図面 (/)

技術 レーダ装置及び物標検出方法

出願人 株式会社デンソーテン
発明者 石川弘貴
出願日 2018年6月28日 (2年5ヶ月経過) 出願番号 2018-123383
公開日 2020年1月9日 (11ヶ月経過) 公開番号 2020-003357
状態 未査定
技術分野 レーダ方式及びその細部
主要キーワード 検出グループ 合成振幅 位置推定方式 振幅変化量 合成位相 スイープ信号 速度分解能 相対速
関連する未来課題
重要な関連分野

この項目の情報は公開日時点(2020年1月9日)のものです。
また、この項目は機械的に抽出しているため、正しく解析できていない場合があります

図面 (20)

課題

距離折り返しゴースト検出精度を向上させることができる技術を提供することを課題とする。

解決手段

レーダ装置100において、信号生成部11は、基本送信信号TS1を生成する。位相変化部12は、位相変化送信TS2信号を生成する。送信部20は、基本送信信号TS1と位相変化送信信号TS2とを送信波として出力する。ゴースト検出部44は、第1時刻の2次元パワースペクトルPSから同一の物標を示す2つのピークを特定し、特定した2つのピークの中から最小の速度を有するピークを選択する。ゴースト検出部44は、第2時刻の2次元パワースペクトルPSにおける選択ピークの位置を推定する。ゴースト検出部44は、第2時刻の2次元パワースペクトルPSが選択ピークの推定位置に対応するピークを含むか否かを判断する。

概要

背景

物標を検出するレーダ装置として、FCM(Fast Chirp Modulation)方式のレーダ装置が知られている。FCM方式のレーダ装置は、連続する複数のチャープ信号を含む送信信号を生成し、生成した送信信号を送信波として出力する。FCM方式のレーダ装置は、送信波が物標で反射した反射波を受信する。FCM方式のレーダ装置は、送信信号と、受信した反射波から取得される受信信号とからビート信号を生成し、その生成したビート信号を高速フーリエ変換して、2次元スペクトルを生成する。

FCM方式のレーダ装置は、ビート信号の周波数に基づいて物標の距離を求め、ビート信号の位相変化に基づいて物標の速度を求める。FCM方式のレーダ装置は、物標までの距離と物標の速度とを分離して求めることができるため、より高精度な物標検出が可能になると期待されている。

例えば、特許文献1には、自動車等の車両に搭載されるFCM方式のレーダ装置が開示されている。

概要

距離折り返しゴースト検出精度を向上させることができる技術を提供することを課題とする。レーダ装置100において、信号生成部11は、基本送信信号TS1を生成する。位相変化部12は、位相変化送信TS2信号を生成する。送信部20は、基本送信信号TS1と位相変化送信信号TS2とを送信波として出力する。ゴースト検出部44は、第1時刻の2次元パワースペクトルPSから同一の物標を示す2つのピークを特定し、特定した2つのピークの中から最小の速度を有するピークを選択する。ゴースト検出部44は、第2時刻の2次元パワースペクトルPSにおける選択ピークの位置を推定する。ゴースト検出部44は、第2時刻の2次元パワースペクトルPSが選択ピークの推定位置に対応するピークを含むか否かを判断する。

目的

本発明の目的は、距離折り返しゴーストの検出精度を向上させることができる技術を提供する

効果

実績

技術文献被引用数
0件
牽制数
0件

この技術が所属する分野

ライセンス契約や譲渡などの可能性がある特許掲載中! 開放特許随時追加・更新中 詳しくはこちら

請求項1

基本送信信号を生成する信号生成部と、前記基本送信信号に周期的な位相変化を与えて位相変化送信信号を生成する位相変化部と、前記基本送信信号と前記位相変化送信信号とを送信波として出力する送信部と、前記基本送信信号と受信部により取得された受信信号とから、物標の距離に対応する距離軸と前記物標の速度に対応する速度軸とを含むスペクトルを生成する変換部と、前記スペクトルに含まれるピークが距離折り返しゴーストであるか否かを判断するゴースト検出部と、を備え、前記ゴースト検出部は、第1時刻のスペクトルから同一の距離を有する複数のピークを特定し、前記特定された複数のピークにおける速度軸方向の間隔が前記周期的な位相変化から導かれる速度差に対応する場合、前記特定された複数のピークを含む検出グループ分類するグループ生成部と、前記検出グループに含まれる複数のピークのうち、前記周期的な位相変化に基づいて定まる選択条件を満たすピークを選択するピーク選択部と、前記ピーク選択部により選択された選択ピークの位置に基づいて、前記第1時刻と異なる第2時刻のスペクトルにおける選択ピークの位置を推定する位置推定部と、前記第2時刻のスペクトルが前記選択ピークの推定位置に対応するピークを含まない場合、前記検出グループに含まれるピークが距離折り返しゴーストであると判断する判断部と、を含むレーダ装置

請求項2

請求項1に記載のレーダ装置であって、前記位置推定部は、前記第1時刻から前記第2時刻までの期間における前記選択ピークの移動距離を前記選択ピークの速度に基づいて算出し、前記選択ピークの推定位置を前記算出された移動距離に基づいて推定する、レーダ装置。

請求項3

請求項1に記載のレーダ装置であって、前記基本送信信号は、複数のチャープ信号を含み、前記位相変化部が前記複数のチャープ信号の各々の位相を増加させる場合、前記ピーク選択部は、前記検出グループに含まれる複数のピークのうち最も小さい速度を有するピークを選択する、レーダ装置。

請求項4

請求項1〜3のいずれか1項に記載のレーダ装置であって、前記判断部は、前記第2時刻のスペクトルが前記選択ピークの推定位置を基準とした所定範囲内に位置するピークを有しない場合、前記選択ピークが距離折り返しゴーストであると判断する、レーダ装置。

請求項5

請求項1〜4のいずれか1項に記載のレーダ装置であって、前記送信部は、前記基本送信信号を基本送信波として出力する第1送信アンテナと、前記位相変化送信信号を位相変化送信波として出力する第2送信アンテナとを含む、レーダ装置。

請求項6

請求項1〜4のいずれに記載のレーダ装置であって、前記位相変化部は、前記基本送信信号と前記位相変化送信信号とを合成して合成送信信号を生成し、前記送信部は、前記位相変化部により生成された合成送信信号を送信波として出力する送信アンテナを含む、レーダ装置。

請求項7

請求項6に記載のレーダ装置であって、前記基本送信信号は、複数のチャープ信号、を含み、前記位相変化部は、前記複数のチャープ信号ごとに設定された位相変化量を、前記複数のチャープ信号の各々に加算することにより、前記信号生成部により生成された送信信号に前記周期的な変化を与え、前記合成送信信号に含まれるチャープ信号の振幅を、前記位相変化量に基づいて変化させる、レーダ装置。

請求項8

基本送信信号を生成するステップと、前記基本送信信号に周期的な位相変化を与えて位相変化送信信号を生成するステップと、前記基本送信信号と前記位相変化送信信号とを送信波として出力するステップと、前記基本送信信号と受信アンテナにより取得された受信信号とを用いて、物標の距離に対応する距離軸と前記物標の速度に対応する速度軸とを含むスペクトルを生成するステップと、前記スペクトルに含まれるピークが距離折り返しゴーストであるか否かを判断するステップと、第1時刻のスペクトルから同一の距離を有する複数のピークを特定し、前記特定された複数のピークにおける速度軸方向の間隔が前記周期的な位相変化から導かれる速度差に対応する場合、前記特定された複数のピークを含む検出グループを生成するステップと、前記検出グループに含まれる複数のピークのうち、前記周期的な位相変化に基づいて定まる選択条件を満たす選択ピークを選択するステップと、前記選択ピークの位置に基づいて、前記第1時刻と異なる第2時刻のスペクトルにおける選択ピークの位置を推定するステップと、前記第2時刻のスペクトルが前記選択ピークの推定位置に対応するピークを含まない場合、前記検出グループに含まれるピークが距離折り返しゴーストであると判断するステップと、を含む物標検出方法。

技術分野

0001

本発明は、物標を検出するレーダ装置及びこのレーダ装置で用いられる物標検出方法に関する。

背景技術

0002

物標を検出するレーダ装置として、FCM(Fast Chirp Modulation)方式のレーダ装置が知られている。FCM方式のレーダ装置は、連続する複数のチャープ信号を含む送信信号を生成し、生成した送信信号を送信波として出力する。FCM方式のレーダ装置は、送信波が物標で反射した反射波を受信する。FCM方式のレーダ装置は、送信信号と、受信した反射波から取得される受信信号とからビート信号を生成し、その生成したビート信号を高速フーリエ変換して、2次元スペクトルを生成する。

0003

FCM方式のレーダ装置は、ビート信号の周波数に基づいて物標の距離を求め、ビート信号の位相変化に基づいて物標の速度を求める。FCM方式のレーダ装置は、物標までの距離と物標の速度とを分離して求めることができるため、より高精度な物標検出が可能になると期待されている。

0004

例えば、特許文献1には、自動車等の車両に搭載されるFCM方式のレーダ装置が開示されている。

先行技術

0005

特開2016−3873号広報

発明が解決しようとする課題

0006

FCM方式のレーダ装置は、2次元スペクトルに現れたピークの位置に基づいて物標の距離を検出する。しかし、距離折り返しと呼ばれる現象が2次元スペクトルで発生することがある。距離折り返しとは、ある物標がFCM方式のレーダ装置の最大検知距離よりも遠い位置にあるにも関わらず、この物標に対応するピークが最大検知距離よりも近い距離に現れることである。物標が最大検知距離よりも遠い位置にあるにも関わらず、この物標に対応するピークが、最大検知距離よりも近い距離に現れる場合、このピークは、距離折り返しゴーストと呼ばれる。

0007

FCM方式のレーダ装置において、最大検知距離は、サンプリング周波数に依存する。サンプリング周波数を高くすることにより、最大検知距離を大きくすることができる。つまり、サンプリング周波数を高くして最大検知距離を十分遠方に設定することにより、距離折り返しゴーストの発生を防ぐことができる。

0008

FCM方式のレーダ装置に用いられるハードウェア制約上、サンプリング周波数を無制限に高くすることはできない。距離折り返しは、ナイキスト周波数を超える周波数を示すピークがナイキスト周波数を対称軸として折り返すことにより発生する。従って、FCM方式のレーダ装置において、サンプリング周波数を原因とする距離折り返しの発生を完全に防ぐことは困難である。しかし、FCM方式のレーダ装置において、距離折り返しゴーストの検出精度を向上させなければならない。

0009

本発明の目的は、距離折り返しゴーストの検出精度を向上させることができる技術を提供することを課題とする。

課題を解決するための手段

0010

上記課題を解決するため、第1の発明は、レーダ装置である。レーダ装置は、信号生成部と、位相変化部と、送信部と、変換部と、ゴースト検出部とを備える。信号生成部は、基本送信信号を生成する。位相変化部は、基本送信信号に周期的な位相変化を与えて位相変化送信信号を生成する。送信部は、基本送信信号と位相変化送信信号とを送信波として出力する。変換部は、基本送信信号と受信部により取得された受信信号とから、物標の距離に対応する距離軸と物標の速度に対応する速度軸とを含むスペクトルを生成する。ゴースト検出部は、スペクトルに含まれるピークが距離折り返しゴーストであるか否かを判断する。ゴースト検出部は、グループ生成部と、ピーク選択部と、位置推定部と、判断部とを含む。グループ生成部は、第1時刻のスペクトルから同一の距離を有する複数のピークを特定し、特定された複数のピークにおける速度軸方向の間隔が周期的な位相変化から導かれる速度差に対応する場合、特定された複数のピークを含む検出グループ分類する。ピーク選択部は、検出グループに含まれる複数のピークのうち、周期的な位相変化に基づいて定まる選択条件を満たすピークを選択する。位置推定部は、ピーク選択部により選択された選択ピークの位置に基づいて、第1時刻と異なる第2時刻のスペクトルにおける選択ピークの位置を推定する。判断部は、第2時刻のスペクトルが選択ピークの推定位置に対応するピークを含まない場合、検出グループに含まれるピークが距離折り返しゴーストであると判断する。

0011

第1の発明によれば、周期的な位相変化を基本送信信号TS1に与えることにより、同一の物標を示す2つのピークが、第1時刻のスペクトルに形成される。2つのピークの一方は、レーダ装置を基準とした相対速度とを示す実像ピークであり、他方は、相対速度と、周期的な位相変化に起因する見かけドップラ速度を含む虚像ピークである。距離折り返しが発生した場合、実像ピークの速度と虚像ピークの速度との大小関係が入れ替わる。第1の発明は、前述の速度の大小関係の入れ替わりを利用して、距離折り返しゴーストを検出する。従って、距離折り返しゴーストの検出精度を向上させることができる。

0012

第2の発明は、第1の発明であって、位置推定部は、第1時刻から第2時刻までの期間における選択ピークの移動距離を選択ピークの速度に基づいて算出し、選択ピークの推定位置を算出された移動距離に基づいて推定する。

0013

この発明によれば、第2時刻のスペクトルにおける選択ピークの推定位置の精度を向上させることができる。従って、距離折り返しゴーストの検出精度をさらに向上させることができる。

0014

第3の発明は、第1の発明であって、基本送信信号は、複数のチャープ信号を含む。位相変化部が複数のチャープ信号の各々の位相を増加させる場合、ピーク選択部は、検出グループに含まれる複数のピークのうち最も小さい速度を有するピークを選択する。

0015

第3の発明によれば、距離折り返しゴーストが発生した場合に、虚像ピークが選択ピークとして選択されるため、距離折り返しゴーストを検出することができる。

0016

第4の発明は、第1〜第3の発明のいずれかであって、判断部は、第2時刻のスペクトルが選択ピークの推定位置を基準とした所定範囲内に位置するピークを有しない場合、選択ピークが距離折り返しゴーストであると判断する。

0017

第4の発明によれば、選択ピークに対応するピークが推定位置と完全に一致しない場合であっても、選択ピークが距離折り返しゴーストでないと判断することができる。

0018

第5の発明は、第1〜第4の発明のいずれかであって、送信部は、第1送信アンテナと、第2送信アンテナとを含む。第1送信アンテナは、基本送信信号を基本送信波として出力する。第2送信アンテナは、位相変化送信信号を位相変化送信波として出力する。

0019

第5の発明によれば、基本送信信号と、位相変化送信信号とを合成しなくてもよいため、レーダ装置の構成を簡略化することができる。

0020

第6の発明は、第1〜第4のいずれかの発明であって、位相変化部は、信基本送信信号と位相変化送信信号とを合成して合成送信信号を生成する。送信部は、送信アンテナを含む。送信アンテナは、位相変化部により生成された合成送信信号を送信波として出力する。

0021

第6の発明によれば、信号生成部により生成された送信信号と、周期的な位相変化が与えられた送信信号とを別々の送信アンテナに供給しなくてもよい。従って、レーダ装置が備える送信アンテナの数を削減することができる。

0022

第7の発明は、第6の発明であって、基本送信信号は、複数のチャープ信号、を含む。位相変化部は、複数のチャープ信号ごとに設定された位相変化量を、複数のチャープ信号の各々に加算することにより、信号生成部により生成された送信信号に周期的な変化を与え、合成送信信号に含まれるチャープ信号の振幅を、位相変化量に基づいて変化させる。

0023

第7の発明によれば、実像ピーク及び虚像ピークのパワーを時間的な変動を抑制することができる。実像ピークは、信号生成部により生成された送信信号に基づく送信波が物標で反射した反射波に由来する。虚像ピークは、周期的な位相変化が与えられた送信信号に基づく送信波が物標で反射した反射波に由来する。実像ピーク及び虚像ピークのパワーの時間的な変動が抑制されるため、実像ピーク及び虚像ピークが瞬間的にスペクトルから検出されないことを防ぐことができる。従って、距離折り返しゴーストが発生しているか否かを経時的に安定して判断することができる。

0024

第8の発明は、物標検出方法であり、a)ステップと、b)ステップと、c)ステップと、d)ステップと、e)ステップと、f)ステップと、g)ステップと、h)ステップと、i)ステップとを備える。a)ステップは、基本送信信号を生成するb)ステップは、基本送信信号に周期的な位相変化を与えて位相変化送信信号を生成する。c)ステップは、基本送信信号と位相変化送信信号とを送信波として出力する。d)ステップは、基本送信信号と受信アンテナにより取得された受信信号とを用いて、物標の距離に対応する距離軸と物標の速度に対応する速度軸とを含むスペクトルを生成する。e)ステップは、スペクトルに含まれるピークが距離折り返しゴーストであるか否かを判断する。f)ステップは、第1時刻のスペクトルから同一の距離を有する複数のピークを特定し、特定された複数のピークにおける速度軸方向の間隔が周期的な位相変化から導かれる速度差に対応する場合、特定された複数のピークを含む検出グループを生成する。g)ステップは、検出グループに含まれる複数のピークのうち、周期的な位相変化に基づいて定まる選択条件を満たす選択ピークを選択する。h)ステップは、選択ピークの位置に基づいて、第1時刻と異なる第2時刻のスペクトルにおける選択ピークの位置を推定する。i)ステップは、第2時刻のスペクトルが選択ピークの推定位置に対応するピークを含まない場合、検出グループに含まれるピークが距離折り返しゴーストであると判断する。

0025

第8の発明は、第1の発明に用いられる。

発明の効果

0026

本発明は、距離折り返しゴーストの検出精度を向上させることができる。

図面の簡単な説明

0027

本発明の第1の実施の形態に係るレーダ装置と物標との位置関係の一例を示す図である。
図1に示すレーダ装置の動作概略を説明する図である。
図1に示すレーダ装置の構成を示す機能ブロック図である。
図1に示すゴースト検出部の構成を示す機能ブロック図である。
図1に示すレーダ装置により実行される送信処理フローチャートである。
図1に示すパターンテーブルの一例を示す図である。
図1に示す基本送信信号に含まれるチャープ信号の位相変化を示す図である。
図1に示す処理部により実行される物標データ生成処理のフローチャートである。
図1に示す前処理部により生成されるピークデータの一例を示す図である。
図1に示す変換部により生成されたスペクトルにおける、2つのピークの位置関係の一例を示す図である。
図1に示す変換部により生成されたスペクトルにおける、2つのピークの位置関係の他の例を示す図である。
図1に示す変換部により生成された2つのスペクトルにおけるピークの対応関係の一例を示す図である。
図1に示す変換部により生成された2つのスペクトルにおけるピークの対応関係の他の例を示す図である。
図8に示すゴースト検出処理のフローチャートである。
本発明の第2の実施の形態に係るレーダ装置の構成を示す機能ブロック図である。
図15に示すパターンテーブルの一例を示す図である。
図15に示すレーダ装置により生成されたスペクトルにおける、3つのピークの位置関係の一例を示す図である。
本発明の第3の実施の形態に係るレーダ装置の構成を示す機能ブロック図である。
図18に示すパターンテーブルの一例を示す図である。
図18に示すパターンテーブルの生成に用いられる基本パターンを示す図である。
図20に示す基本パターンの合成の一例を示す図である。
CPUバス構成を示す図である。

実施例

0028

以下、図面を参照し、本発明の実施の形態を詳しく説明する。図中同一又は相当部分には同一符号を付してその説明は繰り返さない。

0029

[第1の実施の形態]
{1.レーダ装置100と物標との位置関係}
図1は、物標と、本実施の形態に係るレーダ装置100との位置関係の一例を示す図である。図1を参照して、レーダ装置100は、FCM(Fast Chirp Modulation)方式のレーダ装置であり、車両1Aの前端面に設置される。車両1Aは、本実施の形態では、自動車であり、片側1車線対面通行式の道路走行している。車両2Aは、車両1Aの前方に位置し、車両1Aが走行する車線と同じ車線を走行している。車両2Aが、本実施の形態における物標である。

0030

車両1Aの前方は、車両1Aの直進方向であって、運転席からステアリングに向かう方向である。車両1Aの後方は、車両1Aの直進方向であって、ステアリングから運転席に向かう方向である。車両2Aの前方及び後方は、車両1Aと同様に定義される。

0031

本実施の形態において、車両1Aの前方を正方向と定義し、車両1Aの後方を負方向と定義する。

0032

レーダ装置100は、送信波TWを車両1Aの前方に送信する。送信波TWは、基本送信波TW1及び位相変化送信波TW2を含む。基本送信波TW1及び位相変化送信波TW2の詳細については、後述する。

0033

レーダ装置100は、受信波RWを受信して、物標である車両2Aを検出する。受信波RWは、基本反射波RF1及び位相変化反射波RF2を含む。基本反射波RF1は、車両2Aの後端面で反射した基本送信波TW1である。位相変化反射波RF2は、車両2Aの後端面で反射した位相変化送信波TW2である。

0034

{2.レーダ装置100の動作概略}
図1を参照して、レーダ装置100は、連続する複数のチャープ信号を含む基本送信信号TS1を生成する。レーダ装置100は、生成した基本送信信号TS1に周期的な位相変化を与えることにより、位相変化送信信号TS2を生成する。レーダ装置100は、生成した基本送信信号TS1を基本送信波TW1として送信し、生成した位相変化送信信号TS2を位相変化送信波TW2として送信する。

0035

レーダ装置100は、受信波RWから受信信号を取得し、取得した受信信号を基本送信信号TS1とミキシングしてビート信号を生成する。レーダ装置100は、生成したビート信号を高速フーリエ変換して、2次元スペクトルを生成する。レーダ装置100は、2次元スペクトルに含まれるピークが距離折り返しゴーストであるか否かを判断する。

0036

図2は、図1に示すレーダ装置100による距離折り返しゴーストの検出原理を説明する図である。図2は、レーダ装置100により生成された2次元スペクトルPSの距離軸及び速度軸により表される座標空間を示す。距離軸は、レーダ装置100から物標までの距離に対応する周波数軸である。速度軸は、レーダ装置100を基準とした相対速度に対応する周波数軸である。

0037

図2を参照して、2次元スペクトルPSは、時刻Tkに送信された送信波TWに基づいて生成される。時刻Tkは、送信波TWの送信時刻である。2次元スペクトルPSは、ピークPa及びPbを含む。ピークPa及びPbは、距離折り返しゴーストである。ピークPa及びPbのうち、一方は、基本反射波RF1に基づくピークであり、他方は、位相変化反射波RF2に基づくピークである。つまり、ピークPa及びPbは、同一の物標(車両2A)を示す。

0038

真のピークPa’及びPb’は、ピークPa及びPbの真の位置を示す。ピークPaは、速度軸と直線MLとの交点CRを基準として、真のピークPa’と点対称の関係にある。ピークPbは、交点CRを基準として、真のピークPb’と点対称の関係にある。直線MLは、距離軸方向のナイキスト周波数で定まるレーダ装置100の検知距離を示す。

0039

ピークPa及びPbが、同一の距離Dkを有し、ピークPaとピークPbとの速度差ΔV1が、周期的な位相変化から導かれる速度差に対応する場合、レーダ装置100は、ピークPa及びPbが同一の物標を示していると判断する。レーダ装置100は、ピークPa及びPbからなる検出グループGを生成する。

0040

レーダ装置100は、検出グループGにおいて最小の速度を有するピークPbを選択する。レーダ装置100は、選択したピークPbに対応するピークが、時刻Tk−1の2次元スペクトルPSにおいて現れる位置ESを推定する。時刻Tk−1は、時刻Tkの直前に設定された送信波TWの送信時刻である。図2において、推定位置ESからピークPbまでの長さを誇張して表現している。

0041

時刻Tk−1の2次元スペクトルが、推定位置ESに対応するピークを含まない場合、レーダ装置100は、検出グループGを構成するピークPa及びPbが距離折り返しゴーストであると判断する。

0042

{3.レーダ装置100の構成}
{3.1.全体構成}
図3は、図1に示すレーダ装置100の構成を示す機能ブロック図である。図3を参照して、レーダ装置100は、供給部10と、送信部20と、受信部30と、処理部40とを備える。

0043

供給部10は、基本送信信号TS1及び位相変化送信信号TS2を生成して送信部20に供給する。供給部10は、生成した基本送信信号TS1を受信部30に供給する。

0044

送信部20は、供給部10から受けた基本送信信号TS1及び位相変化送信信号TS2を、送信波TWとして送信する。

0045

受信部30は、受信波RWを受信して受信信号RSを取得し、基本送信信号TS1を供給部10から受ける。受信部30は、取得した受信信号RSを供給部10から受けた基本送信信号TS1とミキシングすることにより、ビート信号BSを生成する。受信部30は、生成したビート信号BSを処理部40に出力する。

0046

処理部40は、ビート信号BSを受信部30から受け、その受けたビート信号BSから2次元スペクトルPSを生成する。処理部40は、2次元スペクトルPSに含まれるピークの中から距離折り返しゴーストを検出する。処理部40は、物標を示すピークに関する情報である物標データを生成し、その生成した物標データを車両ECU47に出力する。

0047

車両ECU47は、処理部40から受けた物標データを用いて、例えば、ACC(Adaptive Cruise Control)やPCS(Pre-crash Safety System)に利用する。

0048

{3.2.供給部10の構成}
供給部10は、信号生成部11と、位相変化部12と、遅延回路13と、分岐部14及び15と、メモリ16とを含む。

0049

信号生成部11は、送信制御部41から送信指示信号を受けた場合、基本送信信号TS1を生成し、生成した基本送信信号TS1を分岐部14に出力する。分岐部14は、信号生成部11から受けた基本送信信号TS1を分岐して、位相変化部12及び遅延回路13に出力する。

0050

位相変化部12は、メモリ16に記憶されたパターンテーブル17に基づいて、分岐部14から受けた基本送信信号TS1に周期的な位相変化を与える。位相変化部12は、周期的な位相変化を与えられた基本送信信号TS1を位相変化送信信号TS2として送信アンテナ22に出力する。

0051

遅延回路13は、基本送信波TW1の送信タイミングが位相変化送信波TW2の送信タイミングと一致するように、基本送信信号TS1を遅延させる。遅延回路13は、遅延させた基本送信信号TS1を分岐部15に出力する。分岐部15は、遅延回路13から受けた基本送信信号TS1を分岐して、送信アンテナ21及び受信部30が備える複数のミキサ32に出力する。

0052

メモリ16は、不揮発性記憶装置であり、例えば、フラッシュメモリである。メモリ16は、パターンテーブル17を記憶する。

0053

{3.3.送信部20の構成}
送信部20は、送信アンテナ21及び22を含む。送信アンテナ21は、基本送信信号TS1を分岐部15から受け、その受けた基本送信信号TS1を基本送信波TW1として送信する。送信アンテナ22は、位相変化送信信号TS2を位相変化部12から受け、その受けた位相変化送信信号TS2を位相変化送信波TW2として送信する。これにより、基本送信信号TS1を位相変化送信信号TS2と合成しなくてもよいため、レーダ装置100の構成を簡略化することができる。

0054

{3.4.受信部30の構成}
受信部30は、複数の受信アンテナ31と、複数のミキサ32と、複数のA/D変換器33とを含む。一の受信アンテナ31は、一のミキサ32及び一のA/D変換器33と対応する。

0055

受信アンテナ31は、受信波RWを受信し、その受信した受信波RWを受信信号RSに変換する。受信アンテナ31は、受信信号RSをミキサ32に出力する。

0056

ミキサ32は、受信アンテナ31から受けた受信信号RSを、分岐部15から受けた基本送信信号TS1とミキシングすることにより、ビート信号BSを生成する。ミキサ32により生成されるビート信号BSは、アナログ信号である。ミキサ32は、生成したビート信号BSをA/D変換器33に出力する。

0057

A/D変換器33は、予め設定されたサンプリング周波数に基づいて、ミキサ32から受けたビート信号BSをデジタル化する。A/D変換器33は、デジタル化されたビート信号BSを処理部40に出力する。

0058

{3.5.処理部40の構成}
処理部40は、送信制御部41と、変換部42と、前処理部43と、ゴースト検出部44と、方位推定部45と、後処理部46とを含む。

0059

送信制御部41は、予め設定された送信間隔ΔTで、送信波TWの送信を指示する送信指示信号を信号生成部11に出力する。設定された時間間隔ΔTは、例えば、50msecである。

0060

変換部42は、A/D変換器33から受けたビート信号BSを高速フーリエ変換する。変換部42は、2次元スペクトルPSを高速フーリエ変換の結果として取得し、取得した2次元スペクトルPSを前処理部43に出力する。

0061

前処理部43は、変換部42から受けた2次元スペクトルPSからピークを抽出する。前処理部43は、抽出したピークの位置に基づいて、抽出したピークの距離及び速度を算出する。ここで、距離とは、レーダ装置100を基準とした物標の相対距離であり、速度とは、レーダ装置100を基準とした物標の相対速度である。前処理部43は、各ピークの距離及び速度を記録したピークデータPDを生成し、生成したピークデータPDをゴースト検出部44に出力する。

0062

ゴースト検出部44は、前処理部43から受けたピークデータPDに基づいて、2次元スペクトルPSから抽出されたピークの中から距離折り返しゴーストを検出する。ゴースト検出部44は、距離折り返しゴーストと、位相変化反射波RF2に由来するピークとをピークデータPDから削除して、方位推定部45に出力する。ゴースト検出部44の構成及び距離折り返しゴーストの検出方法については、後述する。

0063

方位推定部45は、ピークデータPDをゴースト検出部44から受け、その受けたピークデータPDに記録されたピークに対応する物標の方位を推定する。方位推定部45は、例えば、EPSRIT(Estimation of Signal Parameters via Rotational Invariance Techniques)、DBF(Digital Beam Forming)、又は、MUSIC(Multiple Signal Classification)などの位置推定方式を用いる。方位推定部45は、各ピークの方位推定結果を、ピークデータPDに記録する。方位推定部45は、方位推定結果を記録したピークデータPDを後処理部46に出力する。

0064

後処理部46は、ピークデータPDを方位推定部45から受ける。後処理部46は、その受けたピークデータPDに記録されたピークの後処理を実行する。後処理は、例えば、クラスタリング追跡処理、不要物標除去処理等である。後処理部46は、後処理の結果として得られた物標データを車両ECU47に出力する。

0065

以下、特に説明のない限り、ピークデータPDは、時刻Tkの2次元スペクトルPSに含まれるピークを記録したデータを示す。

0066

{3.6.ゴースト検出部44の構成}
図4は、図3に示すゴースト検出部44の構成を示す機能ブロック図である。図4を参照して、ゴースト検出部44は、グループ生成部441と、ピーク選択部442と、位置推定部443と、判断部444とを備える。

0067

グループ生成部441は、前処理部43からピークデータPDを受け、その受けたピークデータPDに含まれる2つのピークが同一の物標を示すか否かを判断する。具体的には、グループ生成部441は、同一の距離を有する2つのピークを特定する。グループ生成部441は、特定した2つのピークの速度軸方向の間隔が、基本送信信号TS1に与えられた周期的な位相変化から導かれる速度に対応する場合、特定した2つのピークが同一の物標を示すと判断する。グループ生成部441は、特定した2つのピークが同一の物標を示すと判断した場合、特定した2つのピークからなる検出グループGを生成する。

0068

ピーク選択部442は、検出グループGに含まれる2つのピークのうち、所定の選択条件を満たすピークを選択する。所定の選択条件は、基本送信信号TS1に与えられる周期的な位相変化に基づいて定められる。本実施の形態では、所定の選択条件は、検出グループGに分類されたピークのうち、最小の速度を有するピークである。

0069

位置推定部443は、ピーク選択部442により選択された選択ピークの位置をピークデータPDから取得し、取得した選択ピークの位置に基づいて、選択ピークが時刻Tk−1の2次元スペクトルPSにおいて現れる位置ESを推定する。

0070

判断部444は、時刻Tk−1の2次元スペクトルPSが、推定位置ESに対応するピークを含まない場合、選択ピークが距離折り返しゴーストであると判断する。判断部26は、距離折り返しゴーストと判断された選択ピークをピークデータPDから削除して方位推定部45に出力する。

0071

レーダ装置100において、位相変化部12が周期的な位相変化を基本送信信号TS1に与えることにより、同一の物標を示す2つのピークが、時刻Tkの2次元スペクトルPSに形成される。2つのピークの一方は、レーダ装置100を基準とした相対速度を示す実像ピークであり、他方は、相対速度と、周期的な位相変化に起因するドップラ速度を含む虚像ピークである。

0072

距離折り返しが発生した場合における実像ピークと虚像ピークとの速度軸方向における位置関係は、距離折り返しが発生しない場合における実像ピークと虚像ピークとの速度軸方向における位置関係と逆となる。レーダ装置100は、距離折り返しの前述の特徴を利用して、距離折り返しゴーストを検出する。従って、距離折り返しゴーストの検出精度を向上させることができる。

0073

{4.送信時におけるレーダ装置100の動作}
{4.1.送信処理}
図5は、図1に示すレーダ装置100により実行される送信処理のフローチャートである。レーダ装置100は、図5に示す送信処理を送信間隔ΔTで繰り返し実行する。

0074

送信波TWの直近の送信時刻から送信間隔ΔTを経過した場合、送信制御部41は、送信指示信号を信号生成部11に出力する。信号生成部11は、送信制御部41から送信指示信号を受けた場合、スイープ信号を生成する(ステップS11)。

0075

スイープ信号において、電圧は、基準電圧から時間の経過とともに一定の割合で増加し、予め設定されたスイープ信号の1周期に相当する時間を経過した時点で基準電圧まで急降下する変化を繰り返す。

0076

信号生成部11は、予め設定された中心周波数を有する連続波を生成する。信号生成部11は、ステップS11で生成したスイープ信号を用いて、連続波を周波数変調することにより、基本送信信号TS1を生成する(ステップS12)。基本送信信号TS1は、n個のチャープ信号を含む。ここで、nは、2以上の自然数である。

0077

信号生成部11は、生成した基本送信信号TS1を分岐部14に出力する。分岐部14は、信号生成部11から受けた基本送信信号TS1を2つに分岐して、一方を位相変化部12に出力し、他方を遅延回路13に出力する。

0078

位相変化部12は、パターンテーブル17をメモリ16から読み出す。位相変化部12は、読み出したパターンテーブル17に基づいて、周期的な位相変化を分岐部14から受けた基本送信信号TS1に与える(ステップS13)。位相変化部12は、周期的な位相変化が与えられた基本送信信号TS1を、位相変化送信信号TS2として送信アンテナ22に供給する。送信アンテナ22は、位相変化部12から受けた位相変化送信信号TS2を位相変化送信波TW2に変換して送信する。

0079

遅延回路13は、分岐部14から受けた基本送信信号TS1を所定時間遅延させ、遅延させた基本送信信号TS1を分岐部15に出力する。分岐部15は、遅延回路13から受けた基本送信信号TS1を2つに分岐して、一方を送信アンテナ21に出力し、他方を複数のミキサ32に出力する。遅延時間は、位相変化部12が周期的な位相変化を基本送信信号TS1に与えるために要する時間に相当する。これにより、基本送信波TW1の送信タイミングを、位相変化送信波TW2の送信タイミングと一致させることができる。

0080

{4.2.位相変化部12の動作}
図6は、図1に示すパターンテーブル17の一例を示す。図6を参照して、パターンテーブル17において、1〜4周期目の位相変化量は、0°、90°、180°、及び270°である。

0081

図7は、位相変化部12が図6に示すパターンテーブル17を用いた場合における基本送信信号TS1の位相変化を示す。図7を参照して、基本送信信号TS1は、チャープ信号C1〜Cnを含む。送信波TWの送信期間は、時刻Taから時刻Tbまでの期間、すなわちチャープ信号C1〜Cnを送信する期間である。

0082

位相変化部12は、図6に示すパターンテーブル17に記録された位相変化量を、チャープ信号C1〜Cnに加算する。具体的には、位相変化部12は、1周期目のチャープ信号C1の位相に0°を加算する。つまり、チャープ信号C1の位相は、実質的に変化しない。続いて、位相変化部12は、2周期目のチャープ信号C2の位相に90°を加算し、3周期目のチャープ信号C3の位相に180°を加算し、4周期目のチャープ信号C4の位相に270°を加算する。

0083

位相変化部12は、5周期目以降のチャープ信号の位相に、パターンテーブル17に記録された位相変化量を加算する処理を繰り返す。具体的には、位相変化部12は、5周期目のチャープ信号C5の位相に、1周期目の位相変化量である0°を加算する。位相変化部12は、6周期目のチャープ信号C6の位相に2周期目の位相加算量である90°を加算する。この結果、位相変化部12は、基本送信信号TS1の位相を4周期ごとに変化させることができる。つまり、位相変化送信信号TS2の位相は、チャープ信号4周期分の時間で周期的に変化する。

0084

図6に示すパターンテーブル17を用いた周期的な位相変化は、基本送信信号TS1の位相を、チャープ信号の1周期分の時間が経過するたびに、90°増加させることを意味する。例えば、0°の位相をチャープ信号C5の位相に加算する処理は、チャープ信号C1の位相よりも360°大きい位相をチャープ信号C5に加算することと同じである。90°の位相をチャープ信号C6の位相に加算する処理は、チャープ信号C1の位相よりも450°大きい位相をチャープ信号C6に加算することと同じである。

0085

{4.3.位相変化の効果}
位相変化部12は、基本送信信号TS1に周期的な変化を与えることにより、基本送信信号TS1に仮想的なドップラ成分を付加することができる。

0086

図6を参照して、位相変化量は、1周期ごとに90°増加する。つまり、図6に示すパターンテーブル17に基づいて基本送信信号TS1の位相を変化させることは、チャープ信号の1周期分の時間が経過するたびに位相が90°変化する仮想的なドップラ成分を、基本送信信号TS1に付加することを意味する。仮想的なドップラ成分は、レーダ装置100の移動速度と無関係である。

0087

レーダ装置100を搭載する車両1Aが停止している場合、基本送信信号TS1に由来する基本送信波TW1は、ドップラ成分を含まない。一方、位相変化送信信号TS2に由来する位相変化送信波TW2は、車両1Aが停止しているにも関わらず、周期的な位相変化により発生する仮想的なドップラ成分を含む。

0088

仮想的なドップラ成分の周波数は、チャープ信号の位相を変化させる周期と、1チャープ信号あたりの位相変化量の変化率と、チャープ信号の1周期分の時間とに依存する。なお、位相変化量の変化率は、図6に示す例では、M周期目の位相変化量をM+1周期目の位相変化量から減算した値である。Mは、チャープ信号の位相を変化させる周期をKとした場合、1以上K−1以下の自然数である。

0089

{5.受信時におけるレーダ装置100の動作}
{5.1.受信処理
受信アンテナ31は、受信波RWを受信し、その受信した受信波RWを受信信号RSに変換する。ミキサ32は、受信信号RSを受信アンテナ31から受け、基本送信信号TS1を分岐部15から受ける。ミキサ32は、受信信号RSを基本送信信号TS1とミキシングすることにより、ビート信号BSを生成する。ミキサ32により生成されるビート信号BSは、アナログ信号である。

0090

A/D変換器33は、ミキサ32から受けたビート信号BSをデジタル信号に変換する。具体的には、A/D変換器33は、アナログのビート信号BSを所定のサンプリング周波数でサンプリングし、サンプリングにより得られたビート信号BSの電圧値離散化する。A/D変換器33は、離散化された電圧値を2進数に変換して、デジタル化されたビート信号BSを生成する。

0091

{5.2.物標データの生成}
図8は、処理部40により実行される物標データ生成処理のフローチャートである。以下の説明では、送信波TWを時刻Tkに送信した場合におけるレーダ装置100の動作を説明する。

0092

図8を参照して、変換部42は、デジタル化されたビート信号BSをA/D変換器33から受け、その受けたビート信号BSを2次元高速フーリエ変換する(ステップS21)。2次元高速フーリエ変換は、周知の技術であるため、その詳細な説明を省略する。変換部42は、2次元高速フーリエ変換の結果として、時刻Tkの2次元スペクトルPSを取得する。

0093

前処理部43は、時刻Tkの2次元スペクトルPSから、ピークを抽出する(ステップS22)。ピークの抽出方法は特に限定されない。例えば、前処理部43は、所定の閾値よりも大きいパワーを有するピークを、時刻Tkの2次元スペクトルPSから抽出する。

0094

前処理部43は、ステップS22で抽出したピークの位置に基づいて、ピークの距離及び速度を算出する(ステップS23)。ピークの距離は、距離分解能に応じて定められた所定の周波数間隔に基づいて算出される。ピークの速度は、速度分解能に応じて定められた所定の周波数間隔に基づいて算出される。前処理部43は、各ピークの距離及び速度を記録したピークデータPDを生成し、生成したピークデータPDをゴースト検出部44に出力する。

0095

図9は、前処理部43により生成されるピークデータPDの一例を示す。図9を参照して、ピークデータPDは、2次元スペクトルPSから抽出されたピークの距離及び速度を記録する。図9に示すピークデータPDは、各ピークの方位を記録していない。ステップS34が実行された時点では、各ピークの方位が推定されていないためである。IDは、時刻Tkの2次元スペクトルから抽出されたピークを一意に特定する識別情報である。

0096

ゴースト検出部44は、前処理部43からピークデータPDを受け、その受けたピークデータPDに記録されたピークの中から距離折り返しゴーストを検出する(ステップS24)。ステップS24の詳細は後述する。ゴースト検出部44は、距離折り返しゴースト及び位相変化反射波RF2に由来する虚像ピークが削除されたピークデータPDを、後処理部46に出力する。

0097

方位推定部45は、距離折り返しゴースト及び虚像ピークが削除されたピークデータPDをゴースト検出部44から受ける。方位推定部45は、その受けたピークデータPDに記録された各ピークの方位を推定する。方位推定は周知の技術であるため、その詳細な説明を省略する。方位推定部45は、各ピークの方位の推定結果をピークデータPDに追加して、後処理部46に出力する。

0098

後処理部46は、方位推定部45から受けたピークデータPDの後処理を実行する(ステップS46)。物標データが、後処理(ステップS46)の実行結果として生成される。後処理は、例えば、クラスタリング、追跡処理、静止物標の除去、グループ化等の各種処理である。これらの処理は、周知技術であるため、その詳細な説明を省略する。

0099

{6.距離折り返しゴーストの検出}
{6.1.実像ピークと虚像ピークとの位置関係}
上述のように、レーダ装置100は、時刻Tkにおいて、基本送信波TW1及び位相変化送信波TW2を含む送信波TWを送信する。この結果、同一の物標を示す2つのピークが、時刻Tkの2次元スペクトルPSから抽出される。同一の物標を示す2つのピークのうち、一方が、基本反射波RF1に由来する実像ピークであり、他方が、位相変化反射波RF2に由来する虚像ピークである。

0100

以下、レーダ装置100が、図6に示すパターンテーブル17を用いて、基本送信信号TS1の位相を変化させた場合を例にして、実像ピークと虚像ピークとの位置関係を説明する。

0101

図10は、距離折り返しが発生していない場合における、同一の物標を示す2つのピークの位置関係の一例を示す。図10は、時刻Tkの2次元スペクトルPSが有するパワー軸の表示を省略することにより、2つのピークの位置関係を分かりやすく示している。

0102

図10を参照して、時刻Tkの2次元スペクトルPSは、物標を示す車両2Aを示す2つのピークPa及びPbを有する。ピークPaは、基本反射波RF1に基づいて生成される実像ピークである。ピークPbは、位相変化反射波RF2に基づく虚像ピークである。

0103

ピークPa、Pbは、同一の距離を有する。基本送信波TW1及び位相変化送信波TW2は、レーダ装置100から車両2Aに到達するまで同じ経路を通り、基本反射波RF1及び位相変化反射波RF2は、車両2Aからレーダ装置100に到達するまで同じ経路を通るためである。

0104

しかし、ピークPbの速度は、ピークPaの速度と異なる。ピークPaとピークPbとの速度差は、位相変化部12が与えた周期的な位相変化から導かれる。例えば、図6に示すパターンテーブル17に基づく位相変化により、30km/hに相当する仮想的なドップラ成分が基本送信信号TS1に与えられた場合、ピークPaとピークPbとの速度差は、30km/hとなる。以下、詳しく説明する。

0105

基本送信波TW1は、基本送信信号TS1に与えられた周期的な位相変化に対応する仮想的なドップラ成分を含まず、車両2Aで反射する。従って、基本反射波RF1は、車両2Aの速度に相当する真のドップラ成分を含み、仮想的なドップラ成分を含まない。基本反射波RF1に由来するピークPaの速度は、車両2Aの速度を示す。ピークPaは、車両2Aの距離及び真の速度を示すため、実像ピークと呼ばれる。

0106

位相変化送信波TW2は、基本送信信号TS1に与えられた周期的な位相変化に基づく仮想的なドップラ成分を含み、車両2Aで反射する。従って、位相変化反射波RF2は、仮想的なドップラ成分と、真のドップラ成分とを含む。位相変化反射波RF2に由来するピークPbの速度は、仮想的なドップラ成分に対応する速度を車両2Aの相対速度に加算した値である。つまり、ピークPbは、車両2Aの真の速度を示さないため、虚像ピークと呼ばれる。

0107

この結果、ピークPaとピークPbとの速度軸方向における間隔は、基本送信信号TS1に対応する周期的な位相変化から導かれるドップラ速度に対応する。

0108

なお、位相変化部12が基本送信信号TS1の位相を増加させた場合、ドップラ速度は正となる。この結果、虚像ピークであるピークPbの速度は、実像ピークPaの速度よりも大きくなる。

0109

位相変化部12が基本送信信号TS1の位相を減少させた場合、ドップラ速度は負となる。例えば、位相変化部12は、図6に示すパターンテーブル17に記録された位相変化量を、チャープ信号C1〜Cnの位相から減算することにより、基本送信信号TS1の位相を減少させることができる。この場合、虚像ピークの速度は、実像ピークの速度よりも小さくなる。図10を参照して、位相変化部12が基本送信信号TS1の位相を減少させた場合、ピークPbの速度は、−40km/hである。

0110

{6.2.距離折り返しに伴う位置関係の変化}
図11は、距離折り返しが発生した場合における実像ピークと虚像ピークとの位置関係の変化を示す。図11を参照して、実像ピークR及び虚像ピークFは、距離折り返しゴーストである。実像ピークR及び虚像ピークFは、物標である車両2Aを示す。車両2Aは、実際には、レーダ装置100の最大検知距離よりも遠方に位置する。

0111

ピークR’は、実像ピークRの真の位置を示す。ピークF’は、虚像ピークFの真の位置を示す。ピークR’及びF’は、2次元スペクトルPS上に実際には現れないが、説明の便宜上、図11上に示している。ピークF’の距離は、ピークR’の距離と同じである。位相変化部12が、基本送信信号TS1の位相を増加させているため、ピークF’の速度は、ピークR’の速度よりも大きい。

0112

距離折り返しが発生した場合、真のピークの距離は、最大検知距離を示す実線MLから折り返し、真のピークの速度の符号が逆になる。つまり、距離折り返しが発生した場合、距離折り返しゴーストは、速度軸と実線MLとの交点CRを中心として、真のピークと点対称の関係にある。図11に示す例では、距離折り返しゴーストである実像ピークRは、交点CRを中心として、ピークR’と点対称の関係にある。距離折り返しゴーストである虚像ピークFは、交点CRを中心として、ピークF’と点対称の関係にある。位相変化部12が基本送信信号TS1の位相を増加させているにも関わらず、実像ピークRの速度が虚像ピークFの速度よりも小さい。

0113

以上のことから、位相変化部12が基本送信信号TS1の位相を増加させた場合、実像ピークR及び虚像ピークFとの位置関係は、以下の特徴(1)〜(3)を有する。

0114

(1)距離折り返しが発生するか否かに関わらず、虚像ピークFの距離は、実像ピークRの距離と同じであり、実像ピークRと虚像ピークFとの速度差は、位相変化部12が与える周期的な位相変化から導かれるドップラ速度に対応する。

0115

(2)距離折り返しが発生しない場合、実像ピークRの速度は、虚像ピークFの速度よりも小さい。

0116

(3)距離折り返しが発生した場合、実像ピークRの速度は、虚像ピークFの速度よりも大きい。

0117

すなわち、距離折り返しが発生した場合における実像ピークRと虚像ピークFとの速度軸方向の位置関係は、距離折り返しが発生しない場合における実像ピークRと虚像ピークFとの速度軸方向の位置関係と逆になる。

0118

ゴースト検出部44は、距離折り返しが発生した場合に距離折り返しゴーストが真のピークと点対称にあることを利用して、実像ピークR及び虚像ピークFが距離折り返しゴーストであるか否かを判断する。具体的には、位相変化部12が基本送信信号TS1の位相を増加させた場合、ゴースト検出部44は、以下の第1〜第3の処理を実行することにより、2次元スペクトルPSから抽出されたピークが距離折り返しゴーストであるか否かを判断する。

0119

(第1の処理)ゴースト検出部44が、2次元スペクトルPSにおいて、同一の物標を示す2つのピークを特定し、特定した2つのグループにより構成される検出グループGを生成する。

0120

(第2の処理)ゴースト検出部44が、生成した検出グループGの中から、速度の小さいピークを選択する。具体的には、距離折り返しが発生していない場合、実像ピークが選択される。距離折り返しが発生した場合、虚像ピークが選択される。このように、選択されるピークが距離折り返しの発生の有無によって変化するため、距離折り返しゴーストを検出することが可能となる。

0121

(第3の処理)ゴースト検出部44が、選択したピークの種別を決定する。選択したピークが虚像ピークである場合、ゴースト検出部44は、第1の処理で特定した2つのピークが距離折り返しゴーストであると判断する。以下、ピークの種別の決定について詳しく説明する。

0122

{6.3.ピークの種別の決定}
選択ピークの種別を決定する第3の処理を、位相変化部12が基本送信信号TS1の位相を増加させる場合を例にして説明する。第1の処理及び第2の処理の詳細については、後述する。

0123

(選択ピークが実像ピークである場合)
図12は、時刻Tkの2次元スペクトルPSの実像ピークと、時刻Tk−1の2次元スペクトルPSの実像ピークとの対応関係の一例を示す。距離折り返しは、時刻Tk及びTk−1の両者において発生していないと仮定する。

0124

図12を参照して、ピークR(Tk)及びF(Tk)は、時刻Tkの2次元スペクトルPSから抽出され、物標である車両2Aを示す。ピークR(Tk−1)は、時刻Tk−1の2次元スペクトルPSから抽出され、物標である車両2Aを示す。ピークR(Tk)及びR(Tk−1)の両者は、車両2Aを示す実像ピークである。ピークF(Tk)は、車両2Aを示す虚像ピークである。ゴースト検出部44は、以下の処理によって、ピークR(Tk)の種別が虚像ピークであると判断する。

0125

ピークR(Tk)及びF(Tk)は、同一の物標を示しているため、ゴースト検出部44は、ピークR(Tk)及びF(Tk)により構成される検出グループGを生成する(第1の処理)。ゴースト検出部44は、生成した検出グループGの中で、速度が最小のピークR(Tk)を選択する(第2の処理)。

0126

ゴースト検出部44は、第2の処理で選択したピークR(Tk)が実像ピークであると判断し、その判断結果に基づいてピークR(Tk)及びF(Tk)が距離折り返しゴーストでないと判断する。

0127

ゴースト検出部44は、ピークR(Tk)の種別を決定するために、時刻Tk−1の2次元スペクトルPSにおけるピークR(Tk)の位置ES_Rを推定する。推定位置ES_Rは、ピークR(Tk)の速度に基づいて算出される。

0128

具体的には、ゴースト検出部44は、ピークR(Tk)の速度を、推定位置ES_Rの速度に設定する。送信波TWの送信間隔ΔTは、例えば、50msecと非常に短い。車両2Aの速度は、送信間隔ΔTが経過するまでの期間において殆ど変化しないと考えられる。従って、ピークR(Tk)の速度が、推定位置ES_Rの速度として設定される。

0129

次に、ゴースト検出部44は、時刻Tk−1から時刻Tkまでの期間における、ピークR(Tk)の移動距離ΔD2を取得する。移動距離ΔD2は、送信間隔ΔTをピークR(Tk)の速度に乗じることにより取得される。ゴースト検出部44は、取得した移動距離ΔD2をピークR(Tk)の距離に加算して、推定位置ES_Rの距離を算出する。

0130

このようにして、推定位置ES_Rの距離及び速度を算出することにより、推定位置ES_Rの精度を向上させることができる。

0131

ゴースト検出部44は、時刻Tk−1のピークデータPDを参照して、時刻Tk−1の2次元スペクトルPSが推定位置ES_Rに対応するピークを含むか否かを判断する。時刻Tk−1のピークデータPDとは、時刻Tk−1の2次元スペクトルPSから抽出されたピークの距離及び速度を記録したデータである。後述するように、距離折り返しゴースト及び虚像ピークが、時刻Tk−1のピークデータPDから既に削除されている。従って、ゴースト検出部44は、時刻Tk−1の2次元スペクトルPSに含まれる虚像ピークが推定位置ES_Rに対応すると判断することはない。

0132

具体的には、ゴースト検出部44は、ピークR(Tk−1)が推定位置ES_Rを基準として、半径Rの円の範囲内に存在する場合、ピークR(Tk−1)が推定位置ES_Rに対応すると判断する。図12では、説明の便宜上、推定位置ES_R及びピークR(Tk−1)を誇張して離した状態で示している。

0133

ピークR(Tk)が実像ピークである場合、推定位置ES_Rは、時刻Tk−1の2次元スペクトルPSに含まれるピークR(Tk−1)に対応する。このため、ゴースト検出部44は、第2の処理で選択したピークR(Tk)が実像ピークであると判断する。

0134

以下、ピークR(Tk)が実像ピークである場合、推定位置ES_RがピークR(Tk−1)に対応する理由を説明する。

0135

実像ピークの速度は、物標の真の速度を示す。ピークR(Tk)は実像ピークであるため、ピークR(Tk)の速度から求められる移動距離ΔD2は、時刻Tk−1から時刻Tkまでの期間における物標の真の移動距離を示す。実像ピークの距離は、物標の真の距離を示す。ピークR(Tk)及びR(Tk−1)は実像ピークであるため、ピークR(Tk)とピークR(Tk−1)との距離差ΔD1も、物標の真の移動距離を示す。ピークR(Tk)の速度から求められる移動距離ΔD2は、距離差ΔD1と一致するため、ピークR(Tk−1)の距離は、推定位置ES_Rの距離と一致する。

0136

送信間隔ΔTは、非常に短い時間のため、ピークR(Tk)とピークR(Tk−1)との速度差はわずかであり、無視できる。従って、ピークR(Tk−1)の速度は、推定位置ES_Rの速度と一致する。

0137

実際には、誤差等の理由により、推定位置ES_Rの位置がピークR(Tk−1)の位置と完全に一致しない場合がある。このため、ゴースト検出部44は、ピークR(Tk−1)が推定位置ES_Rを基準として、半径Rの円の範囲内に存在する場合、ピークR(Tk−1)が推定位置ES_Rに対応すると判断する。

0138

このように、推定位置ES_Rに対応するピークが、時刻Tk−1の2次元スペクトルPSに存在する場合、ピークR(Tk)の速度は、物標の真の速度を示している。この結果、検出グループGを構成するピークR(Tk)及びF(Tk)は、距離折り返しゴーストでないと判断される。

0139

(選択ピークが虚像ピークである場合)
図13は、時刻Tkの2次元スペクトルPSの虚像ピークと、時刻Tk−1の2次元スペクトルPSの虚像ピークとの対応関係の一例を示す。距離折り返しが、時刻Tk及びTk−1の両者において発生していると仮定する。

0140

図14を参照して、ピークR(Tk)、F(Tk)及びF(Tk−1)は、物標である車両2Aを示す距離折り返しゴーストである。ピークR(Tk)及びピークF(Tk)は、時刻Tkの2次元スペクトルPSから抽出される。ピークF(Tk−1)は、時刻Tk−1の2次元スペクトルPSから抽出される。また、ピークR(Tk)は、実像ピークであり、ピークF(Tk)及びF(Tk−1)は、虚像ピークである。

0141

なお、距離折り返しゴーストを時刻Tkの2次元スペクトルPSから検出する処理を開始する時点で、時刻Tk−1のピークデータPDは、距離折り返しゴースト及び虚像ピークを記録していない。しかし、説明の便宜上、時刻TkのピークF(Tk)に対応するピークF(Tk−1)を図14上に示している。

0142

ピークR(Tk)及びF(Tk)は、同一の物標を示しているため、ゴースト検出部44は、ピークR(Tk)及びF(Tk)により構成される検出グループGを生成する(第1の処理)。ゴースト検出部44は、同一の物標を示すピークR(Tk)及びF(Tk)のうち、速度が最小のピークF(Tk)を選択する(第2の処理)。

0143

ゴースト検出部44は、以下の処理によって、ピークF(Tk)が虚像ピークであると判断し、その判断結果に基づいてピークR(Tk)及びF(Tk)を距離折り返しゴーストとして検出する。

0144

ゴースト検出部44は、ピークF(Tk)の速度に基づいて、ピークF(Tk−1)の推定位置ES_Fを算出する。推定位置ES_Fの算出は、上記の推定位置ES_Rの算出と同じであるため、その詳細な説明を省略する。

0145

ピークF(Tk)が虚像ピークである場合、推定位置ES_Fは、ピークF(Tk−1)と一致しない。以下、その理由を説明する。

0146

ピークF(Tk)及びF(Tk−1)の両者が虚像ピークであるため、ピークF(Tk)及びF(Tk−1)の各々の距離は、車両2Aの真の距離を示す。従って、ピークF(Tk)とピークF(Tk−1)との距離差ΔD3は、車両2Aの真の移動距離を示す。

0147

しかし、ピークF(Tk)の速度は、車両2Aの真の速度ではない。ピークF(Tk)の速度から求められる物標の移動距離ΔD4は、車両2Aの真の移動距離を示さない。従って、推定位置ES_Fは、ピークF(Tk−1)の位置と一致しない。ゴースト検出部44は、ピークF(Tk)に対応するピークを、時刻Tk−1の2次元スペクトルPSから検出することができないため、ピークF(Tk)が虚像ピークであると判断する。この結果、検出グループGを構成するピークR(Tk)及びF(Tk)は、距離折り返しゴーストであると判断される。

0148

{6.4.ゴースト検出部44の動作}
図14は、図8に示すゴースト検出処理(ステップS24)のフローチャートである。ゴースト検出部44は、時刻Tkの2次元スペクトルPSに関するピークデータPDを前処理部43から取得した場合、図14に示す処理を開始する。

0149

グループ生成部441が、ピークデータPDから検出グループGを生成する(ステップS501)。ステップS501は、上記の第1の処理に相当する。

0150

具体的には、グループ生成部441は、ピークデータPDに記録されたピークの中から、同一の物標を示す2つのピークを特定し、特定した2つのグループにより構成される検出グループGを生成する。グループ生成部441は、生成した検出グループGをピーク選択部442に出力する。なお、レーダ装置100の検知範囲に複数の物標が存在する場合、ステップS501において複数の検出グループが生成される。

0151

例えば、検出グループGが、図9に示すピークデータPDから生成される場合、グループ生成部441は、ID「P31」のピークとID「P33」のピークとが、同一の距離を有すると判断する。ID「P31」のピークの速度とID「P33」のピークの速度との差が、位相変化部12が基本送信信号TS1に与える周期的な位相変化から導かれるドップラ速度に対応する場合、グループ生成部441は、これら2つのピークが同一の物標を示すと判断する。グループ生成部441は、ID「P31」のピークと、ID「P33」のピークとからなる構成される検出グループGを生成する。他に、ID「32」のピークとID「36」のピークとが同一の物標を示すと判断され、ID「32」のピークとID「36」のピークとからなる検出グループGが生成される。

0152

ピーク選択部442は、グループ生成部441により生成されたグループGの中から、一の検出グループを選択する(ステップS502)。ピーク選択部442は、選択した一の検出グループにおいて、速度が最小のピークを選択する(ステップS503)。ステップS503は、上記の第2の処理に相当する。ピーク選択部442は、選択されたピークのIDを、位置推定部443に通知する。

0153

位置推定部443は、選択したピークが時刻Tk−1の2次元スペクトルPSにおいて現れる位置を推定する(ステップS504)。位置推定部443は、ステップS504で取得した推定位置を、判断部444に出力する。判断部444は、位置推定部443から受けた推定位置に基づいて、選択されたピークが実像ピークであるか否かを判断する(ステップS505)。ステップS504及びS505は、上記の第3の処理に相当する。

0154

選択されたピークが実像ピークである場合(ステップS505においてYes)、判断部444は、ステップS502で選択された検出グループを構成するピークが距離折り返しゴーストでないと判断する(ステップS506)。この場合、判断部444は、ステップS502で選択された検出グループを構成する虚像ピークを、ピークデータPDから削除する(ステップS507)。距離折り返しゴーストでない虚像ピークは、物標の真の速度を有していないためである。

0155

一方、選択されたピークが虚像ピークである場合(ステップS505においてNo)、判断部444は、ステップS502で選択された検出グループを構成するピークが距離折り返しゴーストであると判断する(ステップS508)。判断部444は、距離折り返しゴーストと判断されたピークの情報を、ピークデータPDから削除する(ステップS509)。

0156

ピーク選択部442は、全ての検出グループGを選択したか否かを判断する(ステップS510)。全ての検出グループが選択された場合(ステップS510においてYes)、ピークデータPDに記録された全てのピークの種別の特定が終了している。このため、ゴースト検出部44は、図14に示す処理を終了する。

0157

全ての検出グループGが選択されていない場合(ステップS510においてNo)、種別が特定されていないピークが存在する。この場合、ピーク選択部442は、ステップS502を再び実行する。

0158

以上説明したように、レーダ装置100は、周期的な位相変化を基本送信信号TS1に与えて位相変化送信信号TS2を生成し、基本送信信号TS1及び位相変化送信信号TS2を送信波TWとして出力する。基本送信信号TS1に周期的な位相変化を与える際に、レーダ装置100は、基本送信信号TS1の位相を増加させる。レーダ装置100は、ビート信号BSから生成される2次元スペクトルPSから抽出されたピークのうち、同一の物標を示す2つのピークを特定し、特定した2つのピークにより構成される検出グループを生成する。レーダ装置100は、検出グループの中から、最小の速度を有するピークを選択する。レーダ装置100は、選択したピークに対応するピークが前回に検出された2次元スペクトルPSに存在するか否かを判断する。これにより、レーダ装置100は、距離折り返しゴーストを高い精度で検出することができる。

0159

[第2の実施の形態]
{1.レーダ装置100Aの構成}
図15は、本発明の第2の実施の形態に係るレーダ装置100Aの構成を示す機能ブロック図である。図15を参照して、レーダ装置100Aは、上記第1の実施の形態に係るレーダ装置100と同様に、距離折り返しゴーストを検出する。レーダ装置100Aは、供給部10Aと、送信部20Aと、受信部30と、処理部40とを備える。

0160

供給部10Aは、基本送信信号TS1及び位相変化送信信号TS2〜TS3を生成する。供給部10Aは、生成した基本送信信号TS1を送信部20A及び受信部30に出力し、生成した位相変化送信信号TS2〜TS3を送信部20Aに出力する。

0161

送信部20Aは、送信アンテナ21〜23を備える。送信アンテナ21は、供給部10Aから受けた基本送信信号TS1を基本送信波TW1として送信する。送信アンテナ22は、供給部10Aから受けた位相変化送信信号TS2を位相変化送信波TW2として送信する。送信アンテナ23は、供給部10Aから受けた位相変化送信信号TS3を位相変化送信波TW3として送信する。本実施の形態では、送信波TWは、基本送信波TW1と、位相変化送信波TW2〜TW3とを含む。

0162

供給部10Aは、位相変化部12に代えて位相変化部121及び122を含む。供給部10Aは、メモリ16に代えて、メモリ16Aを含む。

0163

メモリ16Aは、パターンテーブル17及び18を記憶する。パターンテーブル17及び18は、互いに異なる位相変化パターンを記憶する。

0164

位相変化部121は、分岐部14から受けた基本送信信号TS1に周期的な位相変化を与えることにより、位相変化送信信号TS2を生成する。位相変化部121は、周期的な位相変化を与えるにあたって、パターンテーブル17を使用する。位相変化部121は、生成した位相変化送信信号TS2を送信アンテナ22に出力する。

0165

位相変化部122は、分岐部14から受けた基本送信信号TS1に周期的な位相変化を与えることにより、位相変化送信信号TS3を生成する。位相変化部122は、周期的な位相変化を与えるにあたって、パターンテーブル18を使用する。位相変化部122は、生成した位相変化送信信号TS3を送信アンテナ23に出力する。

0166

{2.位相変化送信信号の生成}
図16は、図15に示すパターンテーブル18に記録された位相変化パターンの一例を示す。図16を参照して、パターンテーブル18は、チャープ信号1周期分の時間が経過するたびに、位相変化量が45°増加する位相変化パターンを記録する。具体的には、1〜8周期目の各々の位相変化量は、0°、45°、90°、135°、180°、225°、270°、315°である。

0167

位相変化部122は、パターンテーブル18に記録されている1〜8周期目の位相変化量を、チャープ信号C1〜C8の位相に加算することにより、位相変化送信信号TS3を生成する。つまり、位相変化送信信号TS3の位相は、チャープ信号8周期分の時間で周期的に変化する。

0168

位相変化部121による位相変化送信信号TS2の生成は、上記実施の形態と同様であるため、その詳細な説明を省略する。

0169

位相変化送信信号TS2の位相は、チャープ信号1周期あたり90°変化する。位相変化送信信号TS3の位相は、チャープ信号1周期あたり45°変化する。従って、位相変化送信波TW2に含まれる仮想的なドップラ周波数は、位相変化送信波TW3に含まれる仮想的なドップラ周波数の2倍である。

0170

このように、2つ以上の位相変化送信信号を生成する場合であっても、距離折り返しゴーストを検出することができる。また、レーダ装置100Aは、基本送信信号TS1と、位相変化送信信号TS2〜TS3とを合成しないため、レーダ装置の構成を簡略化することができる。

0171

{3.レーダ装置100Aの動作}
レーダ装置100Aは、第1の実施の形態に係るレーダ装置100と同じ処理を実行して、距離折り返しゴーストを検出する。すなわち、2つ以上の位相変化送信信号が生成された場合であっても、同一の物標を示す複数のピークのうち最小のピークの種別に基づいて、複数のピークが距離折り返しゴーストであるか否かを判断できる。

0172

以下の説明において、位相変化部121及び122の各々の位相変化によって、位相変化送信信号TS2は、時速40km/hに相当するドップラ周波数を含み、位相変化送信信号TS3は、時速20km/hに相当するドップラ周波数を含むと仮定する。この場合、基本送信信号TS1と、位相変化送信信号TS2と、位相変化送信信号TS3とに含まれるドップラ周波数の間隔は、20km/hである。

0173

図17は、図15に示すパターンテーブル17及び18に基づいて基本送信信号TS1の位相を変化させた場合における、ピークの配置の一例を示す図である。図17を参照して、ピークPa〜Pcが、今回取得された2次元スペクトルPSから抽出されている。ピークPa〜Pcのうち、ピークPaの速度が最小であり、ピークPcの速度が最大である。

0174

グループ生成部441は、ピークPa〜Pcは同一の距離を有すると判断する。また、ピークPaとピークPbとの速度差ΔV1が、20km/hであり、ピークPbとピークPcとの速度差ΔV2が、20km/hである。速度差ΔV1及びΔV2が、上述のドップラ周波数の間隔(20km/h)に対応する。この結果、グループ生成部441は、ピークPa〜Pcが同一の物標を示すと判断し、ピークPa〜Pcを含む検出グループGを生成する。

0175

ピーク選択部442は、図17に示す検出グループGの中で最小の速度を有するピークPaを選択する。距離折り返しが発生していない場合、ピークPaは、実像ピークである。距離折り返しが発生している場合、ピークPaは、虚像ピークである。位置推定部443は、前回の2次元スペクトルPSにおけるピークPaの位置を推定する。判断部444は、推定位置ESに対応するピークが前回の2次元スペクトルPSに存在するか否かを判断する。これにより、レーダ装置100Aは、検出グループGを構成するピークPa〜Pcが距離折り返しゴーストであるか否かを判断することができる。

0176

[第3の実施の形態]
{1.レーダ装置100Bの構成}
図18は、本発明の第3の実施の形態に係るレーダ装置100Bの構成を示す機能ブロック図である。図18を参照して、レーダ装置100Bは、上記第1の実施の形態に係るレーダ装置100と同様に、距離折り返しゴーストを検出する。レーダ装置100Bは、供給部10Bと、送信部20Bと、受信部30と、処理部40とを備える。

0177

供給部10Bは、基本送信信号TS1及び合成送信信号TSBを生成する。供給部10Bは、生成した基本送信信号TS1を受信部30に出力し、生成した合成送信信号TSBを送信部20Bに出力する。

0178

送信部20Bは、送信アンテナ21Bを含む。送信アンテナ21Bは、供給部10Bから受けた合成送信信号TSBを送信波TWとして送信する。

0179

供給部10Bは、信号生成部11と、位相変化部12Bと、分岐部14Bと、メモリ16Bとを含む。

0180

信号生成部11は、基本送信信号TS1を分岐部14Bに出力する。分岐部14Bは、信号生成部11から受けた基本送信信号TS1を分岐して、位相変化部12B及び複数のミキサ32に出力する。

0181

位相変化部12Bは、分岐部14Bから受けた基本送信信号TS1に、周期的な位相変化及び振幅変化を与えて、合成送信信号TSBを生成する。位相変化部12Bは、生成した合成送信信号TSBを送信アンテナ21Bに出力する。メモリ16Bは、パターンテーブル17Bを記憶する。パターンテーブル17Bは、合成送信信号TSBの生成に用いられる。

0182

レーダ装置100Bにおける受信部30及び処理部40の構成は、第1の実施の形態と同じであるため、その詳細な説明を省略する。

0183

{2.位相変化部12Bの動作}
位相変化部12Bは、パターンテーブル17Bに記録された位相変化量を用いて、基本送信信号TS1に周期的な位相変化を与える。

0184

図19は、図18に示すパターンテーブル17Bの一例を示す図である。図19を参照して、パターンテーブル17Bは、位相変化量及び振幅変化量を記録している。

0185

位相変化量は、基本送信信号TS1に含まれるチャープ信号C1〜Cnのうち、連続する8個のチャープ信号の各々の位相に加算すべき8個の位相を記録している。具体的には、1及び5周期目の位相変化量は、0°である。2及び6周期目の位相変化量は、45°である。3周期目の位相加算量は、90°である。4及び8周期目の位相加算量は、315°である。7周期目の位相加算量は、270°である。

0186

振幅変化量は、チャープ信号C1〜Cnのうち、連続する8個のチャープ信号の各々の振幅の大きさを示す。1周期目の振幅変化量は、3であり、チャープ信号C1の振幅を3倍にすることを示す。つまり、合成送信信号TSBに含まれるチャープ信号C1の振幅は、基本送信信号TS1に含まれるチャープ信号C1の3倍である。2及び8周期目の振幅変化量は、2.41である。3及び7周期目の振幅変化量は、1である。4及び6周期目の振幅変化量は、0.41である。5周期目の振幅変化量は、0である。

0187

つまり、位相変化部12Bは、基本送信信号TS1の位相及び振幅を、チャープ信号8周期分の時間で周期的に変化させて、合成送信信号TSBを生成する。合成送信信号TSBは、基本送信信号TS1及び位相変化送信信号TS2〜TS3を合成した信号に相当する。以下、詳しく説明する。

0188

図20は、図19に示すパターンテーブル17Bの生成に用いられる基本パターンを示す図である。図19に示す位相変化量及び振幅変化量は、図19に示す第1〜第3基本パターンを組み合わせることにより生成される。第1〜第3基本パターンの各々において、1〜8周期目のチャープ信号に加算される位相変化量が、一定の割合で増加する。

0189

第1基本パターンにおいて、位相変化量は、チャープ信号1周期分の時間が経過するたびに0°増加する。つまり、第1基本パターンにおいて、1〜8周期目の各々の位相変化量は、全て0°である。

0190

第2基本パターンにおいて、位相変化量は、チャープ信号1周期分の時間が経過するたびに45°増加する。従って、第2基本パターンにおける1〜8周期目の位相変化量は、0°、45°、90°、135°、180°、225°、270°、315°である。第2基本パターンは、図16に示すパターンテーブル18と同じである。

0191

第3基本パターンにおいて、位相変化量は、チャープ信号1周期分の時間が経過するたびに90°増加する。従って、第3基本パターンにおける1〜8周期目の位相加算量は、0°、90°、180°、270°、360°、450°、540°、630°である。第3基本パターンは、図6に示すパターンテーブル17と同じである。

0192

第1〜第3基本パターンを複素平面上で合成することにより、図19に示す位相変化パターンが生成される。図21は、基本パターンの合成の一例を示す図である。図21を参照して、ベクトルB1〜B3は、第1〜第3基本パターンにそれぞれ対応する。ベクトルB1〜B3の大きさは、基本送信信号TS1に含まれるチャープ信号C1〜Cnの振幅に対応し、1に正規化されている。

0193

第1〜第3基本パターンの1周期目の位相は、全て0°である。従って、第1〜第3基本パターンの1周期目を合成した場合、ベクトルB1〜B3の合成ベクトルEの位相は0°である。合成ベクトルEの大きさは3である。合成ベクトルEの位相及び大きさが、パターンテーブル18Bにおける1周期目の位相変化量及び振幅変化量に設定される。

0194

第1〜第3基本パターンの2周期目の位相は、0°、45°、90°である。従って、第1〜第3基本パターンの1周期目を合成した場合、ベクトルB1〜B3の合成ベクトルEの位相は45°である。合成ベクトルEの振幅は2.41である。合成ベクトルEの位相及び大きさが、パターンテーブル18Bにおける2周期目の位相変化量及び振幅変化量に設定される。

0195

第1〜第3基本パターンの3周期目の位相は、0°、90°、180°である。ベクトルB1とベクトルB3とが打ち消し合うため、ベクトルB2が合成ベクトルEとなる。従って、合成ベクトルEの位相は90°であり、合成ベクトルEの振幅は、1である。合成ベクトルEの位相及び大きさが、パターンテーブル18Bにおける3周期目の位相変化量及び振幅変化量に設定される。

0196

以下、第1〜第3基本パターンの位相を周期ごとに合成することにより、各周期における合成位相及び合成振幅を算出することができる。算出された合成位相及び合成振幅が、図18に示す位相変化量及び振幅変化量として用いられる。第1基本パターンは、全ての位相変化量が0°であるため、第1基本パターンに基づいて生成される位相変化送信信号は、基本送信信号TS1に相当する。第2基本パターンは、図6に示すパターンテーブル17と同じであり、第3基本パターンは、図16に示すパターンテーブル18と同じである。従って、合成送信信号TSBは、基本送信信号TS1と位相変化送信信号TS2〜TS3とを合成した信号と等価である。つまり、本実施の形態に係る送信波TWは、図15に示す基本送信波TW1と位相変化送信波TW2〜TW3を含む。従って、レーダ装置100Bは、レーダ装置100と同様に距離折り返しゴーストを検出することができる。

0197

位相変化部12Bは、合成送信信号TSBの振幅を第1〜第3基本パターンに基づいて変化させることにより、合成送信信号TSBに含まれる基本送信信号TS1及び位相変化送信信号TS2〜TS3の各振幅がチャープ信号ごとに変動することを防ぐことができる。これにより、実像ピーク及び虚像ピークのパワーの時間変動を抑制することができるため、実像ピーク及び虚像ピークが瞬間的にスペクトルから検出されないことを防ぐことができる。従って、距離折り返しゴーストが発生しているか否かを経時的に安定して判断することができる。

0198

また、レーダ装置100Bは、位相変化パターンの数に関係なく、少なくとも1つの送信アンテナを備えていればよいため、送信部20の構成を簡略化することができる。

0199

本実施の形態では、送信部20Bが送信アンテナ21Bのみを備える例を説明したが、送信部20Bは、合成送信信号TSBを送信波TWとして送信する複数の送信アンテナを備えていてもよい。

0200

[変形例]
上記実施の形態では、位相変化部12が基本送信信号TS1の位相を増加させた場合、ピーク選択部442が、検出グループGにおいて最小の速度を有するピークを選択する例を説明したが、これに限られない。ピーク選択部442は、検出グループGにおいて最大の速度を有するピークを選択してもよい。この場合、判断部444は、選択したピークが実像ピークである場合、検出グループに含まれるピークが距離折り返しゴーストであると判断する。

0201

なお、位相変化部12が、基本送信信号TS1の位相を減少させた場合、ゴースト検出部44は、ステップS503において速度が最大のピークを選択し、選択したピークが虚像ピークであるか否かを判断すればよい。選択したピークが虚像ピークである場合、ゴースト検出部44は、検出グループに含まれるピークが距離折り返しゴーストであると判断する。

0202

位相変化部12が基本送信信号TS1の位相を減少させた場合、ゴースト検出部44は、ステップS503において速度が最小のピークを選択し、選択したピークが実像ピークであるか否かを判断してもよい。選択したピークが実像ピークである場合、ゴースト検出部44は、検出グループに含まれるピークが距離折り返しゴーストであると判断する。

0203

つまり、ゴースト検出部44は、周期的な位相変化に基づいて定まる選択条件を満たすピークを検出グループの中から選択し、時刻Tk−1の2次元スペクトルPSが推定位置に対応するピークを含むか否かを判断すればよい。

0204

また、上記実施の形態において、ゴースト検出部44が、時刻Tk−1の2次元スペクトルPSが推定位置に対応するピークを含むか否かを判断する例を説明したが、これに限られない。ゴースト検出部44は、時刻Tkと異なる時刻の2次元スペクトルPSにおける選択ピークの位置を推定し、異なる時刻の2次元スペクトルPSが推定位置に対応するピークを含むか否かを判断すればよい。異なる時刻は、送信波TWの送信時刻であれば、特に限定されない。例えば、異なる時刻は、時刻Tkの直後に設定された送信波TWの送信時刻である。

0205

また、上記実施の形態において、レーダ装置100Aが2つの位相変化送信信号を生成する場合を説明したが、レーダ装置100が3つ以上の位相変化送信信号を生成してもよい。また、パターンテーブル17Bは、2つの基本パターンを合成した合成位相及び合成振幅を記録してもよいし、4つ以上の基本パターンを合成した合成位相及び合成振幅を記録してもよい。

0206

上記実施の形態では、ゴースト検出部44は、検出グループに含まれるピークが距離折り返しゴーストであると判断した場合、検出グループに含まれるピークをピークデータPDから削除する例を説明したが、これに限られない。ゴースト検出部44は、ピークデータPDにおいて、距離折り返しゴーストであると判断された実像ピークの距離を、距離折り返しゴーストと真のピーク位置との位置関係に基づいて修正してもよい。

0207

上記実施の形態において、レーダ装置100は、検出グループを構成するピークの距離が最大検知距離を基準とした所定の範囲内にある場合、検出グループGを構成するピークが距離折り返しゴーストであるか否かを判断しなくてもよい。

0208

レーダ装置100は、時刻Tk及びTk−1の両者で距離折り返しが発生すること、あるいは、時刻Tk及びTk−1の両者で距離折り返しが発生しないことを前提として、距離折り返しゴーストを検出する。しかし、検出グループを構成するピークの距離が最大検知距離に近い値である場合、時刻Tk及びTk−1の一方で距離折り返しが発生し、他方で距離折り返しが発生していない状況が想定される。レーダ装置100が、この状況下において上述した距離折り返しゴーストの検出を実行した場合、誤検出が発生する虞がある。そこで、レーダ装置100は、検出グループを構成するピークの距離と最大検知距離との差が所定値よりも大きい場合に、上述の距離折り返しゴーストの検出処理を実行すればよい。これにより、誤検出を防ぐことができる。

0209

また、上記実施の形態において、処理部40の各機能ブロックは、LSIなどの半導体装置により個別に1チップ化されてもよいし、一部又は全部を含むように1チップ化されてもよい。ここでは、LSIとしたが、集積度の違いにより、IC、システムLSIスーパーLSI、ウルトラLSIと呼称されることもある。

0210

また、集積回路化の手法はLSIに限るものではなく、専用回路又は汎用プロセサで実現してもよい。LSI製造後に、プログラムすることが可能なFPGA(Field Programmable Gate Array)や、LSI内部の回路セルの接続や設定を再構成可能なリコンフィギュラブルプロセッサを利用しても良い。

0211

また、処理部40の各機能ブロックにより実行される処理の一部又は全部は、プログラムにより実現されるものであってもよい。そして、機能ブロックの処理の一部又は全部は、コンピュータにおいて、中央演算装置(CPU)により行われる。また、それぞれの処理を行うためのプログラムは、ハードディスク、ROMなどの記憶装置に格納されており、ROMにおいて、あるいはRAMに読み出されて実行される。

0212

また、上記実施の形態の各処理をハードウェアにより実現してもよいし、ソフトウェア(OS(オペレーティングシステム)、ミドルウェア、あるいは、所定のライブラリとともに実現される場合を含む。)により実現してもよい。さらに、ソフトウェアおよびハードウェアの混在処理により実現しても良い。

0213

例えば、上記実施の形態(変形例を含む)の各機能ブロックを、ソフトウェアにより実現する場合、図7に示したハードウェア構成(例えば、CPU、ROM、RAM、入力部、出力部等をバスBusにより接続したハードウェア構成)を用いて、各機能部をソフトウェア処理により実現するようにしてもよい。

0214

また、上記実施の形態における処理方法実行順序は、必ずしも、上記実施の形態の記載に制限されるものではなく、発明の要旨を逸脱しない範囲で、実行順序を入れ替えてもよい。

0215

前述した方法をコンピュータに実行させるコンピュータプログラム及びそのプログラムを記録したコンピュータ読み取り可能な記録媒体は、本発明の範囲に含まれる。ここで、コンピュータ読み取り可能な記録媒体としては、例えば、フレキシブルディスク、ハードディスク、CD−ROM、MO、DVD、DVD−ROM、DVD−RAM、大容量DVD、次世代DVD、半導体メモリを挙げることができる。

0216

上記コンピュータプログラムは、上記記録媒体に記録されたものに限られず、電気通信回線無線又は有線通信回線インターネットを代表とするネットワーク等を経由して伝送されるものであってもよい。

0217

以上、本発明の実施の形態を説明したが、上述した実施の形態は本発明を実施するための例示に過ぎない。よって、本発明は上述した実施の形態に限定されることなく、その趣旨を逸脱しない範囲内で上述した実施の形態を適宜変形して実施することが可能である。

0218

100、100A、100Bレーダ装置
10、10A、10B 供給部
11信号生成部 11
12、121、122、12B位相変化部
20、20A、20B 送信部
30 受信部
40 処理部
42 変換部
44ゴースト検出部
441グループ生成部
442ピーク選択部
443位置推定部
444判断部

ページトップへ

この技術を出願した法人

この技術を発明した人物

ページトップへ

関連する挑戦したい社会課題

関連する公募課題

ページトップへ

おススメ サービス

おススメ astavisionコンテンツ

新着 最近 公開された関連が強い技術

  • 三菱電機株式会社の「 無線機同定装置」が 公開されました。( 2020/10/08)

    【課題・解決手段】信号受信部(1)により復調された無線信号に含まれている複数の波形パターンを抽出し、複数の波形パターンのそれぞれを同類の波形パターンに分類する波形パターン分類部(5)と、波形パターン分... 詳細

  • インターナショナル・ビジネス・マシーンズ・コーポレーションの「 再構成可能なレーダ送信機」が 公開されました。( 2020/10/08)

    【課題】レーダ周波数信号の再構成可能な送信を容易にする技術を提供する。【解決手段】1例では、システムは、信号発生器と、パワー・モジュレータとを含む。信号発生器は、レーダ波形信号のセットからレーダ波形信... 詳細

  • 豊田合成株式会社の「 電波透過カバー」が 公開されました。( 2020/10/08)

    【課題】発熱性能の不足抑制と必要とされる電波透過性能の確保とを両立させることができる電波透過カバーを提供する。【解決手段】電波透過カバーは、電波レーダによって送受信される電波の経路上に設けられる樹脂製... 詳細

この 技術と関連性が強い人物

関連性が強い人物一覧

この 技術と関連する社会課題

関連する挑戦したい社会課題一覧

この 技術と関連する公募課題

関連する公募課題一覧

astavision 新着記事

サイト情報について

本サービスは、国が公開している情報(公開特許公報、特許整理標準化データ等)を元に構成されています。出典元のデータには一部間違いやノイズがあり、情報の正確さについては保証致しかねます。また一時的に、各データの収録範囲や更新周期によって、一部の情報が正しく表示されないことがございます。当サイトの情報を元にした諸問題、不利益等について当方は何ら責任を負いかねることを予めご承知おきのほど宜しくお願い申し上げます。

主たる情報の出典

特許情報…特許整理標準化データ(XML編)、公開特許公報、特許公報、審決公報、Patent Map Guidance System データ