胞またはES細胞コロニーに特徴的な形態学、出産予定日まで生存するキメラの形成に関与する能力、SCIDマウスに注射した場合に内胚葉、中胚葉、および外胚葉の特徴を有する細胞に分化する能力、2つの活性なX染色体の存在、DNAメチル化に対する耐性、およびその組み合わせを評価することができる。細胞集団を評価して、再プログラミングの任意のマーカーの非存在を同定し、再プログラミングを受けなかった細胞を同定することもできる。

0088

本明細書中で使用する場合、用語「多能性遺伝子」は、多能性に関連する遺伝子をいう。多能性遺伝子の発現は、典型的には、多能性細胞(例えば、多能性幹細胞)に制限され、多能性細胞の機能的同一性に不可欠である。多能性遺伝子によってコードされるタンパク質は卵母細胞における母性因子として存在することができ、この遺伝子を、例えば、着床前期の少なくとも一部を通じて、および/または成体の生殖細胞前駆体中の少なくともいくつかの胚細胞によって発現することができると認識されるであろう。

0089

いくつかの実施形態では、多能性遺伝子は、哺乳動物のES細胞中でのその平均発現レベルがその型の成体哺乳動物(例えば、マウス、ヒト、家畜)の体内に存在する体細胞型中の細胞発現レベルあたりのその平均の少なくとも5、10、20、50、または100倍である遺伝子である。いくつかの実施形態では、多能性遺伝子は、ES細胞中での平均発現レベルが、成体哺乳動物(例えば、マウス、ヒト、家畜)の体内に存在する最終的に分化した細胞型中のその平均発現レベルの少なくとも5、10、20、50、または100倍である遺伝子である。いくつかの実施形態では、多能性遺伝子は、従来の方法を使用して誘導したES細胞の生存能または多能性状態を維持するのに不可欠な遺伝子である。したがって、遺伝子がノックアウトまたは阻害(すなわち、排除または減少)されている場合、ES細胞は死滅するか、いくつかの実施形態では、分化する。いくつかの実施形態では、多能性遺伝子は、ES細胞中でのその発現の阻害(例えば、RNA転写物および/または遺伝子よってコードされるタンパク質の平均定常状態レベルの少なくとも20%、30%、40%、50%、60%、70%、80%、90%、95%、またはそれを超える減少)により、生存可能であるがもはや多能性ではない細胞が得られるという点で特徴づけられる。いくつかの実施形態では、多能性遺伝子を、細胞が最終的に分化した細胞に分化する場合にES細胞中でのその発現が減少する(それにより、例えば、RNA転写物および/または遺伝子よってコードされるタンパク質の平均定常状態レベルの少なくとも50%、60%、70%、80%、90%、95%、またはそれを超えた減少)という点で特徴づけられる。

0090

転写因子Oct−4(Pou5f1、Oct−3、Oct3/4とも呼ばれる)は、多能性遺伝子の一例である。Oct−4は、ES細胞の未分化表現型の確立および維持に必要であることが示されており、胚形成および細胞分化における初期事象の決定で役割を果たす(Nicholsら,1998,Cell 95:379−391;Niwaら,2000,Nature Genet.24:372−376)。Oct−4は、幹細胞が特殊化細胞に分化するにつれて下方制御される。

0091

Nanogは、多能性遺伝子の別の例である。Nanogは、未分化ES細胞の増殖を指示する多様なホメオドメインタンパク質である。NanogmRNAは、多能性マウスおよびヒト細胞株中に存在し、分化した細胞に不在である。着床前胚では、Nanogは、ES細胞が誘導され得る創始細胞に制限される。内因性Nanogは、Stat3のサイトカイン刺激並行して作用し、ES細胞の自己複製を駆動する。導入遺伝子構築物由来のNanog発現の増加は、ES細胞のクローン増殖、Stat3の迂回、およびOct4レベルの維持に十分である(Chambersら,2003,Cell 113:643−655;Mitsuiら,Cell.2003,113(5):631−42を参照のこと)。他の例示的な多能性遺伝子には、Sox2およびStellaが含まれる(Imamuraら,BMCDevelopmental Biology 2006,6:34,Bortvinら.Development.2003,130(8):1673−80;Saitouら,Nature.2002,418(6895):293−300)。

0092

本発明の一定の実施形態では、内因性多能性遺伝子を、選択マーカーと同時発現させる。例えば、内因性多能性遺伝子を、選択マーカーおよび内因性多能性遺伝子が同時発現するような様式で選択マーカーをコードするポリヌクレオチド(例えば、DNA)に連結させることができる。本明細書中で使用する場合、「同時発現」は、選択マーカーの発現が内因性多能性遺伝子の発現と実質的に適合することを意味することを意図する。1つの実施形態では、本発明の分化した体細胞は、第1の選択マーカーの発現が第1の内因性多能性遺伝子の発現と実質的に適合するような様式で第1の選択マーカーをコードするDNAに連結された第1の内因性多能性遺伝子を含む。分化した体細胞を、各選択マーカーとそれぞれ連結された多数の内因性多能性遺伝子を含むように操作することもできる。したがって、別の実施形態では、本発明の分化した体細胞は、それぞれ異なる選択マーカーをコードするDNAに連結する2つの内因性多能性遺伝子を含む。さらなる実施形態では、本発明の分化した体細胞は、それぞれ異なる選択マーカーをコードするDNAに連結する3つの内因性多能性遺伝子を含む。分化した体細胞を、誘導性プロモーター下で導入遺伝子として発現する1つまたは複数の多能性遺伝子を有するようにさらに操作することができる。

0093

1つの実施形態では、本方法で使用される体細胞は、第1の選択マーカーに連結されたたった1つの内因性多能性遺伝子を含み、選択工程を実施して、第1の選択マーカーの発現について選択する。別の実施形態では、本方法で使用される体細胞は、それぞれが異なる選択マーカーに連結された多数の内因性多能性遺伝子を含み、選択工程を実施して、選択マーカーの少なくともサブセットを選択する。例えば、選択工程を行って、種々の内因性多能性遺伝子に連結された全ての選択マーカーを選択することができる。

0094

1つの実施形態では、本方法で使用される体細胞は、内因性多能性遺伝子および誘導性プロモーター下で導入遺伝子として発現するさらなる多能性遺伝子に連結された選択マーカーを含む。これらの細胞について、再プログラミング方法は、多能性導入遺伝子の発現を誘導する工程を含み、選択マーカーの発現について選択することができる。本方法は、さらに、体クロマチン構造を変化させる薬剤と細胞を接触させる工程を含むことができる。

0095

本発明の目的のために、内因性多能性遺伝子および選択マーカーの発現レベルが同一である必要がなく、類似する必要さえない。内因性多能性遺伝子が活性化された細胞が再プログラミングされた細胞に選択可能な表現型を付与するのに十分なレベルで選択マーカーも発現することのみが必要である。例えば、選択マーカーが致死的薬物に耐性を付与するマーカー(「薬物耐性マーカー」)である場合、内因性多能性遺伝子が活性化される細胞が再プログラミングした細胞に致死的薬物耐性を付与するのに十分なレベルで薬物耐性マーカーも発現する方法で細胞を操作する。したがって、再プログラミングした細胞が生存および増殖するのに対して、再プログラミングしない細胞は死滅するであろう。

0096

本発明の一定の実施形態では、選択マーカーを、内因性多能性遺伝子からの転写を調節する発現調節エレメントに作動可能に連結する。選択マーカーをコードするDNAを、所望の内因性多能性遺伝子をコードする読み取り枠(ORF)の末端から下流(ORFの最後のヌクレオチドポリアデニル化部位の最初のヌクレオチドとの間のどこか)に挿入することができる。配列内リボゾーム進入部位(IRES)を、選択マーカーをコードするDNAの前に配置することができる。あるいは、選択マーカーをコードするDNAを、所望の内因性多能性遺伝子のORF内のどこか(プロモーターの下流)に終止シグナルと共に挿入することができる。配列内リボゾーム進入部位(IRES)を、選択マーカーをコードするDNAの前に配置することができる。さらなる実施形態では、選択マーカーをコードするDNAを、多能性遺伝子発現の結果としてその発現が直接または間接的に活性化される遺伝子内のどこかに挿入することができる。いくつかの実施形態では、選択マーカーをコードするDNAを、イントロン中に挿入する。いくつかの実施形態では、DNAが挿入された内因性多能性遺伝子は、機能的多能性遺伝子産物を発現する一方で、他の実施形態では発現しない。選択マーカーを、内因性多能性遺伝子一方のみの対立遺伝子または両方の対立遺伝子に挿入することができる。一定の他の実施形態では、内因性多能性遺伝子の発現を活性化するのに適切な条件も外因性ポリヌクレオチドの発現を活性化するように、外因性ポリヌクレオチド(内因性多能性遺伝子由来の転写を調節する発現調節エレメントに作動可能に連結された選択マーカーが含まれる)を、細胞ゲノム中の内因性多能性遺伝子の遺伝子座の外側の位置に挿入する。

0097

本明細書中で使用する場合、選択マーカーは、発現した場合にレシピエント細胞に選択可能な表現型(抗生物質耐性細胞毒性薬耐性、原栄養性(nutritional prototrophy)、または表面タンパク質の発現など)を付与するマーカーである。その発現を容易に検出することができる他のタンパク質(蛍光タンパク質もしくは発光タンパク質または基質に作用して有色物質蛍光物質、もしくは発光物質を産生する酵素も選択マーカーとして使用される。内因性多能性遺伝子に連結する選択マーカーの存在により、内因性多能性遺伝子が発現する再プログラミングした細胞を同定および選択することも可能になる。種々の選択マーカー遺伝子を使用することができる(ネオマイシン耐性遺伝子(neo)、ピューロマイシン耐性遺伝子(puro)、グアニンホスホリボシルトランスフェラーゼ(gpt)、ジヒドロ葉酸レダクターゼ(DHFR)、アデノシンデアミナーゼ(ada)、ピューロマイシン−N−アセチルトランスフェラーゼ(PAC)、ハイグロマイシン耐性遺伝子(hyg)、多剤耐性遺伝子(mdr)、チミジンキナーゼ(TK)、ヒポキサンチン−グアニンホスホリボシルトランスフェラーゼ(HPRT)、およびhisD遺伝子など)。他のマーカーには、緑色蛍光タンパク質(GFP)、青色、サファイア、黄色、赤色、橙色、およびシアンの蛍光タンパク質、ならびにこれらのいずれかのバリアントが含まれる。ルシフェラーゼ(例えば、ホタルまたはウミシイタケルシフェラーゼ)などの発光タンパク質も使用される。酵素レポーターβ−ガラクトシダーゼ、アルカリホスファターゼ、クロラムフェニコールアセチルトランスフェラーゼなど)に基づいた系も使用される。いくつかの実施形態では、マーカーは分泌酵素である。当業者に明らかであるように、本明細書中で使用する場合、用語「選択マーカー」は、遺伝子または遺伝子の発現産物(例えば、コードされたタンパク質)をいうことができる。

0098

いくつかの実施形態では、選択マーカーは、選択マーカーを発現しないか、有意に低いレベルで選択マーカーを発現する細胞と比較して、選択マーカーを発現する細胞に増殖および/または生存上の利点を付与する。かかる増殖および/または生存上の利点は、典型的には、細胞を一定の条件下(すなわち、「選択的条件下」)で維持した場合に起こる。有効な選択を確実にするために、細胞集団を、マーカーを発現しない細胞が増殖せず、そして/または生存せず、集団から排除されるか、その数が集団の非常に小さな画分に減少するような条件および十分な期間で維持することができる。マーカーを発現しない細胞の大部分または細胞を完全に排除するための選択条件下での細胞集団の維持によって増殖および/または生存上の利点を付与するマーカーを発現する細胞の選択過程を、本明細書中で「正の選択」といい、このマーカーを、「正の選択に有用」であるという。正の選択に有用なマーカーは、内因性多能性遺伝子を選択マーカーに連結する本発明の実施形態で特に興味深い。

0099

負の選択および負の選択に有用なマーカーもまた、本明細書中に記載の一定の方法で興味深い。かかるマーカーの発現により、マーカーを発現しないか有意に低いレベルでマーカーを発現する細胞と比較して、マーカーを発現する細胞に増殖および/または生存上の利点が付与される(または、別の方法を考慮した場合、マーカーを発現しない細胞は、マーカーを発現する細胞と比較して増殖および/または生存上の利点を有する)。したがって、選択条件下で十分な期間維持した場合、マーカーを発現する細胞を、細胞集団からその大部分または完全に排除することができる。

0100

本明細書中の一定の目的のマーカーは、使用した特定の選択条件に依存して、正の選択および負の選択に有用である。したがって、一定の条件下では、マーカーを発現する細胞は、マーカーを発現しない細胞と比較して増殖および/または生存上の利点を有する一方で、他の条件下では、マーカーを発現する細胞は、マーカーを発現しない細胞と比較して増殖および/または生存上の欠点を有する。本発明での使用に適切なかかるマーカーの2つの例は、ヒポキサンチンホスホリボシルトランスフェラーゼ(HPRT)(プリン型化合物を合成および/または相互交換する一定の反応を触媒する酵素)およびチミジンキナーゼ(TK)(ピリミジン型化合物を合成および/または相互交換する一定の反応を触媒する)である。典型的な培養条件下で、哺乳動物細胞中でのDNA合成は、グルタミンおよびアスパラギン酸塩をプリン型(例えば、dATPおよびdGTP)およびピリミジン型(例えば、dCTPおよびdTTP)ヌクレオチドを合成する一連の反応の初期基質として使用する主要な(de novo)経路を介して進行する。de novo経路が遮断される場合、哺乳動物細胞は必要なヌクレオチドを合成するために別の経路を利用しなければならない。プリンサルベージ経路は、ヒポキサンチンのIMPへの変換(HPRTによって触媒される反応)を含む。第2の経路は、チミジンをdTMPに変換する(TKによって触媒される反応)。したがって、HPRT発現を欠く細胞(例えば、HPRT遺伝子の機能的コピーを欠く細胞)またはTK発現を欠く細胞(例えば、TK遺伝子の機能的コピーを欠く細胞)は、標準的な培養培地で成長することができるが、アミノプテリン、ヒポキサンチン、およびチミジンを含むHAT培地中で死滅する。HPRT内因性発現を欠く細胞では、HPRTを、その発現をHAT培地中で選択することができる選択マーカーとして使用することができる。同様に、内因性TK発現を欠く細胞中で、TKを、その発現をHAT培地中で選択することができる選択マーカーとして使用することができる。

0101

HPRTまたはTKを発現する細胞を選択する能力に加えて、機能的HPRTおよび/またはTKの発現を欠く細胞(例えば、これらの酵素の一方または両方を発現しない細胞)を選択することも可能である。HPRTは、一定の他の非毒性化合物(種々のプリンアナログ(8−アザグアニン(8−AZ)および6−チオグアニン(6−TG)など)が含まれる)を細胞傷害性化合物に変換する。TKは、一定のピリミジンアナログ(5−ブロモデオキシウリジンおよびトリフルオロメチル−チミジンなど)を細胞傷害性化合物に変換する。細胞傷害性化合物は、例えば、核酸合成に関与する酵素の阻害および/またはDNAに組み込まれるようになること、ミスマッチおよび変異の誘導によって細胞に悪影響を及ぼし得る。したがって、8−AZ、6−TGなどを含む培養培地中で、HPRTを発現する細胞は、HPRTを発現しないか、核酸合成を完全に支持するのに不十分なより低いレベルでHPRTを発現する細胞と比較して成長に不利である。したがって、HPRT活性を欠く細胞を選択するためにこれらの選択条件を使用することが可能得ある。同様に、ブロモデオキシウリジンまたはトリフルオロ−メチル−チミジンを含む培地中で、TKを発現する細胞は、TK発現を欠くか、より低いレベルまたは不十分なレベルのTKを発現する細胞と比較して成長に不利である。したがって、TK活性を欠く細胞を選択するためにこれらの選択条件を使用することが可能である。

0102

本発明のいくつかの実施形態では、1つまたは複数の再プログラミング薬または再プログラミング因子で処理し、適切な期間維持した分化した体細胞の集団をアッセイして、多能性のマーカーを示す細胞を同定する。

0103

本明細書中に記載のように、本発明で使用する分化した体細胞は、かかる操作した体細胞を含むトランスジェニックマウスから得ることができる分化した体細胞であり得る。かかるトランスジェニックマウスを、当該分野で公知の標準的な技術を使用して産生することができる。例えば、Bronsonらは、選択された染色体部位への導入遺伝子の単一コピーの挿入技術を記載している。Bronsonら,1996を参照のこと。簡潔に述べれば、所望の組み込み構築物(例えば、多能性遺伝子に連結された選択マーカーを含む構築物)を含むベクターを、当該分野で公知の標準的な技術によってES細胞に導入する。得られたES細胞を、所望の組み込み事象(選択マーカーが多能性遺伝子のゲノム遺伝子座に組み込まれ、多能性遺伝子プロモーターの調節下にあるようにノックインベクターが所望の内因性多機能性遺伝子に組み込まれる事象)についてスクリーニングする。次いで、所望のES細胞を使用して、全ての細胞型が正確な組み込み事象を含むトランスジェニックマウスを産生する。所望の細胞型を、トランスジェニックマウスから選択的に得、in vitroで維持することができる。1つの実施形態では、それぞれ異なる組み込み構築物を保有する2つ以上のトランスジェニックマウスを作製することができる。次いで、これらのマウスを交配させて、複数の所望の組み込み構築物を保有するマウスを生成することができる。例えば、選択マーカーに連結された内因性多能性遺伝子を保有するように第1のトランスジェニックマウス型を作製することができる一方で、誘導性プロモーター下で導入遺伝子として発現される多能性遺伝子を保有するように第2のトランスジェニックマウス型を作製することができる。次いで、これらの2つのマウス型を交配させて、内因性多能性遺伝子および誘導性プロモーター下で導入遺伝子として発現されるさらなる多能性遺伝子に連結された両方の選択マーカーを有するトランスジェニックマウスを生成することができる。これら2つの多能性遺伝子は同一であっても同一でなくても良い。以下の多数の変動が意図される:マーカーに連結された内因性多能性遺伝子の同一性、導入遺伝子として発現される多能性遺伝子の同一性、選択マーカーに連結された内因性多能性遺伝子の数、および導入遺伝子として発現される多能性遺伝子の数。本発明は、これらの変動の全ての可能な組み合わせを含む。他の実施形態では、一方のマウスは選択マーカーに連結された内因性多能性遺伝子を保有し、一方のマウスは以下にさらに考察されたDNMT遺伝子にターゲティングされたRNAi薬をコードするDNAを保有する(それにより、DNMT遺伝子の発現を阻害することができる)。

0104

あるいは、本発明の操作された分化した体細胞を、体細胞への所望の構築物の直接導入によって産生することができる。DNA構築物を、当該分野で公知の任意の標準的な技術(ウイルストランスフェクション(例えば、アデノウイルス系を使用)またはリポソーム媒介トランスフェクションなど)によって細胞に導入することができる。標的化組み込み(targeted integration)を使用して体細胞を生成するための当該分野で公知の任意の手段を使用して、本発明の体細胞(例えば、選択マーカーが内因性多能性遺伝子に作動可能に連結された細胞または内因性遺伝子が条件プロモーター(conditional promoter)または部位特異的リコンビナーゼ部位の遺伝子内または遺伝子付近への導入によって条件的にされた細胞)を産生することができる。

0105

哺乳動物細胞では、相同組換えは、非相同組換えと比較してはるかに低い頻度で起こる。非相同組換え事象を超える相同組換え事象の選択を容易にするために、少なくとも2つの以下の富化方法が開発されている:正の選択−負の選択(PNS)法および「プロモーターレス(promoterless)」選択法(Sedivy and Dutriaux,1999)。簡潔に述べれば、PNS(第1の方法)は、遺伝子用語で負の選択である。この負の選択は、ターゲティングベクターに隣接して存在する負に選択可能な遺伝子の使用に依存することによって不正確な(非相同性)遺伝子座での組換えを淘汰する。他方では、第2の方法である「プロモーターレス」選択は、遺伝子用語で正の選択である。この正の選択は、その発現によって相同性標的部位での組換えが条件的にされる正に選択可能な遺伝子の使用に依存することによって正確な(相同性)遺伝子座での組換えを選択する。Sedivy and Dutriauxの開示は本明細書中で援用される。

0106

本明細書中に記載のように、少なくとも1つの再プログラミング薬と接触された分化した体細胞を評価して、多分化能または多能性に再プログラミングされた細胞を再プログラミングされなかった細胞と識別する。1つまたは複数の多能性の特徴を証明するか、多能性の1つまたは複数のマーカーを示す細胞をそうでない細胞と識別することによってこれを行うことができる。

0107

本明細書中で使用する場合、用語「多能性の特徴」は、多能性に関連する多数の特徴(例えば、全細胞型に分化する能力および多能性細胞に明らかな発現パターン(多能性遺伝子の発現、他のES細胞マーカーの発現が含まれる)、ならびに、大域的レベルでの「幹細胞シグニチャー」または「ステムネス(stemness)」として公知の異なる発現プロフィールが含まれる)をいう。

0108

したがって、多能性の特徴について再プログラミングされた体細胞を評価するために、異なる成長の特徴およびES細胞様形態学についてかかる細胞を分析することができる。細胞を免疫低下SCIDマウスに皮下注射して、奇形腫を誘導することができる(標準的なES細胞アッセイ)。ES様細胞を胚様体に分化することができる(別のESに特異的な特徴)。さらに、特定の細胞型への分化を駆動することが公知の一定の成長因子の添加によってin vitroでES様細胞を分化することができる。テロメラーゼ活性の誘導によって示される自己複製能力は、モニタリングすることができる別の多能性の特徴である。胚盤胞への再プログラミングされた体細胞の導入および細胞が全ての細胞型を生じることができるかどうかの決定によって再プログラミングされた体細胞の機能アッセイを行うことができる。Hoganら,2003を参照のこと。再プログラミングされた細胞がいくつかの細胞型を形成することができる場合、これらは多分化能を示す。再プログラミングされた細胞が身体の全ての細胞型(生殖細胞が含まれる)を形成することができる場合、これらは多能性を示す。

0109

再プログラミングされた体細胞中の各多能性遺伝子発現を試験して、その多能性の特徴を評価することもできる。さらに、他のES細胞マーカーの発現を評価することができる。段階特異的胎児15抗原である−1、−3、および−4(SSEA−1、SSEA−3、SSEA−4)は、初期胚発生で特異的に発現する糖タンパク質であり、ES細胞のマーカーである(Solter and Knowles,1978,Proc.Natl.Acad.Sci.USA 75:5565−5569;Kannagiら,1983,EMBO J 2:2355−2361)。酵素であるアルカリホスファターゼ(AP)発現の増加は、未分化胚性幹細胞に関連する別のマーカーである(Wobusら,1984,Exp.Cell 152:212−219;Peaseら,1990,Dev.Biol.141:322−352)。他の幹細胞/前駆細胞マーカーには、中間体神経フィラメントであるネスチン(Lendahlら,1990,Cell 60:585−595;Dah−Istrandら,1992,J.Cell Sci.103:589−597)、膜糖タンパク質であるプロミニン/AC133(Weigmannら,1997,Proc.Natl.Acad.USA 94:12425−12430;Corbeilら,1998,Blood 91:2625−22626)、転写因子Tcf−4(Korinekら,1998,Nat.Genet.19:379−383;Leeら,1999,J.Biol.Chem.274.1 566−1 572)、および転写因子であるCdx1(Dupreyら,1988,Genes Dev.2:1647−1654;Subramania’nら,1998,Differentiation
64:11−18)が含まれる。さらなるES細胞マーカーは、Ginis,I.ら,Dev.Biol.,269:369−380,2004に記載されている。例えば、REX−1、TERT、UTF−1、TRF−1、TRF−2、コネキシン43、コネキシン45、FGFR−4、ABCG−2、およびGlut−1を使用する。

0110

再プログラミングされた体細胞の発現プロファイリング分析をさらに行ってその多能性の特徴を評価することができる。多能性細胞(胚性幹細胞など)および多分化能細胞(成体幹細胞など)は、大域的遺伝子発現プロフィールの異なるパターンを有することが知られている。この異なるパターンを、「幹細胞分子シグニチャー」または「ステムネス」という。例えば、Ramalho−Santosら,Science 298:597−600(2002);Ivanovaら,Science 298:601−604を参照のこと。分子DNAの後成的状態を評価することができる。大域的DNA脱メチル化に対する細胞の耐性を評価することができる。細胞の発生能力を評価することができる。いくつかの実施形態では、SCIDマウスに注射した場合に内胚葉、中胚葉、および外胚葉の特徴を有する細胞を含む奇形腫を形成することができ、そして/または(マウス胚盤胞への注射後に)出産予定日まで生存するキメラの形成に関与する能力を有する細胞を多能性と見なす。
操作した体細胞およびかかる細胞を含むトランスジェニックマウス
本発明は、さらに、DNAメチル化を調節することができる操作された体細胞を提供する。「DNAメチル化」を、当該分野でのその使用と一致して、メチル基シトシンへの結合による真核生物DNAの改変をいうために本明細書中で使用される。当該分野で公知のように、DNAのシトシンメチル化は後成的遺伝子調節およびゲノム完全性の維持で重要な役割を果たす。哺乳動物細胞は、DNA中に存在するシトシンへのメチル基の輸送を担ういくつかの異なるDNAメチルトランスフェラーゼを有する(Goll,G,and
Bestor,T.,Annu Rev.Biochemistry,74:481−514,2005)。少なくとも3つの遺伝子が、哺乳動物細胞中でのゲノムメチル化の確立および維持に関与する(すなわち、de novoメチルトランスフェラーゼであるDNMT3aおよびDNMT3bならびにヘミメチル化DNAをメチル化するだけでなく、非メチル化DNAをメチル化する能力も示す維持酵素DNMT1をコードする遺伝子)。マウスの変異分析により、これら3つの遺伝子が不可欠であり、Dnmt1−ヌル胚中では原腸形成の直後に死亡し、機能的Dnmt3a遺伝子またはDnmt3b遺伝子を欠く胚の場合ではより後の時点で死亡することが証明されている(Li,1992;Okanoら,Cell,99(3):247−57,1999)。多数の遺伝子の異常な調節がこれらの胚で認められた。データは、哺乳動物発生中の多数の細胞型で起こり、適切な細胞分化に必要である可能性が高い転写サイレンシングのためのDNAメチル化要件と一致する。

0111

本発明は、内因性DNAメチルトランスフェラーゼ(DNMT)遺伝子(Dnmt1、Dnmt3a、またはDnmt3bなど)の発現を調節することができ、そして/または非操作体細胞と比較して内因性Dnmt遺伝子の発現が変化する細胞を提供する。一定の実施形態では、体細胞は、内因性DNAメチルトランスフェラーゼ(DNMT)遺伝子(Dnmt1、Dnmt3a、またはDnmt3bなど)の発現を干渉するRNAをコードする外因的に導入した遺伝子を含む。いくつかの実施形態では、RNAは、RNA干渉(RNAi)によって内因性DNAメチルトランスフェラーゼ遺伝子の発現を干渉する。「RNAi」を、当該分野でのその意味と一致して、二本鎖RNA(dsRNA)がdsRNAの一方の鎖と相補的な対応するmRNAの配列特異的分解または翻訳抑制を誘発する現象をいうために本明細書中で使用する。dsRNA鎖とmRNA鎖との間の相補性は100%である必要はないが、遺伝子発現の阻害(「サイレンシング」または「ノックダウン」ともいう)を媒介するのに十分であることのみ必要であると認識されるであろう。例えば、相補度は、鎖が、(i)RNA誘導サイレンシング誘導体RISC)と呼ばれるタンパク質複合体中でmRNA切断をガイドすることができるか、(ii)mRNAの翻訳を抑制することができるような程度である。一定の実施形態では、RNAの二本鎖部分は、約30ヌクレオチド長未満、例えば、17ヌクレオチド長と29ヌクレオチド長との間である。哺乳動物細胞では、適切な二本鎖核酸を細胞に導入することまたは細胞中で核酸を発現させ、その後に細胞内でプロセシングして細胞内でdsRNAを得ることによってRNAiを行うことができる。

0112

本発明の目的のために、任意選択的に細胞内プロセシングした後の遺伝子発現の配列特異的阻害を誘発することができる少なくとも部分的に二本鎖のRNAを、「RNAi薬」という。RNAiを媒介することができる例示的核酸は、短いヘアピンRNA(shRNA)、短い干渉RNA(siRNA)、およびミクロRNA前駆体である。これらの用語は周知であり、当該分野でのその意味と一致して本明細書中で使用される。siRNAは、典型的には、相互にハイブリッド形成して二重鎖を形成する2つの個別の核酸鎖を含む。siRNAを、例えば、標準的な核酸合成技術を使用してin vitroで合成することができる。siRNAは、広範な種々の改変ヌクレオシドヌクレオシドアナログ)を含むことができ、化学的または生物学的に改変された塩基、改変骨格などを含むことができる。当該分野でRNAiに有用であると認識されている任意の改変を使用することができる。いくつかの改変により、安定性細胞取り込み力価などが増加する。一定の実施形態では、siRNAは、約19ヌクレオチド長の二重鎖および1〜5ヌクレオチド長の1つまたは2つの3’オーバーハングを含み、これらはデオキシリボヌクレオチドから構成され得る。shRNAは、支配的な非自己相補領域によって分離された2つの相補部分を含む1つの核酸鎖を含む。相補部分はハイブリッド形成して二重鎖構造を形成し、非自己相補領域はループを形成し、このループが二重鎖の一方の鎖の3’末端および他方の鎖の5’末端に連結する。shRNAは細胞内プロセシングされてsiRNAを生成する。

0113

ミクロRNA(miRNA)は、(哺乳動物系では)約21〜25ヌクレオチドの小さな非コード一本鎖RNAであり、配列特異的様式で遺伝子発現を阻害する。ミクロRNAは、相補性が不完全な1つまたは複数の領域をしばしば含む二重鎖を含む短いヘアピン(約70ヌクレオチド長)から構成される特徴的な二次構造を有する前駆体から細胞内に生成される。天然に存在するmiRNAは、その標的mRNAと部分的にのみ相補的であり、典型的には、翻訳抑制を介して作用する。本明細書中で使用する場合、用語「shRNA」は、内因性ミクロRNA前駆体に対してモデリングされたRNAi薬を含む。いくつかの実施形態では、ステム−ループ構造ステム部分をコードするか完全なステム−ループをコードする配列を、例えば、内因性ミクロRNAまたは最小の(約70ヌクレオチド)ミクロRNAヘアピンをコードする配列の代わりに内因性ミクロRNA一次構築物の少なくとも一部を含む核酸に挿入することができる。

0114

当業者は、遺伝子発現を阻害するための適切なRNAi薬を同定することができるであろう。かかるRNAi薬を、遺伝子およびコードされたmRNA「にターゲティングされている」という。RNAi薬は、遺伝子から転写されたRNA(例えば、mRNA)またはそのコードされたタンパク質の平均定常状態レベルを、例えば、少なくとも50%、60%、70%、80%、90%、95%、またはそれを超えて減少させるのに十分に発現を阻害することができる。RNAi薬は、17〜29ヌクレオチド長(例えば、19〜23ヌクレオチド長(mRNAと100%相補的である)または1、2、3、4、もしくは5個までのヌクレオチドまたは約10〜30%ヌクレオチドまで(最大数相補塩基対を達成するためにmRNAとアラインメントした場合にワトソンクリック塩基対に関与しない)の配列を含むことができる。RNAi薬は、17〜29ヌクレオチド長(全てのヌクレオチドがワトソン−クリック塩基対に関与するか約10〜30%のヌクレオチドがワトソン−クリック塩基対に関与しない)の二重鎖を含むことができる。当業者は、配列の特徴がかかるsiRNAをデザインすることができるよりすぐれたsiRNAの機能性およびアルゴリズムにしばしば関連することを承知している(例えば、Jagla,B.ら,RNA,11(6):864−72,2005)。本発明の方法は、かかる特徴を有するsiRNAを使用することができるにもかかわらず、有用な配列の範囲はこれらの規則を満たす範囲に制限される。いくつかの実施形態では、RNAi薬のいずれかまたは両方の鎖の配列を、非標的遺伝子のサイレンシングを回避するように選択する。例えば、鎖は、標的mRNA以外の任意のmRNAと70%、80%、または90%未満で相補であり得る。いくつかの実施形態では、複数の異なる配列を使用する。以下の表は、DNMT1、3a、および3bをコードするヒト遺伝子およびマウス遺伝子ならびにこれらの遺伝子のサイレンシングのための例示的siRNAのアンチセンス配列の遺伝子IDを列挙している。HPRTについての類似の情報も含まれる。当業者は、公的に利用可能なデータベース中に任意の目的の遺伝子についての遺伝子ID、受入番号、および配列情報を容易に見出すことができる。当業者は、これらの遺伝子または他の遺伝子をサイレンシングするようにsiRNAおよびshRNAを容易にデザインすることができる。いずれかの末端または両方の末端でのさらなるヌクレオチドの組み込みによって配列を変化および/または伸長することができると認識されるであろう。さらに、複数のイソ型が存在する場合、目的の所与の細胞型または生物中で発現する全てのイソ型に存在する領域に対してターゲティングするsiRNAまたはshRNAをデザインすることができる。

0115

0116

体細胞中でRNAi薬を発現するために、当該分野で公知のように、適切な発現調節エレメント(例えば、プロモーター)に作動可能に連結されたRNAi薬をコードする配列を含む核酸構築物を細胞に導入することができる。本発明の目的のために、目的のRNAまたはポリペプチドをコードする配列を含む核酸構築物(この配列は、目的の細胞中での転写を指示するプロモーターなどの発現調節エレメントに作動可能に連結される)を、「発現カセット」という。プロモーターは、哺乳動物細胞中で機能的なRNAポリメラーゼI、II、またはIIIプロモーターであり得る。一定の実施形態では、プロモーターは、体細胞に導入された場合に機能的であるプロモーターである。一定の実施形態では、RNAi薬の発現は条件的である。いくつかの実施形態では、調節可能な(例えば、誘導性または抑制性)プロモーターの調節下でRNAi薬をコードする配列の配置によって発現を調節する。

ページトップへ

この技術を出願した法人

この技術を発明した人物

ページトップへ

関連する挑戦したい社会課題

関連する公募課題

該当するデータがありません

ページトップへ

おススメ サービス

おススメ astavisionコンテンツ

新着 最近 公開された関連が強い技術

  • 日清食品ホールディングス株式会社の「 プライマー及びマンゴーの検出方法」が 公開されました。( 2020/09/24)

    【課題】アレルギーを引き起こす恐れのあるマンゴーが食品原料や製品等に含まれていた場合に、その量が微量であっても高感度で検出することが可能なPCRプライマーを提供する。【解決手段】検出対象とするマンゴー... 詳細

  • ナガセケムテックス株式会社の「 核酸吸着材」が 公開されました。( 2020/09/24)

    【課題】タンパク質、核酸などを含む溶液中の核酸を選択的に吸着することができる核酸吸着材を提供する。【解決手段】窒素原子を含むカチオン性基を有するセルロースナノファイバーを備える、核酸吸着材。窒素原子を... 詳細

  • 国立大学法人名古屋大学の「 生体分子を分離するための流体デバイス及び方法」が 公開されました。( 2020/09/24)

    【課題】生体分子(タンパク質、核酸、細胞、小胞体など)を体液又は生体由来の溶液から短時間、高収率で分離できるデバイス及び方法の提供。【解決手段】平坦面を有する基板102と、平坦面の少なくとも一部に配置... 詳細

この 技術と関連性が強い技術

関連性が強い 技術一覧

この 技術と関連性が強い人物

関連性が強い人物一覧

この 技術と関連する社会課題

関連する挑戦したい社会課題一覧

この 技術と関連する公募課題

該当するデータがありません

astavision 新着記事

サイト情報について

本サービスは、国が公開している情報(公開特許公報、特許整理標準化データ等)を元に構成されています。出典元のデータには一部間違いやノイズがあり、情報の正確さについては保証致しかねます。また一時的に、各データの収録範囲や更新周期によって、一部の情報が正しく表示されないことがございます。当サイトの情報を元にした諸問題、不利益等について当方は何ら責任を負いかねることを予めご承知おきのほど宜しくお願い申し上げます。

主たる情報の出典

特許情報…特許整理標準化データ(XML編)、公開特許公報、特許公報、審決公報、Patent Map Guidance System データ