図面 (/)

技術 高性能、フレキシブル、かつコンパクトな低密度パリティ検査(LDPC)コード

出願人 クアルコム,インコーポレイテッド
発明者 トーマス・ジョセフ・リチャードソンシュリニヴァス・クデカール
出願日 2017年6月14日 (2年10ヶ月経過) 出願番号 2018-565065
公開日 2019年6月27日 (10ヶ月経過) 公開番号 2019-518385
状態 不明
技術分野
  • -
主要キーワード 基本変数 共通状態 非正規性 ウェアラブルデバイス 並列読取り 専用セット 循環置換 信頼性要件
関連する未来課題
重要な関連分野

この項目の情報は公開日時点(2019年6月27日)のものです。
また、この項目は機械的に抽出しているため、正しく解析できていない場合があります

図面 (20)

課題・解決手段

本開示のいくつかの態様は、一般に、構造化低密度パリティ検査(LDPC)コードをパンクチャリングするための技法に関する。本開示のいくつかの態様は、一般に、高性能フレキシブル、かつコンパクトLDPCコードのための方法および装置に関する。いくつかの態様は、LDPCコード設計が、良好なエラーフロア性能、高いスループット性能を与えるためのハイレベル並列性、および低い記述複雑性を維持しながら、ファインインクリメンタル冗長ハイブリッド自動再送要求(IR-HARQ)拡張が可能でありながら広範囲コードレートブロック長、および粒度サポートすることを可能にし得る。

概要

背景

ワイヤレス通信システムは、音声ビデオ、データ、メッセージング放送などの様々なタイプの通信コンテンツを提供するために広く展開されている。これらのシステムは、利用可能なシステムリソース(たとえば、帯域幅および送信電力)を共有することによって、複数のユーザとの通信サポートすることができる多元接続技術を採用することができる。そのような多元接続システムの例は、符号分割多元接続(CDMA)システム、時分割同期CDMA(TD-SCDMA)、時分割多元接続(TDMA)システム、周波数分割多元接続(FDMA)システム、シングルキャリアFDMA(SC-FDMA)システム、直交周波数分割多元接続(OFDMA)システム、ロングタームエボリューション(LTE)システム、第3世代パートナーシッププロジェクト(3GPP)LTEシステム、およびLTEアドバンスト(LTE-A)システムを含む。これらの多元接続技術は、異なるワイヤレスデバイス都市国家、地域、さらには地球レベルで通信することを可能にする共通プロトコルを提供するために、様々な電気通信規格において採用されている。新しい電気通信規格の一例は、ニューラジオ(NR)、たとえば5G無線アクセスである。NRは、3GPPによって公表されたLTEモバイル規格拡張のセットである。5G無線アクセスは、スペクトル効率を改善し、コストを削減し、サービスを改善し、新しいスペクトルを使用し、またダウンリンク(DL)およびアップリンク(UL)上でOFDMAをサイクリックプレフィックス(CP)とともに使用する他のオープン規格とよりうまく統合することによって、モバイルブロードバンドインターネットアクセスをよりうまくサポートし、ならびにビームフォーミング多入力多出力(MIMO)アンテナ技術、およびキャリアアグリゲーションをサポートするように設計されている。

一般に、ワイヤレス多元接続通信システムは、複数のワイヤレスノードのための通信を同時にサポートすることができる。各ノードは、順方向リンクおよび逆方向リンク上の送信を介して1つまたは複数の基地局(BS)と通信する。順方向リンク(または、ダウンリンク)は、BSからノードへの通信リンクを指し、逆方向リンク(または、アップリンク)は、ノードから基地局への通信リンクを指す。通信リンクは、単入力単出力、多入力単出力またはMIMOシステムを介して確立され得る。

いくつかの例では、ワイヤレス多元接続通信システムは、ユーザ機器(UE)としても知られている複数の通信デバイスのための通信を各々が同時にサポートする、いくつかのBSを含み得る。LTEネットワークまたはLTE-Aネットワークでは、1つまたは複数のBSのセットがeNodeB(eNB)として定義されてもよい。他の例(たとえば、次の世代、NR、または5Gネットワーク)では、ワイヤレス多元接続通信システムは、いくつかの中央ユニット(CU)(たとえば、中央ノード(CN)、アクセスノードコントローラ(ANC)など)と通信する、いくつかの分散ユニット(DU)(たとえば、エッジユニット(EU)、エッジノード(EN)、ラジオヘッド(RH)、スマートラジオヘッド(SRH)、送信受信点(TRP)など)を含んでもよく、CUと通信する1つまたは複数のDUのセットがアクセスノード(たとえば、BS、NR BS、5G BS、NB、eNB、NR NB、5G NB、アクセスポイント(AP)、ネットワークノード、gNB、TRPなど)を定義してもよい。BS、AN、またはDUは、(たとえば、BSからUEへの送信のための)ダウンリンクチャネル上で、および(たとえば、UEからBS、AN、またはDUへの送信のための)アップリンクチャネル上で、UEまたはUEのセットと通信し得る。

2進値(たとえば、1および0)は、ビデオ、オーディオ統計情報など、様々なタイプの情報を表し、それらを通信するために使用される。残念ながら、2進データを記憶、送信、および/または処理する間、非意図的誤りが生じる場合があり、たとえば、「1」が「0」に変更される場合、またはその逆が生じる場合がある。

概して、データ送信の場合、受信機は、雑音またはひずみが存在する場合に受信された各ビット観測し、そのビットの値の指示のみが取得される。これらの状況下で、観測された値は「ソフト」ビットのソース解釈される。ソフトビットは、そのビットの値(たとえば、1または0)の好適な推定値を、その推定値の信頼度の何らかの指示とともに示す。誤りの数は比較的少ない可能性があるが、少数の誤りまたはひずみレベルですら、データを未使用にする場合があり、送信誤りの場合、データの再送信を必要にし得る。

誤りを検査し、場合によっては、誤りを訂正するための機構を提供するために、2進データをコーディングして、慎重に設計された冗長性取り入れることができる。データの単位のコーディングは、通常、コードワードと呼ばれるものを生成する。その冗長性により、コードワードは、しばしば、そこからコードワードが生成されたデータの入力単位よりも多くのビットを含むことになる。冗長ビットは、エンコーダによって送信ビットストリームに追加されて、コードワードを生成する。送信コードワードから生じる信号が受信または処理されるとき、その信号内で観測されるそのコードワード内に含まれる冗長情報を使用して、元のデータユニット復元するために、受信信号内の誤りを識別および/もしくは訂正すること、またはそこからのひずみを除去することができる。そのような誤りの検査および/または訂正は、復号プロセス一環として実装され得る。誤りがない場合、または訂正可能な誤りまたはひずみの場合、復号を使用して、処理されているソースデータから、符号化された元のデータユニットを復元することができる。復元不可能な誤りの場合、復号プロセスは、元のデータが完全に復元され得ないという何らかの指示を生成することができる。復号失敗のそのような指示は、データの再送信を開始することができる。

データ通信のための光ファイバーラインの使用が増大し、データがデータ記憶デバイス(たとえば、ディスクドライブテープなど)から読み取られ、それらに記憶され得るレートが増大するにつれて、データ記憶および送信容量の効率的な使用だけでなく、高速度でデータを符号化および復号する能力を増加する必要性が存在する。

概要

本開示のいくつかの態様は、一般に、構造化低密度パリティ検査(LDPC)コードをパンクチャリングするための技法に関する。本開示のいくつかの態様は、一般に、高性能フレキシブル、かつコンパクトLDPCコードのための方法および装置に関する。いくつかの態様は、LDPCコード設計が、良好なエラーフロア性能、高いスループット性能を与えるためのハイレベル並列性、および低い記述複雑性を維持しながら、ファインインクリメンタル冗長ハイブリッド自動再送要求(IR-HARQ)拡張が可能でありながら広範囲コードレートブロック長、および粒度をサポートすることを可能にし得る。

目的

より詳細には、いくつかの態様は、ファインインクリメンタル(fine incremental)冗長ハイブリッド自動再送要求(IR-HARQ)拡張が可能であり、良好なエラーフロア(error floor)性能、高いスループット性能のためのハイレベルの並列性、および低い記述複雑性を維持しながら、広範囲のコードレート、ブロック長、および粒度のためのLDPCコード設計に関する技法を提供する

効果

実績

技術文献被引用数
- 件
牽制数
- 件

この技術が所属する分野

(分野番号表示ON)※整理標準化データをもとに当社作成

該当するデータがありません

ライセンス契約や譲渡などの可能性がある特許掲載中! 開放特許随時追加・更新中 詳しくはこちら

請求項1

ワイヤレス通信のための方法であって、情報ビットを送信するために使用されるべき送信レートに関連付けられた複数の送信レート領域を判定するステップと、前記送信レート領域の各々に関する情報ビットを符号化するためにリフトされた低密度パリティ検査(LDPC)コードのファミリーのセットのリフトされたLDPCコードのファミリーを選択するステップと、1つまたは複数のコードワードを生成するために、各それぞれの送信レート領域内の送信のためのリフトされたLDPCコードの前記選択されたファミリーからの少なくとも1つのリフトされたLDPCコードを使用して情報ビットを符号化するステップと、媒体を介して前記1つまたは複数のコードワードを送信するステップとを含む、方法。

請求項2

リフトされたLDPCコードの各ファミリーが、情報ビット列およびパリティチェックを定義する異なる基本グラフに関連付けられる、請求項1に記載の方法。

請求項3

リフトされたLDPCコードの各ファミリーがクラスタ化されたリフティングタワーを含み、クラスタ化されたリフティングの前記タワーが、クラスタ化されたリフティングの複数のセットを含み、クラスタ化されたリフティングの各セットが、互いの因数内のリフティングを含み、クラスタ化されたリフティングの前記複数のセットが指数関数的に離間する、請求項1に記載の方法。

請求項4

リフトされたLDPCコードの各ファミリーが異なる第1の送信レートに対応し、リフトされたLDPCコードのファミリーの前記セットが、完全なハイブリッド自動再送要求(HARQ)拡張においてほぼ等しい最大数ベース変数ノードを有する基本グラフに関連付けられる、請求項1に記載の方法。

請求項5

リフトされたLDPCコードの各ファミリーが、同じ範囲のブロック長およびコードレートサポートするリフトされたLDPCコードのセットを含み、送信のための前記情報ビットを符号化するためにリフトされたLDPCコードの前記ファミリーを選択するステップが、前記サポートされる範囲のブロック長またはコードレートのうちの少なくとも1つに少なくとも部分的に基づく請求項1に記載の方法。

請求項6

前記サポートされる範囲のブロック長が、リフトされたLDPCコードの前記ファミリーに関連付けられたリフティングのセットによって定義され、前記サポートされる範囲のコードレートが、リフトされたLDPCコードの前記ファミリーに関連付けられた基本グラフをパンクチャリングすることによって取得されるコアグラフに対応する最高コードレートおよびハイブリッド自動再送要求(HARQ)拡張ビットを前記基本グラフに追加することによって取得される拡張されたグラフに対応する最低コードレートによって定義される請求項5に記載の方法。

請求項7

各送信レート領域内の送信のための前記情報ビットを符号化するためにリフトされたLDPCコードの前記ファミリーを選択するステップが、前記送信レート領域の最高送信レートに最も近い最高コードレートを有するリフトされたLDPCコードの前記ファミリーを選択するステップを含む、請求項6に記載の方法。

請求項8

各それぞれの送信レート領域内の送信のための前記情報ビットの前記セットを符号化するためにリフトされたLDPCコードの前記選択されたファミリーからの少なくとも1つのリフトされたLDPCコードを使用して前記情報ビットを符号化するステップが、各送信レート領域内の前記最高送信レートに関して、リフトされたLDPCコードの前記ファミリーの前記最高コードレートに対応する、リフトされたLDPCコードの前記選択されたファミリーからの前記リフトされたLDPCコードを使用するステップと、各レート領域内の他の送信レートに関して、LDPCコードの前記選択されたファミリーに関連付けられた前記拡張された基本グラフから取得されたLDPCコードの前記ファミリーのより低いコードレートに対応する、リフトされたLDPCコードの前記選択されたファミリーからのリフトされたLDPCコードを使用するステップとを含む、請求項7に記載の方法。

請求項9

各それぞれの送信レート領域内の送信のための前記情報ビットの前記セットを符号化するためにリフトされたLDPCコードの前記選択されたファミリーからの少なくとも1つのリフトされたLDPCコードを使用して前記情報ビットを符号化するステップが、リフトされたLDPCコードに関連付けられたリフティングサイズにさらに基づいて、リフトされたLDPCコードの前記選択されたファミリーから前記リフトされたLDPCコードを選択するステップを含む、請求項8に記載の方法。

請求項10

前記リフトされたLDPCコードを選択するステップが、各々が同じレートに対応する、リフトされたLDPCコードの前記選択されたファミリー内のリフトされたLDPCコードに関して、最大リフティングサイズに関連付けられた前記リフトされたLDPCコードを選択するステップを含む、請求項9に記載の方法。

請求項11

ワイヤレス通信のための装置であって、情報ビットを送信するために使用されるべき送信レートに関連付けられた複数の送信レート領域を判定するための手段と、前記送信レート領域の各々に関する情報ビットを符号化するためにリフトされた低密度パリティ検査(LDPC)コードのファミリーのセットのリフトされたLDPCコードのファミリーを選択するための手段と、1つまたは複数のコードワードを生成するために、各それぞれの送信レート領域内の送信のためのリフトされたLDPCコードの前記選択されたファミリーからの少なくとも1つのリフトされたLDPCコードを使用して情報ビットを符号化するための手段と、媒体を介して前記1つまたは複数のコードワードを送信するための手段とを含む、装置。

請求項12

リフトされたLDPCコードの各ファミリーが、情報ビット列およびパリティチェックを定義する異なる基本グラフに関連付けられる、請求項11に記載の装置。

請求項13

リフトされたLDPCコードの各ファミリーがクラスタ化されたリフティングのタワーを含み、クラスタ化されたリフティングの前記タワーが、クラスタ化されたリフティングの複数のセットを含み、クラスタ化されたリフティングの各セットが、互いの因数内のリフティングを含み、クラスタ化されたリフティングの前記複数のセットが指数関数的に離間する、請求項11に記載の装置。

請求項14

リフトされたLDPCコードの各ファミリーが異なる第1の送信レートに対応し、リフトされたLDPCコードのファミリーの前記セットが、完全なハイブリッド自動再送要求(HARQ)拡張においてほぼ等しい最大数のベース変数ノードを有する基本グラフに関連付けられる、請求項11に記載の装置。

請求項15

リフトされたLDPCコードの各ファミリーが、同じ範囲のブロック長およびコードレートをサポートするリフトされたLDPCコードのセットを含み、送信のための前記情報ビットを符号化するためにリフトされたLDPCコードの前記ファミリーを選択することが、前記サポートされる範囲のブロック長またはコードレートのうちの少なくとも1つに少なくとも部分的に基づく請求項11に記載の装置。

請求項16

前記サポートされる範囲のブロック長が、リフトされたLDPCコードの前記ファミリーに関連付けられたリフティングのセットによって定義され、前記サポートされる範囲のコードレートが、リフトされたLDPCコードの前記ファミリーに関連付けられた基本グラフをパンクチャリングすることによって取得されるコアグラフに対応する最高コードレートおよびハイブリッド自動再送要求(HARQ)拡張ビットを前記基本グラフに追加することによって取得される拡張されたグラフに対応する最低コードレートによって定義される請求項15に記載の装置。

請求項17

各送信レート領域内の送信のための前記情報ビットを符号化するためにリフトされたLDPCコードの前記ファミリーを選択するための手段が、前記送信レート領域の最高送信レートに最も近い最高コードレートを有するリフトされたLDPCコードの前記ファミリーを選択するための手段を含む、請求項16に記載の装置。

請求項18

各それぞれの送信レート領域内の送信のための前記情報ビットの前記セットを符号化するためにリフトされたLDPCコードの前記選択されたファミリーからの少なくとも1つのリフトされたLDPCコードを使用して前記情報ビットを符号化するための手段が、各送信レート領域内の前記最高送信レートに関して、リフトされたLDPCコードの前記ファミリーの前記最高コードレートに対応する、リフトされたLDPCコードの前記選択されたファミリーからの前記リフトされたLDPCコードを使用するための手段と、各レート領域内の他の送信レートに関して、LDPCコードの前記選択されたファミリーに関連付けられた前記拡張された基本グラフから取得されたLDPCコードの前記ファミリーのより低いコードレートに対応する、リフトされたLDPCコードの前記選択されたファミリーからのリフトされたLDPCコードを使用するための手段とを含む、請求項17に記載の装置。

請求項19

各それぞれの送信レート領域内の送信のための前記情報ビットの前記セットを符号化するためにリフトされたLDPCコードの前記選択されたファミリーからの少なくとも1つのリフトされたLDPCコードを使用して前記情報ビットを符号化するための手段が、リフトされたLDPCコードに関連付けられたリフティングサイズにさらに基づいて、リフトされたLDPCコードの前記選択されたファミリーから前記リフトされたLDPCコードを選択するための手段を含む、請求項18に記載の装置。

請求項20

前記リフトされたLDPCコードを選択するための手段が、各々が同じレートに対応する、リフトされたLDPCコードの前記選択されたファミリー内のリフトされたLDPCコードに関して、最大リフティングサイズに関連付けられた前記リフトされたLDPCコードを選択するための手段を含む、請求項19に記載の装置。

請求項21

ワイヤレス通信のための装置であって、メモリに結合された少なくとも1つのプロセッサであって、情報ビットを送信するために使用されるべき送信レートに関連付けられた複数の送信レート領域を判定し、前記送信レート領域の各々に関する情報ビットを符号化するためにリフトされた低密度パリティ検査(LDPC)コードのファミリーのセットのリフトされたLDPCコードのファミリーを選択し、1つまたは複数のコードワード作成するために、各それぞれの送信レート領域内の送信のためのリフトされたLDPCコードの前記選択されたファミリーからの少なくとも1つのリフトされたLDPCコードを使用して情報ビットを符号化するように構成された、少なくとも1つのプロセッサと、媒体を介して前記1つまたは複数のコードワードを送信するように構成された送信機とを含む、装置。

請求項22

リフトされたLDPCコードの各ファミリーが、情報ビット列およびパリティチェックを定義する異なる基本グラフに関連付けられる、請求項21に記載の装置。

請求項23

リフトされたLDPCコードの各ファミリーがクラスタ化されたリフティングのタワーを含み、クラスタ化されたリフティングの前記タワーが、クラスタ化されたリフティングの複数のセットを含み、クラスタ化されたリフティングの各セットが、互いの因数内のリフティングを含み、クラスタ化されたリフティングの前記複数のセットが指数関数的に離間する、請求項21に記載の装置。

請求項24

リフトされたLDPCコードの各ファミリーが異なる第1の送信レートに対応し、リフトされたLDPCコードのファミリーの前記セットが、完全なハイブリッド自動再送要求(HARQ)拡張においてほぼ等しい最大数のベース変数ノードを有する基本グラフに関連付けられる、請求項21に記載の装置。

請求項25

リフトされたLDPCコードの各ファミリーが、同じ範囲のブロック長およびコードレートをサポートするリフトされたLDPCコードのセットを含み、前記少なくとも1つのプロセッサが、前記サポートされる範囲のブロック長またはコードレートのうちの少なくとも1つに少なくとも部分的に基づいて、送信のための前記情報ビットを符号化するためにリフトされたLDPCコードの前記ファミリーを選択するように構成される請求項21に記載の装置。

請求項26

前記少なくとも1つのプロセッサが、各送信レート領域内の最高送信レートに関して、リフトされたLDPCコードの前記ファミリーの最高コードレートに対応する、リフトされたLDPCコードの前記選択されたファミリーからの前記リフトされたLDPCコードを使用し、各レート領域内の他の送信レートに関して、LDPCコードの前記選択されたファミリーに関連付けられた拡張された基本グラフから取得されたLDPCコードの前記ファミリーのより低いコードレートに対応する、リフトされたLDPCコードの前記選択されたファミリーからのリフトされたLDPCコードを使用することによって、前記情報ビットを符号化するように構成される、請求項21に記載の装置。

請求項27

前記少なくとも1つのプロセッサが、各々が同じレートに対応する、リフトされたLDPCコードの前記選択されたファミリー内のリフトされたLDPCコードに関して、最大リフティングサイズに関連付けられた前記リフトされたLDPCコードを選択することによって、前記リフトされたLDPCコード選択するように構成される、請求項21に記載の装置。

請求項28

ワイヤレス通信のためのコンピュータ実行可能コードを記憶したコンピュータ可読記憶媒体であって、前記コードが、情報ビットを送信するために使用されるべき送信レートに関連付けられた複数の送信レート領域を判定するためのコードと、前記送信レート領域の各々に関する情報ビットを符号化するためにリフトされた低密度パリティ検査(LDPC)コードのファミリーのセットのリフトされたLDPCコードのファミリーを選択するためのコードと、1つまたは複数のコードワードを生成するために、各それぞれの送信レート領域内の送信のためのリフトされたLDPCコードの前記選択されたファミリーからの少なくとも1つのリフトされたLDPCコードを使用して情報ビットを符号化するためのコードと、媒体を介して前記1つまたは複数のコードワードを送信するためのコードとを含む、コンピュータ可読記憶媒体。

請求項29

リフトされたLDPCコードの各ファミリーがクラスタ化されたリフティングのタワーを含み、クラスタ化されたリフティングの前記タワーが、クラスタ化されたリフティングの複数のセットを含み、クラスタ化されたリフティングの各セットが、互いの因数内のリフティングを含み、クラスタ化されたリフティングの前記複数のセットが指数関数的に離間する、請求項28に記載のコンピュータ可読記憶媒体。

請求項30

各送信レート領域内の最高送信レートに関して、リフトされたLDPCコードの前記ファミリーの最高コードレートに対応する、リフトされたLDPCコードの前記選択されたファミリーからの前記リフトされたLDPCコードを使用するためのコードと、各レート領域内の他の送信レートに関して、LDPCコードの前記選択されたファミリーに関連付けられた拡張された基本グラフから取得されたLDPCコードの前記ファミリーのより低いコードレートに対応する、リフトされたLDPCコードの前記選択されたファミリーからのリフトされたLDPCコードを使用するためのコードとをさらに含む、請求項28に記載のコンピュータ可読記憶媒体。

技術分野

0001

関連出願の相互参照および優先権主張
本出願は、2016年6月14日に出願した、米国仮特許出願第62/349,784号(163764P1)、2016年8月12日に出願した、米国仮特許出願第62/374,514号(164403P1)、および2017年6月13日に出願した、米国特許出願第15/622,008号(164403)の利益および優先権を主張するものであり、それら3つの出願は全体が、すべての適用可能な目的のために参照により本明細書に組み込まれている。

0002

以下で論じる技法のいくつかの態様は、一般に、高性能フレキシブル、かつコンパクト低密度パリティ検査(LDPC)コードのための方法および装置に関する。より詳細には、いくつかの態様は、ファインインクリメンタル(fine incremental)冗長ハイブリッド自動再送要求(IR-HARQ)拡張が可能であり、良好なエラーフロア(error floor)性能、高いスループット性能のためのハイレベル並列性、および低い記述複雑性を維持しながら、広範囲コードレートブロック長、および粒度のためのLDPCコード設計に関する技法を提供する。

背景技術

0003

ワイヤレス通信システムは、音声ビデオ、データ、メッセージング放送などの様々なタイプの通信コンテンツを提供するために広く展開されている。これらのシステムは、利用可能なシステムリソース(たとえば、帯域幅および送信電力)を共有することによって、複数のユーザとの通信サポートすることができる多元接続技術を採用することができる。そのような多元接続システムの例は、符号分割多元接続(CDMA)システム、時分割同期CDMA(TD-SCDMA)、時分割多元接続(TDMA)システム、周波数分割多元接続(FDMA)システム、シングルキャリアFDMA(SC-FDMA)システム、直交周波数分割多元接続(OFDMA)システム、ロングタームエボリューション(LTE)システム、第3世代パートナーシッププロジェクト(3GPP)LTEシステム、およびLTEアドバンスト(LTE-A)システムを含む。これらの多元接続技術は、異なるワイヤレスデバイス都市国家、地域、さらには地球レベルで通信することを可能にする共通プロトコルを提供するために、様々な電気通信規格において採用されている。新しい電気通信規格の一例は、ニューラジオ(NR)、たとえば5G無線アクセスである。NRは、3GPPによって公表されたLTEモバイル規格の拡張のセットである。5G無線アクセスは、スペクトル効率を改善し、コストを削減し、サービスを改善し、新しいスペクトルを使用し、またダウンリンク(DL)およびアップリンク(UL)上でOFDMAをサイクリックプレフィックス(CP)とともに使用する他のオープン規格とよりうまく統合することによって、モバイルブロードバンドインターネットアクセスをよりうまくサポートし、ならびにビームフォーミング多入力多出力(MIMO)アンテナ技術、およびキャリアアグリゲーションをサポートするように設計されている。

0004

一般に、ワイヤレス多元接続通信システムは、複数のワイヤレスノードのための通信を同時にサポートすることができる。各ノードは、順方向リンクおよび逆方向リンク上の送信を介して1つまたは複数の基地局(BS)と通信する。順方向リンク(または、ダウンリンク)は、BSからノードへの通信リンクを指し、逆方向リンク(または、アップリンク)は、ノードから基地局への通信リンクを指す。通信リンクは、単入力単出力、多入力単出力またはMIMOシステムを介して確立され得る。

0005

いくつかの例では、ワイヤレス多元接続通信システムは、ユーザ機器(UE)としても知られている複数の通信デバイスのための通信を各々が同時にサポートする、いくつかのBSを含み得る。LTEネットワークまたはLTE-Aネットワークでは、1つまたは複数のBSのセットがeNodeB(eNB)として定義されてもよい。他の例(たとえば、次の世代、NR、または5Gネットワーク)では、ワイヤレス多元接続通信システムは、いくつかの中央ユニット(CU)(たとえば、中央ノード(CN)、アクセスノードコントローラ(ANC)など)と通信する、いくつかの分散ユニット(DU)(たとえば、エッジユニット(EU)、エッジノード(EN)、ラジオヘッド(RH)、スマートラジオヘッド(SRH)、送信受信点(TRP)など)を含んでもよく、CUと通信する1つまたは複数のDUのセットがアクセスノード(たとえば、BS、NR BS、5G BS、NB、eNB、NR NB、5G NB、アクセスポイント(AP)、ネットワークノード、gNB、TRPなど)を定義してもよい。BS、AN、またはDUは、(たとえば、BSからUEへの送信のための)ダウンリンクチャネル上で、および(たとえば、UEからBS、AN、またはDUへの送信のための)アップリンクチャネル上で、UEまたはUEのセットと通信し得る。

0006

2進値(たとえば、1および0)は、ビデオ、オーディオ統計情報など、様々なタイプの情報を表し、それらを通信するために使用される。残念ながら、2進データを記憶、送信、および/または処理する間、非意図的誤りが生じる場合があり、たとえば、「1」が「0」に変更される場合、またはその逆が生じる場合がある。

0007

概して、データ送信の場合、受信機は、雑音またはひずみが存在する場合に受信された各ビット観測し、そのビットの値の指示のみが取得される。これらの状況下で、観測された値は「ソフト」ビットのソース解釈される。ソフトビットは、そのビットの値(たとえば、1または0)の好適な推定値を、その推定値の信頼度の何らかの指示とともに示す。誤りの数は比較的少ない可能性があるが、少数の誤りまたはひずみレベルですら、データを未使用にする場合があり、送信誤りの場合、データの再送信を必要にし得る。

0008

誤りを検査し、場合によっては、誤りを訂正するための機構を提供するために、2進データをコーディングして、慎重に設計された冗長性取り入れることができる。データの単位のコーディングは、通常、コードワードと呼ばれるものを生成する。その冗長性により、コードワードは、しばしば、そこからコードワードが生成されたデータの入力単位よりも多くのビットを含むことになる。冗長ビットは、エンコーダによって送信ビットストリームに追加されて、コードワードを生成する。送信コードワードから生じる信号が受信または処理されるとき、その信号内で観測されるそのコードワード内に含まれる冗長情報を使用して、元のデータユニット復元するために、受信信号内の誤りを識別および/もしくは訂正すること、またはそこからのひずみを除去することができる。そのような誤りの検査および/または訂正は、復号プロセス一環として実装され得る。誤りがない場合、または訂正可能な誤りまたはひずみの場合、復号を使用して、処理されているソースデータから、符号化された元のデータユニットを復元することができる。復元不可能な誤りの場合、復号プロセスは、元のデータが完全に復元され得ないという何らかの指示を生成することができる。復号失敗のそのような指示は、データの再送信を開始することができる。

0009

データ通信のための光ファイバーラインの使用が増大し、データがデータ記憶デバイス(たとえば、ディスクドライブテープなど)から読み取られ、それらに記憶され得るレートが増大するにつれて、データ記憶および送信容量の効率的な使用だけでなく、高速度でデータを符号化および復号する能力を増加する必要性が存在する。

先行技術

0010

Tom RichardsonおよびRuediger Urbankeによる、2008年3月17日に出版された「Modern Coding Theory」

課題を解決するための手段

0011

以下では、論じる技術の基本的理解を与えるために本開示のいくつかの態様を要約する。この要約は、本開示のすべての企図された特徴の広範な概観ではなく、本開示のすべての態様の主要または重要な要素を識別するものでもなく、本開示のいずれかまたはすべての態様の範囲を定めるものでもない。その唯一の目的は、後で提示するより詳細な説明の前置きとして、本開示の1つまたは複数の態様のいくつかの概念概要の形で提示することである。この議論を考察した後、詳細には「発明を実施するための形態」と題するセクションを読んだ後、本開示の特徴が、ワイヤレスネットワーク内のアクセスポイントと局との間の通信の改善を含む利点をどのようにもたらすかが理解されよう。

0012

符号化効率および高データレートは重要であるが、符号化および/または復号システム幅広デバイス(たとえば、消費者デバイス)における使用のために実際的になるには、エンコーダおよび/またはデコーダが合理的なコストで実装され得ることが重要である。

0013

通信システムは、しばしば、いくつかの異なるレートで動作する必要がある。調整可能な低密度パリティ検査(LDPC)コードは、異なるレートでコーディングおよび復号を提供する単純な実装のために使用され得る。たとえば、より低いレートのLDPCコードをパンクチャすることによって、より高いレートのLDPCコードが生成され得る。

0014

モバイルブロードバンドアクセスに対する需要が増大し続けるにつれて、NR技術におけるさらなる改善が必要である。好ましくは、これらの改善は、他の多元接続技術、およびこれらの技術を採用する電気通信規格に適用可能であるべきである。改善のための1つの領域は、NRに適用可能な、符号化/復号の領域である。たとえば、NRのための高性能LDPCコードに関する技法が望ましい。

0015

本開示のいくつかの態様は、一般に、高性能、フレキシブル、かつコンパクトな低密度パリティ検査(LDPC)コード設計のための方法および装置に関する。LDPCコード設計は、ファインインクリメンタル冗長ハイブリッド自動再送要求(IR-HARQ)拡張が可能であり、良好なエラーフロア性能、高いスループット性能を与えるためのハイレベルの並列性、および低い記述複雑性を維持しながら、広範囲のコードレート、ブロック長、および粒度をサポートし得る。

0016

一態様では、送信デバイスによるワイヤレス通信のための方法が提供される。この方法は、一般に、情報ビットを送信するために使用されるべき送信レートに関連付けられた複数の送信レート領域を判定するステップを含む。送信デバイスは、送信レート領域の各々に関する情報ビットを符号化するためにリフトされたLDPCコードのファミリーのセットのリフトされたLDPCコードのファミリーを選択し、1つまたは複数のコードワードを生成するために、各それぞれの送信レート領域内の送信のためのリフトされたLDPCコードの選択されたファミリーからの少なくとも1つのリフトされたLDPCコードを使用して情報ビットを符号化し、媒体を介して1つまたは複数のコードワードを送信する。

0017

一態様では、ワイヤレス通信のための送信デバイスなどの装置が提供される。この装置は、一般に、情報ビットを送信するために使用されるべき送信レートに関連付けられた複数の送信レート領域を判定するための手段を含む。送信デバイスは、送信レート領域の各々に関する情報ビットを符号化するためにリフトされたLDPCコードのファミリーのセットのリフトされたLDPCコードのファミリーを選択するための手段と、1つまたは複数のコードワードを生成するために、各それぞれの送信レート領域内の送信のためのリフトされたLDPCコードの選択されたファミリーからの少なくとも1つのリフトされたLDPCコードを使用して情報ビットを符号化するための手段と、媒体を介して1つまたは複数のコードワードを送信ための手段とを含む。

0018

一態様では、ワイヤレス通信のための送信デバイスなどの装置が提供される。この装置は、一般に、メモリに結合された少なくとも1つのプロセッサを含む。少なくとも1つのプロセッサは、情報ビットを送信するために使用されるべき送信レートに関連付けられた複数の送信レート領域を判定する。少なくとも1つのプロセッサはまた、送信レート領域の各々に関する情報ビットを符号化するためにリフトされたLDPCコードのファミリーのセットのリフトされたLDPCコードのファミリーを選択し、1つまたは複数のコードワードを生成するために、各それぞれの送信レート領域内の送信のためのリフトされたLDPCコードの選択されたファミリーからの少なくとも1つのリフトされたLDPCコードを使用して情報ビットを符号化する。送信デバイスはまた、媒体を介して1つまたは複数のコードワードを送信するように構成された送信機を含む。

0019

一態様では、コンピュータ可読媒体が提供される。コンピュータ可読媒体は、送信デバイスによるワイヤレス通信のためにコンピュータ実行可能コードを記憶している。このコードは、一般に、情報ビットを送信するために使用されるべき送信レートに関連付けられた複数の送信レート領域を判定するためのコードを含む。このコードはまた、送信レート領域の各々に関する情報ビットを符号化するためにリフトされたLDPCコードのファミリーのセットのリフトされたLDPCコードのファミリーを選択するためのコードと、1つまたは複数のコードワードを生成するために、各それぞれの送信レート領域内の送信のためのリフトされたLDPCコードの選択されたファミリーからの少なくとも1つのリフトされたLDPCコードを使用して情報ビットを符号化するためのコードと、媒体を介して1つまたは複数のコードワードを送信ためのコードとを含む。

0020

上記の目的および関係する目的を達成するために、1つまたは複数の態様は、以下で十分に説明され、特に特許請求の範囲で指摘する特徴を含む。以下の説明および添付の図面は、1つまたは複数の態様のいくつかの例示的な特徴を詳細に記載している。しかしながら、これらの特徴は、様々な態様の原理が採用され得る様々な方法のほんのいくつかを示すものであり、この説明は、すべてのそのような態様およびそれらの均等物を含むものとする。

0021

本開示の上記の特徴が詳細に理解できるように、添付の図面にその一部が示される態様を参照することによって、上記で概略的に説明した内容についてより具体的な説明を行う場合がある。添付の図面は、本開示のいくつかの典型的な態様のみを示すが、この説明は他の同様に有効な態様にも当てはまる場合があるので、したがって、本開示の範囲を限定するものと見なされるべきではない。

図面の簡単な説明

0022

本開示のいくつかの態様による、例示的なワイヤレス通信システムを概念的に示すブロック図である。
本開示のいくつかの態様による、分散RANの例示的な論理アーキテクチャを示すブロック図である。
本開示のいくつかの態様による、分散RANの例示的な物理アーキテクチャを示す図である。
本開示のいくつかの態様による、例示的な基地局(BS)およびユーザ機器(UE)の設計を概念的に示すブロック図である。
本開示のいくつかの態様による、通信プロトコルスタックを実装するための例を示す図である。
本開示のいくつかの態様による、ダウンリンク(DL)セントリック(centric)サブフレームの一例を示す図である。
本開示のいくつかの態様による、アップリンク(UL)セントリックサブフレームの一例を示す図である。
本開示のいくつかの実施形態による、例示的な低密度パリティ検査(LDPC)コードのグラフカル表現である。
本開示のいくつかの態様による、図8の例示的なLDPCコードの行列表現である。
本開示のいくつかの態様による、図8のLDPCコードのリフティングのグラフィカル表現である。
いくつかの態様による、準巡回(quasi-cyclic)802.11 LDPCコードに関する行列整数表現である。
本開示のいくつかの態様による、例示的なエンコーダを示す簡素化ブロック図である。
本開示のいくつかの態様による、例示的なデコーダを示す簡素化ブロック図である。
本開示のいくつかの態様による、送信デバイスによって実行され得る基本グラフ構造を使用してコードワードを符号化および送信するための例示的な動作を示す流れ図である。
本開示のいくつかの態様による、送信デバイスによって実行され得る基本グラフ構造を使用してコードワードを符号化および送信するための例示的な動作を示す流れ図である。
本開示の態様による、ワイヤレスデバイスによって実行され得る例示的な動作を示す流れ図である。
本開示の態様による、例示的なベースパリティチェック行列(PCM)の構造を示す図である。
本開示の態様による、例示的な最適化された基本グラフを示す図である。
本開示のいくつかの態様による、高レートコードに対する次数3のチェックおよびパンクチャリングを示す表である。
本開示のいくつかの態様による、図18に示した表を得るために使用される、図17の最適化された基本グラフに関するPCMのコア部分を示す表である。
本開示のいくつかの態様による、例示的なコードファミリーのコアを示す図である。
本開示のいくつかの態様による、図19に示したコアの短縮部分行列の行次数を示す表である。
本開示のいくつかの態様による、別の例示的なコードファミリーのコアを示す図である。
本開示のいくつかの態様による、図20に示したコアの短縮部分行列の行次数を示す表である。
本開示のいくつかの態様による、さらに別の例示的なコードファミリーのコアを示す図である。
本開示のいくつかの態様による、図21に示したコアの短縮部分行列の行次数を示す表である。
本開示のいくつかの態様による、中間コードレートに対する次数3のチェックおよびパンクチャリングを示す表である。
本開示のいくつかの態様による、図22に示した表を得るために使用される、8のリフティングサイズ値を有する、PCMのコア部分を示す表である。
本開示のいくつかの態様による、低レートコードに対する次数3のチェックおよびパンクチャリングを示す表である。
本開示のいくつかの態様による、図23に示した表を得るために使用される、8のリフティングサイズ値を有する、PCMのコア部分を示す表である。
本開示のいくつかの態様による、送信デバイスによって情報を符号化するために使用するためのLDPCコードのファミリーを選択するための例示的な動作を示す流れ図である。
本開示のいくつかの態様による、送信デバイスによるワイヤレス通信のための例示的な動作を示す流れ図である。
本開示のいくつかの態様による、8のリフティングサイズ値を有する例示的なコアリフトされたPCMを示す図である。
本開示のいくつかの態様による、単一のエッジが除去された、図25に示したコアリフトされたPCMの例を示す図である。

実施例

0023

理解を促すために、可能な場合、図面に共通する同一要素を指すために、同一の参照番号が使用されている。特定の具陳なしに、一実施形態で開示する要素が他の実施形態に関して有利に利用される場合があると考えられる。

0024

本開示の態様は、ニューラジオ(NR)アクセス技術(たとえば、5G無線アクセス)に関する符号化(および/または復号)のための装置、方法、処理システム、およびコンピュータプログラム製品を提供する。NRは、新しいエアインターフェースまたは固定トランスポートレイヤに従って動作するように構成された無線を指す場合がある。NRは、広帯域幅(たとえば、80MHz以上)をターゲットにする拡張型モバイルブロードバンド(eMBB)サービス、高いキャリア周波数(たとえば、60GHz)をターゲットにするミリメートル波(mmW)サービス、非後方互換MTC技法をターゲットにするマッシブマシンタイプ通信(mMTC:massive machine type communication)サービス、および/または超信頼低レイテンシ通信(URLLC:ultra-reliable low-latency communications)サービスをターゲットにするミッションクリティカル(MiCr)サービスに対するサポートを含み得る。これらのサービスは、レイテンシ要件および信頼性要件を含み得る。NRは、低密度パリティ検査(LDPC)符号化および/またはポーラ符号(polar code)を使用することができる。

0025

本開示のいくつかの態様は、一般に、高性能、フレキシブル、かつコンパクトであり得るLDPCコード設計を使用した符号化および/または復号のための方法および装置に関する。LDPCコード設計は、広範囲のコードレート、ブロック長、および粒度をサポートし得る。LDPCコード設計は、ファインインクリメンタル冗長ハイブリッド自動再送要求(IR-HARQ)拡張をサポートし得る。LDPCコード設計は、良好なフロア性能、高いスループット性能を与えるためのハイレベルの並列性、および低い記述複雑性を有し得る。

0026

本開示の様々な態様について、添付の図面を参照しながら、以下でより十分に説明する。しかしながら、本開示は、多くの異なる形態で具現化されてもよく、本開示全体にわたって提示される任意の特定の構造または機能に限定されるものと解釈されるべきではない。むしろ、これらの態様は、本開示が周到で完全になり、本開示の範囲を当業者に十分に伝えるように与えられる。本開示の教示に基づいて、本開示の範囲は、本開示の任意の他の態様とは無関係に実装されるにせよ、本開示の任意の他の態様と組み合わせて実装されるにせよ、本明細書で開示する本開示の任意の態様を包含するものであることを、当業者は諒解されたい。たとえば、本明細書に記載の任意の数の態様を使用して、装置が実装されてもよく、または方法が実践されてもよい。加えて、本開示の範囲は、本明細書に記載した本開示の様々な態様に加えて、またはそれらの態様以外に、他の構造、機能、または構造および機能を使用して実践されるそのような装置または方法を包含するものとする。本明細書で開示する本開示のいずれの態様も、請求項の1つまたは複数の要素によって具現化され得ることを理解されたい。「例示的」という語は、本明細書では「一例、事例、または例示としての働きをすること」を意味するために使用される。本明細書で「例示的」と説明される任意の態様は、必ずしも他の態様よりも好ましいまたは有利であると解釈されるべきではない。

0027

特定の態様について本明細書で説明するが、これらの態様の多くの変形および置換が、本開示の範囲内に入る。好ましい態様のいくつかの利益および利点について言及するが、本開示の範囲は特定の利益、使用、または目的に限定されるものではない。むしろ、本開示の態様は、異なるワイヤレス技術システム構成、ネットワーク、および伝送プロトコルに広く適用可能であるものとし、そのうちのいくつかが例として図面および好ましい態様の以下の説明において示される。発明を実施するための形態および図面は、限定的でなく、本開示の例示に過ぎず、本開示の範囲は、添付の特許請求の範囲およびその同等物によって定義される。

0028

本明細書で説明する技法は、ロングタームエボリューション(LTE)、符号分割多元接続(CDMA)ネットワーク、時分割多元接続(TDMA)ネットワーク、周波数分割多元接続(FDMA)ネットワーク、直交FDMA(OFDMA)ネットワーク、シングルキャリアFDMA(SC-FDMA)ネットワークなどの様々なワイヤレス通信ネットワークに使用することができる。「ネットワーク」および「システム」という用語は、しばしば互換的に使用される。CDMAネットワークは、ユニバーサル地上無線アクセス(UTRA)、CDMA2000などの無線技術を実装することがある。UTRAは、広帯域CDMA(W-CDMA)および低チップレート(LCR)を含む。CDMA2000は、IS-2000規格、IS-95規格、およびIS-856規格を対象とする。TDMAネットワークはモバイル通信グローバルシステム(GSM(登録商標))などの無線技術を実装し得る。OFDMAネットワークは、NR(たとえば、5G RA)、発展型UTRA(E-UTRA)、IEEE802.11、IEEE802.16、IEEE802.20、Flash-OFDM(登録商標)などの無線技術を実装してもよい。UTRA、E-UTRA、およびGSM(登録商標)は、ユニバーサルモバイルテレコミュニケーションシステム(UMTS)の一部である。3GPP LTEおよびLTEアドバンスト(LTE-A)は、E-UTRAを使用するUMTSのリリースである。UTRA、E-UTRA、UMTS、LTE、LTE-A、およびGSM(登録商標)は、「第3世代パートナーシッププロジェクト」(3GPP)と称する組織からの文書に記載されている。CDMA2000は、「第3世代パートナーシッププロジェクト2」(3GPP2)と称する組織からの文書に記載されている。NRは、5G技術フォーラム(5GTF)とともに開発中の新しく出現したワイヤレス通信技術である。これらの通信ネットワークは、本開示で説明する技法が適用され得るネットワークの例として列挙されているに過ぎず、本開示は、上記で説明した通信ネットワークに限定されない。明快のために、本明細書では3Gおよび/または4Gワイヤレス技術に一般的に関連する用語を使用して態様を説明する場合があるが、本開示の態様は、5G以降を含めて、ニューラジオ(NR)技術
など、他の世代ベースの通信システムにおいて適用できることに留意されたい。

0029

明確にするために、本明細書では一般に3Gおよび/または4Gワイヤレス技術に関連する用語を使用して態様が説明されることがあるが、本開示の態様は、NR技術を含めて、5G以降のものなどの他の世代ベースの通信システムにおいて適用され得ることに留意されたい。

0030

例示的なワイヤレス通信システム
図1は、本開示の態様が実行される場合がある例示的なワイヤレス通信ネットワーク100を示す。ワイヤレス通信ネットワーク100は、ニューラジオ(NR)または5Gネットワークであり得る。ワイヤレス通信ネットワーク100は、ユーザ機器(UE)120または基地局(BS)110などの送信デバイスを含み得る。送信デバイスは、コードワードを生成するために低密度パリティ検査(LDPC)コードに基づいて情報ビットのセットを符号化することができ、LDPCコードは、第1の数の変数ノードおよび第2の数のチェックノードを有する行列によって定義される。送信デバイスによって使用されるLDPCコードは、高性能、フレキシブル、かつコンパクトなLDPCコードのための本明細書で説明するLDCコード設計に従って設計され得る。LDPCコード設計は、広範囲のコードレート、ブロック長、および粒度をサポートするために、情報ビットのセットを符号化するために送信デバイスによって使用され得る。

0031

図1に示すように、ワイヤレス通信ネットワーク100は、いくつかのBS110と他のネットワークエンティティとを含み得る。BSは、UEと通信する局であり得る。各BS110は、特定の地理的領域に通信有効範囲を提供し得る。3GPPでは、「セル」という用語は、この用語が使用される状況に応じて、このカバレージエリアにサービスしているノードBおよび/またはノードBサブシステムのカバレージエリアを指すことがある。NRシステムでは、「セル」およびgNB、ノードB、5G NB、AP、NR BS、TRPなどの用語は交換可能であり得る。いくつかの例では、セルは、必ずしも静止しているとは限らないことがあり、セルの地理的エリアは、モバイルBSのロケーションに従って移動し得る。いくつかの例では、BSは、任意の好適なトランスポートネットワークを使用して、直接物理接続、仮想ネットワークなど、様々なタイプのバックホールインターフェースを通して、ワイヤレス通信ネットワーク100内で互いに、および/または1つまたは複数の他のBSもしくはネットワークノード(図示せず)に相互接続され得る。

0032

一般に、任意の数のワイヤレスネットワークが、所与の地理的エリアにおいて展開される場合がある。各ワイヤレスネットワークは、特定の無線アクセス技術(RAT)をサポートしてもよく、1つまたは複数の周波数で動作してもよい。RATは、無線技術、エアインターフェースなどと呼ばれることもある。周波数は、キャリア周波数チャネルなどと呼ばれることもある。各周波数は、異なるRATのワイヤレスネットワーク間の干渉を回避するために、所与の地理的領域において単一のRATをサポートしてもよい。場合によっては、NRまたは5G RATネットワークが展開され得る。

0033

BSは、マクロセルピコセルフェムトセル、および/または他のタイプのセルのための通信カバレージを提供し得る。マクロセルは、比較的大きい地理的エリア(たとえば、半径キロメートル)をカバーすることができ、サービスに加入しているUEによる無制限アクセスを可能にしてもよい。ピコセルは、比較的小さい地理的エリアをカバーすることができ、サービスに加入しているUEによる無制限アクセスを可能にしてもよい。フェムトセルは、比較的小さい地理的エリア(たとえば、自宅)をカバーすることができ、フェムトセルとの関連を有するUE(たとえば、限定加入者グループ(CSG)内のUE、自宅内のユーザのためのUEなど)による制限付きアクセスを可能にしてもよい。マクロセルのためのBSは、マクロBSと呼ばれることがある。ピコセルのためのBSは、ピコBSと呼ばれることがある。また、フェムトセルのためのBSは、フェムトBSまたはホームBSと呼ばれることがある。図1に示す例では、BS110a、BS110b、およびBS110cは、それぞれ、マクロセル102a、マクロセル102b、およびマクロセル102cに関するマクロBSであってもよい。BS110xは、ピコセル102xのためのピコBSであり得る。BS110yおよびBS110zは、それぞれ、フェムトセル102yおよびフェムトセル102zのためのフェムトBSであり得る。BSは1つまたは複数(たとえば、3つ)のセルをサポートしてもよい。

0034

ワイヤレス通信ネットワーク100はまた、中継局を含み得る。中継局は、アップストリーム局(たとえば、BS110またはUE120)からデータおよび/または他の情報の送信を受信し、ダウンストリーム局(たとえば、UE120またBS110)にデータおよび/または他の情報の送信を送る局である。また、中継局は、他のUEのための送信を中継するUEであってもよい。図1に示す例では、中継局110rは、BS110aとUE120rとの間の通信を容易にするために、BS110aおよびUE120rと通信してもよい。中継局はまた、リレー、リレーeNBなどとも呼ばれることもある。

0035

ワイヤレス通信ネットワーク100は、異なるタイプのBS、たとえば、マクロBS、ピコBS、フェムトBS、リレーなどを含む異種ネットワークとすることができる。これらの異なるタイプのBSは、異なる送信電力レベル、異なるカバレージエリア、およびワイヤレス通信ネットワーク100中の干渉に対する異なる影響を有してもよい。たとえば、マクロBSは高い送信電力レベル(たとえば、20ワット)を有することがあり、一方で、ピコBS、フェムトBS、およびリレーはより低い送信電力レベル(たとえば、1ワット)を有することがある。

0036

ワイヤレス通信ネットワーク100は、同期動作または非同期動作をサポートすることができる。同期動作の場合、BSは、同様のフレームタイミングを有することができ、異なるBSからの送信は、時間的にほぼ整合させることができる。非同期動作の場合、BSは、異なるフレームタイミングを有する場合があり、異なるBSからの送信は、時間的に整合していない場合がある。本明細書で説明する技法は、同期動作と非同期動作の両方に使用されてもよい。

0037

ネットワークコントローラ130は、BSのセットに結合し、これらのBSのための調整および制御を実現してもよい。ネットワークコントローラ130は、バックホールを介してBS110と通信し得る。BS110はまた、たとえば、直接的または間接的にワイヤレスバックホールまたはワイヤラインバックホールを介して互いに通信し得る。

0038

UE120(たとえば、UE120x、UE120yなど)は、ワイヤレス通信ネットワーク100の全体にわたって分散されてよく、各UEは静止であってよく、またはモバイルであってもよい。UEは、移動局端末アクセス端末加入者ユニット、局、カスタマ構内設備(CPE:Customer Premises Equipment)、セルラーフォンスマートフォン携帯情報端末(PDA)、ワイヤレスモデムワイヤレス通信デバイスハンドヘルドデバイスラップトップコンピュータコードレスフォンワイヤレスローカルループ(WLL)局、タブレットカメラゲームデバイスネットブック、スマートブック、ウルトラブック、医療デバイスまたは医療機器生体センサー/デバイス、スマートウォッチ、スマート衣料、スマートグラス、スマートリストバンド、スマートジュエリー(たとえば、スマートリング、スマートブレスレットなど)などのウェアラブルデバイス娯楽デバイス(たとえば、音楽デバイス、ビデオデバイス、衛星無線など)、車両コンポーネントもしくは車両センサースマートメータ/センサー、工業生産機器全地球測位システムデバイス、またはワイヤレス媒体またはワイヤード媒体を介して通信するように構成された任意の他の好適なデバイスと呼ばれる場合もある。一部のUEは、発展型デバイスもしくはマシンタイプ通信(MTC)デバイスまたは発展型MTC(eMTC)デバイスと見なされる場合がある。MTC UEおよびeMTC UEは、BS、別のデバイス(たとえば、遠隔デバイス)、または何らかの他のエンティティと通信することができる、たとえば、ロボットドローン、遠隔デバイス、センサー、メータモニタロケーションタグなどを含む。ワイヤレスノードは、たとえば、ワイヤード通信リンクまたはワイヤレス通信リンクを介して、ネットワーク(たとえば、インターネットまたはセルラーネットワークなどのワイドエリアネットワーク)のための、またはネットワークへの接続性を提供し得る。一部のUEは、モノのインターネット(IoT)デバイスと見なされ得る。

0039

図1では、両側に矢印がある実線は、UEとサービングBSとの間の所望の送信を示し、BSは、ダウンリンクおよび/またはアップリンク上でUEにサービスするように指定されたeNBである。両側に矢印がある細い破線は、UEとBSとの間の干渉送信を示す。

0040

特定のワイヤレスネットワーク(たとえば、LTE)は、ダウンリンク上で直交周波数分割多重化(OFDM)を利用し、かつアップリンク上でシングルキャリア周波数分割多重化(SC-FDM)を利用する。OFDMおよびSC-FDMは、システム帯域幅を、一般に、トーンビンなどとも呼ばれる、複数の(K個の)直交サブキャリア区分する。各サブキャリアは、データによって変調されてもよい。一般に、変調シンボルは、OFDMでは周波数ドメインにおいて、SC-FDMでは時間ドメインにおいて送られる。隣接するサブキャリア同士の間の間隔は固定される場合があり、サブキャリアの総数(K)は、システム帯域幅に依存する場合がある。たとえば、サブキャリアの間隔は15kHzであってもよく、最小のリソース割振り(「リソースブロック」(RB)と呼ばれる)は12個のサブキャリア(すなわち、180kHz)であってもよい。結果的に、公称高速フーリエ変換(FFT)サイズは、1.25MHz、2.5MHz、5MHz、10MHz、または20MHzのシステム帯域幅に対して、128、256、512、1024、または2048にそれぞれ等しい場合がある。システム帯域幅はまた、サブバンドに区分されてもよい。たとえば、サブバンドは、1.08MHz(すなわち、6個のRB)をカバーすることができ、1.25MHz、2.5MHz、5MHz、10MHz、または20MHzのシステム帯域幅に対して、それぞれ、1、2、4、8、または16個のサブバンドが存在し得る。

0041

NRは、アップリンクおよびダウンリンク上でCPを用いてOFDMを利用することができ、TDDを使用して半二重動作に対するサポートを含み得る。100MHzの単一のコンポーネントキャリア帯域幅がサポートされ得る。NR RBは、0.1msの持続時間にわたり75kHzのサブキャリア帯域幅を有する12個のサブキャリアに及ぶ場合がある。各無線フレームは、10msの長さを有する50個のサブフレームで構成され得る。結果として、各サブフレームは0.2msの長さを有することができる。各サブフレームは、データ送信のためのリンク方向(すなわち、ダウンリンクまたはアップリンク)を示し得、各サブフレームに関するリンク方向を動的に切り替えることができる。各サブフレームは、DL/ULデータならびにDL/UL制御データを含み得る。NRに関するULサブフレームおよびDLサブフレームについては、図6および図7を参照して以下でより詳細に説明され得る。ビームフォーミングがサポートされ得、ビーム方向が動的に構成され得る。プリコーディングを用いたMIMO送信もサポートされ得る。DLにおけるMIMO構成は、最高で8個のストリームおよびUEごとに最高で2個のストリームを用いたマルチレイヤDL送信で最高で8個の送信アンテナをサポートし得る。UEごとに最高で2個のストリームを用いたマルチレイヤ送信がサポートされ得る。最高で8個のサービングセルを用いて複数のセルのアグリゲーションがサポートされ得る。代替として、NRは、OFDMベース以外の異なるエアインターフェースをサポートし得る。

0042

いくつかの例では、エアインターフェースに対するアクセスがスケジュールされ得る。たとえば、スケジューリングエンティティ(たとえば、BS110またはUE120)は、いくつかのまたはすべてのデバイスおよびそのサービスエリアまたはセル内の機器の間の通信のためにリソース割り振る。本開示内で、以下でさらに論じるように、スケジューリングエンティティは、1つまたは複数の従属エンティティのためのリソースのスケジューリング割当て、再構成、および解放を担い得る。すなわち、スケジュールされた通信のために、従属エンティティは、スケジューリングエンティティによって割り振られるリソースを利用する。BSは、スケジューリングエンティティとして機能し得る唯一のエンティティではない。すなわち、いくつかの例では、UEが、1つまたは複数の従属エンティティ(たとえば、1つまたは複数の他のUE)のためのリソースをスケジュールする、スケジューリングエンティティとして機能し得る。この例では、UEは、スケジューリングエンティティとして機能しており、他のUEは、ワイヤレス通信のためにUEによってスケジュールされたリソースを利用する。UEは、ピアツーピア(P2P)ネットワーク内、および/またはメッシュネットワーク内で、スケジューリングエンティティとして機能し得る。メッシュネットワーク例では、UEは、スケジューリングエンティティと通信することに加えて、場合によっては互いに直接通信し得る。

0043

したがって、時間-周波数リソースへのスケジュールされたアクセスを伴い、セルラー構成、P2P構成、およびメッシュ構成を有するワイヤレス通信ネットワークでは、スケジューリングエンティティおよび1つまたは複数の従属エンティティは、スケジュールされたリソースを利用して通信し得る。

0044

NR無線アクセスネットワーク(RAN)は、1つまたは複数の中央装置(CU)および分散ユニット(DU)を含み得る。NRBS(たとえば、gNB、5G NB、NB、TRP、AP)は1つまたは複数のBSに対応し得る。NRセルは、アクセスセル(ACell)またはデータオンリーセル(DCell)として構成され得る。DCellは、キャリアアグリゲーションまたは二重接続性のために使用されるが、初期アクセスセル選択/再選択、またはハンドオーバのために使用されないセルであり得る。

0045

図2は、図1に示したワイヤレス通信システム100内で実装され得る分散RAN200の例示的な論理アーキテクチャを示す。5Gアクセスノード(AN)206は、アクセスノードコントローラ(ANC)202を含み得る。ANC202は分散RAN200のCUであってよい。次世代コアネットワーク(NG-CN)204に対するバックホールインターフェースはANC202において終結し得る。隣接の次世代アクセスノード(NG-AN)に対するバックホールインターフェースはANC202において終結し得る。ANC202は、1つまたは複数のTRP208を含むことができる。

0046

TRP208はDUを備える。TRP208は、1つのANC(ANC202)に接続されてよく、または2つ以上のANC(図示せず)に接続されてもよい。たとえば、RAN共有、ラジオアズアサビス(RaaS:radio as a service)などの無線、およびサービス固有のAND展開の場合、TRPは2つ以上のANC202に接続され得る。TRP208は、1つまたは複数のアンテナポートを含んでもよい。TRP208は、個々に(たとえば、動的選択)または一緒に(たとえば、ジョイント送信)UE(たとえば、UE120)に対するトラフィックをサービスするように構成され得る。

0047

分散RAN200の例示的な論理アーキテクチャは、フロントホール定義を示すために使用され得る。論理アーキテクチャは、異なる展開タイプにわたるフロントホールソリューションをサポートし得る。たとえば、論理アーキテクチャは、送信ネットワーク容量(たとえば、帯域幅、レイテンシ、および/またはジッタ)に基づき得る。論理アーキテクチャは、特徴および/または構成要素をLTEと共有し得る。NG-AN210はNRとの二重接続性をサポートし得る。NG-AN210はLTEおよびNRに対する共通フロントホールを共有し得る。論理アーキテクチャは、TRP208同士の間のおよびその中の協働を可能にし得る。たとえば、協働はANC202を介してTRP208内でかつ/またはTRP208にわたって事前構成され得る。TRP間インターフェースは存在し得ない。

0048

分散RAN200に関する論理アーキテクチャは、スプリット論理関数の動的構成を含み得る。図5を参照してより詳細に説明するように、無線リソース制御(RRC)レイヤパケットデータコバージェンスプトコル(PDCP)レイヤ、無線リンク制御(RLC)レイヤ、媒体アクセス制御(MAC)レイヤ、および物理(PHY)レイヤは、DU(たとえば、TRP208)またはCU(たとえば、ANC202)に位置し得る。

0049

図3は、本開示のいくつかの態様による、分散RAN300の1つの例示的な物理アーキテクチャを示す。図3に示すように、分散RAN300は、集中型コアネットワークユニット(C-CU)302、集中型RANユニット(C-RU)304、およびDU306を含む。

0050

C-CU302は、コアネットワーク機能をホストし得る。C-CU302は、中央に展開され得る。C-CU302機能は、ピーク容量を処理するために、(たとえば、アドバンストワイヤレスサービス(AWS)に)オフロードされ得る。C-RU304は、1つまたは複数のANC機能をホストし得る。オプションで、C-RU304は、コアネットワーク機能をローカルにホストし得る。C-RU304は、分散型展開を有し得る。C-RU304は、ネットワークのエッジ付近に位置し得る。DU306は、1つまたは複数のTRP(エッジノード(EN)、エッジユニット(EU)、無線ヘッド(RH)、スマート無線ヘッド(SRH)など)をホストし得る。DU306は、無線周波数(RF)機能を備えたネットワークのエッジに位置し得る。

0051

図4は、高性能、フレキシブル、かつコンパクトなLDPCコーディングのための本開示の態様を実装するために使用され得る、図1に示すBS110およびUE120の例示的な構成要素を示す。図4に示す、BS110およびUE120の1つまたは複数の構成要素は、本開示の態様を実践するために使用され得る。たとえば、UE120のアンテナ452a〜452r、復調器/変調器454a〜454r、TXMIMOプロセッサ466、受信プロセッサ458、送信プロセッサ464、および/もしくはコントローラ/プロセッサ480、ならびに/またはBS110のアンテナ434a〜434t、復調器/変調器432a〜434t、TX MIMOプロセッサ430、送信プロセッサ420、受信プロセッサ438、および/もしくはコントローラ/プロセッサ440は、それぞれ、本明細書で説明し、図13〜図15、図24、および図25を参照して示す動作1300〜1500、2400、および2500を実行するために使用され得る。

0052

制限された関連付けシナリオの場合、BS110は図1のマクロBS110cであり得、UE120はUE120yであり得る。BS110はまた、何らかの他のタイプのBSであってもよい。BS110は、アンテナ434a〜434tを備えてもよく、UE120は、アンテナ452a〜452rを備えてもよい。

0053

BS110において、送信プロセッサ420は、データソース412からデータを受信し、コントローラ/プロセッサ440から制御情報を受信することができる。制御情報は、物理ブロードキャストチャネル(PBCH)、物理制御フォーマットインジケータチャネル(PCFICH)、物理ハイブリッドARQインジケータチャネル(PHICH)、物理ダウンリンク制御チャネル(PDCCH)、または他の制御チャネルもしくは制御信号に関する場合がある。データは、物理ダウンリンク共有チャネル(PDSCH)または他のデータチャネルもしくはデータ信号に関する場合がある。送信プロセッサ420は、データおよび制御情報を処理(たとえば、符号化およびシンボルマッピング)して、それぞれ、データシンボルおよび制御シンボルを取得することができる。たとえば、送信プロセッサ420は、以下でより詳細に論じるLPDCコード設計を使用して情報ビットを符号化することができる。送信プロセッサ420は、たとえば、プライマリ同期信号(PSS)、セカンダリ同期信号(SSS)、およびセル固有基準信号(CRS)に関する基準シンボルを生成してもよい。送信(TX)多入力多出力(MIMO)プロセッサ430は、適用可能な場合、データシンボル、制御シンボル、および/または基準シンボルに対する空間処理(たとえば、プリコーディング)を実行することができ、変調器(MOD)432a〜432tに出力シンボルストリームを提供することができる。各変調器432は、(たとえば、OFDMなどのための)それぞれの出力シンボルストリームを処理して、出力サンプルストリームを取得することができる。各変調器432は、出力サンプルストリームをさらに処理(たとえば、アナログに変換、増幅フィルタ処理、およびアップコンバート)し、ダウンリンク信号を取得してもよい。変調器432a〜432tからのダウンリンク信号は、それぞれ、アンテナ434a〜434tを介して送信されてもよい。

0054

UE120において、アンテナ452a〜452rは、BS110からダウンリンク信号を受信してもよく、受信信号を、それぞれ復調器(DEMOD)454a〜454rに提供してもよい。各復調器454は、それぞれの受信信号を調整(たとえば、フィルタ処理、増幅、ダウンコンバート、およびデジタル化)し、入力サンプルを取得することができる。各復調器454は、(たとえば、OFDMなどのための)入力サンプルをさらに処理して、受信シンボルを取得することができる。MIMO検出器456は、すべての復調器454a〜454rから受信シンボルを取得し、適用可能な場合、受信シンボルに対してMIMO検出を実行し、検出されたシンボルを提供することができる。受信プロセッサ458は、検出されたシンボルを処理(たとえば、復調デインターリーブ、および復号)し、UE120のための復号されたデータをデータシンク460に提供し、復号制御情報をコントローラ/プロセッサ480に提供することができる。

0055

アップリンク上では、UE120において、送信プロセッサ464が、データソース462からの(たとえば、物理アップリンク共用チャネル(PUSCH)または他のデータチャネルもしくはデータ信号のための)データと、コントローラ/プロセッサ480からの(たとえば、物理アップリンク制御チャネル(PUCCH)または他の制御チャネルもしくは制御信号のための)制御情報とを受信し、処理することができる。送信プロセッサ464はまた、基準信号のための基準シンボルを生成することができる。送信プロセッサ464からのシンボルは、適用可能な場合、TXMIMOプロセッサ466によってプリコーディングされ、(たとえば、SC-FDM用などに)復調器454a〜454rによってさらに処理され、BS110に送信され得る。BS110において、UE120からのアップリンク信号は、アンテナ434によって受信され、変調器432によって処理され、適用可能な場合、MIMO検出器436によって検出され、受信プロセッサ438によってさらに処理されて、UE120によって送られた復号されたデータおよび制御情報を取得することができる。受信プロセッサ438は、復号データをデータシンク439に供給し、復号制御情報をコントローラ/プロセッサ440に供給することができる。

0056

メモリ442は、BS110に関するデータおよびプログラムコードを記憶することができ、メモリ482は、UE120に関するデータおよびプログラムコードを記憶することができる。スケジューラ444は、ダウンリンクおよび/またはアップリンク上でのデータ送信のためにUEをスケジュールし得る。

0057

図5は、本開示の態様による、通信プロトコルスタックを実装するための例を示す図500を示す。示された通信プロトコルスタックは、5Gシステム(たとえば、アップリンクベースのモビリティをサポートするシステム)内で動作するデバイスによって実装され得る。図500は、RRCレイヤ510、PDCPレイヤ515、RLCレイヤ520、MACレイヤ525、およびPHYレイヤ530を含む、通信プロトコルスタックを示す。一例では、プロトコルスタックのレイヤは、ソフトウェアの個別のモジュール、プロセッサもしくはASICの部分、通信リンクによって接続された非コロケートデバイスの部分、またはそれらの様々な組合せとして実装され得る。コロケート実装形態および非コロケート実装形態は、たとえば、ネットワークアクセスデバイス(たとえば、AN、CU、および/またはDU)またはUEのためのプロトコルスタックの中で使用されてよい。

0058

第1のオプション505-aは、プロトコルスタックの実装が集中ネットワークアクセスデバイス(たとえば、ANC202)と分散ネットワークアクセスデバイス(たとえば、DU208)との間で分割される、プロトコルスタックの分割実装形態を示す。第1のオプション505-aでは、RRCレイヤ510およびPDCPレイヤ515は、CUによって実装されてよく、RLCレイヤ520、MACレイヤ525、およびPHYレイヤ530は、DUによって実装されてよい。様々な例では、CUおよびDUは、コロケートされてよく、またはコロケートされなくてもよい。第1のオプション505-aは、マクロセル配置、マイクロセル配置、またはピコセル配置において有用であり得る。

0059

第2のオプション505-bは、プロトコルスタックが単一のネットワークアクセスデバイス(たとえば、アクセスノード(AN)、NBBS、NR NB、ネットワークノード(NN)、TRP、gNBなど)の中で実装される、プロトコルスタックの統合実装形態を示す。第2のオプションでは、RRCレイヤ510、PDCPレイヤ515、RLCレイヤ520、MACレイヤ525、およびPHYレイヤ530は各々、ANによって実装され得る。第2のオプション505-bは、フェムトセル配置において有用であり得る。

0060

ネットワークアクセスデバイスがプロトコルスタックの一部を実装するのかまたはプロトコルスタックの全部を実装するのかにかかわらず、UEは、全プロトコルスタック(たとえば、RRCレイヤ510、PDCPレイヤ515、RLCレイヤ520、MACレイヤ525、およびPHYレイヤ530)を実装してよい。

0061

図6は、DLセントリックサブフレーム600の一例を示す図である。DLセントリックサブフレーム600は、制御部分602を含み得る。制御部分602は、DLセントリックサブフレーム600の初期部分または開始部分中に存在し得る。制御部分602は、DLセントリックサブフレーム600の様々な部分に対応する、様々なスケジューリング情報および/または制御情報を含み得る。いくつかの構成では、制御部分602は、図6に示すように、物理DL制御チャネル(PDCCH)であり得る。DLセントリックサブフレーム600はまた、DLデータ部分604を含み得る。DLデータ部分604は、DLセントリックサブフレーム600のペイロードと呼ばれることがある。DLデータ部分604は、スケジューリングエンティティ(たとえば、UEまたはBS)から下位エンティティ(たとえば、UE)にDLデータを通信するために利用される通信リソースを含み得る。いくつかの構成では、DLデータ部分604は、物理DL共有チャネル(PDSCH)であり得る。

0062

DLセントリックサブフレーム600はまた、通常のUL部分606を含み得る。通常のUL部分606は、ULバースト、通常のULバースト、および/または様々な他の好適な用語で呼ばれることがある。通常のUL部分606は、DLセントリックサブフレーム600の様々な他の部分に対応するフィードバック情報を含み得る。たとえば、通常のUL部分606は、制御部分602に対応するフィードバック情報を含み得る。フィードバック情報の非限定的な例は、肯定応答(ACK)信号、否定応答(NACK)信号、HARQインジケータ、および/または様々な他の好適なタイプの情報を含み得る。通常のUL部分606は、追加または代替として、ランダムアクセスチャネル(RACH)手順、スケジューリング要求(SR)に関する情報、および様々な他の好適なタイプの情報などの情報を含み得る。図6に示すように、DLデータ部分604の終端は通常のUL部分606の始端から時間の点で分離され得る。この時間分離は、ギャップガード期間ガード間隔、および/または様々な他の好適な用語で呼ばれることがある。この分離は、DL通信(たとえば、下位エンティティ(たとえば、UE)による受信動作)からUL通信(たとえば、下位エンティティ(たとえば、UE)による送信)への切替えのために時間を提供する。上記は、DLセントリックサブフレームの単なる一例であり、本明細書で説明する態様から必ずしも逸脱せずに、同様の特徴を有する代替構造が存在し得る。

0063

図7は、ULセントリックサブフレーム700の一例を示す図である。ULセントリックサブフレーム700は、制御部分702を含み得る。制御部分702は、ULセントリックサブフレーム700の初期部分または開始部分中に存在し得る。図7の制御部分702は、図6を参照して上記で説明した制御部分602と同様であり得る。ULセントリックサブフレーム700はまた、ULデータ部分704を含み得る。ULデータ部分704は、ULセントリックサブフレーム700のペイロードと呼ばれることがある。ULデータ部分704は、下位エンティティ(たとえば、UE)からスケジューリングエンティティ(たとえば、UEまたはBS)にULデータを通信するために利用される通信リソースを指す場合がある。いくつかの構成では、制御部分702はPDCCHであり得る。

0064

図7に示すように、制御部分702の終端はULデータ部分704の始端から時間の点で分離され得る。この時間分離は、ギャップ、ガード期間、ガード間隔、および/または様々な他の好適な用語で呼ばれることがある。この分離は、DL通信(たとえば、スケジューリングエンティティによるによる受信動作)からUL通信(たとえば、スケジューリングエンティティによる送信)への切替えのために時間を提供する。ULセントリックサブフレーム700はまた、通常のUL部分706を含み得る。図7の通常のUL部分706は、図6を参照して上記で説明した通常のUL部分606と同様であり得る。通常のUL部分706は、追加または代替として、チャネル品質インジケータ(CQI)、サウンディング基準信号(SRS)、および様々な他の好適なタイプの情報に関する情報を含み得る。上記は、ULセントリックサブフレームの単なる一例であり、本明細書で説明する態様から必ずしも逸脱せずに、同様の特徴を有する代替構造が存在し得る。

0065

いくつかの状況では、2つ以上の下位エンティティ(たとえば、UE)はサイドリンク信号を使用して互いと通信することができる。そのようサイドリンク通信の現実世界の適用例は、公共安全、近接サービス、UE-ネットワーク中継、車両間(V2V)通信、あらゆるモノのインターネット(IoE)通信、IoT通信、ミッションクリティカルなメッシュ、および/または様々な他の好適な適用例を含み得る。一般に、サイドリンク信号は、スケジューリングおよび/または制御のためにスケジューリングエンティティが利用され得るにもかかわらず、スケジューリングエンティティ(たとえば、UEまたはBS)を通じてその通信を中継せずに、ある下位エンティティ(たとえば、UE1)から別の下位エンティティ(たとえば、UE2)に通信される信号を指す場合がある。いくつかの例では、サイドリンク信号は、(一般に、無認可スペクトルを使用するワイヤレスローカルエリアネットワーク(WLAN)とは異なり)認可スペクトルを使用して通信され得る。

0066

UEは、リソースの専用セットを使用してパイロットを送信することに関連する構成(たとえば、無線リソース制御(RRC)専用状態など)、またはリソースの共通セットを使用してパイロットを送信することに関連する構成(たとえば、RRC共通状態など)を含む、様々な無線リソース構成において動作することが可能である。RRC専用状態において動作するとき、UEは、パイロット信号をネットワークに送信するために、リソースの専用セットを選択し得る。RRC共通状態において動作するとき、UEは、パイロット信号をネットワークに送信するために、リソースの共通セットを選択し得る。いずれの場合も、UEによって送信されるパイロット信号は、ANもしくはDU、またはそれらの部分などの、1つまたは複数のネットワークアクセスデバイスによって受信され得る。各受信ネットワークアクセスデバイスは、リソースの共通セット上で送信されるパイロット信号を受信および測定するとともに、ネットワークアクセスデバイスがUEのためのネットワークアクセスデバイスの監視セットのメンバーであるUEに割り振られたリソースの専用セット上で送信されるパイロット信号も受信および測定するように構成され得る。受信ネットワークアクセスデバイスのうちの1つもしくは複数、または受信ネットワークアクセスデバイスがパイロット信号の測定値を送信する先のCUは、UE用のサービングセルを識別するために、またはUEのうちの1つもしくは複数のためのサービングセルの変更を開始するために、測定値を使用し得る。

0067

例示的な誤り訂正コーディング
多くの通信システムは誤り訂正コードを使用する。具体的には、誤り訂正コードは、データストリーム内に冗長性を取り入れることによってこれらのシステム内の情報転送固有不信頼性を補償する。低密度パリティ検査(LDPC)コードは、反復コーディングシステムを使用する特定のタイプの誤り訂正コードである。具体的には、Gallagerコードは、「正規」LDPCコードの初期の例である。正規LDPCコードは、そのパリティチェック行列の要素Hの大部分が「0」である線形ブロックコードである。

0068

LDPCコードは、2部グラフ(「Tannerグラフ」と呼ばれることが多い)によって表すことができる。2部グラフでは、変数ノードのセットは、コードワードのビット(たとえば、情報ビットまたはシステマティックビット(systematic bit))に対応し、チェックノードのセットは、そのコードを定義するパリティチェック制約のセットに対応する。グラフ内のエッジは、変数ノードをチェックノードに接続する。したがって、グラフのノードは、2つの特徴的なセットに分離され、そのエッジは2個の異なるタイプのノード、すなわち、可変およびチェックを接続する。

0069

リフトされたグラフは、プロトグラフとして知られている場合もある、2部基本グラフ(G)をある回数、すなわち、Z回(本明細書では、リフティング、リフティングサイズ、またはリフティングサイズ値と呼ばれることがある)コピーすることによって生成される。グラフ内で変数ノードおよびチェックノードが「エッジ」(すなわち、変数ノードとチェックノードを接続するライン)によって接続される場合、変数ノードおよびチェックノードは「隣接」と見なされる。加えて、2部基本グラフ(G)の各エッジ(e)に関して、GのZ個のコピーを相互接続するために、置換(一般に、エッジ置換に関連する整数値は、kによって表され、リフティング値と呼ばれる)がエッジ(e)のZ個のコピーに適用される。各チェックノードに関して、すべての隣接変数ノードに関連するビットの合計が0モジュロ2である(すなわち、それらが偶数個の1を含む)場合のみ、変数ノードシーケンスとの1対1の関連性を有するビットシーケンスは、有効なコードワードである。使用される置換(リフティング値)が巡回である場合、結果として生じるLDPCコードは準巡回(QC)であり得る。

0070

図8〜図8Aは、本開示のいくつかの実施形態による、例示的なLDPCコードのグラフィカル表現および行列表現をそれぞれ示す。たとえば、図8は、LDPCコードを表す2部グラフ800を示す。2部グラフ800は、4個のチェックノード820(正方形によって表される)に接続された5個の変数ノード810(円によって表される)のセットを含む。2部グラフ800内のエッジは、変数ノード810をチェックノード820に接続する(エッジは、変数ノード810をチェックノード820に接続するラインによって表される)。2部グラフ800は、|E|=12個のエッジによって接続された、|V|=5変数ノードおよび|C|=4チェックノードからなる。

0071

2部グラフ800は、パリティチェック行列(PCM)としても知られている場合がある、簡素化された隣接行列によって表され得る。図8Aは、2部グラフ800の行列表現800Aを示す。行列表現800Aは、パリティチェック行列Hとコードワードベクトルxとを含み、この場合、x1-x5はコードワードxのビットを表す。受信信号が普通に復号されたかどうかを判定するために、Hが使用される。Hはj個のチェックノードに対応するC個の行と、i個の変数ノードに対応するV個の列とを有し(すなわち、復調シンボル)、この場合、行は方程式を表し、列はコードワードのビットを表す。図8Aでは、行列Hは、それぞれ、4個のチェックノードおよび5個の変数ノードに対応する、4個の行と5個の列を有する。第j番目のチェックノードがエッジによって第i番目の変数ノードに接続されている(すなわち、2個のノードが隣接している)場合、パリティチェック行列Hの第i番目の列内および第j番目の行内に「1」が存在する。すなわち、第i番目の行および第j番目の列の交差部は「1」を含み、この場合、エッジは対応する頂点を結合し、「0」の場合、エッジは存在しない。Hx=0である場合のみ、たとえば、各制約ノードに関して、(変数ノードとのそれらの関連性により)その制約ノードに隣接するビットの合計が0モジュロ2(0mod2)である、すなわち、それらが偶数の「1」を含む場合のみ、コードワードベクトルxは有効なコードワードを表す。したがって、コードワードが正確に受信された場合、Hx=0(mod 2)である。コーディングされた受信信号とPCM Hの積が「0」になるとき、これは何の誤りも生じなかったことを示す。

0072

復調シンボルまたは変数ノードの数はLDPCコード長である。行(列)内の非ゼロ要素の数は行(列)重みd(c)d(v)として定義される。

0073

ノードの次数は、そのノードに接続されたエッジの数を指す。この特徴は、変数ノード810に伴うエッジの数が対応する列内の「1」の数に等しく、変数ノード次数d(v)と呼ばれる、図8Aに示した行列H内に示されている。同様に、チェックノード820に接続されたエッジの数は、対応する行内のチェックノードの数に等しく、チェックノード次数d(c)と呼ばれる。

0074

正規のグラフまたはコードは、すべての変数ノードが同じ次数jを有し、すべての制約ノードが同じ次数kを有するものである。他方で、非正規コードは、異なる次数の制約ノードおよび/または変数ノードを有する。たとえば、いくつかの変数ノードは、次数4のもの、他の変数ノードは次数3のもの、さらに他の変数ノードは次数2のものであってよい。

0075

「リフティング」は、LDPCコードが、一般に、大きいLDPCコードに関連する複雑性をやはり低減させながら、並列符号化および/または復号実装形態を使用して実装されることを可能にする。リフティングは、比較的コンパクトな記述を依然として有しながら、LDPCデコーダの効率的な並列化を可能にするのに役立つ。より具体的には、リフティングは、より小さいベースコードの複数のコピーから比較的大きいLDPCコードを生成するための技法である。たとえば、リフトされたLDPCコードは、基本グラフ(たとえば、プロトグラフ)のZ個の並列コピーを生成し、次いで、基本グラフの各コピーのエッジバンドルの置換により並列コピーを相互接続することによって生成され得る。基本グラフは、コードの(マクロ)構造を定義し、ある数(K)の情報ビット列およびある数(N)のコードビット列からなる。基本グラフをリフティングの数Zだけリフトすることは、結果として、KZの最終ブロック長をもたらす。したがって、より大きなグラフは、基本グラフの複数のコピーが作られて接続されて、単一のリフトされたグラフを形成する「コピーおよび置換」動作によって取得され得る。複数のコピーの場合、単一の基本エッジのコピーのセットである同様のエッジが置換されて接続されて、基本グラフよりもZ倍大きな接続されたグラフZを形成する。

0076

図9は、図8の2部グラフ800の3個のコピーのリフティングを示す2部グラフ900である。3個のコピーはコピー同士の間で同様のエッジを置換することによって相互接続され得る。置換が巡回置換に制限される場合、結果として生じる2部グラフ900はリフティングZ=3である準巡回LDPCに対応する。3個のコピーが作成された元のグラフは、本明細書では基本グラフと呼ばれる。異なるサイズのグラフを取得するために、「コピーおよび置換」動作を基本グラフに適用することができる。

0077

ベースパリティチェック行列内の各エントリをZxZ行列と置換することによって、リフトされたグラフの対応するパリティチェック行列を基本グラフのパリティチェック行列から構築することができる。「0」エントリ(基本エッジを有さないエントリ)は0行列と置換され、1エントリ(基本エッジを示す)はZxZ置換行列と置換される。巡回リフティングの場合、置換は巡回置換である。

0078

巡回リフトされたLDPCコードは、バイナリ多項式モジュロxz+1のリング上のコードと解釈することもできる。この解釈では、バイナリ多項式(x)=b0+b1x+b2x2+…+bz-1xz-1は、基本グラフ内の各変数ノードに関連付けられ得る。バイナリベクトル(b0,b1,b2,…,bz-1)は、リフトされたグラフ内のZ個の対応する変数ノード、すなわち、単一の基本変数ノードのZ個のコピーに関連するビットに対応する。バイナリベクトルのk(グラフ内のエッジに関連するリフティング値と呼ばれる)による巡回置換は、対応するバイナリ多項式をxkで乗算することによって達成され、この場合、乗算はモジュロxz+1をとる。基本グラフ内の次数dのパリティチェックは、隣接のバイナリ多項式B1(x),…,Bd(x)に対する線形制約と解釈することができ、



と書かれ、値k1,…,kdは、対応するエッジに関連する巡回リフティング値である。

0079

結果的に生じるこの式は、基本グラフ内の単一の関連するパリティチェックに対応する巡回リフトされたTannerグラフ内のZ個のパリティチェックに等しい。したがって、リフトされたグラフに関するパリティチェック行列は、1のエントリがxkの形の名目値と置換され、0のエントリが0としてリフトされる、基本グラフに関する行列を使用して表現可能であるが、ここで、0は、0バイナリ多項式モジュロxz+1と解釈される。そのような行列は、xkの代わりに値kを与えることによって書き込まれる。この場合、0の多項式は「-1」と表現されることがあり、それをx0と区別するために、別の記号として表現されることもある。

0080

一般に、パリティチェック行列の正方部分行列はコードのパリティビットを表す。相補列は、符号化の時点で、符号化されるべき情報ビットに等しく設定された情報ビットに対応する。符号化は、パリティチェック方程式を満たすために、前述の正方部分行列内の変数を求めることによって達成され得る。パリティチェック行列Hは、2つの部分MおよびNに区分することができ、この場合、Mは正方部分である。したがって、符号化はMc=s=Ndを求めることに帰着し、この場合、cおよびdはxを含む。準巡回コードまたは巡回リフトされたコードの場合、上記の代数はバイナリ多項式モジュロxz+1のリングに関する解釈され得る。準巡回である802.11LDPCコードの場合、符号化部分行列Mは、図10に示すように整数表現を有する。

0081

受信LDPCコードワードを復号して、元のコードワードの再構築バージョンを生成することができる。誤りがない場合、または訂正可能な誤りの場合、復号を使用して、符号化された元のデータユニットを復元することができる。デコーダは、冗長ビットを使用して、ビット誤りを検出および訂正することができる。LDPCデコーダは、概して、局所計算を反復的に実行して、エッジとともに、2部グラフ800内のメッセージを交換して、着信メッセージに基づいてノードにおいて計算を実行することでこれらのメッセージを更新することによって、それらの結果を通すことによって動作する。これらのステップは、一般に、数回繰り返されてよく、メッセージパッシングステップと呼ばれることがある。たとえば、グラフ800内の各変数ノード810に、通信チャネルからの観測によって判定された関連ビットの値の推定を示す「ソフトビット」(たとえば、コードワードの受信ビットを表す)を最初に提供することができる。これらのソフトビットを使用して、LDPCデコーダは、それら、またはそれらのいくつかの部分をメモリから反復的に読み取り更新メッセージ、またはそれらのいくつかの部分をメモリに再度書き込むことによって、メッセージを更新することができる。更新動作は、一般に、対応するLDPCコードのパリティチェック制約に基づく。リフトされたLDPCコードに対する実装形態では、同様のエッジ上のメッセージは並列で処理されることが多い。

0082

高速アプリケーション用に設計されたLDPCコードは、符号化動作および復号動作において高い並列性をサポートするために、大きいリフティング係数と比較的小さい基本グラフとを用いた準巡回構成を使用することが多い。より高いコードレート(たとえば、コードワード長に対するメッセージ長比率)を有するLDPCコードは、比較的少ないパリティチェックを有する傾向がある。ベースパリティチェックの数が変数ノードの次数(たとえば、変数ノードに接続されたエッジの数)よりも小さい場合、基本グラフ内で、変数ノードは、2個以上のエッジによってベースパリティチェックのうちの少なくとも1つに接続される(たとえば、変数ノードは「ダブルエッジ」を有し得る)。ベースパリティチェックの数が変数ノードの次数(たとえば、変数ノードに接続されたエッジの数)よりも小さい場合、基本グラフ内で、変数ノードは、2個以上のエッジによってベースパリティチェックのうちの少なくとも1つに接続される。2個以上のエッジによって接続されたベース変数ノードおよびベースチェックノードを有することは、概して、並列ハードウェア実装のためには望ましくない。たとえば、そのようなダブルエッジは、同じメモリロケーションに対して複数の同時読取り動作および書込み動作を生じさせる可能性があり、これは、データコヒーレンシ問題を生み出す可能性がある。ベースLDPCコード内のダブルエッジは、単一の並列パリティチェック更新の間に、メモリロケーション内の同じソフトビット値並列読取りを2度トリガし得る。したがって、両方の更新を適切に組み込むことができるように、メモリに再度書き込まれるソフトビット値を組み合わせるために、一般に、追加の回路が必要とされる。LDPCコード内のダブルエッジの除去することは、この過剰な複雑性の回避に役立つ。

0083

巡回リフティングに基づくLDPCコード設計は、多項式モジュロのリング上のコードがバイナリ多項式モジュロxZ+1であり得ると解釈することができ、式中、Zはリフティングサイズ(たとえば、準巡回コード内のサイクルのサイズ)である。したがって、そのようなコードの符号化は、しばしば、このリング内の代数的演算として解釈され得る。

0084

標準的な非正規LDPCコードアンサンブル(次数分布)の定義では、Tannarグラフ表現内のすべてのエッジは統計的に相互交換可能であり得る。言い換えれば、単一の統計的同値類エッジが存在する。リフトされたLDPCコードのより詳細な議論は、たとえば、Tom RichardsonおよびRuediger Urbankeによる、2008年3月17日に出版された「Modern Coding Theory」という表題書籍見出すことができる。マルチエッジLDPCコードの場合、複数の同値類エッジが可能であり得る。標準的な非正規LDPCアンサンブル定義では、グラフ内のノード(可変と制約の両方)は、エッジ次数がベクトルであるマルチエッジタイプ設定では、それらの次数、すなわち、それらのノードが接続されるエッジの数によって指定されるが、その次数は、各エッジ同値類(タイプ)からのノードに独立して接続されたエッジの数を指定する。マルチエッジタイプアンサンブルは、有限数のエッジタイプからなる。制約ノードの次数タイプは、(非負)整数のベクトルであり、このベクトルの第i番目のエントリは、そのようなノードに接続された第i番目のタイプのソケットの数を記録する。このベクトルは、エッジ次数と呼ばれることがある。変数ノードの次数タイプは、(非負)整数のベクトルと見なされ得るが、この次数タイプは2つの部分を有する。第1の部分は、受信分布に関し、受信次数と呼ばれることになり、第2の部分はエッジ次数を指定する。エッジ次数は、制約ノードに関するのと同じ役割を果たす。エッジは、それらが同じタイプのソケットをペアリングするとして分類される。ソケットは同様のタイプのソケットとペアリングすべきであるという制約は、マルチエッジタイプ概念を特徴づける。マルチエッジタイプ記述では、異なるノードタイプは異なる受信分布を有し得る(たとえば、関連するビットは異なるチャネルを通過し得る)。

0085

パンクチャリングは、より短いコードワードを生み出すために、コードワードからビットを除去する行為である。したがって、パンクチャリングされた変数ノードは、実際に送信されていないコードワードビットに対応する。LDPCコード内の変数ノードのパンクチャリングは、チェックノードをやはり効果的に除去すると同時に、(たとえば、ビットの除去により)短縮コードを生成する。具体的には、パンクチャリングされるべき変数ノードが1の次数を有する、パンクチャリングされるべきビットを含む、LDPCコードの行列表現(そのような表現は、コードが適切であることを条件に行結合によって可能であり得る)の場合、変数ノードのパンクチャリングは、コードから関連ビットを除去し、グラフからその単一の隣接チェックノードを効果的に除去する。結果として、グラフ内のチェックノードの数は1だけ低減される。

0086

図11は、本開示のいくつかの態様による、エンコーダを示す簡素化ブロック図である。図11は、ワイヤレス送信のための符号化メッセージを含む信号を提供するように構成され得る無線周波数(RF)モデム1150の一部分を示す簡素化ブロック図1100である。一例では、BS110(または、逆経路上のUE120)内の畳み込みエンコーダ1102は送信のためのメッセージ1120を受信する。メッセージ1120は、受信デバイス向けのデータおよび/もしくは符号化音声または他のコンテンツを含み得る。エンコーダ1102は、一般に、BS110または別のネットワークエンティティによって定義された構成に基づいて選択された好適な変調およびコーディング方式(MCS)を使用してメッセージを符号化する。エンコーダ1102によって生成される符号化ビットストリーム1122は、次いで、別個のデバイスもしくは構成要素であってよく、またはエンコーダ1102と一体型であってもよいパンクチャリングモジュール1104によって選択的にパンクチャされ得る。パンクチャリングモジュール1104は、ビットストリームが、送信に先立ってパンクチャされるべきか、またはパンクチャリングなしで送信されるべきかを判定することができる。ビットストリーム1122をパンクチャする判定は、ネットワーク条件ネットワーク構成、RAN定義された選好に基づいて、かつ/または他の理由で行われ得る。ビットストリーム1122は、パンクチャリングパターン1112に従ってパンクチャされ、メッセージ1120を符号化するために使用され得る。パンクチャリングパターン1112は、以下でより詳細に説明するように。LDPCコード設計に基づき得る。パンクチャリングモジュール1104は、Txシンボル1126のシーケンスを生成するマッパ1106に出力1124を提供し、Txシンボル1126のシーケンスは、Txチェーン1108によって変調され、増幅され、さもなければ処理され、アンテナ1110を通して送信するためのRF信号1128が生成される。

0087

モデム部分1150がビットストリーム1122をパンクチャするように構成されるかどうかに応じて、パンクチャリングモジュール1104の出力1124は、非パンクチャリングされたビットストリーム1122、またはビットストリーム1122のパンクチャリングされたバージョンであってよい。一例では、パリティおよび/または他の誤り訂正ビットは、RFチャネルの限定された帯域幅内でメッセージ1120を送信するために、エンコーダ1102の出力1124内でパンクチャされ得る。別の例では、ビットストリーム1122は、干渉を回避するために、または他のネットワーク関連の理由で、メッセージ1120を送信するために必要とされる電力を低減するためにパンクチャされ得る。これらのパンクチャリングされたコードワードビットは送信されない。

0088

デコーダおよびLDPCコードワードを復号するために使用される復号アルゴリズムは、エッジとともにグラフ内のメッセージを交換して、着信メッセージに基づいてノードにおいて計算を実行することでこれらのメッセージを更新することによって動作する。グラフ内の各変数ノードに、たとえば、通信チャネルからの観測によって判定された関連ビットの値の推定を示す、受信値と呼ばれるソフトビットを最初に提供することができる。理想的には、別個のビットに関する推定値は統計的に独立している。この理想は、実際にはそむかれる。受信ワードは、受信値の収集物からなる。

0089

図12は、本開示のいくつかの態様によるデコーダを示す簡素化ブロック図である。図12は、パンクチャリングされた符号化メッセージを含む、ワイヤレスに送信された信号を受信および復号するように構成され得るRFモデム1250の一部分を示す簡素化概略図1200である。パンクチャコードワードビットは消去されるとして扱われてよい。たとえば、パンクチャリングされたノードのLLRは初期化において「0」に設定され得る。デパンクチャリングはまた、短縮ビットの短縮解除を含み得る。これらの短縮ビットは、送信内に含まれず、受信機において、短縮ビットは、一般に「0」に設定される、知られているビットとして扱われ、LLRの大きさが最大可能値に設定されることを可能にする。様々な例では、信号を受信するモデム1250は、アクセス端末(たとえば、UE120)に、基地局(たとえば、BS110)に、または説明する機能を実行するための任意の他の適切な装置もしくは手段に存在し得る。アンテナ1202はRF信号1220を受信機に提供する。RFチェーン1204は、RF信号1220を処理および復調し、シンボル1222のシーケンスをデマッパ1206に提供することができ、デマッパ1206は符号化メッセージ(たとえば、メッセージ1120)を表すビットストリーム1224を生成する。

0090

デマッパ1206はデパンクチャリングされたビットストリーム1224を提供することができる。一例では、デマッパ1206は、パンクチャリングされたビットが送信機によって削除されたビットストリーム内のロケーションにヌル値を挿入するように構成され得るデパンクチャリングモジュールを含み得る。送信機においてパンクチャリングされたビットストリームを生成するために使用されるパンクチャパターン1210が知られているとき、デパンクチャリングモジュールを使用することができる。パンクチャパターン1210を使用して、畳み込みデコーダ1208によってビットストリーム1224の復号の間に無視され得るLLR1228を識別することができる。LLRはビットストリーム1224内のデパンクチャビットロケーションのセットに関連付けられ得る。したがって、デコーダ1208は、識別されたLLR828を無視することによって処理オーバーヘッドを低減させて復号メッセージ1226を生成することができる。LDPCデコーダは、パリティチェック動作または変数ノード動作を並列で実行するための複数の処理要素を含み得る。たとえば、リフティングサイズZでコードワードを処理するとき、LDPCデコーダは、いくつか(Z個)の処理要素を利用して、リフトされたグラフのすべてのエッジ上でパリティチェック動作を同時に実行することができる。

0091

デコーダ1208の処理効率は、パンクチャリングされたビットストリーム1222内で送信されたメッセージ内のパンクチャリングされたビットに対応するLLR1228を無視するようにデコーダ1208を構成することによって改善され得る。パンクチャリングされたビットストリーム1222は、符号化メッセージから除去されるべきいくつかのビットを定義するパンクチャリング方式に従ってパンクチャされている場合がある。一例では、いくつかのパリティビットまたは他の誤り訂正ビットを除去することができる。パンクチャリングパターンは、各メッセージ内のパンクチャされるべきビットのロケーションを識別するパンクチャリング行列またはパンクチャリング表の形で表現され得る。通信チャネル上のデータレートおよび/またはネットワークによって設定された送信電力制限準拠したままでありながら、メッセージ1226を復号するために使用される処理オーバーヘッドを低減させるためのパンクチャリング方式を選択することができる。結果として生じるパンクチャリングされたビットストリームは、一般に、高レートの誤り訂正コードの誤り訂正特性を示すが、冗長性はより小さい。したがって、チャネル条件雑音比(SNR)に対して比較的高い信号を生成するとき、受信機内のデコーダ1208における処理オーバーヘッドを低減させるためにパンクチャリングを効果的に採用することができる。

0092

いくつのビットがパンクチャされているかにかかわらず、受信機において、パンクチャリングされたビットストリームを復号するために、非パンクチャリングされたビットストリームを復号するために使用される同じデコーダを一般に使用することができる。従来の受信機では、一般に、パンクチャリングされた状態またはパンクチャリングされた位置に関するLLR(デパンクチャリングされたLLR)をゼロで充填することによって復号が試みられる前に、LLR情報がデパンクチャされる。デコーダは、何のビットがパンクチャリングされているかに部分的に基づいて、何の情報も効果的に搬送しないデパンクチャリングされたLLRを無視することができる。デコーダは、短縮ビットを(たとえば、「0」に設定された)知られているビットとして扱うことができる。

0093

例示的な高性能、フレキシブル、かつコンパクトな低密度パリティ検査(LDPC)コード
本開示のいくつかの態様は、高性能を与え、フレキシブル、かつコンパクトな低密度パリティ検査(LDPC)コード設計を提供する。以下でより詳細に説明するように、LDPCコードは、ファインインクリメンタル冗長ハイブリッド自動再送要求(IR-HARQ)拡張が可能であり、良好なエラーフロア性能、高いスループット性能に対するハイレベルの並列性、および低い記述複雑性を維持しながら、広範囲のコードレート、ブロック長、および粒度のために使用され得る。

0094

LDPCコードを効率的にリフトするための例示的な独立クラスタリング方式
ワイヤレス通信システム(たとえば、ワイヤレス通信システム100)では、たとえば、使用されるべき様々な範囲のブロック長および/またはコードレートに対して、エラー訂正コード(たとえば、LDPCコード)のセットが使用され得る。記述の実装およびコンパクト性の点で効率を高めるために、コードのセットが関係づけられることが望ましい。

0095

図9に関して上記で説明したように、リフトされたLDPCコードを提供するために、基本グラフまたはパリティチェック行列(PCM)(K個の情報ビット列およびN個の総送信ビット列を有する)をコピーすることができ、任意の置換を各エッジバンドルに適用して、それらのコピーを相互接続することができる。実際的なコードは、巡回置換または循環置換行列を使用して、リフトされた基本グラフのコピーを相互接続し、結果として、ハードウェアにおける実装がより容易であり得る、準巡回コードをもたらす。一例として、リフティング値Zの場合、ベースPCM内の各エッジは、範囲[0,Z-1]内の整数リフティング値kに関連し得る。関連する整数は、その整数による単位行列巡回シフトを表す。ビット列およびチェックノードに対するエントリを示すベースPCMに関する表を使用することができる。各エントリは、変数ノードとチェックノードとの間のエッジに関連する整数値によって巡回シフトされた単位行列である循環行列に対応する。ベース変数ノードとベースチェックノードとの間にエッジが存在しないとき、エントリ「.」が使用され得る。

0096

変更なしに基本グラフが再使用されるとき、(K/Nによって与えられる)コードレートは(リフティングの数または基本グラフのコピーの数に対応する)すべてのリフティングZに関して同じである。異なるリフティング値を使用することは、(KZによって与えられる)ある範囲のブロック長を達成するためにコードのセット(たとえば、コードファミリー)を提供し得る。したがって、変更されていない基本グラフに関して異なるリフティング値を使用することは、同様のコードレートを有するが、異なるブロック長に関する、コードのセットを達成し得る。異なるコードレートに関して、異なる基本グラフが使用され得る。

0097

コードレートの範囲および/またはブロック長に対するコードのセット(たとえば、コードファミリー)を生成/記述するためにコードファミリーを設計する1つの方法は、各コードレートおよび各リフト値に対して異なるベースPCMを設計することである。たとえば、802.11nでは、(27, 54, 81)のリフト値に対応する、4個のコードレート(1/2、2/3、3/4、5/6)および3個のブロック長(648、1296、1944)が存在する。各「タプル」(すなわち、コードレートとリフト値の各対)に関してサイズ24ビット列の一意のベースPCMが存在し、結果として、(たとえばコードレートおよびリフト値の組合せ(1/2, 27)、(1/2, 54)、(1/2, 81)、…(5/6, 81)に関して)12個のベースPCMをもたらす。したがって、大きなZの場合、リフティングZとリフティング値Kのセットは大きな記述複雑性をもたらし得る。

0098

リフティングのセットを効率的に記述/生成するための技法が望ましい。

0099

単一のパリティ行列に関するリフティングのセットは、値の点で互いに間隔が密な増大された一連のリフティングとして効率的に記述され得る。これは、リフティングが、ビットの共通セットを有する狭い範囲内で指定されることを可能にし、コンパクトな記述および良好な性能を可能にする。

0100

図13は、本開示のいくつかの態様による、基本グラフ構造を使用してコードワードを符号化および送信するための例示的な動作1300を示す流れ図である。動作1300は、たとえば、送信機/エンコーダデバイス(たとえば、BS110またはUE120)によって実行され得る。動作1300は、1302において、基底行列を判定することによって開始する。基底行列は、リフティングサイズ値のクラスタに関連する。1304において、送信機デバイスは、基底行列内のエッジの置換によってリフトされたLDPCコードを生成するために、リフティングサイズ値Zを選択する。リフティングサイズ値のクラスタ内のリフティングサイズ値は、互いの定義された範囲内である。1306において、送信機デバイスは、基底行列および選択されたリフティングサイズ値に少なくとも部分的に基づいて、リフトされた行列を生成する。1308において、送信機デバイスは、生成されたリフトされた行列を使用して、リフトされたLDPCコードを生成する。1310において、送信機デバイスは、コードワードを生成するために、リフトされたLDPCコードに基づいて情報ビットのセットを符号化する。1312において、送信機デバイスは、ワイヤレス媒体を介してコードワードを送信する。

0101

本開示の態様によれば、LDPCコードのファミリーを取得するための、単一の基本グラフまたはPCMに関するリフティングZのセットは、コンパクトな記述のために値の点で互いに近いリフティング値を使用して記述され(たとえば、判定され/生成され)得る。

0102

LDPCコードのファミリーは、本明細書でリフティングの「タワー」と呼ばれることがある、リフティング値Z1、Z2、…、Znを用いた増大された一連のリフティングとともに基本グラフを使用して取得され得る。クラスタは、互いの定義された範囲内であるメンバーを含む。たとえば、クラスタのメンバーは、互いの一定の比率内であり得る。場合によっては、クラスタのメンバーの値は、互いの2の比率内であり得る。

0103

クラスタの一例は、7/4の最大比率を有するリフティング値のセット{4, 5, 6, 7}である。タワーは、2の冪など、指数冪(exponential power)を整数に施すことによって取得され得る。したがって、クラスタ化されたリフティングのタワーは、j=1,…,7の場合、整数2j{4,5,6,7}からなる。これは、Zに関する28個の値のほぼ指数関数的に離間したセットを与える。言い換えれば、これは、タワーZ1、Z2、…、Z28=8(21*4)、10、12、14、…、896(27*7)を与える。固定されたjの場合、4個のリフティング値は、互いの7/4の因数内であり、リフティング値のクラスタを形成し得る。j=1、...、7の場合、クラスタ化されたリフティングのタワーは、2j{4,5,6,7}として表すことができる。この例は、クラスタ化されたとして2の因数内のリフトのセットを含むが、他の因数(たとえば、3、4、…、など)が使用され得る。これらの因数は連続的でなくてよいが、数値的に互いの定義された範囲内にあるべきである。

0104

いくつかの態様によれば、クラスタ化されたリフティングのセット内の任意のリフティングサイズZの場合、クラスタ化されたリフティングのセット内の他のリフティングのいずれかに対するエッジ置換に対して関連する整数リフティング値kを使用することができる。たとえば、リフティング値は、2j{5,6,7}に対しても有効であるZ=2j4に対して設計され得る。したがって、LDPCコードのファミリーを記述すること(たとえば、判定すること/生成すること/示すこと/記憶すること)は、互いの因数(たとえば、因数2または3)内など、互いと近いクラスタ化された(基本グラフ内のエッジに関連する)リフト値のセットを識別することによって実施され得る。上記の例では、これは、リフティング値のセット{4,5,6,7}、および互いの2の因数内である、リフティングのタワーの他のセット{16,20,24,28}、{32,40,48,56}、…{512,640,768,896}を識別することに対応する。リフティングの各クラスタ化されたセットに関して、クラスタ内の最小リフト値(たとえば、Z=8)に関するベースPCMを最適化することができる。その最適化されたベースPCMをそのクラスタ内の他のリフト値(たとえば、Z=10、Z=12、Z=14)に対して使用することができる。同様に、クラスタ化されたリフティングの他のセットに関して最適化されたベースPCMを判定することができる。

0105

これにより、互いの定義された範囲内のリフティングがビットの共通セットを有する他のリフティングに関して指定(たとえば、記憶され/示され)得る。たとえば、リフティング値ごとにj+2ビットを使用して、クラスタ内の4つの述べたリフティング2j{4,5,6,7}に対するすべてのリフトを指定することができる。

0106

これらのリフティングは、追加のビットを有することによってさらに改善され得る。たとえば、エッジ上のリフティング値kを表すためにj+3ビット使用し、2j{4,5,6,7}内のZに関してj+3ビット値モジュロZを利用することによってリフティングを定義することは、結果として、j+2より低次のビットおよびより高次のビットが他の3個のリフティングのみに影響を与えることによって、Z=2j*4に対するリフティングをもたらす。より高次のビットを同様に使用することができる。この例は、互いの因数内のリフティング範囲を表し、すべてj+2(または、より若干大きな)ビットを使用して指定される。しかしながら、因数が数値的に互いの定義された範囲内にある限り、他の因数を使用することができる。

0107

概して、リフトおよびグラフの最適化は、LDPCコードのTannerグラフ内の小型ループの数を低減することを目標とする。リフトされたTannerグラフ内のループは、ループを基本グラフ上に投影することによる基本グラフ内のループに対応する。追加の最適化は、ループ内のノードの次数を考慮に入れることができる。整合されたリフトされたグラフ(たとえば、巡回リフトされたグラフ)の場合、基本グラフ内のループはまた、ループ内でトラバースするリフティング値が恒等置換に簡約化するときにまさにリフトされたTannerグラフのループである。

0108

いくつかの態様によれば、リフティングを表すためにj+3ビット使用し、2j{4,5,6,7}内のZに対してj+3ビット値モジュロZを利用することによってリフティングを定義することは、結果として、j+2より低次のビットおよびより高次のビットが他の3個のリフティングのみに影響を与えることによって、Z=2j4に対するリフティングをもたらす。

0109

クラスタ化されたリフティングのセットに対する基本グラフの最適化の場合、範囲[0,(2j*4)-1]内のリフティング値を選択することができる。言い換えれば、クラスタ化されたリフティングのセット内の最小リフティングサイズよりも小さい範囲からリフティング値を選択することができる。したがって、本明細書で説明する例では、j=1に対して、クラスタ化されたリフティングのタワーの場合、範囲[0:7]からリフティングサイズ値を選択することができる。

0110

巡回リフトされたグラフの場合、基本グラフ内の各エッジはリフティング値として関連する整数を有する。値は、エッジが変数対チェック方向にトラバースするとき正と見なされ、チェック対変数方向にトラバースするとき負と見なされる。基本グラフ内のループおよびリフティングサイズZを鑑みて、対応する整数のループ和(loop sum)が0であるかまたは因数としてZを有する場合、ベースループはまた、リフトされたループになる。したがって、リフティング値に対して範囲[0,2j4]内で整数値を選定するとき、Z=2j4に対する目標は、和が0になることまたはループ和において2j4の因数を有することを回避することである。小型ループの場合、和は、一般に、大きくならず、したがって、概して、大きさの和が2*2j4または3*2j4である場合よりも、大きさの和が2j4である場合にそのようなループがより多く存在する。同様に、平均して、大きさの和2j{5, 6, 7}およびその倍数頻度はより低い。したがって、小型ループ回避設計問題は、範囲[0:2j 4]内のリフト値がZ=2j{5,6,7}の場合に利用可能な範囲の半分を超える範囲を使用する、これらの密に関係する値と同様である。はるかに大きなZの場合、使用される部分はより小さくなり、大きなZに関して利用可能な最高性能とリフティングをより小さなZに制限することによって達成可能な最高性能との間により大きなギャップが存在し得る。したがって、比較的小さな範囲の(たとえば、2の因数内の)Z値に対してこの手法を適用することが賢明である。したがって、4個の値に対して良好な性能を同時に与えるリフト値を見出すことは可能である。

0111

j=1、…、7の場合、各jに関するビットの独立したセットとともに数値的に定義された範囲内にあるリフティングの範囲を利用することによって、リフティングのすべてを指定するために必要とされるビットの数は、エッジごとに3+4+5+6+7+8+9=42ビットである。jの異なる値同士の間に依存性を生み出すことによって、この要件はさらに低減され得る。加えて、多くの場合、構造化LDPCグラフはそのリフティング値が直接的に判定され得る特殊なエッジを有することになる。たとえば、次数1の変数ノードを接続するエッジは、常に、リフティング値0を有し得る。符号化構造で累積チェーン上のエッジはやはり、多くの場合、0に設定される。そのような固定されたリフティング構造は、リフティングが変化するにつれて変化しない場合があり、特殊な不変構造を有すると言われることがある。そのようなエッジに関するリフティング値は、よりコンパクトに表すことができる。しかしながら、そのような特殊な不変構造を有するエッジの数は、グラフ内のエッジの総数のごく一部であり、特殊な不変構造を有さないエッジに対して上記の方法の恩恵をあまり損ねない。

0112

LDPCコードを効率的にリフトするための例示的なネスト型方式
上記で説明したように、リフティングのクラスタ化されたセット(たとえば、リフティングの「タワー」)内のリフティングは、同じリフティング値(エッジ置換に関連する整数)を使用してよく、したがって、リフティングおよびリフティング値のすべてを指定するために使用されるビットの数を低減し得る。このサイズ低減は、LDPCコードのすべての記述を記憶するためのメモリの量を低減させることを可能にし得る。

0113

本開示の態様によれば、ベースPCM内のエッジごとのビットの数をさらに低減する、LDPCコードを効率的にリフトするためのネスト方式を使用することができる。

0114

異なるj値(たとえば、異なるクラスタ化されたセット内のリフティング)に関してすら、すべてのリフティングは同じ基本グラフに基づくため、小さなj値に関して(すなわち、クラスタ化されたリフティングの対応するセット内のリフティングに関して)機能することが見出された構造をスケーリングして、より大きなj値に関して(すなわち、別のセット内のより大きなリフティングに関して)再使用することができる。たとえば、より小さなjに関して見出された最適化されたビットを再使用するために、より小さなjに関して最適化された構造を保持して、より大きなjに関してスケーリングすることができる。

0115

図14は、本開示のいくつかの態様による、基本グラフ構造を使用してコードワードを符号化および送信するための例示的な動作1400を示す流れ図である。動作1400は、たとえば、送信機/エンコーダデバイス(たとえば、BS110またはUE120など)によって実行され得る。動作1400は、1402において、基底行列を判定することによって開始する。基底行列は、リフティングサイズ値のクラスタに関連する。1404において、送信デバイスは、基底行列内のエッジの置換によってリフトされた低密度パリティ検査(LDPC)コードを生成するために、リフティングサイズのクラスタから第1のリフティングサイズ値Zを選択する。リフティングサイズ値のクラスタ内のリフティングサイズ値は、互いの定義された範囲内である。1406において、送信デバイスは、基底行列および選択された第1のリフティングサイズ値に少なくとも部分的に基づいて、第1のリフトされた行列を生成する。1408において、送信デバイスは、選択された第1のリフティングサイズ値に関連するビットのセットを選択する。1410において、送信デバイスは、リフティングサイズ値のクラスタから第2のリフティングサイズ値を選択する。1412において、送信デバイスは、基底行列、第2の選択されたリフティングサイズ値、およびビットのセットに少なくとも部分的に基づいて、第2のリフトされた行列を生成する。1414において、送信デバイスは、生成された第2のリフトされた行列を使用して、リフトされたLDPCコードを生成する。1416において、送信デバイスは、コードワードを生成するために、リフトされたLDPCコードに基づいて情報ビットのセットを符号化する。1418において、送信デバイスはコードワードを送信する。上記で説明した例では、j=1の場合、クラスタ化されたリフティングのセットZ={8,10,12,14}は、範囲[0,1,2,…7]内のリフティング値を使用して設計され得る。いくつかの態様によれば、j=1のグラフに関して選択されるリフティング値を、2で乗算し、j=2のグラフに関して使用することができ、ここで、クラスタ化されたリフティングのセットはZ={16,20,24,28}である。この場合、より大きなリフトされたグラフ(j=2の場合)が継承し、より小さなグラフのループ構造を改善するが、これは、リフティング2Zに関するより大きなブラフがリフティングZを有する元のより小さなグラフの2個の並列コピーからなるためである。より小さなグラフはループが加算されてZの因数になるのを回避するように設計されるため、より小さいグラフはループが加算されて2Zの因数になることも回避する。j=1およびj=2は、単なる例示である。態様では、より大きなクラスタ化されたリフティングの別のセットに関してクラスタ化されたリフティングの任意のセットに関するリフティング値を使用することができ、リフティング値に、リフティングの2つのセットのリフティングサイズの差分の係数を乗じることができる。

0116

リフティング内の最低次ビットを変更することによって、より大きなグラフのさらなる最適化を達成することができる。たとえば、2による乗算の後で、すべてのリフティングは、それらの最低次ビットを0に設定させることになる。より一般的には、考えられる最高性能を達成するために、単なる最低次ビットを上回るビットを変更することができる。たとえば、2個または3個の最下位ビットを変更することができる。概して、3個の最下位ビットを最適化することは、結果として、ほぼ最適な性能をもたらす。これは、(2で乗算することによって)それに応じてスケールアップされた、リフティング(最上位)ビットの大規模属性を保ち、次いで、細部(より低次のビット)を微細化して、クラスタ化されたリフティングの次のセットに対する基本グラフに対する最適なソリューションを見出す。

0117

一例では、3個の最低次ビットを再度最適化することができる。クラスタ化されたリフティングのセットj=1に関して、エッジごとに3ビットの最適化されたリフトを取得することができる。ベース2(base 2)内の基本グラフ内のエッジに関する(たとえば、セットj=1内の最小リフティングに関する)リフティング値が、a、y、およびz(すなわち、3ビット)である(すなわち、a、y、およびzの各々が0または1の整数値である)場合、クラスタ化されたリフティングのセットj=2に対する基本グラフに関して、同じエッジはa、b、w、x,のリフティング値(すなわち、1ビットがj=1ファミリーからコピーされた4ビット)を有し、クラスタ化されたリフティングのセットj=3に対する基本グラフにおいて、エッジは、リフティング値a、b、c、u、v(2ビットがj=2ファミリーからコピーされた5ビット)を有する、等々である。したがって、クラスタ化されたリフティングのセットj=7に対する基本グラフにおいて、エッジは、リフティング値a、b、c、d、e、f、g、r、s(すなわち、7ビットがj=6ファミリーからコピーされた9ビット)を有することになり、クラスタ化されたリフティングのより小さなセットjに関してビットa、b、c、d、e、f、gが再使用され、ビットrおよびsはj=7に対して一意である。クラスタ化されたリフティングのセットに対する基本グラフは、j個の共通ビットおよび2個の一意ビットを使用する。したがって、ファミリーj=1…7のすべてに対して、すべての7個のコードファミリーを記述するための合計21ビットに対して、合計で7個の共通ビットおよび14個の一意ビット(すなわち、各jに対して2個の一意ビット)が存在する。これは、LDPCコードのファミリーを記述するための「ネスト型」方式と呼ばれる。2個の最低次ビットのみが再度最適化される場合、合計で14ビットのみが必要とされることになる。いくつかの例では、LSBではなく、最上位ビット(MSB)または連続ビットのいずれかのサブセットを共通ビットとして使用することができる。両方の事例が42ビットの独立事例にかなりの改善を提供する。

0118

上記で論じたように、いくつかの構造化LDPCグラフは、特殊な不変構造を有する場合があり、たとえば、いくつかの特殊エッジは不変であるリフティングを有し得る。たとえば、802.11符号化構造は、値0および1のリフティングを使用する。この構造が保持される場合、より低次のビットのうちの少なくとも2つが最適化されるときのみ、構造は、より低次のビットの上記の最適化に一致する。これは2x1=2であるためであり、したがって、最低次ビットのみが最適化される場合、値1に達することはできないが、これは2および3のみが可能な値であるためである。この場合、1のリフティング値を保持することが好ましい場合がある。異なるjを通して低次ビットが保持され、より高次のビットが再度最適化される、同様の技法を使用することができる。概して、良好な性能を達成するために、より小さなjからのいくつかのビットを再使用して、最適化のために十分なビットを残しながら、より大きなjに関する値を定義することができる。

0119

LDPCコードの例示的なコンパクトに記述されたファミリー
上記で説明したように、リフティング値およびクラスタ化されたLDPCコードのセットに関するリフティングの大きな収集をコンパクトに記述すること(たとえば、表すこと/生成すること/判定すること/記憶すること)ができる。所与の基本グラフに関して、これは、大きな範囲のブロック長を取得するコンパクトな方法を提供する。しかしながら、多くの異なるコードレートをやはりサポートすることが望ましい場合があり、これは、多くの異なる基本グラフを必要とし得る。加えて、ブロック長の粒度は指数関数的である。実際に、ブロック長内のより細かな粒度が望ましい場合がある。パンクチャリングおよび短縮によって、より細かな粒度を達成することができ、したがって、コーディングシステムの高性能を確実にするために、パンクチャリングおよび/または短縮を考慮した適切なコード設計が望ましい場合がある。HARQ拡張(たとえば、IR-HARQ拡張)を用いてLDPCコードを設計することができる。したがって、基本グラフ構造は、HARQシーケンス内の第1の送信のために使用され得る最高レートから一部の最低サポートレートまでのコードレートの範囲をサポートし得る。

0120

本開示の態様は、幅広いブロックサイズにわたるブロック長のシングルビット粒度のために、リフティングZのセットと(たとえば、クラスタ化されたリフティング値のセットまたはリフティングのファミリーと)組み合わせるための基本グラフ構造を提供する。

0121

図15は、本開示の態様による、基本グラフ構造を使用してコードワードを符号化および送信するための例示的な動作1500を示す流れ図である。動作は、ワイヤレスデバイス、たとえば、送信デバイス(たとえば、BS110またはUE120)によって実行され得る。動作1500は、1502において、K個の情報ビットおよび所望のクロックブロック長Nを取得することで開始する。1504において、ワイヤレスデバイスは、基本グラフのセットに関連するリフティングサイズのタワーからリフティングサイズZiを選択する。基本グラフのセットの少なくとも1つの基本グラフは、最小数kb,minの情報ビット列および最大数kb,maxの情報ビット列を有し、kb,minがK/Zi以下であり、K/Ziがkb,max以下であるように、Ziが選択される。1506において、ワイヤレスデバイスは、基本グラフのセットから基本グラフを選択し、選択された基本グラフは、kb個の情報ビット列を有する。kbは、K/Zi以上の最小整数に等しい。1508において、ワイヤレスデバイスは、K個の情報ビットに基づいてN-K個のパリティビットを生成し、コードワードを生成するために、選択された基本グラフを使用してK個の情報ビットおよびN-K個のパリティビットを符号化する。1510において、ワイヤレスデバイスは、ワイヤレス媒体を介してコードワードを送信する。

0122

図16は、本開示のいくつかの態様による、例示的なベースPCM1600の構造を示す。図16に示すように、例示的なベースPCM1600は、ともに情報ビット列1602のセットを形成する、より高い次数のものであるいくつかの状態(パンクチャリングされた)ノード1604とともに、いくつかの次数3以上の変数ノードの「コア」構造1606を含む情報(システマティック)ビット列1602(すなわち、変数ノード)を有する。説明を簡単にするために、高次数のパンクチャリングされた状態ノード以外のシステマティックビット列は、すべて次数3であるが、開示する技法はそのように限定されない。

0123

図16に示すように、PCM1600構造はパリティ構造1610を含む。パリティ構造1610は、(たとえば、IEEE 802.11n規格LDPCコードと同様の)次数3のノードによって終了する累積チェーンを含む。たとえば、よりディープなエラーフロアをサポートするために、代替の符号化構造を使用することができ、開示する技法は、符号化構造に関するそのような変形に適用され得る。図16に示すように、ベースPCM1600構造は、1つまたは複数の次数1のパリティビット1608も含み得る。次数1のパリティビット1608は、チェックノードを介して状態ノードのみに接続される。

0124

ビット列1602およびパリティ構造1610は、「コアグラフ」または「コアPCM」と呼ばれることがある。図16に示すように、追加のパリティビットさらなるIR-HARQ送信(IR-HARQ拡張1612)を使用してコアグラフを拡張して、コアグラフに関連するレートよりも低いコードレートのコードを定義することができる。完全なグラフまたはコアグラフを超えた何らかの部分は「拡張されたグラフ」と呼ばれることがある。コアグラフは、そのパラメータ(たとえば、変数ノード、チェックノード、エッジ、パンクチャリングなど)によって判定される関連するコードレートを有する。コアグラフ内のいくつかのパリティビットをパンクチャリングして、コアグラフのコードレートを超えるコードレートをサポートすることができる。コアグラフをパリティビットで拡張することによって、より低いコーディングレートが取得され得る。

0125

本開示の態様は、次数3のコア変数ノードに重点を置くが、関連する変数ノードのうちのいくつかが異なるコア次数を有する場合ですら、これらの態様が適用され得る。コア次数は、たとえば、3より高くてよい。基本グラフ設計をリフティング値の適切なセットと組み合わせて、ブロック長において細かな粒度(シングルビット粒度)を達成することができる。

0126

いくつかの態様によれば、基本グラフおよびリフトされたグラフの短縮を使用して、ブロック長においてより細かな粒度を達成することができる。コアグラフは、kb,maxによって示される、最大数の情報列を有し得る。ベースコードが短縮されるとき、1つまたは複数の情報ビットは(たとえば、ビットを0に設定することによって)知られていると宣言され、これらのビットは送信コードにおいて使用されない。基本グラフ内のビットが知られているとき、リフトされたグラフ内のZビットの対応する列全体が知られていると宣言される。受信機は、0に固定されているビットを事前に知ることができ、復号プロセスでその知識を活用することができる。並列復号アーキテクチャでは、知られている列全体が復号プロセスにおいて省略されてよく、したがって、知られている列は受信機において何の動作も受けず、したがって、コーディングシステムは、基本グラフが実際により小さい場合と同様に動作し得る。これは、一般に、列全体に満たない短縮には適用されない。

0127

本開示の態様によれば、一部の範囲にわたる短縮に良好な性能を与える基本グラフ構造が提供される。基本グラフの短縮は、結果として、サポートされる情報列の範囲をkb,minの最小値からkb,maxの最大値にする。短縮の構造は、リフトされたグラフの情報ビットのせいぜい1個のリフトされた列が部分的に短縮されることを保証する。すべての他の情報ビット列は、完全に使用され得るかまたは完全に短縮され得る(たとえば、基本グラフレベルで短縮され得る)。

0128

本開示の態様によれば、慎重に選定されたリフト値と組み合わされたとき、コンパクトなコーディングソリューションを提供し、良好な性能で任意のレートおよびブロック長を使用した送信を可能にする基本グラフ構造が提供される。

0129

リフティングのタワーは離散セット{Z1, Z2,…, Zm}であり、Z1は、最小リフティングサイズを示し、Zmは、最大リフティングサイズを示す。いくつかの態様によれば、kb,minおよびkb,maxは、比率kb,max/kb,minが、iのすべての値に対して



の最大値と少なくとも同じ大きさであるように選択され得る。これは、情報ブロック長における細かな粒度の基準を提供し得る。

0130

基本グラフ内の情報ビットに加えて、基本グラフ構造は、最小でcb,minから最大でcb,maxまでの範囲内のパリティビット数をサポートし得る。最小値は、より高い送信レートをサポートするためのコアグラフ内のパリティビット(たとえば、パンクチャリングされ得るいくつかのパリティビット)の数未満であってよい。パリティビットの最大数cb,maxは、拡張されたグラフ内の最大パリティビット数に対応し、コアグラフ内のパリティビット数よりもかなり大きい場合がある。

0131

本開示の態様によれば、基本グラフは、すべてのサポートされる短縮のために基本グラフが良好な性能を与えることを確実にするための連続的な最適化のプロセスによって設計され得る。最適化された基本グラフ1700を設計するための例示的な技法が図17に関して論じられる。最適化された基本グラフ1700を取得するために、状態ノード1702およびコア1704を含めて、(コアグラフと拡張された基本グラフの両方に関する)kb,min個の情報ビット列1706を有する基本グラフを最適化することができる。パリティビットの総数は、cb,max-cb,minに等しく、基本グラフが設計された考えられる所望の最高のコーディングレートを与えるように、コアグラフ内の次数2のパリティビット列をパンクチャリングすることによって取得され得る。kb,min個の情報ビット列を有する基本グラフが取得されると、kb,min+1個の情報ビット列に対する性能に対して基本グラフを最適化するための列1710。ビット列1710を基本グラフに追加することは、kb,max個の情報ビット列1708に関して最適化された基本グラフが取得されるまで、反復プロセスで繰り返される。

0132

ブロック長の範囲(kb,minからkb,max)内のすべてのブロック長をサポートし得る最大レートおよび最小レートは、rmax=kb,min/(kb,min-pb+cb,min)およびrmin=kb,max/(kb,max-pb+cb,max)によって与えられ、式中、pbは、パンクチャリングされた情報列の数を示す。概して、cb,minは、コア内のパリティビットの数に満たなくてよいが、これはこの設計がコアパリティビットのパンクチャリングをサポートし得るためである。cb,coreを使用して、コア内のパリティビットの数を示すことができる。コアのコアレートは、コアビットをパンクチャリングせずにすべてのkb,min≦kb≦kb,maxによってサポートされ得る最高レートとしてrcore=kb,min/(kb,min-pb+cb,core)によって与えられ得る。原則として、kb,minは非常に小さいと常に見なすことができるが、その場合、最高レートrmaxにおけるコードの性能は劣化し得る。kb,minは、最高レートにおいて望ましい性能を提供するのに十分大きいものであるべきである。

0133

上記で説明したネスト型基本グラフ構築の技法は、rmin≦K/N≦rmax,であるように、任意のkb,minZ1≦K≦kb,maxZmおよび任意のNを確実にし、望ましい性能を有する基本グラフからのコードが取得され得る。リフトZiおよびZi+1の任意の対に関して、構築によりkb,minZi+1≦kb,maxZi。したがって、所望の情報ブロック長サイズKが範囲kb,minZ1≦K≦kb,maxZm内である限り、kbZj≦K≦(kb+1)Ziであるように、kb,min≦kb≦kb,max内にkbが存在し、Z1≦Zi≦Zm内にZiが存在する。したがって、基本グラフを使用した後に、kb個の情報ビット列の後に多くともZi個の情報ビットの短縮によって、所望の情報ブロック長Kを取得することができる。次いで、終端から多くともZi個のパリティビットをパンクチャリングすることによって、パリティビットを取得することができる。ベースパリティビットの数がベースコアパリティビットの数未満である場合、この例外が生じ得る。この場合、コードの記述においてすべてのコアパリティビットを維持し、必要に応じてパンクチャリングして所望のコードレートを達成することが望ましい場合がある。基本グラフは上記で説明したネスト型手順を使用して構築されたため、多くともZiだけ短縮およびパンクチャリングすることは、依然として望ましい性能を有し得る。

0134

範囲[rmin,rmax]内のレートおよび範囲kb,minZ1≦K≦kb,maxZm内のブロック長をサポートし得る、上記の最適化された基本グラフ構造は、ファミリーと呼ばれることがある。一般に、ファミリー内のリフトのセットは、前に説明したように、クラスタ化されたリフティングのタワーである。

0135

したがって、所望のブロック長N(K個の情報ビット)のコードを構成するために、kb,min≦K/Zi≦kb,max,を満たすZiを選択することができ、γ≧kb,max/kb,minであるため、これは常に可能である。基本グラフは、kb=K/Ziに設定され得る。概して、kbZ1≦K≦(kb+1)Ziであり、したがって、多くとも1個の列を短縮することができる。範囲[cb,minZi:cb,maxZi]内のパリティビットN-Kを基本グラフに追加することができる。

0136

一例では、基本グラフは、2個のパンクチャリングされたビットpb=2を有する[kb,min:kb,max]=[24:30]を有する情報ビット列と、[cb,min:cb,max]=[5:152]およびcb,core=7を備えた各kbに関するパリティビット列とを有し得る。この例示的な基本グラフに関するPCMのコア1800が、図18に示される。

0137

図18は、本開示のいくつかの態様による、高レートコードに対する次数3のチェックおよびパンクチャリングを示す表である。図18Aは、本開示のいくつかの態様による、図18に示した表を得るために使用される、図17の最適化された基本グラフに関するPCMのコア部分を示す表である。

0138

範囲内のすべてのブロック長がサポートされる最大レートおよび最小レートは、rmax=8/9=24/27(2個の追加のコアパリティビットがパンクチャリングされる場合)およびrmin=1/6である。2≦j≦7の場合、Z=2j{4,5,6,7}によって与えられるリフティングサイズ(たとえば、上記のセクションで説明したようなクラスタ化されたリフティングのセット)の場合、Z1、Z2、…、Zmax=8、10、12、14、16、20、24、28、32、…、512、640、768、896である。γ=maxi[Zi+1/Zi]=5/4と定義する場合、kb,max/kb,min≧γになる。したがって、基本グラフのこのファミリーは、すべての(K,N)をサポートするコードを生成することが可能であり、この場合、192≦K≦26,880および1/6≦K/N≦8/9である。このようにして、任意のレートとブロック長の対に対する望ましい性能を備えた、8/9から1/6までのすべてのレートおよび最小で192から最大で26,880までのすべてのブロック長をサポートするコードの1つのファミリーが実現される。

0139

正規チェック次数を使用したLDPCコードの例示的なコンパクトに記述されたファミリー
ブロック長において細かな粒度を提供するために、リフトされたLDPCコード内のリフティングの大きな収集をコンパクトに表し、リフティング値のセットで基本グラフを短縮するための技法について上記で説明している。

0140

短縮されたシーケンスにわたる性能に対する基本グラフを設計するための技法が本明細書で提供される。本開示の態様は、短縮を使用する基本グラフ内の高性能を実現するファミリーの基本グラフのための属性および構造について説明する。たとえば、本開示の態様は、短縮された情報ノードが基本グラフ内でどのように接続され得るかの例を説明する。

0141

(LDPC構造の漸近的性能を明らかにする)密度展開(density evolution)分析は、コアの次数3の部分の部分行列が行正規(row regular)であるとき、望ましい性能が達成され得ることを示す。行正規は、各行内のエッジの数が同じであることを意味する。正確な行正規性(regularity)は常に達成可能ではないが、これはエッジの数が行の数の因数でない場合があるためである。しかしながら、行次数は多くとも1だけ異なることを確実にすることは常に可能である。これに鑑みて、コアの次数3の部分が短縮によって引き起こされるすべての部分行列に関しほぼ行正規になることが望ましい。kb,min個の情報列を有する部分行列は、コアの次数3の部分がほぼ行正規である属性を有し得る。より一般的には、i=0、1、…、kb,max-kb,minの場合、情報列kb,min+iを有する部分行列は行正規(または、ほぼ行正規)であり得る。これは、短縮された基本グラフの望ましい性能を提供し得る。

0142

場合によっては、一般的な性能またはエラーフロア理由がコアの次数3の部分内に何らかのチェック非正規性を有することが望ましい場合がある。たとえば、単一のパンクチャリングされた変数ノードに接続されたチェックノードのうちの1つまたは複数に最大数の次数3のコアエッジを有させることが望ましい場合がある。非正規の事例では、ネスト型シーケンス内の追加のコア次数3のノードは、所望の非正規性を保つようにそれらのエッジを配置させることができる。これは、一般に、正規の事例のように、すなわち、ネスト型シーケンスの第1のメンバー内に存在する次数の差分がそのシーケンスにわたって保たれるように、追加の次数3ノードを接続させることによって達成され得る。これは、いくつかの開始値に関する正規事例に一致する方法で、追加の次数3のノードを接続することによって達成され得る。

0143

図19〜図21Aは、本開示のいくつかの態様による、例示的なコードファミリーを示す。例示的なコードファミリーは、Z=2j{4,5,6,7}によって与えられるクラスタ化されたリフティングの例示的なタワーに基づき、最大Zi+1/Ziは5/4=1.25である。図19、図20、および図21の例示的なコードファミリーは、(kb,min,kb,max)=(24,30)、(16,20)、および(8,10)をそれぞれ有するPCMを使用する。

0144

図19に示すこの例示的なコードファミリーは、(kb,min,kb,max)=(24,30)を有する。グラフ1900内の最下行は、パンクチャリングされたノードのパリティビットに関し、行正規になることが所望される次数3の部分行列の一部ではない。図19Aの表1900Aに示す、例示的なコードファミリーに関連する部分行列は、グラフ1900からの最初の6行および列3から30からなる。コードファミリーがkb=24に短縮される場合、列30から25は連続的に除去される。表1900Aに見られるように、部分行列内の各行は、多くとも1だけ異なるエントリを有し、したがって、すべての短縮された基本グラフに関してほぼ正規性が達成される。

0145

図20は、別の例示的なコードファミリーのコアを示すグラフ2000である。このコードファミリーは、(kb,min,kb,max)=(16,20)を有し、関連する行は最初の8行である。次数の対応する短縮された表が図20Aに示される。表2000Aに示すように、ほぼ行正規性が維持される。

0146

図21は、さらに別の例示的なコードファミリーのコアを示す。このコードファミリーは、(kb,min, kb,max)=(8,10)を有する。この場合、コードファミリーは、3個のHARQ拡張ビットを含む。最初の10行は、次数部分(列3から10)のほぼ行正規性が望ましい行である。行次数の対応する表が図21Aに示される。Table表2100Aに示すように、ほぼ行正規性が維持される。

0147

ベースPCM内に、2個のパンクチャリングされたノードが存在し得る。コア符号化パリティチェックノード、たとえば、2個のパンクチャリングされたノードおよび次数1の変数ノード(たとえば、パリティビットとも呼ばれる)に接続された1個のコアチェックノードを除いたすべてのコアチェックノードは、高次数のパンクチャリングされたノードに接続された1個のエッジ、または2個のそのようなエッジのいずれかを有する。高次数のパンクチャリングされた変数ノードに接続された単一のエッジを有するチェックノードからのコア次数3のエッジの数が、一般に、高次数のパンクチャリングされた変数ノードに接続された2個のエッジを有するチェックノードからのコア次数3のエッジの数を上回るとき、最高性能が達成され得る。これは、ネスト型基底行列のセット内のすべての基底行列に関する事例であり得る。

0148

ネスト型基底行列のセットの接続性は、ネスト型シーケンス内の各基底行列に関して、任意のコアチェックノードからの次数3のコアエッジの最大数がパンクチャリングされた変数ノードに対して単一のエッジを有するコアチェックノード上に見出されるようなものであるべきである。チェックノードのセットに関する平均次数3のコアは、それらの次数3のコア次数の平均と定義される。密度展開によって示される好ましい非正規性を特徴づけるもう1つの方法は、高次数のパンクチャリングされたノードに対して単一のエッジを有するチェックノードの平均次数3のコア次数が高次数のパンクチャリングされたノードに対して2個のエッジを有するチェックノードの平均次数3のコア次数を上回るべきであることである。

0149

図18、図22、および23に示された、表1800、2200、および2300は、高レート事例、中レート事例、および低レート事例に関する例をそれぞれ示す。図18A、図22A、および図23Aは、それぞれ、表1800、表2200、および表2300に対応する、8のリフティングサイズ値を有する、PCMのコア部分をそれぞれ示す、グラフ1800A、2200A、および2300Aである。

0150

所望の送信レートに基づく符号化のための例示的なLDPCコードファミリー選択
上記のセクションで説明したように、ブロック長の細かな粒度は、リフトされたベースパリティチェック行列(PCM)(基本グラフまたは基底行列とも呼ばれる)の短縮によって達成され得る。ハイブリッド自動再送要求(HARQ)拡張ビット(たとえば、IR-HARQ拡張)を基本グラフに追加することによって、より高いレートの基本グラフをより低いレートに拡張することができる。性能は、HARQ拡張のすべてのレベルにおいて達成され得る。したがって、単一の高レート基底行列から始めて、大規模なHARQ拡張を追加することによって、多くのコードレートおよびブロック長をカバーするLDPCコードを設計することが可能である。範囲[rmin,rmax]内のコードレートおよび範囲kb,minZ1≦K≦kb,maxZm内のブロック長をサポートし得る、HARQ拡張を含む、基本グラフ構造から生成されるLDPCコードは、コードのファミリーと呼ばれることがある。コードファミリー内のリフティングのセットは、上記で説明したように、クラスタ化されたリフティングのタワーであり得る。

0151

送信されるべき情報を符号化するためにLDPCコードの2つ以上のファミリーを使用することが望ましい場合がある。ベースPCMの最適化されたHARQ拡張は、コアPCMよりも高い次数のものであり得る。したがって、HARQ拡張を用いてより高いレートコードから形成された、より低いレートコードは、それらのより低いレートに対するコア設計よりも複雑であり得る。基本グラフ内のダブルエッジを回避するために、高レートコードに対する基本グラフが少数の変数ノードを有することが望ましい場合があるが、これは、チェックノードの数が少なくないためである。高レートにおける少数の変数ノードの場合、チェックノードの数は少数である。低コードレートを達成するために、比較的多数の拡張ビットが必要とされる場合があるが、これは、より高い並列性(すなわち、より大きなZ)およびより小さな基本グラフが好ましい場合がある実装観点から望ましくない場合がある。

0152

したがって、LDPCコードの2つ以上のファミリーを使用するための技法が望ましい。

0153

送信のために所望されるレートに基づいて、送信されるべき情報を符号化するために使用するためのLDPCコードのファミリーを選択するための技法が本明細書で提供される。

0154

図24は、本開示のいくつかの態様による、情報を符号化するために使用するためのLDPCコードのファミリーを選択するための例示的な動作2400を示す流れ図である。動作2400は、送信デバイス(たとえば、BS110、またはUE120)によって実行され得る。送信は、送信のためのコードレートの範囲(たとえば、コードレート領域)のセットに分割され得る。2402において、送信デバイスは、基底行列のネスト型セットから基底行列を選択し、各基底行列は、低密度パリティ検査(LDPC)コードのファミリーを生成するためであり、選択は、LDPCコードのファミリーによってサポートされるコードレートの範囲と送信のためのコードレートの範囲の比較に基づく。基底行列は、異なる第1の送信レートに対応し得、完全なHARQ拡張においてほぼ等しい数のベース変数を有し得るか、またはほぼ等しい最低コードレートを達成し得る。送信のための異なる範囲のコードレートに対して異なる基底行列が選択され得る。基底行列は、コードレートのファミリー内の最高コードレートに対応するコア基底行列であり得る。LDPCコードの各ファミリーは、基底行列からファミリーのメンバーを生成するために使用されるリフティング値kのセットに関連し得る。送信のためのコードレートの範囲の最大コードレートを上回るコードレートの範囲内の最低最大コードレートを有するコードの範囲をサポートするLDPCコードのファミリーに関連付けられた基底行列が選択され得る。2404において、送信デバイスは、コードワードを生成するために、LDPCコードの選択されたファミリーに基づいて情報ビットのセットを符号化する。たとえば、選択された基底行列を使用して、コードレートの範囲に対応するコードレートを有するLDPCコードのファミリーのメンバーを生成することができる。2406において、送信デバイスは、ワイヤレス媒体を介してコードワードを送信する。

0155

いくつかの態様によれば、ファミリーの収集が符号化のために使用され得る。上記のセクションで説明したように、各ファミリーは、クラスタ化されたリフティングのタワー、および短縮をサポートする基本グラフ設計を含み得る。

0156

いくつかの態様によれば、基本グラフ(たとえば、ファミリーの収集に対応する)のセットを使用することができる。異なる基本グラフのコアは、異なる開始レートを有し得る。上記で説明したように、ファミリーは、最小でkb,min個の情報列および最大でkb,max個の情報列を有する基本グラフ、およびHARQのためのその拡張を含む。コアは、そのコードファミリー内の最高レートグラフを指す。

0157

前のセクションで説明した3つの例示的なコードファミリーに関する3つの例示的な基本グラフ1800、2200、および2300を再度参照すると、これらの3つの基本グラフは、情報ビット短縮を用いたチェックノード次数においてほぼ正規性を有する。これらの例示的なコードファミリーでは、コアは、7、9、および11にそれぞれの等しい数のパリティチェック、および、それぞれ24(30)、16(20)、および8(10)のkb,min(kb,max)値を有する。各基本グラフは、2個の高次数のパンクチャリングされたノードを有する。したがって、3つのコードファミリーに関する開始レートは、それぞれ、24/29((kb,min=24)/(24個の情報ビット+7個のパリティビット-2個のパンクチャリングされたビット=29)、16/23((kb,min=16)/(16個の情報ビット+9個のパリティビット-2個のパンクチャリングされたビット=23)、および8/19((kb,min=8)/(8個の情報ビット+11個のパリティビット-2個のパンクチャリングされたビット=19)である。より高いコードレートは、コア変数ビットをパンクチャリングすることによって達成され得る。たとえば、コードレート8/9は、24/29コードレートから24/27コードレート(すなわち、8/9コードレート)を達成するために、2個のベース次数2の変数ノードをパンクチャリングすることによって、第1の例示的なコードファミリーに関して達成され得る。

0158

上記のセクションで説明したように、コアレートは、すべてのkb,min≦kb≦kb,maxによってサポートされ得、rmax=kb,min/(kb,min-pb+cb,min)によって与えられる、最高レートとして定義される。基本グラフの各々は、HARQ拡張パリティビットで拡張され得る。たとえば、上記の項で述べた、3つの例示的なグラフを122個の変数列に拡張することができる。この場合、図18に示した例示的なコードファミリーは、範囲[1/4,8/9]内の最高コードレートをサポートし得、図22に示した例示的なコードファミリーは、範囲[1/6,16/23]内の第2の最高コードレートをサポートし得、図23に示した例示的なコードファミリーは、範囲[1/12,8/19]内の最低コードレートをサポートし得る。これらのレート領域重複し、その結果、いくつかのブロック長およびコードレートに関して、複数のソリューションが存在することになる。時として、単一のコードファミリーですら複数のソリューションを有し得る。

0159

より低いレートのコアは、より高いコアレートのコードファミリー内の対応するコードよりも良好な性能を有し得るため、そのコードファミリーのコアコードレート未満から開始して、コードレートに対して最低レートコードファミリーを使用することが望ましい場合がある。より低いレートのコアに対する性能が良好でない場合ですら、ベース変数ノードの数はより少ないため、リフティングサイズZは所与のブロックサイズに対してより多いことになる。したがって、より低いレートのコアに対して、より高い並列性が利用可能である。加えて、Tannerグラフ内のエッジ密度によって測定される複雑性は、より低いレートのコアに対してより低い場合がある。

0160

図25は、本開示のいくつかの態様による、ワイヤレス通信のための例示的な動作2500を示す流れ図である。動作2500は、送信デバイス(たとえば、BS110、またはUE120)によって実行され得る。2502において、送信デバイスは、情報ビットを送信するために使用されるべき送信レートに関連付けられた複数の送信レート領域を判定する。2504において、送信デバイスは、送信レート領域の各々内で送信のための情報ビットを符号化するためのLDPCコードのファミリーのセットのリフトされたLDPCコードのファミリーを選択する。2506において、送信デバイスは、1つまたは複数のコードワードを生成するために、各それぞれの送信レート領域内の送信のためのリフトされたLDPCコードの選択されたファミリーからの少なくとも1つのリフトされたLDPCコードを使用して情報ビットを符号化する。2508において、送信デバイスは、(たとえば、ワイヤレス)媒体を介して1つまたは複数のコードワードを送信する。

0161

いくつかの態様によれば、(たとえば、第1の送信のための)所望の送信レート範囲を複数の部分またはレート範囲に分割することができる。たとえば、[1/12, 8/9]の所望のレート範囲を以下の4つの部分または範囲、すなわち、[1/12, 1/5]、[1/5, 2/5]、[2/5, 2/3]、[2/3, 8/9]に分割することができる。最大レートに対応する所望の送信レート範囲、この例では、[2/3, 8/9]の部分に関して、最高レートコードファミリー、この例では、範囲[1/4, 8/9]をサポートする第1のコードファミリーの拡張されたグラフを選択して、範囲[2/3, 8/9]内のすべての第1の送信レートに対するコードを取得することができる。例示的な所望の送信範囲[2/5, 2/3]に関して、コードを取得するために、第2の最大レート、この例では、[1/6, 16/23]に対応する第2の例示的なコードファミリーを選択することができる。第1の送信レートが2/5未満である場合、最低コアレートのコードファミリーが使用されることになる。したがって、例示的な所望の送信範囲[1/12, 1/5]および[1/5, 2/5]の場合、コードを取得するために、最低レート、この例では、[1/12, 8/19]に対応する第3の例示的なコードファミリーが選択され得る。

0162

所望の送信レートに対するLDPCコードのファミリーからのLDPCコードの例示的な選択
上記のセクションで説明したように、2つ以上のLDPCファミリー(すなわち、短縮およびパンクチャリングを用いた複数のリフトされた基本グラフ)を使用するコーディング方式を使用することができ、ここで、所望の(開始)送信レート(および、他の要因)に応じて、送信されるべき情報を符号化するために異なるLDPCファミリーが使用され得る。

0163

所望のK(情報ビットの数)およびN(コードビット列の数)に対して、使用される基本グラフ列の数、リフティングの値、短縮された/パンクチャリングされたビットの数を変更することによる複数のソリューションが存在し得る。上記のセクションで説明したように、所与のK、Nに対して、kb,mimおよびkb,maxによって示された最小数および最大数の情報列を有するLDPCコードのファミリーを選択することができる。サポートされるリフトサイズは、{Z1, Z2,…, Zm}によって与えられるタワーを形成する。したがって、所望のK、Nに対して、kb,min≦K≦kb,maxを選定し、短縮を使用することによって、コードを構築する複数の方法が存在し得る。

0164

したがって、所望の送信レートに関する情報を符号化するための特定のコードをコードのファミリー内から選択するための技法が望ましい。

ページトップへ

この技術を出願した法人

この技術を発明した人物

ページトップへ

関連する挑戦したい社会課題

該当するデータがありません

関連する公募課題

該当するデータがありません

ページトップへ

技術視点だけで見ていませんか?

この技術の活用可能性がある分野

分野別動向を把握したい方- 事業化視点で見る -

(分野番号表示ON)※整理標準化データをもとに当社作成

該当するデータがありません

ページトップへ

おススメ サービス

おススメ astavisionコンテンツ

この 技術と関連性が強い技術

該当するデータがありません

この 技術と関連性が強い法人

該当するデータがありません

この 技術と関連性が強い人物

該当するデータがありません

この 技術と関連する社会課題

該当するデータがありません

この 技術と関連する公募課題

該当するデータがありません

astavision 新着記事

サイト情報について

本サービスは、国が公開している情報(公開特許公報、特許整理標準化データ等)を元に構成されています。出典元のデータには一部間違いやノイズがあり、情報の正確さについては保証致しかねます。また一時的に、各データの収録範囲や更新周期によって、一部の情報が正しく表示されないことがございます。当サイトの情報を元にした諸問題、不利益等について当方は何ら責任を負いかねることを予めご承知おきのほど宜しくお願い申し上げます。

主たる情報の出典

特許情報…特許整理標準化データ(XML編)、公開特許公報、特許公報、審決公報、Patent Map Guidance System データ