図面 (/)

技術 光学的に駆動される対流及び変位のマイクロ流体デバイス、そのキット及び方法

出願人 バークレーライツ,インコーポレイテッド
発明者 クルツ,ヴォルカーエル.エス.ライオンバーガー,トロイエー.サックマン,エリックケー.スートゥー,カイダブリュー.ルベル,ポールエム.ブルーン,ブランドンアール.ブレインリンガー,キースジェイ.ホブス,エリックディー.マクファーランド,アンドリューダブリュー.ネビル,ジェイ.タナーワン,シャオフア
出願日 2016年12月29日 (2年10ヶ月経過) 出願番号 2018-533906
公開日 2019年4月18日 (7ヶ月経過) 公開番号 2019-510959
状態 未査定
技術分野 自動分析、そのための試料等の取扱い マイクロマシン 微生物・酵素関連装置
主要キーワード プリント回路基板組立体 非連続形状 媒体モジュール 高温エリア 二次フロー サイド通路 リザーバ領域 低温エリア
関連する未来課題
重要な関連分野

この項目の情報は公開日時点(2019年4月18日)のものです。
また、この項目は機械的に抽出しているため、正しく解析できていない場合があります

図面 (20)

課題

マイクロ流体工学の分野が発展するにつれて、マイクロ流体デバイスは、生体細胞等の微小物体の処理及び操作に都合の良いプラットフォームになった。

解決手段

光学駆動気泡対流、及び変位流体フローを使用して、マイクロ流体デバイスにおいて原動力を提供する装置及び方法が記載される。代替原動様式も、生体細胞を含む微小物体をマイクロ流体デバイスのエンクロージャ内の様々な位置から選択的に除去し変位させるのに有用である。

概要

背景

背景
マイクロ流体工学の分野が発展するにつれて、マイクロ流体デバイスは、生体細胞等の微小物体の処理及び操作に都合の良いプラットフォームになった。本発明の幾つかの実施形態は、光学的に駆動される気泡対流、及び変位流体フローを使用して、マイクロ流体デバイスにおいて原動力を提供する方法及びデバイスに関する。

概要

マイクロ流体工学の分野が発展するにつれて、マイクロ流体デバイスは、生体細胞等の微小物体の処理及び操作に都合の良いプラットフォームになった。光学駆動気泡、対流、及び変位流体フローを使用して、マイクロ流体デバイスにおいて原動力を提供する装置及び方法が記載される。代替原動様式も、生体細胞を含む微小物体をマイクロ流体デバイスのエンクロージャ内の様々な位置から選択的に除去し変位させるのに有用である。A

目的

本発明の幾つかの実施形態は、光学的に駆動される気泡、対流、及び変位流体フローを使用して、マイクロ流体デバイスにおいて原動力を提供する

効果

実績

技術文献被引用数
0件
牽制数
0件

この技術が所属する分野

ライセンス契約や譲渡などの可能性がある特許掲載中! 開放特許随時追加・更新中 詳しくはこちら

請求項1

フロー領域及び隔離ペンを更に含むエンクロージャを含むマイクロ流体デバイスであって、前記隔離ペンは、接続領域、分離領域、及び変位力生成領域を含み、前記接続領域は、前記フロー領域への基端開口部及び前記分離領域への先端開口部を含み、前記分離領域は、前記変位力生成領域への少なくとも1つの流体接続を含み、前記変位力生成領域は、熱標的を更に含む、マイクロ流体デバイス。

請求項2

前記分離領域と前記変位力生成領域との間の前記少なくとも1つの流体接続は、微小物体を前記分離領域から前記変位力生成領域に通さないように構成される断面寸法を含む、請求項1に記載のマイクロ流体デバイス。

請求項3

前記分離領域と前記変位力生成領域との間の前記少なくとも1つの流体接続は、前記拡散による力を除き、内部に生成される力がない場合、流体が前記変位力生成領域から流れないようにするよう構成される断面寸法を含む、請求項1に記載のマイクロ流体デバイス。

請求項4

前記分離領域と前記変位力生成領域との間の前記少なくとも1つの流体接続は、1つ又は複数のバリアモジュールを含み、前記1つ又は複数のバリアモジュールは、微小物体が前記分離領域から前記変位力生成領域に通過しないようにするよう構成される、請求項1に記載のマイクロ流体デバイス。

請求項5

前記変位力生成領域は、前記フロー領域への開口部を更に含む、請求項1に記載のマイクロ流体デバイス。

請求項6

前記変位力生成領域は、前記分離領域への2つ以上の流体接続を有する、請求項1に記載のマイクロ流体デバイス。

請求項7

前記隔離ペンは循環流路を含む、請求項6に記載のマイクロ流体デバイス。

請求項8

前記循環流路は狭窄部を含む、請求項7に記載のマイクロ流体デバイス。

請求項9

光学的に照明されると、流体媒体の第2の循環フローを生成するように構成される第2の熱標的を更に含む、請求項6に記載のマイクロ流体デバイス。

請求項10

前記第1の熱標的及び前記第2の熱標的は、逆方向での前記流体媒体の前記第1の循環フロー及び前記第2の循環フローを提供するように向けられる、請求項9に記載のマイクロ流体デバイス。

請求項11

前記変位力生成領域は1つの開口部を含み、前記1つの開口部は、前記分離領域への前記流体接続である、請求項1に記載のマイクロ流体デバイス。

請求項12

前記変位力生成領域の前記流体接続は、少なくとも1つの湾曲部を含む流体コネクタを含む、請求項1に記載のマイクロ流体デバイス。

請求項13

前記流体コネクタの前記少なくとも1つの湾曲部は、約60度〜約180度のターンを含む、請求項12に記載のマイクロ流体デバイス。

請求項14

前記変位力生成領域の前記流体コネクタは、少なくとも2つの湾曲部を含む、請求項12に記載のマイクロ流体デバイス。

請求項15

前記流体コネクタの前記少なくとも2つの湾曲部のそれぞれは、約60度〜約180度のターンを含む、請求項14に記載のマイクロ流体デバイス。

請求項16

前記流体コネクタの幅は、前記分離領域及び/又は前記変位力生成領域の幅と同じである、請求項12に記載のマイクロ流体デバイス。

請求項17

前記流体コネクタは、微小物体を前記分離領域から前記変位力生成領域に通さないようにするよう構成される断面寸法を含む、請求項12に記載のマイクロ流体デバイス。

請求項18

前記マイクロ流体デバイスの前記エンクロージャは、前記隔離ペンを部分的に画定するカバーを更に含み、前記熱標的は前記カバーに配置される、請求項1に記載のマイクロ流体デバイス。

請求項19

前記熱標的は、前記エンクロージャに面する前記カバーの内面に配置される、請求項18に記載のマイクロ流体デバイス。

請求項20

前記マイクロ流体デバイスの前記エンクロージャは、前記隔離ペンを部分的に画定するマイクロ流体回路構造を更に含み、前記熱標的は前記マイクロ流体回路構造に配置される、請求項1に記載のマイクロ流体デバイス。

請求項21

前記マイクロ流体デバイスの前記エンクロージャは、前記隔離ペンを部分的に画定するベースを更に含み、前記熱標的は前記ベースの内面に配置される、請求項1に記載のマイクロ流体デバイス。

請求項22

前記熱標的は金属を含む、請求項1に記載のマイクロ流体デバイス。

請求項23

前記熱標的は連続形状を有する、請求項1に記載のマイクロ流体デバイス。

請求項24

前記熱標的は非連続形状を有する、請求項1に記載のマイクロ流体デバイス。

請求項25

前記熱標的は複数の微小構造を含む、請求項1に記載のマイクロ流体デバイス。

請求項26

前記熱標的は犠牲特徴である、請求項1に記載のマイクロ流体デバイス。

請求項27

前記熱標的又は前記変位力生成領域は、1つの主方向において形成される気泡の拡大を制限するように構成される、請求項1に記載のマイクロ流体デバイス。

請求項28

前記熱標的は、前記分離領域への前記少なくとも1つの流体接続への先端の前記変位力生成領域の部分に位置決めされる、請求項1に記載のマイクロ流体デバイス。

請求項29

前記変位力生成領域は、約20μm〜約100μmの幅を有する、請求項28に記載のマイクロ流体デバイス。

請求項30

前記エンクロージャは、誘電泳動構成を更に含む、請求項1に記載のマイクロ流体デバイス。

請求項31

前記誘電泳動構成は光学的に作動する、請求項30に記載のマイクロ流体デバイス。

請求項32

前記隔離ペンは、被覆面である少なくとも1つの表面を含む、請求項1に記載のマイクロ流体デバイス。

請求項33

前記被覆面は共有結合表面である、請求項32に記載のマイクロ流体デバイス。

請求項34

エンクロージャを含むマイクロ流体デバイスであって、前記エンクロージャは、流体媒体を含むように構成されるマイクロ流体回路であって、前記マイクロ流体回路は、前記流体媒体の少なくとも1つの循環フローに対応するように構成される、マイクロ流体回路と、前記マイクロ流体回路内の前記エンクロージャの表面に配置される第1の熱標的であって、前記第1の熱標的は、光学的に照明されると、前記流体媒体の第1の循環フローを生成するように構成される、第1の熱標的とを含む、マイクロ流体デバイス。

請求項35

前記熱標的は連続形状を有する、請求項34に記載のマイクロ流体デバイス。

請求項36

前記熱標的は形状のパターンを有する、請求項34に記載のマイクロ流体デバイス。

請求項37

前記マイクロ流体デバイスの前記エンクロージャは、マイクロ流体チャネル及び隔離ペンを更に含み、さらに、前記隔離ペンは前記マイクロ流体チャネルに隣接して、前記マイクロ流体チャネルに向かって開く、請求項34に記載のマイクロ流体デバイス。

請求項38

前記循環流路は、前記チャネルの部分及び前記隔離ペンの少なくとも一部を含む、請求項37に記載のマイクロ流体デバイス。

請求項39

前記隔離ペンは前記循環流路を含む、請求項37に記載のマイクロ流体デバイス。

請求項40

前記循環流路は狭窄部を含む、請求項34に記載のマイクロ流体デバイス。

請求項41

光学的に照明されると、前記流体媒体の第2の循環フローを生成するように構成される第2の熱標的を更に含む、請求項34に記載のマイクロ流体デバイス。

請求項42

前記第1の熱標的及び前記第2の熱標的は、逆方向での前記流体媒体の前記第1の循環フロー及び前記第2の循環フローを提供するように向けられる、請求項41に記載のマイクロ流体デバイス。

請求項43

前記熱標的は、前記マイクロ流体チャネル内の表面に配置される、請求項37に記載のマイクロ流体デバイス。

請求項44

前記マイクロ流体デバイスの前記エンクロージャは、2つ以上のマイクロ流体チャネルを更に含み、第1のマイクロ流体チャネルは、前記第2のマイクロ流体チャネルに沿って第1の位置において第2のマイクロ流体チャネルから開くように構成され、第2の位置において前記第2のマイクロ流体チャネルに再接続し、それにより、前記マイクロ流体回路を形成するように更に構成され、前記熱標的は前記第1のマイクロ流体チャネル内の表面に配置される、請求項34に記載のマイクロ流体デバイス。

請求項45

少なくとも1つの隔離ペンは、前記第1のマイクロ流体チャネルにおいて開く、請求項44に記載のマイクロ流体デバイス。

請求項46

エンクロージャを含むマイクロ流体デバイスであって、前記エンクロージャは、マイクロ流体チャネル及び隔離ペンを含み、さらに、前記隔離ペンは前記マイクロ流体チャネルに隣接し、前記マイクロ流体チャネルにおいて開き、熱標的が、前記隔離ペンへの開口部に隣接するチャネルに配置され、前記熱標的は、光学的に照明されると、前記流体媒体のフローを前記隔離ペンに向けるように更に構成される、マイクロ流体デバイス。

請求項47

前記熱標的は、前記マイクロ流体チャネル内の表面に配置される、請求項46に記載のマイクロ流体デバイス。

請求項48

請求項1〜34のいずれか一項に記載のマイクロ流体デバイスと、前記マイクロ流体デバイスのエンクロージャ内に少なくとも1つの被覆面を提供するように構成される1つ又は複数の試剤とを含む、微小物体を培養するキット

請求項49

マイクロ流体デバイス内で1つ又は複数の微小物体を除去する方法であって、前記マイクロ流体デバイスのエンクロージャにおける流体媒体内に配置される1つ又は複数の微小物体を含むか、又は隣接する選択された離散領域を照明するステップであって、前記エンクロージャは、フロー領域及び基板を含むマイクロ流体回路を含む、照明するステップと、除去力の生成に十分な第1の時間期間、前記選択された離散領域の照明を維持するステップであって、それにより、前記1つ又は複数の微小物体を前記表面から除去する、維持するステップとを含む、方法。

請求項50

前記選択された離散領域は約100平方μmの面積を有する、請求項49に記載の方法。

請求項51

前記選択された離散領域は約25平方μmの面積を有する、請求項49に記載の方法。

請求項52

前記照明するステップは、レーザで前記選択された離散領域を照明することを含む、請求項49に記載の方法。

請求項53

前記1つ又は複数の微小物体は、前記基板の表面に配置される、請求項49に記載の方法。

請求項54

前記選択された離散領域を照明するステップを実行する前、第2の時間期間にわたり前記流体媒体内の前記1つ又は複数の微小物体を前記エンクロージャに維持するステップを更に含む、請求項49に記載の方法。

請求項55

前記マイクロ流体デバイスの前記エンクロージャは、少なくとも1つの隔離ペンを含む、請求項49に記載の方法。

請求項56

前記1つ又は複数の微小物体は、前記少なくとも1つの隔離ペン内の前記基板の表面に配置及び/又は維持される、請求項55に記載の方法。

請求項57

前記選択された離散領域を照明するステップは、約1mW〜約1000mWの範囲の入射電力を有する照明で照明することを含む、請求項49に記載の方法。

請求項58

前記第1の時間期間は、約10マイクロ秒〜約3000ミリ秒又は約100ミリ秒〜約3分の範囲である、請求項57に記載の方法。

請求項59

前記照明するステップは、前記1つ又は複数の微小物体の少なくとも1つを照明することを含む、請求項49に記載の方法。

請求項60

前記第1の時間期間は、約10マイクロ秒〜約200ミリ秒の範囲であり、それにより、前記1つ又は複数の微小物体を除去するキャビテーション力を生成する、請求項59に記載の方法。

請求項61

前記1つ又は複数の微小物体が、前記エンクロージャ内の少なくとも1つの隔離ペン内に配置及び/又は維持される場合、前記選択された離散領域は、前記フロー領域への前記隔離ペンの基端開口部への先端の位置又は前記少なくとも1つの隔離ペンの中央位置にある、請求項59又は60に記載の方法。

請求項62

前記選択された離散領域は、前記1つ又は複数の微小物体に隣接した選択されたポイントである、請求項49に記載の方法。

請求項63

前記選択された離散領域を照明するステップは、照明を前記基板、壁のマイクロ流体回路材料、又は熱標的に向けることを含む、請求項62に記載の方法。

請求項64

前記熱標的は、金属堆積物、金属堆積物のパターン、又は表面上にパターン化された微小構造を含む、請求項63に記載の方法。

請求項65

前記熱標的は犠牲特徴を含む、請求項63又は64に記載の方法。

請求項66

前記1つ又は複数の微小物体は、前記エンクロージャ内の少なくとも1つの隔離ペン内に配置され、前記選択された離散領域は、前記フロー領域への前記少なくとも1つの隔離ペンの基端開口部の近くに配置される、請求項62に記載の方法。

請求項67

前記1つ又は複数の微小物体が、前記エンクロージャ内の少なくとも1つの隔離ペン内に配置される場合、前記選択された離散領域は、前記少なくとも1つの隔離ペンの画定に役立つマイクロ流体回路材料の選択されたポイントを含む、請求項62に記載の方法。

請求項68

前記1つ又は複数の微小物体が、前記エンクロージャ内の少なくとも1つの隔離ペン内に維持される場合、前記選択された離散領域は、前記少なくとも1つの隔離ペン内に配置される犠牲特徴を含む、請求項62に記載の方法。

請求項69

前記犠牲特徴はマイクロ流体回路材料を含む、請求項68に記載の方法。

請求項70

前記第1の時間期間は、10マイクロ秒〜200ミリ秒の範囲である、請求項62に記載の方法。

請求項71

前記選択された離散領域を照明するステップは、前記選択された離散領域内に又は隣接して配置される前記流体媒体の第1の部分を加熱し、それにより、キャビテーション力を生成することを更に含む、請求項62に記載の方法。

請求項72

前記方法は、前記流体媒体の第1の部分を加熱することと、永続的気泡を生成することであって、それにより、前記1つ又は複数の微小物体を囲む前記流体媒体の第2の部分を変位させる、永続的な気泡を生成することとを更に含む、請求項62に記載の方法。

請求項73

前記流体媒体の第2の部分を変位するステップは、照明の前記第1の期間中、前記流体媒体の循環流体フローを生成することを更に含む、請求項72に記載の方法。

請求項74

前記方法は、前記流体媒体の第1の部分を加熱することと、1つ又は複数の気泡を生成することであって、それにより、前記1つ又は複数の微小物体に向かう前記流体媒体の剪断流を生成する、気泡を生成することとを更に含む、請求項62に記載の方法。

請求項75

前記方法は、前記流体媒体の第1の部分を加熱することと、前記1つ又は複数の微小物体に向けて流れるように構成される複数の気泡を生成することと、前記複数の気泡の少なくとも1つの気泡のメニスカスを用いて前記1つ又は複数の微小物体に接触することとを更に含む、請求項62に記載の方法。

請求項76

前記第1の時間期間は約100ミリ秒〜約3分の範囲である、請求項72に記載の方法。

請求項77

前記第1の期間は、約1000ミリ秒〜約2000ミリ秒の範囲である、請求項74又は75に記載の方法。

請求項78

前記1つ又は複数の微小物体が、前記エンクロージャ内の少なくとも1つの隔離ペン内に維持される場合、前記選択された離散領域は、前記隔離ペンの先端部を形成する壁の少なくとも一部を含み、前記壁は、前記フロー領域への基端開口部とは逆に位置決めされる、請求項62に記載の方法。

請求項79

前記1つ又は複数の微小物体は、前記エンクロージャ内の少なくとも1つの隔離ペン内に配置される場合、前記選択された離散領域は、前記隔離ペンの変位力生成領域に配置される、請求項62に記載の方法。

請求項80

前記1つ又は複数の微小物体は、前記隔離ペンの分離領域内に配置され、前記変位力生成領域は、前記分離領域に流体的に接続される、請求項79に記載の方法。

請求項81

前記1つ又は複数の微小物体を前記エンクロージャ内に配置された少なくとも1つの隔離ペンから搬出するステップを更に含む、請求項49に記載の方法。

請求項82

前記1つ又は複数の微小物体を前記少なくとも1つの隔離ペンから搬出するステップは、誘電泳動力を用いて前記1つ又は複数の微小物体を移動させることを含む、請求項81に記載の方法。

請求項83

前記1つ又は複数の微小物体を前記マイクロ流体デバイスの前記エンクロージャの前記フロー領域から搬出するステップを更に含む、請求項49に記載の方法。

請求項84

前記1つ又は複数の微小物体を前記フロー領域から搬出するステップは、流体フロー又は誘電泳動力を使用することを含む、請求項83に記載の方法。

技術分野

0001

本願は、2015年12月30日に出願された米国仮特許出願第62/273,104号、2016年3月29日に出願された米国仮特許出願第62/314,889号、及び2016年12月1日に出願された米国仮特許出願第62/428,539号の米国特許法第119(e)条に基づく利益を主張する非仮出願であり、これらの仮特許出願のそれぞれを全体的に参照により本明細書に援用する。

背景技術

0002

背景
マイクロ流体工学の分野が発展するにつれて、マイクロ流体デバイスは、生体細胞等の微小物体の処理及び操作に都合の良いプラットフォームになった。本発明の幾つかの実施形態は、光学的に駆動される気泡対流、及び変位流体フローを使用して、マイクロ流体デバイスにおいて原動力を提供する方法及びデバイスに関する。

課題を解決するための手段

0003

概要
一態様では、マイクロ流体デバイスが提供され、本マイクロ流体デバイスは、フロー領域及び隔離ペンを更に含むエンクロージャを含み、隔離ペンは、接続領域、分離領域、及び変位力生成領域を含み、接続領域は、フロー領域への基端開口部及び分離領域への先端開口部を含み、分離領域は、変位力生成領域への少なくとも1つの流体接続を含み、変位力生成領域は、熱標的を更に含む。

0004

別の態様では、マイクロ流体デバイスが提供され、本マイクロ流体デバイスはエンクロージャを含み、エンクロージャは、流体媒体を含むように構成されるマイクロ流体回路であって、マイクロ流体回路は、流体媒体の少なくとも1つの循環フローに対応するように構成される、マイクロ流体回路と、マイクロ流体回路内のエンクロージャの表面に配置される第1の熱標的であって、第1の熱標的は、光学的に照明されると、流体媒体の第1の循環フローを生成するように構成される、第1の熱標的とを含む。

0005

更に別の態様では、マイクロ流体デバイスが提供され、本マイクロ流体デバイスはエンクロージャを含み、エンクロージャは、マイクロ流体チャネル及び隔離ペンを有し、さらに、隔離ペンはマイクロ流体チャネルに隣接し、マイクロ流体チャネルにおいて開き、熱標的が、隔離ペンへの開口部に隣接するチャネルに配置され、熱標的は、光学的に照明されると、流体媒体のフローを隔離ペンに向けるように更に構成される。

0006

別の態様では、微小物体を培養するキットが提供され、本キットは、本明細書に記載されるマイクロ流体デバイスと、マイクロ流体デバイスのエンクロージャ内に少なくとも1つの被覆面を提供するように構成される1つ又は複数の試薬とを含む。

0007

別の態様では、マイクロ流体デバイス内で1つ又は複数の微小物体を除去する方法が提供され、本方法は、マイクロ流体デバイスのエンクロージャにおける流体媒体内に配置される1つ又は複数の微小物体を含むか、又は隣接する選択された離散領域を照明するステップであって、エンクロージャは、フロー領域及び基板を含むマイクロ流体回路を含む、照明するステップと、除去力の生成に十分な第1の時間期間、選択された離散領域の照明を維持するステップであって、それにより、1つ又は複数の微小物体を表面から除去する、維持するステップとを含む。

0008

更に別の態様では、マイクロ流体デバイスのエンクロージャ内で流体媒体及び/又はそれに含まれる微小物体を混合する方法が提供され、本方法は、少なくとも1つの流体媒体及び/又は微小物体を含むマイクロ流体回路内のエンクロージャの表面に配置された熱標的に光源集束させることであって、それにより、少なくとも1つの流体媒体の第1の部分を加熱する、集束させることと、少なくとも1つの流体媒体の循環フローをマイクロ流体回路内に導入することであって、それにより、内部に配置された流体媒体及び/又は微小物体を混合する、導入することを含む。

図面の簡単な説明

0009

本開示の幾つかの実施形態による、マイクロ流体デバイス及び関連する制御機器と併用されるシステム図表現である。
本開示の幾つかの実施形態によるマイクロ流体デバイスの図表現である。
本開示の幾つかの実施形態によるマイクロ流体デバイスの図表現である。
本開示の幾つかの実施形態による分離ペンの図表現である。
本開示の幾つかの実施形態による分離ペンの図表現である。
本開示の幾つかの実施形態による詳細な隔離ペンの図表現である。
本開示の幾つかの他の実施形態による隔離ペンの図表現である。
本開示の幾つかの他の実施形態による隔離ペンの図表現である。
本開示の幾つかの他の実施形態による隔離ペンの図表現である。
本開示の実施形態によるマイクロ流体デバイスの図表現である。
本開示の実施形態によるマイクロ流体デバイスの被覆面の図表現である。
本開示の幾つかの実施形態によるマイクロ流体デバイス及び関連する制御機器と併用されるシステムの特定の例の図表現である。
本開示の幾つかの実施形態による撮像デバイス概略表現である。
本開示の実施形態による様々な熱標的の図表現である。
本開示の実施形態による様々な熱標的の図表現である。
本開示の実施形態による様々な熱標的の図表現である。
本開示の実施形態による様々な熱標的の図表現である。
本開示の実施形態による様々な熱標的の図表現である。
本開示の実施形態による様々な熱標的の図表現である。
本開示の実施形態による様々な熱標的の図表現である。
本開示の実施形態による様々な熱標的の図表現である。
本開示の実施形態による様々な熱標的の図表現である。
本開示の幾つかの実施形態による隔離ペンの図表現である。
本開示の幾つかの実施形態による隔離ペンの図表現である。
本開示の幾つかの実施形態による隔離ペンの図表現である。
本開示の幾つかの実施形態による隔離ペンの図表現である。
本開示の幾つかの実施形態による隔離ペンの図表現である。
本開示の幾つかの実施形態による隔離ペンの図表現である。
本開示の幾つかの実施形態による隔離ペンの図表現である。
本開示の幾つかの実施形態による隔離ペンの図表現である。
本開示の幾つかの実施形態による隔離ペンの図表現である。
本開示による隔離ペンの更なる実施形態の図表現である。
本開示による隔離ペンの更なる実施形態の図表現である。
本開示による隔離ペンの更なる実施形態の図表現である。
本開示による隔離ペンの更なる実施形態の図表現である。
本開示による隔離ペンの更なる実施形態の図表現である。
本開示による隔離ペンの更なる実施形態の図表現である。
本開示の幾つかの実施形態によるマイクロ流体デバイスを示す。
本開示の幾つかの実施形態によるマイクロ流体デバイスを示す。
本開示の幾つかの実施形態によるマイクロ流体デバイスを示す。
本開示の幾つかの実施形態によるマイクロ流体デバイスを示す。
本開示の幾つかの実施形態による隔離ペンから細胞搬出するのに使用される光学駆動力の使用の写真表現及びその後の生存率である。
本開示の幾つかの実施形態による隔離ペンから細胞を搬出するのに使用される光学駆動力の使用の写真表現及びその後の生存率である。
本開示の幾つかの実施形態による隔離ペンから細胞を搬出するのに使用される光学駆動力の使用の写真表現及びその後の生存率である。
本開示の幾つかの実施形態による隔離ペンから細胞を搬出するのに使用される光学駆動力の使用の写真表現及びその後の生存率である。
隔離ペンから細胞を搬出するための光学駆動変位の使用及びその後の生存率を示す。
隔離ペンから細胞を搬出するための光学駆動変位の使用及びその後の生存率を示す。
隔離ペンから細胞を搬出するための光学駆動変位の使用及びその後の生存率を示す。
本開示による光学駆動変位前後にマイクロ流体デバイス内に維持された細胞の写真表現である。
本開示による光学駆動変位前後にマイクロ流体デバイス内に維持された細胞の写真表現である。
本開示による光学駆動変位前後でマイクロ流体デバイス内に維持された細胞の写真表現である。
本開示による光学駆動変位前後でマイクロ流体デバイス内に維持された細胞の写真表現である。
本開示による光学駆動変位前後でマイクロ流体デバイス内に維持された細胞の写真表現である。
本開示による光学駆動変位前後でマイクロ流体デバイス内に維持された細胞の写真表現である。
照明を使用して、微小物体を移動可能な循環フローを生成する方法の写真表現である。
照明を使用して、微小物体を移動可能な循環フローを生成する方法の写真表現である。
照明を使用して、微小物体を移動可能な循環フローを生成する方法の写真表現である。
微小物体を除去するレーザ照明の方法の一実施形態の写真表現である。
微小物体を除去するレーザ照明の方法の一実施形態の写真表現である。
微小物体を除去するレーザ照明の方法の一実施形態の写真表現である。
微小物体を除去するレーザ照明の方法の別の実施形態の写真表現である。
微小物体を除去するレーザ照明の方法の別の実施形態の写真表現である。
微小物体を除去するレーザ照明の方法の別の実施形態の写真表現である。
微小物体を除去するレーザ照明の方法の別の実施形態の写真表現である。
微小物体を除去するレーザ照明の方法の別の実施形態の写真表現である。

実施例

0010

例示的な実施形態の詳細な説明
本明細書は、本開示の例示的な実施形態及び用途について説明する。しかし、本開示は、これらの例示的な実施形態及び用途に又は例示的な実施形態及び用途が動作若しくは本明細書において説明される様式に限定されない。さらに、図は簡易化された図又は部分図を示し得、図中の要素の寸法は強調又は他の方法で比例していないことがある。加えて、「上」、「に取り付けられる」、「に接続される」、「に結合される」という用語又は同様の用語が本明細書で使用される場合、ある要素(例えば、材料、層、基板等)は、ある要素が他の要素の直接上にある、直接付着する、直接接続される、又は直接結合されるか否かに関係なく、又はある要素と別の要素との間に1つ若しくは複数の介在要素があるか否かに関係なく、別の要素の「上」にあり、別の要素「に付着」し、「に接続」し、又は「に結合」することができる。また、文脈により別のことが示される場合を除き、方向(例えば、上方、下方、上部、下部、横、上、下、の下、の上、上部の、下部の、横、縦、「x」、「y」、「z」等)は、提供される場合、相対的なものであり、単に例として、例示及び考察を容易にするために提供され、限定として提供されるものではない。加えて、要素のリスト(例えば、要素a、b、c)が言及される場合、そのような言及は、リスト自体に列挙された要素のいずれか1つ、列挙された要素の全て未満の任意の組合せ、及び/又は列挙された全ての要素の組合せを包含することが意図される。本明細書でのセクション分割は、検討を容易にすることのみを目的とし、考察されるいかなる要素の組合せも限定しない。

0011

マイクロ流体特徴の寸法が、幅又は面積を有するものとして説明される場合、その寸法は通常、両方ともマイクロ流体デバイスの基板及び/又はカバーに平行する平面内にあるx軸及び/又はy軸次元に相対して説明される。マイクロ流体特徴の高さは、マイクロ流体デバイスの基板及び/又はカバーに平行する平面に直交するz軸方向に相対して説明し得る。幾つかの場合、チャネル又は通路等のマイクロ流体特徴の断面積は、x軸/z軸、y軸/z軸、又はx軸/y軸の面積を参照し得る。

0012

本明細書で使用される場合、「実質的に」は、意図される目的で十分に機能することを意味する。したがって、「実質的に」という用語は、全体的な性能にあまり影響しない、当業者により予期されるような絶対的又は完全な状態、寸法、測定、結果等からの小さく取るに足らない変動を許容する。数値として表現することができる数値、パラメータ、又は特性に関して使用される場合、「実質的に」は10%以内を意味する。

0013

「それぞれ(ones)」という用語は2つ以上を意味する。

0014

本明細書で使用される場合、「複数」という用語は2、3、4、5、6、7、8、9、10、又は11以上であることができる。

0015

本明細書で使用される場合、「配置される(disposed)」という用語は、その意味内に「位置する(located)」を包含する。

0016

本明細書で使用される場合、「マイクロ流体デバイス」又は「マイクロ流体装置」とは、流体を保持するように構成された1つ又は複数の別個のマイクロ流体回路であって、各マイクロ流体回路は、領域、流路、チャネル、チャンバ、及び/又はペンを含むがこれに限定されない流体的相互接続された回路要素で構成される、1つ又は複数の別個のマイクロ流体回路と、流体(及び任意選択的に流体中に懸濁した微小物体)をマイクロ流体デバイス内及び/又は外に流すように構成される少なくとも1つのポートとを含むデバイスである。通常、マイクロ流体デバイスのマイクロ流体回路は、マイクロ流体チャネルを含み得るフロー領域及び少なくとも1つのチャンバを含み、約1mL未満、例えば、約750μL未満、約500μL未満、約250μL未満、約200μL未満、約150μL未満、約100μL未満、約75μL未満、約50μL未満、約25μL未満、約20μL未満、約15μL未満、約10μL未満、約9μL未満、約8μL未満、約7μL未満、約6μL未満、約5μL未満、約4μL未満、約3μL未満、又は約2μL未満の容量の流体を保持する。特定の実施形態では、マイクロ流体回路は、約1μL〜約2μL、約1μL〜約3μL、約1μL〜約4μL、約1μL〜約5μL、約2μL〜約5μL、約2μL〜約8μL、約2μL〜約10μL、約2μL〜約12μL、約2μL〜約15μL、約2μL〜約20μL、約5μL〜約20μL、約5μL〜約30μL、約5μL〜約40μL、約5μL〜約50μL、約10μL〜約50μL、約10μL〜約75μL、約10μL〜約100μL、約20μL〜約100μL、約20μL〜約150μL、約20μL〜約200μL、約50μL〜約200μL、約50μL〜約250μL、又は約50μL〜約300μLを保持する。マイクロ流体回路は、マイクロ流体デバイスの第1のポート(例えば、流入口)と流体的に接続される第1の端部と、マイクロ流体デバイスの第2のポート(例えば、流出口)と流体的に接続される第2の端部とを有するように構成し得る。

0017

本明細書で使用される場合、「ナノ流体デバイス」又は「ナノ流体装置」とは、約1μL未満、例えば、約750nL未満、約500nL未満、約250nL未満、約200nL未満、約150nL未満、約100nL未満、約75nL未満、約50nL未満、約25nL未満、約20nL未満、約15nL未満、約10nL未満、約9nL未満、約8nL未満、約7nL未満、約6nL未満、約5nL未満、約4nL未満、約3nL未満、約2nL未満、約1nL未満、又はそれ未満の容量の流体を保持するように構成された少なくとも1つ回路要素を含むマイクロ流体回路を有するタイプのマイクロ流体デバイスである。ナノ流体デバイスは、複数の回路要素(例えば、少なくとも2個、3個、4個、5個、6個、7個、8個、9個、10個、15個、20個、25個、50個、75個、100個、150個、200個、250個、300個、400個、500個、600個、700個、800個、900個、1000個、1500個、2000個、2500個、3000個、3500個、4000個、4500個、5000個、6000個、7000個、8000個、9000個、10,000個、又はそれ以上)を含み得る。特定の実施形態では、少なくとも1つの回路要素のうちの1つ又は複数(例えば、全て)は、約100pL〜約1nL、約100pL〜約2nL、約100pL〜約5nL、約250pL〜約2nL、約250pL〜約5nL、約250pL〜約10nL、約500pL〜約5nL、約500pL〜約10nL、約500pL〜約15nL、約750pL〜約10nL、約750pL〜約15nL、約750pL〜約20nL、約1nL〜約10nL、約1nL〜約15nL、約1nL〜約20nL、約1nL〜約25nL、又は約1nL〜約50nLの容量の流体を保持するように構成される。他の実施形態では、少なくとも1つの回路要素のうちの1つ又は複数(例えば、全て)は、約20nL〜約200nL、約100nL〜約200nL、約100nL〜約300nL、約100nL〜約400nL、約100nL〜約500nL、約200nL〜約300nL、約200nL〜約400nL、約200nL〜約500nL、約200nL〜約600nL、約200nL〜約700nL、約250nL〜約400nL、約250nL〜約500nL、約250nL〜約600nL、又は約250nL〜約750nLの容量の流体を保持するように構成される。

0018

本明細書で使用される場合、「マイクロ流体チャネル」又は「フローチャネル」は、横寸法及び縦寸法の両方よりも実質的に長い長さを有するマイクロ流体デバイスのフロー領域を指す。例えば、フローチャネルは、横寸法又は縦寸法のいずれかの長さの少なくとも5倍、例えば、長さの少なくとも10倍、長さの少なくとも25倍、長さの少なくとも100倍、長さの少なくとも200倍、長さの少なくとも500倍、長さの少なくとも1,000倍、長さの少なくとも5,000倍、又はそれよりも長い長さであることができる。幾つかの実施形態では、フローチャネルの長さは、間の任意の範囲を含む約100,000μm〜約500,000μmの範囲である。幾つかの実施形態では、横寸法は約100μm〜約1000μm(例えば、約150μm〜約500μm)の範囲であり、縦寸法は約25μm〜約200μmの範囲、例えば、約40μm〜約150μmの範囲である。なお、フローチャネルは、マイクロ流体デバイスにおいて多種多様な異なる空間構成を有し得、したがって、完全に線形の要素に限定されない。例えば、フローチャネルは、以下の構成:曲線湾曲螺旋、傾斜、下降分岐(例えば、複数の異なる流路)、及びそれらの任意の組合せを有する1つ又は複数の部分であり得、又は含み得る。加えて、フローチャネルは、経路に沿って異なる断面積を有し得、広がるか、又は収縮して、所望の流体フローを内部に提供し得る。フローチャネルは弁を含み得、弁は、マイクロ流体の分野で既知の任意のタイプのものであり得る。弁を含むマイクロ流体チャネルの例は、米国特許第6,408,878号及び同第9,227,200号に開示されており、これらのそれぞれは全体的に参照により本明細書に援用される。

0019

本明細書で使用される場合、「障害物」という用語は一般に、マイクロ流体デバイス内の2つの異なる領域又は回路要素間の標的微小物体の移動を部分的に(しかし、完全にではない)妨げるのに十分に大きいバンプ又は同様のタイプの構造を指す。2つの異なる領域/回路要素は、例えば、マイクロ流体隔離ペンの接続領域及び分離領域であることができる。

0020

本明細書で使用される場合、「狭窄」という用語は一般に、マイクロ流体デバイス内の回路要素(又は2つの回路要素間の界面)の幅の狭まりを指す。狭窄は、例えば、本開示のマイクロ流体隔離ペンの分離領域と接続領域との界面に位置することができる。

0021

本明細書で使用される場合、「透明」という用語は、可視光が透過する際、可視光を実質的に変更せずに透過させる材料を指す。

0022

本明細書で使用される場合、「微小物体」という用語は一般に、本発明により分離及び/又は操作し得る任意の顕微鏡的物体を指す。微小物体の非限定的な例としては、微粒子微小ビーズ(例えば、ポリスチレンビーズ、Luminex(商標ビーズ等);磁性ビーズ微小ロッド微小ワイヤ量子ドット等の無生物微小物体、細胞;生物学的細胞小器官ベシクル又は複合体;合成ベシクル;リポソーム(例えば、合成又は膜標本由来);脂質ナノクラフト(lipid nanoraft)等の生物学的微小物体、又は無生物微小物体と生物学的微小物体との組合せ(例えば、細胞に付着した微小ビーズ、リポソームコーティング微小ビーズ、リポソームコーティング磁性ビーズ等)が挙げられる。ビーズは、蛍光標識タンパク質炭水化物抗原、小分子シグナリング部分、又はアッセイ使用可能な他の化学生物種等の共有結合又は非共有結合した部分/分子を含み得る。脂質ナノクラフトは、例えば、Ritchieら著、(2009)“Reconstitution of Membrane Proteins in Phospholipid Bilayer Nanodiscs”,MethodsEnzymol.,464:211-231において説明されている。

0023

本明細書で使用される場合、「細胞」という用語は用語「生体細胞」と同義で使用される。生体細胞の非限定的な例としては、真核細胞植物細胞哺乳類細胞爬虫類細胞、鳥類細胞魚類細胞等の動物細胞原核細胞細菌細胞真菌細胞原生細胞等、筋肉軟骨組織脂肪、皮膚、肝臓神経組織等の組織から解離された細胞、T細胞、B細胞ナチュラルキラー細胞マクロファージ等の免疫細胞(例えば、接合子)、卵母細胞卵子精子細胞ハイブリドーマ培養細胞細胞株からの細胞、がん細胞、感染細胞トランスフェクト細胞及び/又は形質転換細胞レポーター細胞等が挙げられる。哺乳類細胞は、例えば、ヒト、マウスラットウマヤギヒツジウシ霊長類等からの細胞であることができる。

0024

生体細胞のコロニーは、生殖可能なコロニー内の生細胞の全てが、単一の親細胞由来の娘細胞である場合、「クローン」である。特定の実施形態では、クローンコロニー内の全ての娘細胞は、10以下の細胞分裂での単一の親細胞からのものである。他の実施形態では、クローンコロニー内の全ての娘細胞は、14以下の細胞分裂での単一の親細胞からのものである。他の実施形態では、クローンコロニー内の全ての娘細胞は、17以下の細胞分裂での単一の親細胞からのものである。他の実施形態では、クローンコロニー内の全ての娘細胞は、20以下の細胞分裂での単一の親細胞からのものである。「クローン細胞」という用語は、同じクローンコロニーの細胞を指す。

0025

本明細書で使用される場合、生体細胞の「コロニー」は、2つ以上の細胞(例えば、約2〜約20個、約4〜約40個、約6〜約60個、約8〜約80個、約10〜約100個、約20約200個、約40約400個、約60約600個、約80約800個、約100約1000個、又は約1000個を超える細胞)を指す。

0026

本明細書で使用される場合、「細胞を維持する」という用語は、細胞を生存した状態に保ち、及び/又は増殖させるのに必要な状況を提供する流体成分及びガス成分の両方並びに任意選択的に表面を含む環境を提供することを指す。

0027

本明細書で使用される場合、「増殖」という用語は、細胞を指す場合、細胞数の増大を指す。

0028

流体の媒体の「成分」とは、溶媒分子イオン、小分子、抗生物質ヌクレオチド及びヌクレオシド核酸アミノ酸ペプチド、タンパク質、糖、炭水化物、脂質、脂肪酸コレステロール代謝産物等を含む、媒体に存在する任意の化学分子又は生化学分子である。

0029

流体媒体を参照して本明細書で使用される場合、「拡散する」及び「拡散」とは、濃度勾配を下がる流体媒体の成分の熱力学的移動を指す。

0030

「媒体の流れ」という語句は、拡散以外の任意のメカニズムに主に起因する流体媒体のバルク移動を意味する。例えば、媒体の流れは、ポイント間の圧力差に起因する流体媒体のあるポイントから別のポイントへの移動を含むことができる。そのようなフローは、液体連続フローパルスフロー、周期的フローランダムフロー、断続的フロー、又は往復フロー、又はそれらの任意の組合せを含むことができる。ある流体媒体が別の流体媒体中に流れる場合、媒体の乱流及び混合が生じ得る。

0031

「実質的に流れがない」という語句は、流体媒体内への又は流体媒体内の材料(例えば、対象となる検体)の成分の拡散率未満である、経時平均される流体媒体の流量を指す。そのような材料の成分の拡散率は、例えば、成分の温度、サイズ、及び成分と流体媒体との相互作用の強さに依存することができる。

0032

マイクロ流体デバイス内の異なる領域を参照して本明細書で使用される場合、「流体的に接続される」という語句は、異なる領域が流体媒体等の流体で実質的に充填されているとき、各領域内の流体が接続されて、単一の流体を形成することを意味する。これは、異なる領域内の流体(又は流体媒体)の組成が必ずしも同一であることを意味しない。正確に言えば、マイクロ流体デバイスの流体的に接続される異なる領域内の流体は、溶質が各濃度勾配を下に移動し、及び/又は流体がマイクロ流体デバイスを通って流れるとき、流動的である異なる組成(例えば、タンパク質、炭水化物、イオン、又は他の分子等の異なる濃度の溶質)を有することができる。

0033

本明細書で使用される場合、「流路」とは、媒体の流れの軌道画定し、媒体の流れの軌道を受ける1つ又は複数の流体的に接続された回路要素(例えば、チャネル、領域、チャンバ等)を指す。したがって、流路は、マイクロ流体デバイスの掃引領域の例である。他の回路要素(例えば、非掃引領域)は、流路における媒体の流れを受けることなく、流路を含む回路要素と流体的に接続し得る。

0034

本明細書で使用される場合、「微小物体の分離」は、マイクロ流体デバイス内の画定エリアに微小物体を閉じ込めることを意味する。微小物体はそれでもなお、in situ生成捕捉構造内で動くことが可能であり得る。

0035

マイクロ流体(又はナノ流体)デバイスは、「掃引」領域及び「非掃引」領域を含むことができる。本明細書で使用される場合、「掃引」領域は、流体がマイクロ流体回路を流れているとき、媒体の流れを受ける、マイクロ流体回路の1つ又は複数の流体的に相互接続された回路要素で構成される。掃引領域の回路要素は、例えば、領域、チャネル、及びチャンバの全て又は一部を含むことができる。本明細書で使用される場合、「非掃引」領域は、流体がマイクロ流体回路を流れているとき、流体流動を実質的に受けない、マイクロ流体回路の1つ又は複数の流体的に相互接続された回路要素で構成される。非掃引領域は、流体接続が、掃引領域と非掃引領域との間の拡散は可能であるが、実質的に媒体フローがないような構造を有する場合、掃引領域に流体的に接続することができる。したがって、マイクロ流体デバイスは、実質的に掃引領域と非掃引領域との間の拡散流通のみを可能にしながら、掃引領域内の媒体のフローから非掃引領域を実質的に分離するような構造を有することができる。例えば、マイクロ流体デバイスのフローチャネルは、掃引領域の例であり、一方、マイクロ流体デバイスの分離領域(以下に更に詳細に説明する)は、非掃引領域の例である。

0036

本明細書で使用される場合、「犠牲特徴」とは、本開示のマイクロ流体デバイス及び方法において熱標的として使用し得、気泡、キャビテーション力、又は剪断流を本明細書に記載のように生成するのに十分に照明されると、少なくとも部分的に破壊されるマイクロ流体回路要素を指す。

0037

そのようなマイクロ流体デバイスにおいて、特定の生物学的材料(例えば、抗体等のタンパク質)を生成する生物学的微小物体(例えば、生体細胞)の能力をアッセイすることができる。アッセイの特定の実施形態では、対象となる検体の生産についてアッセイする生物学的微小物体(例えば、細胞)を含む試料材料をマイクロ流体デバイスの掃引領域に装填することができる。生物学的微小物体(例えば、ヒト細胞等の哺乳類細胞)のそれぞれは、特定の特性に関して選択することができ、非掃引領域に配置することができる。次に、残りの試料材料を掃引領域から流出させ、アッセイ材料を掃引領域に流入させることができる。選択された生物学的微小物体は非掃引領域にあるため、選択された生物学的微小物体は、残りの試料材料の流出又はアッセイ材料の流入による影響を実質的に受けない。選択された生物学的微小物体は、対象となる検体を生成することが可能であることができ、検体は非掃引領域から掃引領域中に拡散することができ、掃引領域において、対象となる検体はアッセイ材料と反応して、それぞれを特定の非掃引領域に相関付けることができる、局所化された検出可能反応を生成することができる。検出された反応に関連する任意の非掃引領域を分析して、非掃引領域中の生物学的微小物体のうち、対象となる検体の十分な生産者物体がある場合、それがいずれかを特定することができる。

0038

マイクロ流体デバイス及びそのようなデバイスを操作し観測するシステム
図1Aは、卵子、及び/又は卵母細胞、及び/又は精子の選択及び評価を含め、インビトロでの胚の生成に使用することができるマイクロ流体デバイス100及びシステム150の例を示す。カバー110を一部切り欠き、マイクロ流体デバイス100内の部分図を提供するマイクロ流体デバイス100の斜視図を示す。マイクロ流体デバイス100は、一般に、流路106を含むマイクロ流体回路120を含み、流路106を通って流体培地180が流れることができ、任意選択的に1つ又は複数の微小物体(図示せず)をマイクロ流体回路120内及び/又はマイクロ流体回路120を通して搬送する。1つのマイクロ流体回路120が図1Aに示されているが、適するマイクロ流体デバイスは、複数(例えば、2又は3個)のそのようなマイクロ流体回路を含むことができる。それに関係なく、マイクロ流体デバイス100はナノ流体デバイスであるように構成され得る。図1Aに示されるように、マイクロ流体回路120は、複数のマイクロ流体隔離ペン124、126、128、及び130を含み得、ここで、各隔離ペンは、流路106に流体接続する1つ又は複数の開口部を有し得る。図1Aのデバイスの幾つかの実施形態では、隔離ペンは、流路106と流通する1つのみの開口部を有し得る。更に以下で考察するように、マイクロ流体隔離ペンは、培地180が流路106を通って流れているときであっても、マイクロ流体デバイス100等のマイクロ流体デバイスに微小物体を保持するように最適化された様々な特徴及び構造を含む。しかし、上記を参照する前に、マイクロ流体デバイス100及びシステム150の概説を提供する。

0039

図1Aに概して示されるように、マイクロ流体回路120はエンクロージャ102により画定される。エンクロージャ102は異なる構成で物理的に構造化することができるが、図1Aに示される例では、エンクロージャ102は、支持構造体104(例えば、基部)、マイクロ流体回路構造108、及びカバー110を含むものとして示されている。支持構造体104、マイクロ流体回路構造108、及びカバー110は、互いに取り付けることができる。例えば、マイクロ流体回路構造108は、支持構造体104の内面109に配置することができ、カバー110は、マイクロ流体回路構造108を覆って配置することができる。支持構造体104及びカバー110と一緒に、マイクロ流体回路構造108は、マイクロ流体回路120の要素を画定することができる。

0040

図1Aに示されるように、支持構造体104は、マイクロ流体回路120の下部にあり得、カバー110はマイクロ流体回路120の上部にあり得る。代替的に、支持構造体104及びカバー110は、他の向きで構成され得る。例えば、支持構造体104は、マイクロ流体回路120の上部にあり得、カバー110はマイクロ流体回路120の下部にあり得る。それに関係なく、それぞれがエンクロージャ102内又は外への通路を含む1つ又は複数のポート107があり得る。通路の例としては、弁、ゲート貫通孔等が挙げられる。示されるように、ポート107は、マイクロ流体回路構造108のギャップにより作られる貫通孔である。しかし、ポート107は、カバー110等のエンクロージャ102の他の構成要素に配置することができる。1つのみのポート107が図1Aに示されているが、マイクロ流体回路120は2つ以上のポート107を有することができる。例えば、流体がマイクロ流体回路120に入るための流入口として機能する第1のポート107があり得、流体がマイクロ流体回路120を出るための流出口として機能する第2のポート107があり得る。ポート107が流入口として機能するか、それとも流出口として機能するかは、流体が流路106を通って流れる方向に依存し得る。

0041

支持構造体104は、1つ又は複数の電極(図示せず)と、基板又は複数の相互接続された基板を含むことができる。例えば、支持構造体104は、1つ又は複数の半導体基板を含むことができ、各半導体基板は電極に電気的に接続される(例えば、半導体基板の全て又はサブセットは、1つの電極に電気的に接続することができる)。支持構造体104は、プリント回路基板組立体(「PCBA」)を更に含むことができる。例えば、半導体基板はPCBA上に搭載することができる。

0042

マイクロ流体回路構造108は、マイクロ流体回路120の回路要素を画定することができる。そのような回路要素は、マイクロ流体回路120に流体が充填される場合、流体的に相互接続することができる、フロー領域(1つ又は複数のフローチャネルを含み得る)、チャンバ、ペン、トラップ等の空間又は領域を含むことができる。図1Aに示されるマイクロ流体回路120では、マイクロ流体回路108は、枠114及びマイクロ流体回路材料116を含む。枠114は、マイクロ流体回路材料116を部分的又は完全に囲むことができる。枠114は、例えば、マイクロ流体回路材料116を実質的に囲む比較的剛性の構造であり得る。例えば、枠114は金属材料を含むことができる。

0043

マイクロ流体回路材料116には、キャビティ等をパターニングして、マイクロ流体回路120の回路要素及び相互接続を画定することができる。マイクロ流体回路材料116は、ガス透過可能であり得る可撓性ポリマー(例えば、ゴムプラスチックエラストマーシリコーンポリジメチルシロキサン(「PDMS」)等)等の可撓性材料を含むことができる。マイクロ流体回路材料116を構成することができる材料の他の例としては、成形ガラス、シリコーン(フォトパターニング可能シリコーン又は「PPS」)等のエッチング可能材料、フォトレジスト(例えば、SU8)等が挙げられる。幾つかの実施形態では、そのような材料 − したがって、マイクロ流体回路材料116 − は、剛性及び/又はガスを実質的に不透過であり得る。それに関係なく、マイクロ流体回路材料116は、支持構造体104上及び枠114内部に配置することができる。

0044

カバー110は、枠114及び/又はマイクロ流体回路材料116の一体部分であり得る。代替的に、カバー110は、図1Aに示されるように、構造的に別個の要素であり得る。カバー110は、枠114及び/又はマイクロ流体回路材料116と同じ又は異なる材料を含むことができる。同様に、支持構造体104は、示されるように枠114若しくはマイクロ流体回路材料116とは別個の構造であってもよく、又は枠114若しくはマイクロ流体回路材料116の一体部分であってもよい。同様に、枠114及びマイクロ流体回路材料116は、図1Aに示されるように別個の構造であってもよく、又は同じ構造の一体部分であってもよい。

0045

幾つかの実施形態では、カバー110は剛性材料を含むことができる。剛性材料は、ガラス又は同様との特性を有する材料であり得る。幾つかの実施形態では、カバー110は変形可能材料を含むことができる。変形可能材料は、PDMS等のポリマーであり得る。幾つかの実施形態では、カバー110は、剛性材料及び変形可能材料の両方を含むことができる。例えば、カバー110の1つ又は複数の部分(例えば、隔離ペン124、126、128、130上に位置する1つ又は複数の部分)は、カバー110の剛性材料と界面を接する変形可能材料を含むことができる。幾つかの実施形態では、カバー110は1つ又は複数の電極を更に含むことができる。1つ又は複数の電極は、ガラス又は同様の絶縁材料でコーティングし得る、インジウム−錫−酸化物(ITO)等の導電性酸化物を含むことができる。代替的に、1つ又は複数の電極は、ポリマー(例えば、PDMS)等の変形可能ポリマーに埋め込まれた単層ナノチューブ多層ナノチューブナノワイヤ導電性ナノ粒子クラスタ、又はそれらの組合せ等の可撓性電極であり得る。マイクロ流体デバイスで使用することができる可撓性電極は、例えば、米国特許出願公開第2012/0325665号(Chiouら)に記載されており、この内容は参照により本明細書に援用される。幾つかの実施形態では、カバー110は、細胞の接着、生存、及び/又は成長を支持するように変更することができる(例えば、マイクロ流体回路120に向かって内側に面する表面の全て又は部分を調整することにより)。変更は、合成ポリマー又は天然ポリマーのコーティングを含み得る。幾つかの実施形態では、カバー110及び/又は支持構造体104は、光を透過することができる。カバー110は、ガス透過可能な少なくとも1つの材料(例えば、PDMS又はPPS)を含むこともできる。

0046

図1Aは、マイクロ流体デバイス100等のマイクロ流体デバイスを動作させ制御するシステム150も示す。システム150は、電源192、撮像デバイス194(撮像モジュール164内に組み込まれ、デバイス194自体は図1Aに示されていない)、及び傾斜デバイス190(傾斜モジュール166の部分であり、デバイス190は図1Aに示されていない)を含む。

0047

電源192は、電力をマイクロ流体デバイス100及び/又は傾斜デバイス190に提供し、バイアス電圧又は電流を必要に応じて提供することができる。電源192は、例えば、1つ又は複数の交流(AC)及び/又は直流(DC)電圧源又は電流源を含むことができる。撮像デバイス194(以下で述べられる撮像モジュール164の一部)は、マイクロ流体回路120内部の画像を捕捉する、デジタルカメラ等のデバイスを含むことができる。幾つかの場合、撮像デバイス194は、高速フレームレート及び/又は高感度(例えば、低光用途用)を有する検出器を更に含む。撮像デバイス194は、刺激放射線及び/又は光線をマイクロ流体回路120内に向け、マイクロ流体回路120(又はマイクロ流体回路120内に含まれる微小物体)から反射されるか、又は発せられる放射線及び/又は光線を収集する機構を含むこともできる。発せられる光線は可視スペクトル内であり得、例えば、蛍光放射を含み得る。反射光線は、LED又は水銀灯(例えば、高圧水銀灯)若しくはキセノンアーク灯等の広域スペクトル灯から発せられた反射放射を含み得る。図3Bに関して考察するように、撮像デバイス194は顕微鏡(又は光学縦列)を更に含み得、これは接眼レンズを含んでもよく、又は含まなくてもよい。

0048

システム150は、1つ又は複数の回転軸周りでマイクロ流体デバイス100を回転させるように構成される傾斜デバイス190(以下で述べられる傾斜モジュール166の一部)を更に含む。幾つかの実施形態では、傾斜デバイス190は、マイクロ流体デバイス100(したがって、マイクロ流体回路120)を水平向き(すなわち、x軸及びy軸に相対して0°)、垂直向き(すなわち、x軸及び/又はy軸に相対して90°)、又はそれらの間の任意の向きで保持することができるように、少なくとも1つの軸の周りでマイクロ流体回路120を含むエンクロージャ102を支持及び/又は保持するように構成される。軸に相対するマイクロ流体デバイス100(及びマイクロ流体回路120)の向きは、本明細書では、マイクロ流体デバイス100(及びマイクロ流体回路120)の「傾斜」と呼ばれる。例えば、傾斜デバイス190は、x軸に相対して0.1°、0.2°、0.3°、0.4°、0.5°、0.6°、0.7°、0.8°、0.9°、1°、2°、3°、4°、5°、10°、15°、20°、25°、30°、35°、40°、45°、50°、55°、60°、65°、70°、75°、80°、90°、又はそれらの間の任意の度数でマイクロ流体デバイス100を傾斜させることができる。水平向き(したがって、x軸及びy軸)は、重力により定義される垂直軸に垂直なものとして定義される。傾斜デバイスは、マイクロ流体デバイス100(及びマイクロ流体回路120)をx軸及び/又はy軸に相対して90°よりも大きい任意の角度に傾斜させるか、又はマイクロ流体デバイス100(及びマイクロ流体回路120)をx軸若しくはy軸に相対して180°に傾斜させて、マイクロ流体デバイス100(及びマイクロ流体回路120)を真逆にすることもできる。同様に、幾つかの実施形態では、傾斜デバイス190は、流路106又はマイクロ流体回路120の何らかの他の部分により定義される回転軸の周りでマイクロ流体デバイス100(及びマイクロ流体回路120)を傾斜させる。

0049

幾つかの場合、マイクロ流体デバイス100は、流路106が1つ又は複数の隔離ペンの上方又は下方に位置するように、垂直向きに傾斜する。「上方」という用語は、本明細書で使用される場合、流路106が、重力により定義される垂直軸上で1つ又は複数の隔離ペンよりも高く位置する(すなわち、流路106の上方の隔離ペン内の物体が流路内の物体よりも高い重力位置エネルギーを有する)ことを示す。「下方」という用語は、本明細書で使用される場合、流路106が、重力により定義される垂直軸上で1つ又は複数の隔離ペンよりも下に位置する(すなわち、流路106の下方の隔離ペン内の物体が流路内の物体よりも低い重力位置エネルギーを有する)ことを示す。

0050

幾つかの場合、傾斜デバイス190は、流路106と平行な軸の周りでマイクロ流体デバイス100を傾斜させる。更に、マイクロ流体デバイス100は、流路106が、隔離ペンの真上又は真下に配置されずに、1つ又は複数の隔離ペンの上方又は下方に配置されるように、90°未満の角度に傾斜することができる。他の場合、傾斜デバイス190は、流路106に直交する軸の周りでマイクロ流体デバイス100を傾斜させる。更に他の場合、傾斜デバイス190は、流路106に平行でもなく直交もしない軸の周りでマイクロ流体デバイス100を傾斜させる。

0051

システム150は培地源178を更に含むことができる。培地源178(例えば、容器リザーバ等)は、それぞれが異なる流体培地180を保持する複数のセクション又は容器を含むことができる。したがって、培地源178は、図1Aに示されるように、マイクロ流体デバイス100の外部にある、マイクロ流体デバイス100とは別個のデバイスであり得る。代替的に、培地源178は、全体的又は部分的に、マイクロ流体デバイス100のエンクロージャ102内部に配置することができる。例えば、培地源178は、マイクロ流体デバイス100の部分であるリザーバを含むことができる。

0052

図1Aは、システム150の一部を構成し、マイクロ流体デバイス100と併せて利用することができる制御及び監視機器152の例の簡易ブロック図表現も示す。示されるように、そのような制御及び監視機器152の例は、培地源178を制御する培地モジュール160と、マイクロ流体回路120での微小物体(図示せず)及び/又は培地(例えば、培地の液滴)の移動及び/又は選択を制御する原動モジュール162と、画像(例えば、デジタル画像)を捕捉する撮像デバイス194(例えば、カメラ、顕微鏡、光源、又はそれらの任意の組合せ)を制御する撮像モジュール164と、傾斜デバイス190を制御する傾斜モジュール166とを含むマスタコントローラ154を含む。制御機器152は、マイクロ流体デバイス100に関する他の機能を制御、監視、又は実行する他のモジュール168を含むこともできる。示されるように、機器152は、表示デバイス170及び入/出力デバイス172を更に含むことができる。

0053

マスタコントローラ154は、制御モジュール156及びデジタルメモリ158を含むことができる。制御モジュール156は、例えば、メモリ158内に非一時的データ又は信号として記憶される機械実行可能命令(例えば、ソフトウェアファームウェアソースコード等)に従って動作するように構成されるデジタルプロセッサを含むことができる。代替的に又は追加として、制御モジュール156は、ハードワイヤードデジタル回路及び/又はアナログ回路を含むことができる。培地モジュール160、原動モジュール162、撮像モジュール164、傾斜モジュール166、及び/又は他のモジュール168は、同様に構成され得る。したがって、マイクロ流体デバイス100又は任意の他のマイクロ流体装置に関して実行されるものとして本明細書で考察される機能、プロセス、行動、動作、又はプロセスのステップは、上述したように構成されるマスタコントローラ154、培地モジュール160、原動モジュール162、撮像モジュール164、傾斜モジュール166、及び/又は他のモジュール168の任意の1つ又は複数により実行され得る。同様に、マスタコントローラ154、培地モジュール160、原動モジュール162、撮像モジュール164、傾斜モジュール166、及び/又は他のモジュール168は、通信可能に結合されて、本明細書において考察される任意の機能、プロセス、行動、動作、又はステップで使用されるデータを送受信し得る。

0054

培地モジュール160は培地源178を制御する。例えば、培地モジュール160は、培地源178を制御して、選択された流体培地180をエンクロージャ102に入れる(例えば、流入口107を介して)ことができる。培地モジュール160は、エンクロージャ102からの培地の取り出し(例えば、流出口(図示せず)を通して)を制御することもできる。したがって、1つ又は複数の培地を選択的にマイクロ流体回路120に入れ、マイクロ流体回路120から搬出することができる。培地モジュール160は、マイクロ流体回路120内部の流路106での流体培地180のフローを制御することもできる。例えば、幾つかの実施形態では、培地モジュール160は、傾斜モジュール166が傾斜デバイス190に所望の傾斜角までマイクロ流体デバイス100を傾斜させる前に、流路106内及びエンクロージャ102を通る培地180のフローを停止させる。

0055

原動モジュール162は、マイクロ流体回路120での微小物体(図示せず)の選択、捕捉、及び移動を制御するように構成され得る。図1B及び図1Cに関して後述するように、エンクロージャ102は、誘電泳動(DEP)構成、光電子ピンセット(OET)構成、及び/又は光電子ウェッティング(OEW)構成(図1Aに示されず)を含むことができ、原動モジュール162は、電極及び/又はトランジスタ(例えば、フォトトランジスタ)のアクティブ化を制御して、流路106及び/又は隔離ペン124、126、128、130で微小物体(図示せず)及び/又は培地の液滴(図示せず)を選択し移動させることができる。

0056

撮像モジュール164は撮像デバイス194を制御することができる。例えば、撮像モジュール164は、撮像デバイス194から画像データを受信し、処理することができる。撮像デバイス194からの画像データは、撮像デバイス194により捕捉された任意のタイプの情報を含むことができる(例えば、微小物体、培地の液滴、蛍光標識等の標識の蓄積の有無等)。撮像デバイス194により捕捉された情報を使用して、撮像モジュール164は、物体(例えば、微小物体、培地の液滴)の位置及び/又はマイクロ流体デバイス100内のそのような物体の移動速度を更に計算することができる。

0057

傾斜モジュール166は、傾斜デバイス190の傾斜移動を制御することができる。代替的に又は追加として、傾斜モジュール166は、重力を介して1つ又は複数の隔離ペンへの微小物体の移送を最適化するように、傾斜率及びタイミングを制御することができる。傾斜モジュール166は、撮像モジュール164と通信可能に結合されて、マイクロ流体回路120での微小物体及び/又は培地の液滴の移動を記述するデータを受信する。このデータを使用して、傾斜モジュール166は、マイクロ流体回路120の傾斜を調整して、マイクロ流体回路120内で微小物体及び/又は培地の液滴が移動する率を調整し得る。傾斜モジュール166は、このデータを使用して、マイクロ流体回路120内での微小物体及び/又は培地の液滴の位置を繰り返し調整することもできる。

0058

図1Aに示される例では、マイクロ流体回路120は、マイクロ流体チャネル122及び隔離ペン124、126、128、130を含むものとして示されている。各ペンは、チャネル122への開口部を含むが、ペンがペン内部の微小物体を流体培地180及び/又はチャネル122の流路106又は他のペン内の微小物体から実質的に分離することができるように、その他では閉じられている。隔離ペンの壁は、ベースの内面109からカバー110の内面まで延び、エンクロージャを提供する。マイクロ流体チャネル122へのペンの開口部は、フロー106がペン内に向けられないように、フロー106に対して傾斜して向けられる。フローは、ペンの開口部の平面に対して接線方向にあり得るか又は直交し得る。幾つかの場合、ペン124、126、128、130は、1つ又は複数の微小物体をマイクロ流体回路120内に物理的に囲い入れるように構成される。本開示による隔離ペンは、以下に詳細に考察し示すように、DEP、OET、OEW、流体フロー、及び/又は重力との併用に最適化された様々な形状、表面、及び特徴を含むことができる。

0059

マイクロ流体回路120は、任意の数のマイクロ流体隔離ペンを含み得る。5つの隔離ペンが示されているが、マイクロ流体回路120は、より少数又はより多数の隔離ペンを有し得る。示されるように、マイクロ流体回路120のマイクロ流体隔離ペン124、126、128、及び130は、ある卵子の隣接卵子からの分離等の胚を生成するに当たり有用な1つ又は複数の利点を提供し得る異なる特徴及び形状をそれぞれ含む。テストシミュレーション、及び受精は、全て個々単位で実行し得、幾つかの実施形態では、個々のタイムスケールで実行し得る。幾つかの実施形態では、マイクロ流体回路120は、複数の同一のマイクロ流体隔離ペンを含む。

0060

幾つかの実施形態では、マイクロ流体回路120は、複数のマイクロ流体隔離ペンを含み、その場合、隔離ペンの2つ以上は、胚の生成において異なる利点を提供する異なる構造及び/又は特徴を含む。非限定的な一例として、あるタイプのペン内に卵子を維持しながら、異なるタイプのペン内に精子を維持することを挙げることができる、別の実施形態では、隔離ペンの少なくとも1つは、卵子に電気活性化を提供するのに適した電気接点を有するように構成される。更に別の実施形態では、異なるタイプの細胞(例えば、子宮細胞、子宮内膜細胞、卵管(uterine tube)(例えば、卵管(oviduct)若しくはファローピウス管)等)由来のPEG(介在)細胞、卵丘細胞、又はそれらの組合わせ)は、卵子を含む隔離ペンに隣接する隔離ペンに配置し得、それにより、周囲の隔離ペンからの分泌物は各ペンから出て、卵子を含むペン中に拡散し得、これは、マクロスケールでのインビトロ培養及び受精では不可能である。胚の生成に有用なマイクロ流体デバイスは、隔離ペン124、126、128、及び130又はそれらの変形形態のいずれかを含み得、及び/又は後述するように、図2B図2C図2D図2E、及び図2Fに示されるように構成されるペンを含み得る。

0061

図1Aに示される実施形態では、1つのチャネル122及び流路106が示される。しかし、他の実施形態は、それぞれが流路106を含むように構成される複数のチャネル122を含み得る。マイクロ流体回路120は、流路106及び流体培地180と流体連通する流入弁又はポート107を更に含み、それにより、流体培地180は、流入口107を介してチャネル122にアクセスすることができる。幾つかの場合、流路106は1つの経路を含む。幾つかの場合、1つの経路はジグザグパターンで配置され、それにより、流路106は、交互になった方向で2回以上にわたってマイクロ流体デバイス100にわたり移動する。

0062

幾つかの場合、マイクロ流体回路120は、複数の平行チャネル122及び流路106を含み、各流路106内の流体培地180は同じ方向に流れる。幾つかの場合、各流路106内の流体培地は、順方向又は逆方向の少なくとも一方で流れる。幾つかの場合、複数の隔離ペンは、隔離ペンが標的微小物体と並列に配置されることができるように構成される(例えば、チャネル122に相対して)。

0063

幾つかの実施形態では、マイクロ流体回路120は、1つ又は複数の微小物体トラップ132を更に含む。トラップ132は、一般に、チャネル122の境界を形成する壁に形成され、マイクロ流体隔離ペン124、126、128、130の1つ又は複数の開口部の逆に位置し得る。幾つかの実施形態では、トラップ132は、流路106から1つの微小物体を受け取り、又は捕捉するように構成される。幾つかの実施形態では、トラップ132は、流路106から複数の微小物体を受け取り、又は捕捉するように構成される。幾つかの場合、トラップ132は、1つの標的微小物体の容積に概ね等しい容積を含む。

0064

トラップ132は、標的微小物体のトラップ132へのフローを支援するように構成される開口部を更に含み得る。幾つかの場合、トラップ132は、1つの標的微小物体の寸法に概ね等しい高さ及び幅を有する開口部を含み、それにより、より大きい微小物体が微小物体トラップに入らないようにされる。トラップ132は、トラップ132内への標的微小物体の保持を支援するように構成される他の特徴を更に含み得る。幾つかの場合、トラップ132は、微小流体隔離ペンの開口部と位置合わせされ、微小流体隔離ペンの開口部に関してチャネル122の逆側に配置され、それにより、マイクロ流体チャネル122に平行な軸の周りでマイクロ流体デバイス100を傾斜されると、捕捉された微小物体は、微小物体を隔離ペンの開口部に落とす軌道でトラップ132を出る。幾つかの場合、トラップ132は、標的微小物体よりも小さく、トラップ132を通るフローを促進し、それによりトラップ132内への微小物体の捕捉確率を増大させるサイド通路134を含む。

0065

幾つかの実施形態では、誘電泳動(DEP)力は、1つ又は複数の電極(図示せず)を介して流体培地180にわたり適用されて(例えば、流路及び/又は隔離ペンにおいて)、内部に配置された微小物体の操作、輸送、分離、及びソートを行う。例えば、幾つかの実施形態では、DEP力は、マイクロ流体回路120の1つ又は複数の部分に適用されて、1つの微小物体を流路106から所望のマイクロ流体隔離ペンに輸送する。幾つかの実施形態では、DEP力を使用して、隔離ペン(例えば、隔離ペン124、126、128、又は130)内の微小物体が隔離ペンから変位しないようにする。更に、幾つかの実施形態では、DEP力を使用して、本開示の形態により前に収集された微小物体を隔離ペンから選択的に取り出す。幾つかの実施形態では、DEP力は、光電子ピンセット(OET)力を含む。

0066

他の実施形態では、光電子ウェッティング(OEW)力が、1つ又は複数の電極(図示せず)を介してマイクロ流体デバイス100の支持構造体104(及び/又はカバー110)での1つ又は複数の位置(例えば、流路及び/又は隔離ペンの画定に役立つ位置)に適用されて、マイクロ流体回路120に配置された液滴の操作、輸送、分離、及びソートを行う。例えば、幾つかの実施形態では、OEW力は支持構造体104(及び/又はカバー110)の1つ又は複数の位置に適用されて、1つの液滴を流路106から所望のマイクロ流体隔離ペンに輸送する。幾つかの実施形態では、OEW力を使用して、隔離ペン(例えば、隔離ペン124、126、128、又は130)内の液滴が隔離ペンから変位しないようにする。更に、幾つかの実施形態では、OEW力を使用して、本開示の形態により前に収集された液滴を隔離ペンから選択的に取り出す。

0067

幾つかの実施形態では、DEP力及び/又はOEW力は、フロー及び/又は重力等の他の力と組み合わせられて、マイクロ流体回路120内の微小物体及び/又は液滴の操作、輸送、分離、及びソートを行う。例えば、エンクロージャ102は傾斜して(例えば、傾斜デバイス190により)、流路106及び流路106内に配置された微小物体をマイクロ流体隔離ペンの上に位置決めすることができ、重力は、微小物体及び/又は液滴をペン内に輸送することができる。幾つかの実施形態では、DEP力及び/又はOEW力は、他の力の前に適用することができる。他の実施形態では、DEP力及び/又はOEW力は、他の力の後に適用することができる。更に他の場合、DEP力及び/又はOEW力は、他の力と同時に又は他の力と交互に適用することができる。

0068

図1B図1C及び図2A図2Hは、本開示の形態に使用することができるマイクロ流体デバイスの様々な実施形態を示す。図1Bは、マイクロ流体デバイス200が光学作動動電学的デバイスとして構成される実施形態を示す。光電子ピンセット(OET)構成を有するデバイス及び光電子ウェッティング(OEW)構成を有するデバイスを含め、様々な光学作動動電学的デバイスが当技術分野で既知である。適するOET構成の例は、以下の米国特許文献に示されており、各文献は全体的に参照により本明細書に援用される:米国特許第RE44,711号(Wuら)(元々は米国特許第7,612,355号として発行された);及び米国特許第7,956,339号(Ohtaら)。OEW構成の例は、米国特許第6,958,132号(Chiouら)及び米国特許出願公開第2012/0024708号(Chiouら)に示されており、これらは両方とも全体的に参照により本明細書に援用される。光学作動動電的デバイスの更に別の例は、OET/OEW結合構成を含み、その例は、米国特許出願公開第20150306598号(Khandrosら)及び同第20150306599号(Khandrosら)並びにそれらの対応するPCT公報である国際公開第2015/164846号及び国際公開第2015/164847号に示されており、これらは全て全体的に参照により本明細書に援用される。

0069

卵母細胞、卵子、又は胚を配置し、培養し、及び/又は監視することができる隔離ペンを有するマイクロ流体デバイスの例は、例えば、米国特許出願公開第2014/0116881号(出願番号14/060,117、2013年10月22日出願)、米国特許出願公開第2015/0151298号(出願番号14/520,568、2014年10月22日出願)、及び米国特許出願公開第2015/0165436号(出願番号14/521,447、2014年10月22日出願)に記載されており、これらはそれぞれ全体的に参照により援用される。米国特許出願公開第14/520,568号及び同第14/521,447号は、マイクロ流体デバイスで培養された細胞の分泌物を分析する例示的な方法についても記載している。上記の各出願は、光電子ツイーザ(OET)等の誘電泳動(DEP)力を生成するように構成されるか、又は光電子ウェッティング(OEW)を提供するように構成されるマイクロ流体デバイスを更に記載している。例えば、米国特許出願公開第2014/0116881号の図2に示される光電子ツイーザデバイスは、本開示の実施形態で利用して、個々の生物学的微小物体又は生物学的微小物体のグループを選択し移動させることができるデバイスの例である。

0070

原動マイクロ流体デバイス構成
上述したように、システムの制御及び監視機器は、マイクロ流体デバイスのマイクロ流体回路において微小物体又は液滴等の物体を選択し移動させる原動モジュールを含むことができる。マイクロ流体デバイスは、移動される物体のタイプ及び他の考慮事項に応じて様々な原動構成を有することができる。例えば、誘電泳動(DEP)構成を利用して、マイクロ流体回路において微小物体を選択し移動させることができる。したがって、マイクロ流体デバイス100の支持構造体104及び/又はカバー110は、マイクロ流体回路120内の流体培地180内の微小物体に対してDEP力を選択的に誘導し、それにより個々の微小物体又は微小物体群の選択、捕捉、及び/又は移動を行うDEP構成を含むことができる。代替的に、マイクロ流体デバイス100の支持構造体104及び/又はカバー110は、マイクロ流体回路120内の流体培地180内の液滴に対して電子ウェッティング(EW)力を選択的に誘導し、それにより個々の液滴又は液滴群の選択、捕捉、及び/又は移動を行う電子ウェッティング(EW)構成を含むことができる。

0071

DEP構成を含むマイクロ流体デバイス200の一例を図21B及び図1Cに示す。簡潔にするために、図1B及び図1Cは、開放領域/チャンバ202を有するマイクロ流体デバイス200のエンクロージャ102の部分の側面断面図及び上面断面図をそれぞれ示すが、領域/チャンバ202が、成長チャンバ、隔離ペン、フロー領域、又はフローチャネル等のより詳細な構造を有する流体回路要素の部分であり得ることを理解されたい。更に、マイクロ流体デバイス200は他の流体回路要素を含み得る。例えば、マイクロ流体デバイス200は、マイクロ流体デバイス100に関して本明細書に記載される等の複数の成長チャンバ、或いは隔離ペン及び/又は1つ若しくは複数のフロー領域又はフローチャネルを含むことができる。DEP構成は、マイクロ流体デバイス200の任意のそのような流体回路要素に組み込み得るか、又はその部分を選択し得る。上記又は下記の任意のマイクロ流体デバイス構成要素及びシステム構成要素がマイクロ流体デバイス200内に組みこまれ得、及び/又はマイクロ流体デバイス200と組み合わせて使用し得ることを更に理解されたい。例えば、培地モジュール160、原動モジュール162、撮像モジュール164、傾斜モジュール166、及び他のモジュール168の1つ又は複数を含む上述した制御及び監視機器152を含むシステム150は、マイクロ流体デバイス200と併用し得る。

0072

図1Bにおいて見られるように、マイクロ流体デバイス200は、下部電極204及び下部電極204に重なる電極活性化基板206を有する支持構造体104と、上部電極210を有するカバー110とを含み、上部電極210は下部電極204から離間される。上部電極210及び電極活性化基板206は、領域/チャンバ202の両面を画定する。したがって、領域/チャンバ202に含まれる培地180は、上部電極210と電極活性化基板206との間に抵抗接続を提供する。下部電極204と上部電極210との間に接続され、領域/チャンバ202でのDEP力の生成のために必要に応じて電極間にバイアス電圧を生成するように構成される電源212も示されている。電源212は、例えば、交流(AC)電源であり得る。

0073

特定の実施形態では、図1B及び図1Cに示されるマイクロ流体デバイス200は、光学作動DEP構成を有することができる。したがって、原動モジュール162により制御し得る光源216からの光218の変更パターンは、電極活性化基板206の内面208の領域214においてDEP電極の変更パターンを選択的に活性化又は非活性化することができる。(以下ではDEP構成を有するマイクロ流体デバイスの領域214を「DEP電極領域」と呼ぶ)。図1Cに示されるように、電極活性化基板206の内面208に向けられる光パターン218は、正方形等のパターンで、選択されたDEP電極領域214a(白色で示される)を照明することができる。照明されないDEP電極領域214(斜線が付される)を以下では「暗」DEP電極領域214と呼ぶ。DEP電極活性化基板206を通る相対電気インピーダンス(すなわち、下部電極204から、フロー領域106において培地180と界面を接する電極活性化基板206の内面208まで)は、各暗DEP電極領域214での領域/チャンバ202において培地180を通る(すなわち、電極活性化基板206の内面208からカバー110の上部電極210まで)相対電気インピーダンスよりも大きい。しかし、照明DEP電極領域214aは、各照明DEP電極領域214aでの領域/チャンバ202での培地180を通る相対インピーダンス未満である電極活性化基板206を通る相対インピーダンスの低減を示す。

0074

電源212が活性化されている場合、上記のDEP構成は、照明DEP電極領域214aと隣接する暗DEP電極領域214との間に流体培地180内で電場勾配を生じさせ、次に、電場勾配は、流体培地180内の付近の微小物体(図示せず)を引き寄せるか、又は排斥する局所DEP力を生成する。したがって、流体培地180内の微小物体を引き寄せるか、又は排斥するDEP電極は、光源216からマイクロ流体デバイス200に投射される光パターン218を変更することにより、領域/チャンバ202の内面208での多くの異なるそのようなDEP電極領域214において選択的に活性化及び非活性化することができる。DEP力が付近の微小物体を引き寄せるか、それとも排斥するかは、電源212の周波数並びに培地180及び/又は微小物体(図示せず)の誘電特性等のパラメータに依存し得る。

0075

図1Cに示される照明DEP電極領域214aの正方形パターン220は単なる例である。マイクロ流体デバイス200に投射される光パターン218により、任意のパターンのDEP電極領域214を照明する(それにより活性化する)ことができ、照明/活性化されるDEP電極領域214のパターンは、光パターン218を変更又は移動させることにより繰り返し変更することができる。

0076

幾つかの実施形態では、電極活性化基板206は、光伝導性材料を含むか、又は光導電性材料からなることができる。そのような実施形態では、電極活性化基板206の内面208は、特徴を有さないことができる。例えば、電極活性化基板206は、水素化非晶質シリコン(a−Si:H)の層を含むか、又はa−Si:Hの層からなることができる。a−Si:Hは、例えば、約8%〜40%の水素を含むことができる(水素原子の数/水素及びケイ素原子総数に100を掛けたものとして計算)。a−Si:Hの層は厚さ約500nm〜約2.0μmを有することができる。そのような実施形態では、DEP電極領域214は、光パターン218により、電極活性化基板206の内面208上の任意の場所に任意のパターンで作成することができる。したがって、DEP電極領域214の数及びパターンは、固定される必要がなく、光パターン218に対応することができる。上述したような光伝導層を含むDEP構成を有するマイクロ流体デバイスの例は、例えば、米国特許第RE44,711号(Wuら)(元々は米国特許第7,612,355号として発行された)に記載されており、その内容全体は参照により本明細書に援用される。

0077

他の実施形態では、電極活性化基板206は、半導体分野で既知等の半導体集積回路を形成する複数のドープ層絶縁層(又は領域)、及び導電層を含む基板を含むことができる。例えば、電極活性化基板206は、例えば、横型バイポーラフォトトランジスタを含む複数のフォトトランジスタを含むことができ、各フォトトランジスタはDEP電極領域214に対応する。代替的に、電極活性化基板206は、フォトトランジスタスイッチにより制御される電極(例えば、導電性金属電極)を含むことができ、そのような各電極はDEP電極領域214に対応する。電極活性化基板206は、パターンになったそのようなフォトトランジスタ又はフォトトランジスタ制御される電極を含むことができる。パターンは、例えば、図2Bに示される等、行列に配置された実質的に正方形のフォトトランジスタ又はフォトトランジスタ制御される電極のアレイであり得る。代替的に、パターンは、六角形格子を形成する実質的に六角形のフォトトランジスタ又はフォトトランジスタ制御される電極のアレイであり得る。パターンに関係なく、電気回路素子は、電極活性化基板206の内面208におけるDEP電極領域214と下部電極210との間に電気接続を形成することができ、それらの電気接続(すなわち、フォトトランジスタ又は電極)は、光パターン218により選択的に活性化又は非活性化することができる。活性化されない場合、各電気接続は、電極活性化基板206を通る(すなわち、下部電極204から、領域/チャンバ202内の培地180と界面を接する電極活性化電極206の内面208まで)相対インピーダンスが、対応するDEP電極領域214における培地180を通る(すなわち、電極活性化基板206の内面208からカバー110の上部電極210まで)相対インピーダンスよりも大きいような高いインピーダンスを有することができる。しかし、光パターン218内の光により活性化される場合、電極活性化基板206を通る相対インピーダンスは、各照明DEP電極領域214での培地180を通る相対インピーダンス未満であり、それにより、上述したように、対応するDEP電極領域214でのDEP電極を活性化する。したがって、培地180内の微小物体(図示せず)を引き寄せるか、又は排斥するDEP電極は、光パターン218により決まるように、領域/チャンバ202での電極活性化基板206の内面208での多くの異なるDEP電極領域214において選択的に活性化及び非活性化することができる。

0078

フォトトランジスタを含む電極活性化基板を有するマイクロ流体デバイスの例は、例えば、米国特許第7,956,339号(Ohtaら)に記載されており(例えば、図21及び図22に示されるデバイス300並びにその説明を参照されたい)、この内容全体は参照により本明細書に援用される。フォトトランジスタスイッチにより制御される電極を含む電極活性化基板を有するマイクロ流体デバイスの例は、例えば、米国特許出願公開第2014/0124370号(Shortら)に記載されており(例えば、図面全体を通して示されるデバイス200、400、500、600、及び900並びにその説明を参照されたい)、これらの内容全体は参照により本明細書に援用される。

0079

DEP構成のマイクロ流体デバイスの幾つかの実施形態では、上部電極210はエンクロージャ102の第1の壁(又はカバー110)の一部であり、電極活性化基板206及び下部電極204は、エンクロージャ102の第2の壁(又は支持構造体104)の一部である。領域/チャンバ202は、第1の壁と第2の壁との間にあり得る。他の実施形態では、電極210は第2の壁(又は支持構造体104)の一部であり、電極活性化基板206及び/又は電極210の一方又は両方は、第1の壁(又はカバー110)の一部である。更に、光源216は代替的に、下からエンクロージャ102を照明するのに使用することができる。

0080

DEP構成を有する図1B及び図1Cのマイクロ流体デバイス200を用いて、原動モジュール162は、光パターン218をマイクロ流体デバイス200に投射して、微小物体を囲み捕捉するパターン(例えば、正方形パターン220)で電極活性化基板206の内面208のDEP電極領域214aでの第1の組の1つ又は複数のDEP電極を活性化することにより、領域/チャンバ202での培地180内の微小物体(図示せず)を選択することができる。次に、原動モジュール162は、光パターン218をマイクロ流体デバイス200に相対して移動させて、DEP電極領域214での第2の組の1つ又は複数のDEP電極を活性化することにより、インサイチューで生成され捕捉された微小物体を移動させることができる。代替的に、マイクロ流体デバイス200を光パターン218に相対して移動させることができる。

0081

他の実施形態では、マイクロ流体デバイス200は、電極活性化基板206の内面208でのDEP電極の光活性化に依存しないDEP構成を有することができる。例えば、電極活性化基板206は、少なくとも1つの電極を含む表面(例えば、カバー110)とは逆に位置する、選択的にアドレス指定可能且つエネルギー付与可能な電極を含むことができる。スイッチ(例えば、半導体基板のトランジスタスイッチ)を選択的に開閉して、DEP電極領域214でのDEP電極を活性化又は非活性化し得、それにより、活性化されたDEP電極の近傍での領域/チャンバ202内の微小物体(図示せず)に対する正味DEP力を生成する。電源212の周波数及び培地(図示せず)及び/又は領域/チャンバ202内の微小物体の誘電特性等の特徴に応じて、DEP力は、付近の微小物体を引き寄せるか、又は排斥することができる。DEP電極の組(例えば、正方形パターン220を形成するDEP電極領域214の組における)を選択的に活性化又は非活性化することにより、領域/チャンバ202における1つ又は複数の微小物体を捕捉し、領域/チャンバ202内で移動させることができる。図1Aの原動モジュール162は、そのようなスイッチを制御し、したがって、DEP電極の個々の電極を活性化及び非活性化して、領域/チャンバ202の周囲の特定の微小物体(図示せず)を選択、捕捉、及び移動させることができる。選択的にアドレス指定可能且つエネルギー付与可能な電極を含むDEP構成を有するマイクロ流体デバイスは、当技術分野で既知であり、例えば、米国特許第6,294,063号(Beckerら)及び同第6,942,776号(Medoro)に記載されており、これらの内容全体は参照により本明細書に援用される。

0082

更なる別例として、マイクロ流体デバイス200は電子ウェッティング(EW)構成を有することができ、EW構成は、DEP構成の代わりであってもよく、又はDEP構成を有する部分とは別個のマイクロ流体デバイス200の部分に配置されてもよい。EW構成は、光電子ウェッティング構成又は誘電体上の電子ウェッティング(EWOD)構成であり得、これらは両方とも当技術分野で既知である。幾つかのEW構成では、支持構造体104は、以下に記載するように、誘電層(図示せず)と下部電極204との間に挟まれた電極活性化基板206を有する。誘電層は、疎水性材料を含むことができ、及び/又は疎水性材料でコーティングすることができる。EW構成を有するマイクロ流体デバイス200の場合、支持構造体104の内面208は、誘電層の内面又はその疎水性コーティングである。

0083

誘電層(図示せず)は、1つ又は複数の酸化物層を含むことができ、厚さ約50nm〜約250nm(例えば、約125nm〜約175nm)を有することができる。特定の実施形態では、誘電層は、金属酸化物(例えば、酸化アルミニウム又は酸化ハフニウム)等の酸化物の層を含むことができる。特定の実施形態では、誘電層は、酸化ケイ素又は窒化物等の金属酸化物以外の誘電材料を含むことができる。厳密な組成及び厚さに関係なく、誘電層は約10kオーム〜約50kオームのインピーダンスを有することができる。

0084

幾つかの実施形態では、領域/チャンバ202に向かって内側に面した誘電層の表面は、疎水性材料でコーティングされる。疎水性材料は、例えば、フッ素化炭素分子を含むことができる。フッ素化炭素分子の例としては、ポリテトラフルオロエチレン(例えば、TEFLON(登録商標)又はポリ(2,3−ジフルオロメチレニルペルフルオロテトラヒドロフラン)(例えば、CYTOP(商標))などのパーフルオロポリマーが挙げられる。疎水性材料を構成する分子は、誘電層の表面に共有結合され得る。例えば、疎水性材料の分子は、シロキサン基ホスホン酸基、又はチオール基等のリンカーにより、誘電層の表面に共有結合され得る。したがって、幾つかの実施形態では、疎水性材料は、アルキル末端シロキサン、アルキル末端ホスホン酸、又はアルキル末端チオールを含むことができる。アルキル基長鎖炭化水素(例えば、少なくとも10個の炭素又は少なくとも16個、18個、20個、22個、若しくはそれを超える個数の炭素の鎖を有する)であり得る。代替的に、フッ素化(又はパーフルオロ化炭素鎖をアルキル基の代わりに使用することができる。したがって、例えば、疎水性材料は、フルオロアルキル末端シロキサン、フルオロアルキル末端ホスホン酸、又はフルオロアルキル末端チオールを含むことができる。幾つかの実施形態では、疎水性コーティングは約10nm〜約50nmの厚さを有する。他の実施形態では、疎水性コーティングは厚さ10nm未満(例えば、5nm未満又は約1.5〜3.0nm)を有する。

0085

幾つかの実施形態では、電子ウェッティング構成を有するマイクロ流体デバイス200のカバー110も同様に疎水性材料(図示せず)でコーティングされる。疎水性材料は、支持構造体104の誘電層のコーティングに使用されるものと同じ疎水性材料であり得、疎水性コーティングは、支持構造体104の誘電層の疎水性コーティングの厚さと略同じである厚さを有することができる。更に、カバー110は、支持構造体104の様式で、誘電層と上部電極210との間に挟まれた電極活性化基板206を含むことができる。電極活性化基板206及びカバー110の誘電層は、電極活性化基板206及び支持構造体104の誘電層と同じ組成及び/又は寸法を有することができる。したがって、マイクロ流体デバイス200は2つの電子ウェッティング表面を有することができる。

0086

幾つかの実施形態では、電子活性化基板206は、上述した光伝導性材料等の光伝導性材料を含むことができる。したがって、特定の実施形態では、電極活性化基板206は、水素化非晶質シリコン(a−Si:H)の層を含むか、又はa−Si:Hの層からなることができる。a−Si:Hは、例えば、約8%〜40%の水素を含むことができる(水素原子の総数及びケイ素原子の総数/水素原子の総数に100を掛けたものとして計算)。a−Si:Hの層は厚さ約500nm〜約2.0μmを有することができる。代替的に、電子活性化基板206は、上述したように、フォトトランジスタスイッチにより制御される電極(例えば、導電性金属電極)を含むことができる。光電子ウェッティング構成を有するマイクロ流体デバイスは当技術分野で既知であり、及び/又は当技術分野で既知の電極活性化基板を用いて構築することができる。例えば、内容全体が参照により本明細書に援用される米国特許第6,958,132号(Chiouら)には、a−Si:H等の光伝導性材料を有する光電子ウェッティング構成が開示されており、一方、上記で引用した米国特許出願公開第2014/0124370号(Shortら)には、フォトトランジスタスイッチにより制御される電極を有する電極活性化基板が開示されている。

0087

したがって、マイクロ流体デバイス200は光電子ウェッティング構成を有することができ、光パターン218を使用して、電極活性化基板206での光応答性EW領域又は光応答性EW電極を活性化することができる。電極活性化基板206のそのような活性化されたEW領域又はEW電極は、支持構造体104の内面208(すなわち、重なった誘電層の内面又はその疎水性コーティング)において電子ウェッティング力を生成することができる。電子活性化基板206に入射する光パターン218を変更する(又は光源216に相対してマイクロ流体デバイス200を移動させる)ことにより、支持構造体104の内面208に接触する液滴(例えば、水性培地水溶液又は水性溶媒を含む)は、領域/チャンバ202内に存在する不混和流体(例えば、油媒体)を通って移動することができる。

0088

他の実施形態では、マイクロ流体デバイス200は、EWOD構成を有することができ、電極活性化基板206は、活性化のために光に依存しない、選択的にアドレス指定可能且つエネルギー付与可能な電極を含むことができる。したがって、電極活性化基板206は、パターンになったそのような電子ウェッティング(EW)電極を含むことができる。パターンは、例えば、図2Bに示される等の行列に配置された略正方形のEW電極のアレイであり得る。代替的に、パターンは、六角形格子を形成する略六角形のEW電極のアレイであり得る。パターンに関係なく、EW電極は、電気スイッチ(例えば、半導体基板のトランジスタスイッチ)により選択的に活性化(又は非活性化)することができる。電極活性化基板206でのEW電極を選択的に活性化及び非活性化することにより、重なった誘電層の内面208又はその疎水性コーティングに接触する液滴(図示せず)は、領域/チャンバ202内で移動することができる。図1Aの原動モジュール162は、そのようなスイッチを制御することができ、したがって、個々のEW電極を活性化及び非活性化して、領域/チャンバ202の周囲で特定の液滴を選択し移動させることができる。選択的にアドレス指定可能且つエネルギー付与可能な電極を有するEWOD構成を有するマイクロ流体デバイスは、当技術分野で既知であり、例えば、米国特許第8,685,344号(Sundarsanら)に記載されており、この内容全体は参照により本明細書に援用される。

0089

マイクロ流体デバイス200の構成に関係なく、電源212を使用して、マイクロ流体デバイス200の電気回路給電する電位(例えば、AC電源電位)を提供することができる。電源212は、図1で参照される電源192と同じ又は電源192の構成要素であり得る。電源212は、上部電極210及び下部電極204にAC電圧及び/又は電流を提供するように構成され得る。AC電圧の場合、電源212は、上述したように、領域/チャンバ202内の個々の微小物体(図示せず)を捕捉して移動させ、及び/又はこれらも上述したように、領域/チャンバ202内の支持構造体104の内面208(すなわち、誘電層及び/又は誘電層上の疎水性コーティング)のウェッティング特性を変更するのに十分に強い正味DEP力(又は電子ウェッティング力)を生成するのに十分な周波数範囲及び平均又はピーク電力(例えば、電圧又は電流)を提供することができる。そのような周波数範囲及び平均又はピーク電力範囲は、当技術分野で既知である。例えば、米国特許第6,958,132号(Chiouら)、米国特許第RE44,711号(Wuら)(元々は米国特許第7,612,355号として発行された)、並びに米国特許出願公開第2014/0124370号(Shortら)、同第2015/0306598号(Khandrosら)、及び同第2015/0306599号(Khandrosら)を参照されたい。

0090

隔離ペン。一般的な隔離ペン224、226、及び228の非限定的な例は、図2A図2Cに示されるマイクロ流体デバイス230内に示されている。各隔離ペン224、226、及び228は、分離領域240と、分離領域240をチャネル122に流体接続する接続領域236とを画定する分離構造体232を含むことができる。接続領域236は、マイクロ流体チャネル122への基端開口部234及び分離領域240への先端開口部238を含むことができる。接続領域236は、マイクロ流体チャネル122から隔離ペン224、226、228内に流れる流体培地(図示せず)のフローの最大侵入深さが分離領域240内に及ばないように構成され得る。したがって、接続領域236に起因して、隔離ペン224、226、228の分離領域240内に配置された微小物体(図示せず)又は他の材料(図示せず)は、チャネル122内の培地180のフローから分離され、マイクロ流体チャネル122内の培地180のフローにより実質的に影響されないことができる。

0091

図2A図2Cの隔離ペン224、226、及び228は、マイクロ流体チャネル122に対して直接開く単一の開口部をそれぞれ有する。隔離ペンの開口部は、マイクロ流体チャネル122から横に開く。電極活性化基板206がマイクロ流体チャネル122及び隔離ペン224、226、及び228の両方の下にある。隔離ペンのフロアを形成する、隔離ペンのエンクロージャ内の電極活性化基板206の上面は、マイクロ流体デバイスのフローチャネル(又はそれぞれフロー領域)のフロアを形成する、マイクロ流体チャネル122(又はチャネルが存在しない場合、フロー領域)内の電極活性化基板206の上面と同じ高さ又は略同じ高さに配置される。電極活性化基板206は、特徴を有さなくてもよく、又は約3μm未満、約2.5μm未満、約2μm未満、約1.5μm未満、約1μm未満、約0.9μm未満、約0.5μm未満、約0.4μm未満、約0.2μm未満、約0.1μm未満、又はそれを下回って最高隆起部から最低陥没部まで変化する不規則又はパターン化表面を有してもよい。マイクロ流体チャネル122(又はフロー領域)及び隔離ペンの両方にわたる基板の上面の隆起の変動は、隔離ペンの壁の高さ又はマイクロ流体デバイスの壁の高さの約3%未満、約2%未満、約1%未満、約0.9%未満、約0.8%未満、約0.5%未満、約0.3%未満、又は約0.1%未満であり得る。マイクロ流体デバイス200について詳細に説明したが、これは、本明細書に記載される任意のマイクロ流体デバイス100、230、250、280、290、320、400、450、500、700にも当てはまる

0092

したがって、マイクロ流体チャネル122は掃引領域の例であり得、隔離ペン224、226、228の分離領域240は非掃引領域の例であり得る。述べたように、マイクロ流体チャネル122及び隔離ペン224、226、228は、1つ又は複数の流体培地180を含むように構成され得る。図2A図2Bに示される例では、ポート222はマイクロ流体チャネル122に接続され、流体培地180がマイクロ流体デバイス230内に導入又は外に取り出せるようにすることができる。流体培地180を導入する前に、マイクロ流体デバイスは、二酸化炭素ガス等のガスでプライミングし得る。マイクロ流体デバイス230が流体培地180を含むと、マイクロ流体チャネル122内の流体培地180のフロー242は選択的に生成及び停止させることができる。例えば、示されるように、ポート222はマイクロ流体チャネル122の異なる位置(例えば、両端部)に配置することができ、流入口として機能するあるポート222から流出口として機能する別のポート222への培地のフロー242を生成することができる。

0093

図2Cは、本開示による隔離ペン224の例の詳細図を示す。微小物体246の例も示されている。

0094

既知のように、隔離ペン224の基端開口部234を越えたマイクロ流体チャネル122内の流体培地180のフロー242は、隔離ペン224内及び/又は外への培地180の2次フロー244を生じさせることができる。隔離ペン224の分離領域240内の微小物体246を2次フロー244から分離するために、隔離ペン224の接続領域236の長さLcon(すなわち、基端開口部234から先端開口部238まで)は、接続領域236への2次フロー244の侵入深さDpよりも大きい値であるはずである。2次フロー244の侵入深さDpは、マイクロ流体チャネル122内を流れる流体培地180の速度並びにマイクロ流体チャネル122及びマイクロ流体チャネル122への接続領域236の基端開口部234の構成に関連する様々なパラメータに依存する。所与のマイクロ流体デバイスでは、マイクロ流体チャネル122及び開口部234の構成は固定され、一方、マイクロ流体チャネル122内の流体培地180のフロー242の速度は可変である。したがって、隔離ペン224毎に、2次フロー244の侵入深さDpが接続領域236の長さLconを超えないことを保証するチャネル122内の流体培地180のフロー242の最高速度Vmaxを識別することができる。マイクロ流体チャネル122内の流体培地180のフロー242の流量が最大速度Vmaxを超えない限り、結果として生成される、マイクロ流体チャネル122及び接続領域236への2次フロー244を制限することができ、分離領域240に入らないようにすることができる。したがって、マイクロ流体チャネル122内の培地180のフロー242は、微小物体246を分離領域240外に引き込まない。むしろ、分離領域240内に配置された微小物体246は、マイクロ流体チャネル122内の流体培地180のフロー242に関係なく、分離領域240内に留まる。

0095

更に、マイクロ流体チャネル122内の培地180のフロー242の流量がVmaxを超えない限り、マイクロ流体チャネル122内の流体培地180のフロー242は、様々な粒子(例えば、微粒子及び/又はナノ粒子)をマイクロ流体チャネル122から隔離ペン224の分離領域240内に移動させない。したがって、接続領域236の長さLconを2次フロー244の最大侵入深さDpよりも大きくすることで、ある隔離ペン224の、マイクロ流体チャネル122又は別の隔離ペン(例えば、図2Dの隔離ペン226、228)からの様々な粒子による汚染を回避することができる。

0096

マイクロ流体チャネル122及び隔離ペン224、226、228の接続領域236は、マイクロ流体チャネル122内の培地180のフロー242により影響を及ぼすことができるため、マイクロ流体チャネル122及び接続領域236は、マイクロ流体デバイス230の掃引(又はフロー)領域と見なすことができる。他方、隔離ペン224、226、228の分離領域240は、非掃引(又は非フロー)領域と見なすことができる。例えば、マイクロ流体チャネル122内の第1の流体培地180中の成分(図示せず)は、実質的に、マイクロ流体チャネル122から接続領域236を通り分離領域240内の第2の流体培地248への第1の培地180の成分の拡散によってのみ、分離領域240内の第2の流体培地248と混合することができる。同様に、分離領域240内の第2の培地248の成分(図示せず)は、実質的に、分離領域240から接続領域236を通り、マイクロ流体チャネル122内の第1の培地180への第2の培地248の成分の拡散によってのみ、マイクロ流体チャネル122内の第1の培地180と混合することができる。幾つかの実施形態では、拡散による隔離ペンの分離領域とフロー領域との間での流体媒体交換の程度は、流体交換の約90%、約91%、約92%、約93%、約94%、約95%、約96%、約97%、約98%、又は約99%よりも高い割合である。第1の培地180は、第2の培地248と同じ培地であってもよく、又は異なる培地であってもよい。更に、第1の培地180及び第2の培地248は、同じ培地として開始され、異なるようになることができる(例えば、分離領域240内の1つ又は複数の細胞により又はマイクロ流体チャネル122を通って流れる培地180を変更することにより、第2の培地248を調整することを通して)。

0097

マイクロ流体チャネル122内の流体培地180のフロー242により生じる2次フロー244の最大侵入深さDpは、上述したように、幾つかのパラメータに依存し得る。そのようなパラメータの例としては、マイクロ流体チャネル122の形状(例えば、チャネルは、培地を接続領域236に向けることができ、接続領域236から培地を逸らすことができ、又はマイクロ流体チャネル122への接続領域236の基端開口部234に実質的に直交する方向に培地を向けることができる)、基端開口部234でのマイクロ流体チャネル122の幅Wch(又は断面積)及び基端開口部234での接続領域236の幅Wcon(又は断面積)、マイクロ流体チャネル122内の流体培地180のフロー242の速度V、第1の培地180及び/又は第2の培地248の粘度等が挙げられる。

0098

幾つかの実施形態では、マイクロ流体チャネル122及び隔離ペン224、226、228の寸法は、マイクロ流体チャネル122内の流体培地180のフロー242のベクトルに対して以下のように向けることができる:マイクロ流体チャネル幅Wch(又はマイクロ流体チャネル122の断面積)は、培地180のフロー242に略直交することができ、開口部234での接続領域236の幅Wcon(又は断面積)は、マイクロ流体チャネル122内の培地180のフロー242に略平行であり得、及び/又は接続領域の長さLconは、マイクロ流体チャネル122内の培地180のフロー242に略直交することができる。上記は単なる例であり、マイクロ流体チャネル122及び隔離ペン224、226、228の相対位置は、互いに対して他の向きであり得る。

0099

図2Cに示されるように、接続領域236の幅Wconは、基端開口部234から先端開口部238まで均一であり得る。したがって、先端開口部238での接続領域236の幅Wconは、基端開口部234での接続領域236の幅Wconについて本明細書において識別された任意の範囲内にあり得る。代替的に、先端開口部238での接続領域236の幅Wconは、基端開口部234での接続領域236の幅Wconよりも大きい値であり得る。

0100

図2Cに示されるように、先端開口部238での分離領域240の幅は、基端開口部234での基端領域236の幅Wconと略同じであり得る。したがって、先端開口部238での分離領域240の幅は、基端開口部234での接続領域236の幅Wconについて本明細書において識別された任意の範囲内であり得る。代替的に、先端開口部238での分離領域240の幅は、基端開口部234での接続領域236の幅Wconよりも大きくてもよく、又は小さくてもよい。更に、先端開口部238は基端開口部234よりも小さくてよく、接続領域236の幅Wconは、基端開口部234と先端開口部238との間で狭め得る。例えば、接続領域236は、様々な異なるジオメトリ(例えば、接続領域を面取りする、接続領域に勾配を付ける)を使用して基端開口部と先端開口部との間で狭め得る。更に、接続領域236の任意の部分又はサブ部分を狭め得る(例えば、基端開口部234に隣接する接続領域の部分)。

0101

図2D図2Fは、図1Aの各マイクロ流体デバイス100、回路132、及びチャネル134の変形形態であるマイクロ流体回路262及びフローチャネル264を含むマイクロ流体デバイス250の別の例示的な実施形態を示す。マイクロ流体デバイス250は、上述した隔離ペン124、126、128、130、224、226、又は228の追加の変形形態である複数の隔離ペン266も有する。特に、図2D図2Fに示されるデバイス250の隔離ペン266をデバイス100、200、230、250、280、290、500、550、560、600、620、640、670、700、720、720、750、760、780、808、810、812、900、1000、1100、1200、1300、1400、1500での上述した隔離ペン124、126、128、130、224、226、又は228のいずれかで置換可能なことを理解されたい。同様に、マイクロ流体デバイス250は、マイクロ流体デバイス100の別の変形形態であり、上述したマイクロ流体デバイス100、200、230、250、280、290、500、550、560、600、620、640、670、700、720、720、750、760、780、808、810、812、900、1000、1100、1200、1300、1400、1500と同じ又は異なるDEP構成及び本明細書に記載される任意の他のマイクロ流体システム構成要素を有することもできる。

0102

図2D図2Fのマイクロ流体デバイス250は、支持構造体(図2D図2Fでは見えないが、図1Aに示されるデバイス100の支持構造体104と同じ又は概して同様であり得る)、マイクロ流体回路構造256、及びカバー(図2F図2Fでは見えないが、図1Aに示されるデバイス100のカバー122と同じ又は概して同様であり得る)を備える。マイクロ流体回路構造256は枠252及びマイクロ流体回路材料260を含み、これらは図1Aに示されるデバイス100の枠114及びマイクロ流体回路材料116と同じ又は概して同様であり得る。図2Dに示されるように、マイクロ流体回路材料260により画定されるマイクロ流体回路262は複数のチャネル264(2つが示されるが、より多くのチャネルがあり得る)を含むことができ、チャネル264に複数の隔離ペン266が流体接続される。

0103

各隔離ペン266は、分離構造272、分離構造272内の分離領域270、及び接続領域268を含むことができる。マイクロ流体チャネル264の基端開口部274から分離構造272での先端開口部276まで、接続領域268はマイクロ流体チャネル264を分離領域270に流体接続する。一般に、図2B及び図2Cの上記考察によれば、チャネル264内の第1の流体培地254のフロー278は、マイクロ流体チャネル264から隔離ペン266の各接続領域268内及び/又は外への第1の培地254の2次フロー282をもたらすことができる。

0104

図2Eに示されるように、各隔離ペン266の接続領域268は、一般に、チャネル264の基端開口部274と分離構造272の先端開口部276との間に延びるエリアを含む。接続領域268の長さLconは、2次フロー282の最大侵入深さDpよりも大きい値であり得、その場合、2次フロー282は、分離領域270に向かってリダイレクトされずに接続領域268内に延びる(図2Dに示されるように)。代替的に、図2Fに示されるように、接続領域268は、最大侵入深さDpよりも小さい長さLconを有することができ、その場合、2次フロー282は、接続領域268を通って延び、分離領域270に向かってリダイレクトされる。この後者の状況では、接続領域268の長さLc1及びLc2との和は最大侵入深さDpよりも大きく、したがって、2次フロー282は分離領域270内に延びない。接続領域268の長さLconが侵入深さDpよりも大きいか否か又は接続領域268の長さLc1及びLc2の和が侵入深さDpよりも大きいか否かに関係なく、最大速度Vmaxを超えないチャネル264内の第1の培地254のフロー278は、侵入深さDpを有する2次フローをもたらし、隔離ペン266の分離領域270内の微小物体(示されていないが、図2Cに示される微小物体246と同じ又は概して同様であり得る)は、チャネル264内の第1の培地254のフロー278により分離領域270外に引き出されない。チャネル264内のフロー278は、様々な材料(図示せず)もチャネル264から隔離ペン266の分離領域270内に引き込まない。したがって、マイクロ流体チャネル264内の第1の培地254内の成分をマイクロ流体チャネル264から隔離ペン266の分離領域270内の第2の培地258内に移動させることができる唯一の機構は、拡散である。同様に、隔離ペン266の分離領域270内の第2の培地258内の成分を分離領域270からマイクロ流体チャネル264内の第1の培地254内に移動させることができる唯一の機構も拡散である。第1の培地254は、第2の培地258と同じ培地であり得、又は第1の培地254は、第2の培地258と異なる培地であり得る。代替的に、第1の培地254及び第2の培地258は、同じ培地から始まり、例えば、分離領域270内の1つ又は複数の細胞により又はマイクロ流体チャネル264を通って流れる培地を変更することにより、第2の培地を調整することを通して異なるようになることができる。

0105

図2Eに示されるように、マイクロ流体チャネル264内のマイクロ流体チャネル264の幅Wch(すなわち、図2Dにおいて矢印278で示されるマイクロ流体チャネルを通る流体培地フローの方向を横断してとられる)は、基端開口部274の幅Wcon1に略直交することができ、したがって、先端開口部276の幅Wcon2に略平行であり得る。しかし、基端開口部274の幅con1及び先端開口部276の幅Wcon2は、互いに略直交する必要はない。例えば、基端開口部274の幅Wcon1が向けられる軸(図示せず)と、先端開口部276の幅Wcon2が向けられる別の軸との間の角度は、直交以外であり得、したがって、90°以外であり得る。代替的に向けられる角度の例としては、以下の任意の範囲内の角度を含む:約30°〜約90°、約45°〜約90°、約60°〜約90°等。

0106

隔離ペンの様々な実施形態(例えば、124、126、128、130、224、226、228、又は266)では、分離領域(例えば、240又は270)は、複数の微小物体を含むように構成される。他の実施形態では、分離領域は、1つのみ、2つ、3つ、4つ、5つ、又は同様の相対的に少数の微小物体を含むように構成され得る。したがって、分離領域の容積は、例えば、少なくとも1×106立方μm、少なくとも2×106立方μm、少なくとも4×106立方μm、少なくとも6×106立方μm、又はこれを超える大きさであり得る。

0107

隔離ペンの様々な実施形態では、基端開口部(例えば、234)でのマイクロ流体チャネル(例えば、122)の幅Wchは、以下の任意の範囲内であり得る:約50〜1000μm、約50〜500μm、約50〜400μm、約50〜300μm、約50〜250μm、約50〜200μm、約50〜150μm、約50〜100μm、約70〜500μm、約70〜400μm、約70〜300μm、約70〜250μm、約70〜200μm、約70〜150μm、約90〜400μm、90〜300μm、約90〜250μm、約90〜200μm、約90〜150μm、約100〜300μm、約100〜250μm、約100〜200μm、約100〜150μm、及び約100〜120μm。幾つかの他の実施形態では、基端開口部(例えば、234)におけるマイクロ流体チャネル(例えば、122)の幅Wchは、約200〜800μm、約200〜700μm、又は約200〜600μmの範囲であり得る。上記は単なる例であり、マイクロ流体チャネル122の幅Wchは、他の範囲(例えば、上記列挙された任意の端点により定義される範囲)であってもよい。更に、マイクロ流体チャネル122の幅Wchは、隔離ペンの基端開口部以外のマイクロ流体チャネルの領域において、これらの任意の範囲であるように選択することができる。

0108

幾つかの実施形態では、隔離ペンは、約30〜約200μm又は約50〜約150μmの高さを有する。幾つかの実施形態では、隔離ペンは、約1×104〜約3×106平方μm、約2×104〜約2×106平方μm、約4×104〜約1×106平方μm、約2×104〜約5×105平方μm、約2×104〜約1×105平方μm、又は約2×105〜約2×106平方μmの断面積を有する。

0109

隔離ペンの様々な実施形態において、基端開口部(例えば、234)におけるマイクロ流体チャネル(例えば、122)の高さHchは、以下の任意の範囲内であり得る:20〜100μm、20〜90μm、20〜80μm、20〜70μm、20〜60μm、20〜50μm、30〜100μm、30〜90μm、30〜80μm、30〜70μm、30〜60μm、30〜50μm、40〜100μm、40〜90μm、40〜80μm、40〜70μm、40〜60μm、又は40〜50μm。上記は単なる例であり、マイクロ流体チャネル(例えば、122)の高さHchは、他の範囲(例えば、上記列挙された任意の端点により定義される範囲)であってもよい。マイクロ流体チャネル122の高さHchは、隔離ペンの基端開口部以外のマイクロ流体チャネルの領域において、これらの任意の範囲であるように選択することができる。

0110

隔離ペンの様々な実施形態において、基端開口部(例えば、234)におけるマイクロ流体チャネル(例えば、122)の断面積は、以下の任意の範囲内であり得る:500〜50,000平方μm、500〜40,000平方μm、500〜30,000平方μm、500〜25,000平方μm、500〜20,000平方μm、500〜15,000平方μm、500〜10,000平方μm、500〜7,500平方μm、500〜5,000平方μm、1,000〜25,000平方μm、1,000〜20,000平方μm、1,000〜15,000平方μm、1,000〜10,000平方μm、1,000〜7,500平方μm、1,000〜5,000平方μm、2,000〜20,000平方μm、2,000〜15,000平方μm、2,000〜10,000平方μm、2,000〜7,500平方μm、2,000〜6,000平方μm、3,000〜20,000平方μm、3,000〜15,000平方μm、3,000〜10,000平方μm、3,000〜7,500平方μm、又は3,000〜6,000平方μm。上記は単なる例であり、基端開口部(例えば、234)におけるマイクロ流体チャネル(例えば、122)の断面積は、他の範囲(例えば、上記列挙された任意の端点により定義される範囲)であってもよい。

0111

隔離ペンの様々な実施形態では、接続領域(例えば、236)の長さLconは、以下の任意の範囲内であり得る:約1〜600μm、5〜550μm、10〜500μm、15〜400μm、20〜300μm、20〜500μm、40〜400μm、60〜300μm、80〜200μm、又は約100〜150μm。上記は単なる例であり、接続領域(例えば、236)の長さLconは、上記例と異なる範囲(例えば、上記列挙される任意の終点により定義される範囲)内であることもできる。

0112

隔離ペンの様々な実施形態では、基端開口部(例えば、234)での接続領域(例えば、236)の幅Wconは、以下の任意の範囲内であり得る:20〜500μm、20〜400μm、20〜300μm、20〜200μm、20〜150μm、20〜100μm、20〜80μm、20〜60μm、30〜400μm、30〜300μm、30〜200μm、30〜150μm、30〜100μm、30〜80μm、30〜60μm、40〜300μm、40〜200μm、40〜150μm、40〜100μm、40〜80μm、40〜60μm、50〜250μm、50〜200μm、50〜150μm、50〜100μm、50〜80μm、60〜200μm、60〜150μm、60〜100μm、60〜80μm、70〜150μm、70〜100μm、及び80〜100μm。上記は単なる例であり、基端開口部(例えば、234)の接続領域(例えば、236)の幅Wconは、上記例と異なることができる(例えば、上記列挙される任意の終点により定義される範囲)。

0113

隔離ペンの様々な実施形態において、基端開口部(例えば、234)における接続領域(例えば、236)の幅Wconは、隔離ペンが意図される微小物体(例えば、T細胞、B細胞、卵子、又は胚であり得る生体細胞)の最大寸法と少なくとも同じ大きさであり得る。例えば、卵母細胞、卵子、又は胚が配置される隔離ペンの基端開口部234における接続領域236の幅Wconは、以下の任意の範囲であり得る:約100μm、約110μm、約120μm、約130μm、約140μm、約150μm、約160μm、約170μm、約180μm、約190μm、約200μm、約225μm、約250μm、約300μm、又は約100〜400μm、約120〜350μm、約140〜200〜200 300μm、又は約140〜200μm。上記は単なる例であり、基端開口部(例えば、234)における接続領域(例えば、236)の幅Wconは、上記例と異なってもよい(例えば、上記列挙される任意の端点により定義される範囲)。

0114

隔離ペンの様々な実施形態において、接続領域の基端開口部の幅Wprは、隔離ペンが意図される微小物体(例えば、細胞等の生物学的微小物体)の最大寸法と少なくとも同じ大きさであり得る。例えば、幅Wprは、約50μm、約60μm、約100μm、約200μm、約300μm、又は約50〜300μm、約50〜200μm、約50〜100μm、約75〜150μm、約75〜100μm、又は約200〜300μmの範囲であり得る。

0115

隔離ペンの様々な実施形態において、接続領域(例えば、236)の長さLconと基端開口部234における接続領域(例えば、236)の幅Wconとの比率は、以下の任意の比率以上であり得る:0.5、1.0、1.5、2.0、2.5、3.0、3.5、4.0、4.5、5.0、6.0、7.0、8.0、9.0、10.0、又はこれを超える比率。上記は単なる例であり、接続領域236の長さLconと基端開口部234における接続領域236の幅Wconとの比率は、上記例と異なってもよい。

0116

マイクロ流体デバイスの様々な実施形態100、200、230、250、280、290、500、550、560、600、620、640、670、700、720、720、750、760、780、808、810、812、900、1000、1100、1200、1300、1400、1500において、Vmaxは、約0.2マイクロリッター/秒、約0.3マイクロリッター/秒、約0.4マイクロリッター/秒、約0.5マイクロリッター/秒、約0.6マイクロリッター/秒、約0.7マイクロリッター/秒、約0.8マイクロリッター/秒、約0.9マイクロリッター/秒、約1.0マイクロリッター/秒、約1.1マイクロリッター/秒、約1.2マイクロリッター/秒、約1.3マイクロリッター/秒、約1.4マイクロリッター/秒、又は約1.5マイクロリッター/秒に設定することができる。

0117

隔離ペンを有するマイクロ流体デバイスの様々な実施形態において、隔離ペンの分離領域(例えば、240)の容積は、例えば、少なくとも5×105立方μm、少なくとも8×105立方μm、少なくとも1×106立方μm、少なくとも2×106立方μm、少なくとも4×106立方μm、少なくとも6×106立方μm、少なくとも8×106立方μm、少なくとも1×107立方μm、少なくとも5×107立方μm、少なくとも1×108立方μm、少なくとも5×108立方μm、少なくとも8×108立方μm、又はそれを超える容積であり得る。隔離ペンを有するマイクロ流体デバイスの様々な実施形態において、隔離ペンの容積は、約5×105立方μm、約6×105立方μm、約8×105立方μm、約1×106立方μm、約2×106立方μm、約4×106立方μm、約8×106立方μm、約1×107立方μm、約3×107立方μm、約5×107立方μm、又は約8×107立方μm、又はそれを超える容積であり得る。幾つかの他の実施形態では、隔離ペンの容積は、約1ナノリットル〜約50ナノリットル、2ナノリットル〜約25ナノリットル、2ナノリットル〜約20ナノリットル、約2ナノリットル〜約15ナノリットル、又は約2ナノリットル〜約10ナノリットルであり得る。

0118

様々な実施形態において、マイクロ流体デバイスは、本明細書に記載される任意の実施形態でのように構成された隔離ペンを有し、その場合、マイクロ流体デバイスは、約5〜約10個の隔離ペン、約10〜約50個の隔離ペン、約100〜約500個の隔離ペン、約200〜約1000個の隔離ペン、約500〜約1500個の隔離ペン、約1000〜約2000個の隔離ペン、又は約1000〜約3500個の隔離ペンを有する。隔離ペンは、全て同じサイズである必要はなく、様々な構成(例えば、異なる幅、隔離ペン内の異なる特徴を含み得る。

0119

図2Gは、一実施形態によるマイクロ流体デバイス280を示す。マイクロ流体デバイス280は図2Gに示され、マイクロ流体デバイス100の定型化された図である。実際には、マイクロ流体デバイス280及びその構成回路要素(例えば、チャネル122及び隔離ペン128)は本明細書で考察された寸法を有する。図2Gに示されるマイクロ流体回路120は、2つのポート107、4つの別個のチャネル122、及び4つの別個の流路106を有する。マイクロ流体デバイス280は、各チャネル122に通じる複数の隔離ペンを更に含む。図2Gに示されるマイクロ流体デバイスでは、隔離ペンは、図2Cに示されるペンと同様のジオメトリを有し、したがって、接続領域及び分離領域の両方を有する。したがって、マイクロ流体回路120は、掃引領域(例えば、チャネル122及び2次フロー244の最大侵入深さDp内の接続領域236の部分)及び非掃引領域(例えば、分離領域240及び2次フロー244の最大侵入深さDp内にない接続領域236の部分)の両方を含む。

0120

被覆溶液及び被覆剤
理論による限定を意図せずに、マイクロ流体デバイス(例えば、DEP構成及び/又はEW構成マイクロ流体デバイス)内での生物学的微小物体(例えば、生体細胞)の維持は、マイクロ流体デバイスの少なくとも1つ又は複数の内面が、マイクロ流体デバイスと内部に維持される生物学的微小物体との間の主な界面を提供する有機分子及び/又は親水性分子の層を提示するように調整又は被覆される場合に促進し得る(すなわち、生物学的微小物体は、マイクロ流体デバイス内で生存率の増大、より大きい増殖、及び/又はより大きい可搬性を示す)。幾つかの実施形態では、マイクロ流体デバイスの内面の1つ又は複数(例えば、DEP構成マイクロ流体デバイスの電極活性化基板の内面、マイクロ流体のカバー、及び/又は回路材料の表面)は、有機分子及び/又は親水性分子の所望の層を生成するように、被覆溶液及び/又は被覆剤により処理又は修飾し得る。

0121

被覆は、生物学的微小物体を導入する前又は後に塗布してもよく、又は生物学的微小物体と同時に導入してもよい。幾つかの実施形態では、生物学的微小物体は、マイクロ流体デバイスの1つ又は複数の被覆剤を含む流体媒体中に搬入し得る。他の実施形態では、マイクロ流体デバイス(例えば、DEP構成マイクロ流体デバイス)の内面は、生物学的微小物体をマイクロ流体デバイスに導入する前に、被覆剤を含む被覆溶液を用いて処理又は「プライミング」される。

0122

幾つかの実施形態では、マイクロ流体デバイスの少なくとも1つの表面は、生物学的微小物体の維持及び/又は増殖に適した有機分子及び/又は親水性分子の層を提供する(例えば、後述するような調整面を提供する)被覆剤を含む。幾つかの実施形態では、マイクロ流体デバイスの略全ての内面は被覆材料を含む。被覆された内面は、フロー領域(例えば、チャネル)の表面、チャンバの表面、隔離ペンの表面、又はそれらの組合わせを含み得る。幾つかの実施形態では、複数の隔離ペンのそれぞれは、被覆材料で被覆された少なくとも1つの内面を有する。他の実施形態では、複数のフロー領域又はチャネルのそれぞれは、被覆材料で被覆された少なくとも1つの内面を有する。幾つかの実施形態では、複数の隔離ペンのそれぞれ及び複数のチャネルのそれぞれの少なくとも1つの内面は、被覆材料で被覆される。

0123

被覆剤/溶液
限定ではなく、血清又は血清因子ウシ血清アルブミンBSA)、ポリマー、洗剤酵素、及びそれらの任意の組合わせを含む任意の従来の被覆剤/被覆溶液を使用することができる。

0124

ポリマーベースの被覆材料
少なくとも1つの内面は、ポリマーを含む被覆材料を含み得る。ポリマーは、少なくとも1つの表面に共有結合又は非共有結合し得る(又は非特異的に付着し得る)。ポリマーは、ブロックポリマー(及びコポリマー)、星型ポリマー星型コポリマー)、並びにグラフト又は櫛形ポリマーグラフトコポリマー)に見られる等の多種多様な構造モチーフを有し得、これらは全て本明細書に開示される方法に適し得る。

0125

ポリマーは、アルキレンエーテル部分を含むポリマーを含み得る。広範囲のアルキレンエーテル含有ポリマーが、本明細書に記載されるマイクロ流体デバイスでの使用に適し得る。アルキレンエーテル含有ポリマーの非限定的で例示的な一クラスは、ポリマー鎖内で異なる比率及び異なる場所にあるポリエチレンオキシド(PEO)サブユニット及びポリプロピレンオキシド(PPO)サブユニットのブロックを含む両親媒性非イオンブロックコポリマーである。Pluronic(登録商標)ポリマー(BASF)は、このタイプのブロックコポリマーであり、生細胞と接触する場合の使用に適することが当技術分野で既知である。ポリマーは、平均分子質量MWで、約2000Da〜約20KDaの範囲であり得る。幾つかの実施形態では、PEO−PPOブロックコポリマーは、約10よりも大きい(例えば、12〜18)の親水性親油性バランスHLB)を有することができる。被覆された表面をもたらすのに有用な特定のPluronic(登録商標)ポリマーは、Pluronic(登録商標)L44、L64、P85、及びF127(F127NFを含む)を含む。別のクラスのアルキレンエーテル含有ポリマーは、ポリエチレングリコール(PEG MW<100,000Da)又は代替的にポリエチレンオキシド(PEO、MW>100,000)である。幾つかの実施形態では、PEGは約1000Da、5000Da、10,000Da、又は20,000DaのMWを有し得る。

0126

他の実施形態では、被覆材料は、カルボン酸部分を含むポリマーを含み得る。カルボン酸サブユニットは、アルキル、アルケニル、又は芳香族部分含有サブユニットであり得る。非限定的な一例はポリ乳酸PLA)である。他の実施形態では、被覆材料は、ポリマー骨格の末端又はポリマー骨格からのペンダントのいずれかにリン酸部分を含むポリマーを含み得る。更に他の実施形態では、被覆材料は、スルホン酸部分を含むポリマーを含み得る。スルホン酸サブユニットは、アルキル、アルケニル、又は芳香族部分含有サブユニットであり得る。非限定的な一例はポリスチレンスルホン酸(PSSA)又はポリアネトールスルホン酸である。更なる実施形態では、被覆材料はアミン部分を含むポリマーを含み得る。ポリアミノポリマーは、天然ポリアミンポリマー又は合成ポリアミンポリマーを含み得る。天然ポリアミンの例としては、スペルミンスペルミジン、及びプトレッシンが挙げられる。

0127

他の実施形態では、被覆材料は、糖類部分を含むポリマーを含み得る。非限定的な例では、キサンタンガム又はデキストラン等のポリサッカリドが、マイクロ流体デバイスにおける細胞の突き刺しを低減又は阻止し得る材料を形成するのに適し得る。例えば、約3kDaのサイズを有するデキストランポリマーを使用して、マイクロ流体デバイス内の表面に被覆材料を提供し得る。

0128

他の実施形態では、被覆材料は、リボヌクレオチド部分又はデオキシリボヌクレオチド部分を有し、高分子電解質表面を提供し得る、ヌクレオチド部分、すなわち、核酸を含むポリマーを含み得る。核酸は、天然ヌクレオチド部分のみを含んでもよく、又は限定ではなく、7−デアザアデニンペントースメチルホスホン酸、又はホスホロチオエート部分等の核酸塩基リボースリン酸塩部分類似物を含む非天然ヌクレオチド部分を含んでもよい。

0129

更に他の実施形態では、被覆材料は、アミノ酸部分を含むポリマーを含み得る。アミノ酸部分を含むポリマーは、天然アミノ酸含有ポリマー又は非天然アミノ酸含有ポリマーを含み得、これらのいずれかはペプチド、ポリペプチド、又はタンパク質を含み得る。非限定的な一例では、被覆剤として、タンパク質は、ウシ血清アルブミン(BSA)並びに/或いはアルブミン及び/又は1つ又は複数の他の同様のタンパク質を含む血清(又は複数の異なる血清の組合わせ)であり得る。血清は、限定ではなく、ウシ胎仔血清、ヒツジ血清、ヤギ血清ウマ血清等を含む任意の好都合ソースからのものであり得る。特定の実施形態では、被覆溶液中のBSAは、5mg/mL、10mg/mL、20mg/mL、30mg/mL、40mg/mL、50mg/mL、60mg/mL、70mg/mL、80mg/mL、90mg/mL、又はそれを超えるか、若しくはそれらの間の任意の値を含め、約1mg/mL〜約100mg/mLの範囲で存在する。特定の実施形態では、被覆溶液中の血清は、25%、30%、35%、40%、45%、又はそれを超えるか、若しくはそれらの間の任意の値を含め、約20%(v/v)〜約50%v/vの範囲で存在し得る。幾つかの実施形態では、BSAは、5mg/mLで被覆溶液中に被覆剤として存在し得、一方、他の実施形態では、BSAは、70mg/mLで被覆溶液中に被覆剤として存在し得る。特定の実施形態では、血清は、30%で被覆溶液中に被覆剤として存在する。幾つかの実施形態では、フォスター細胞成長への細胞の付着を最適化するために、細胞外基質(ECM)タンパク質を被覆材料内に提供し得る。被覆材料に包含し得る細胞基質タンパク質としては、限定ではなく、コラーゲンエラスチン、RGD含有ペプチド(例えば、フィブロネクチン)、又はラミニンを挙げることができる。更に他の実施形態では、成長因子サイトカインホルモン、又は他の細胞シグナリング種をマイクロ流体デバイスの被覆材料内に提供し得る。

0130

幾つかの実施形態では、被覆材料は、アルキレンオキシド部分、カルボン酸部分、スルホン酸部分、リン酸塩部分、サッカリド部分、ヌクレオチド部分、又はアミノ酸部分の2つ以上を含むポリマーを含み得る。他の実施形態では、ポリマーの調整された表面は、被覆材料に独立して又は同時に組み込み得る、アルキレンオキシド部分、カルボン酸部分、スルホン酸部分、リン酸塩部分、サッカリド部分、ヌクレオチド部分、及び/又はアミノ酸部分をそれぞれ有する2つ以上のポリマーの混合物を含み得る。

0131

共有結合される被覆材料
幾つかの実施形態では、少なくとも1つの内面は、マイクロ流体デバイス内の生物学的微小物体の維持/増殖に適した有機分子及び/又は親水性分子の層を提供して、そのような細胞に調整面を提供する共有結合分子を含む。

0132

共有結合分子は結合基を含み、結合基は、後述するように、マイクロ流体デバイスの1つ又は複数の表面に共有結合する。結合基は、生物学的微小物体の維持/増殖に適した有機分子及び/又は親水性分子の層を提供するように構成される部分にも共有結合する。

0133

幾つかの実施形態では、生物学的微小物体の維持/増殖に適した有機分子及び/又は親水性分子の層を提供するように構成される共有結合部分は、アルキル又はフルオロアルキル(ペルフルオロアルキルを含む)部分;モノ又はポリサッカリド(デキストランを含み得るが、これに限定されない);アルコールプロパルギルアルコールを含むが、これに限定されない);ポリビニルアルコールを含むが、これに限定されないポリアルコール;ポリエチレングリコールを含み得るが、これに限定されないアルキレンエーテル;高分子電解質(ポリアクリル酸又はポリビニルホスホン酸を含むが、これに限定されない);アミノ基(アルキル化アミンモルホルニル又はピペラジニル等であるが、これらに限定されない非芳香族化された窒素環原子を含むヒドロキシアルキル化されたアミノ基、グアニジニウム基、及びヘテロ環基等であるが、これらに限定されないその誘導体);プロピオル酸カルボン酸塩アニオン表面を提供し得る)を含むが、これに限定されないカルボン酸;エチニルホスホン酸(ホスホン酸塩アニオン表面を提供し得る)を含むが、これに限定されないホスホン酸;スルホン酸アニオンカルボキシベタインスルホベタインスルファミン酸;又はアミノ酸を含み得る。

0134

様々な実施形態では、マイクロ流体デバイスにおける生物学的微小物体の維持/増殖に適した有機分子及び/又は親水性分子の層を提供するように構成される共有結合部分は、アルキル部分、フルオロアルキル部分(ペルフルオロアルキル部分を含むが、これに限定されない)等の置換アルキル部分、アミノ酸部分、アルコール部分、アミノ部分、カルボン酸部分、ホスホン酸部分、スルホン酸部分、スルファミン酸部分、又はサッカリド部分等の非ポリマー部分を含み得る。代替的には、共有結合部分は、上述した任意の部分であり得るポリマー部分を含み得る。

0135

幾つかの実施形態では、共有結合部分は、線状鎖(例えば、少なくとも10個の炭素又は少なくとも14、16、18、20、22、若しくはそれを超える個数の炭素の線状鎖)を形成する炭素原子を含むことができ、且つ直鎖アルキル部分であり得る。幾つかの実施形態では、アルキル基は置換アルキル基を含み得る(例えば、アルキル基の炭素の幾つかはフッ素化又はパーフルオロ化することができる)。幾つかの実施形態では、アルキル基は、非置換アルキル基を含み得る第2のセグメントに結合される、ペルフルオロアルキル基を含み得る第1のセグメントを含み得る。第1及び第2のセグメントは、直接又は間接的(例えば、エーテル結合により)に結合され得、ここで、アルキル基の第1のセグメントは、結合基の先端部に配置し得、アルキル基の第2のセグメントは、結合基の基端部に配置し得る。

0136

他の実施形態では、共有結合部分は、2つ以上の種類のアミノ酸を含み得る少なくとも1つのアミノ酸を含み得る。したがって、共有結合部分は、ペプチド又はタンパク質を含み得る。幾つかの実施形態では、共有結合部分は、双性イオン性表面を提供して、細胞成長、生存、可搬性、又はそれらの任意の組合せを支持し得るアミノ酸を含み得る。

0137

他の実施形態では、共有結合部分は、少なくとも1つのアルキレンオキシド部分を含み得、上述した任意のアルキレンオキシドポリマーを含み得る。アルキレンエーテル含有ポリマーの有用な1クラスは、ポリエチレングリコール(PEG Mw<100,000Da)又は代替的にはポリエチレンオキシド(PEO、Mw>100,000)である。幾つかの実施形態では、PEGは約1000Da、約5000Da、約10,000Da、又は約20,000DaのMwを有し得る。

0138

共有結合部分は1つ又は複数のサッカリドを含み得る。共有結合サッカリドはモノ、ジ、又はポリサッカリドであり得る。共有結合サッカリドは、表面に付着するような結合又は加工を可能にする反応ペア部分を導入するように修飾し得る。例示的な反応ペア部分は、アルデヒドアルキン、又はハロ部分を含み得る。ポリサッカリドは、ランダムに修飾し得、各サッカリドモノマーが修飾されてもよく、又はポリサッカリド内のサッカリドモノマーの一部のみが、表面に直接若しくは間接的に結合され得る反応ペア部分を提供するように修飾される。一例は、直鎖リンカーを介して表面に間接的に結合され得るデキストランポリサッカリドを含み得る。

0139

共有結合部分は1つ又は複数のアミノ基を含み得る。アミノ基は、置換アミン部分、グアニジン部分、窒素含有ヘテロ環部分又はヘテロアリール部分であり得る。アミノ含有部分は、マイクロ流体デバイス内及び任意選択的に隔離ペン及び/又はフロー領域(例えば、チャネル)内の環境のpH変更を可能にする構造を有し得る。

0140

調整面を提供する被覆材料は、一種のみの共有結合部分を含んでもよく、又は2つ以上の異なる種類の共有結合部分を含んでもよい。例えば、フルオロアルキル調整面(ペルフルオロアルキルを含む)は、全て同じ、例えば、表面への同じ結合基及び共有結合、同じ全体長、及びフルオロアルキル部分を含む同数フルオロメチレン単位を有する複数の共有結合部分を有し得る。代替的には、被覆材料は、表面に付着する2種類以上の共有結合部分を有し得る。例えば、被覆材料は、指定された数のメチレン又はフルオロメチレン単位を有する共有結合アルキル又はフルオロアルキル部分を有する分子を含み得、被覆面においてより嵩張った部分を提示する能力をお提供し得る、より多数のメチレン又はフルオロメチレン単位を有するアルキル又はフルオロアルキル鎖に共有結合した荷電部分を有する更なる組の分子を更に含み得る。この場合、異なる、立体的に要求が余り厳しくない末端及びより少数の骨格原子を有する第1の組の分子は、基板表面全体官能化し、それにより基板自体を構成するケイ素/酸化ケイ素、酸化ハフニウム、又はアルミナへの望ましくない付着又は接触を回避するのに役立つことができる。別の例では、共有結合部分は、表面上でランダムに交流電荷を提示する両性イオン表面を提供し得る。

0141

調整面特性
調整された表面の組成以外で、疎水性材料の物理的厚さ等の他の要因がDEP力に影響し得る。調整された表面が基板に形成される様式(例えば、蒸着液相堆積スピンコーティングフラッディング、及び静電コーティング)等の様々な要因が調整された表面の物理的厚さを変更し得る。幾つかの実施形態では、調整面は、約1nm〜約10nm、約1nm〜約7nm、約1nm〜約5nm、又はそれらの間の任意の個々の値の厚さを有する。他の実施形態では、共有結合部分により形成される調整面は、約10nm〜約50nmの厚さを有し得る。様々な実施形態では、本明細書において記載されるように準備される調整面は、10nm未満の厚さを有する。幾つかの実施形態では、調整面の共有結合部分は、マイクロ流体デバイスの表面(例えば、DEP構成基板表面)に共有結合した場合、単層を形成し得、10nm未満(例えば、5nm未満又は約1.5nm〜3.0nm)の厚さを有し得る。これらの値は、約30nmの範囲の厚さを有するCYTOP(登録商標)(Asahi Glass Co., Ltd.、日本)フルオロポリマースピンコーティングの厚さとは対照的である。幾つかの実施形態では、調整面は、DEP構成マイクロ流体デバイス内での動作に適宜機能的であるために、完全に形成された単層を必要としない。

0142

様々な実施形態では、マイクロ流体デバイスの調整面を提供する被覆材料は、所望の電気特性を提供し得る。理論による限定を意図せずに、特定の被覆材料が被覆された表面の堅牢性に影響する一因子は、本質的に電荷捕獲である。異なる被覆材料は電子を捕獲し得、これは被覆材料の破壊に繋がる恐れがある。被覆材料の欠陥は、電荷捕獲を増大させ、被覆材料の更なる破壊に繋がる恐れがある。同様に、異なる被覆材料は異なる絶縁耐力(すなわち、絶縁破壊が生じる最小印加電場)を有し、これは電荷捕獲に影響を有し得る。特定の実施形態では、被覆材料は、その電荷捕獲量を低減又は制限する全体構造(例えば、高密度単層構造)を有することができる。

0143

調整された表面は、その電気特性に加えて、生体分子との併用に有利な特性を有することもできる。例えば、フッ化(又はパーフルオロ化)炭素鎖を含む調整された表面は、表面ファウリング量を低減するに当たり、アルキル末端鎖と比較して利点を提供し得る。表面ファウリングは、本明細書で使用される場合、タンパク質及びその老廃物、核酸及び各老廃物等のバイオ材料永久的又は半永久的な堆積を含み得る、マイクロ流体デバイスの表面への無差別材料堆積量を指す。

0144

単一又は複数パートの調整面
共有結合被覆材料は、後述するように、マイクロ流体デバイスにおける生物学的微小物体の維持/増殖に適した有機分子及び/又は親水性分子の層を提供するように構成される部分を既に含む分子の反応により形成し得る。代替的には、共有結合被覆材料は、生物学的微小物体の維持/増殖に適した有機分子及び/又は親水性分子の層を提供するように構成される部分を、それ自体が表面に共有結合した表面修飾リガンドに結合することにより、2部シーケンスで形成し得る。

0145

共有結合された被覆材料を準備する方法
幾つかの実施形態では、マイクロ流体デバイスの表面(例えば、隔離ペン及び/又はフロー領域の少なくとも1つの表面を含む)に共有結合した被覆材料は、式1又は式2の構造を有する。被覆材料は、表面に1ステップで導入される場合、式1の構造を有し、一方、被覆材料は、複数ステッププロセッサで導入される場合、式2の構造を有する。

0146

被覆材料は、DEP構成又はEW構成基板の表面の酸化物に供給結合し得る。DEP又はEW構成基板は、ケイ素、酸化ケイ素、アルミナ、又は酸化ハフニウムを含み得る。酸化物は、基板の元の化学構造の一部として存在してもよく、又は後述するように導入し得る。

0147

被覆材料は、結合基(「LG」)を介して酸化物に結合し得、LGは、シロキサン基又はホスホン酸基と酸化物との反応から形成されるシロキシ又はホスホネートエステル基であり得る。マイクロ流体デバイスにおける生物学的微小物体の維持/増殖に適した有機分子及び/又は親水性分子の層を提供するように構成される部分は、本明細書に記載される任意の部分であり得る。結合基LGは、マイクロ流体デバイスにおける生物学的微小物体の維持/増殖に適した有機分子及び/又は親水性分子の層を提供するように構成される部分に直接又は間接的に接続し得る。結合基LGがその部分に直接接続される場合、任意選択的なリンカーLは存在せず、nは0である。結合基LGが部分に間接的に接続される場合、リンカーLが存在し、nは1である。リンカーLは、線状部の骨格が、当技術分野で既知の化学結合制約を受けるケイ素原子、炭素原子、窒素原子酸素原子硫黄原子、及びリン原子の任意の組合せから選択される1〜200個の非水素原子を含み得る線状部を有し得る。それは、エーテル基、アミノ基、カルボニル基アミド基、又はリン酸基アリーレン基ヘテロアリーレン基、又はヘテロ環基からなる群から選択される1つ又は複数の部分の任意の組合せで中断され得る。幾つかの実施形態では、リンカーLの骨格は10〜20個の炭素を含み得る。他の実施形態では、リンカーLの骨格は約5原子〜約200原子、約10原子〜約80原子、約10原子〜約50原子、又は約10原子〜約40原子を含み得る。幾つかの実施形態では、骨格原子は全て炭素原子である。

0148

幾つかの実施形態では、生物学的微小物体の維持/増殖に適した有機分子及び/又は親水性分子の層を提供するように構成される部分は、複数ステッププロセスで基板の表面に追加し得、上で示された式2の構造を有する。この部分は、上述した任意の部分であり得る。

0149

幾つかの実施形態では、結合基CGは、反応部分Rxとペアとなる反応部分Rpx(すなわち、反応部分Rxと反応するように構成される部分)との反応の結果生成される基を表す。例えば、典型的な1つの結合基CGはカルボキサミジル(carboxamidyl)基を含み得、これは、アミノ基と、活性化エステル、酸クロリド等のカルボン酸の誘導体との反応の結果である。他のCGは、トリアゾリレン(triazolylene)基、カルボキサミジル(carboxamidyl)、チオアミジル、オキシムメルカプチル(mercaptyl)、二硫化物、エーテル、又はアルケニル基、又は反応部分とペアとなる各反応部分との反応時に形成し得る任意の他の適する基を含み得、結合基CGは、リンカーLの第2の端部(すなわち、マイクロ流体デバイスにおける生物学的微小物体の維持/増殖に適した有機分子及び/又は親水性分子の層を提供するように構成される部分に近い端部)に配置し得、これは上述した要素の任意の組合せを含み得る。幾つかの他の実施形態では、結合基CGは、リンカーLの骨格を中断し得る。結合基CGは、トリアゾリレン(triazolylene)である場合、クリック結合反応からの結果である産物であり得、更に置換し得る(例えば、ジベンゾシクロオクチ溶融トリアゾリレン(triazolylene)基)。

0150

幾つかの実施形態では、被覆材料(又は表面修飾リガンド)は、化学蒸着を使用してマイクロ流体デバイスの内面に堆積する。蒸着プロセスは任意選択的に、例えば、溶媒浴への露出超音波処理、又はそれらの組合せにより、カバー110、マイクロ流体回路材料116、及び/又は基板(例えば、DEP構成基板の電極活性化基板206の内面208又はEW構成基板の支持構造体104の誘電層)を予めクリーニングすることにより改善することができる。代替又は追加として、そのような事前クリーニングは、カバー110、マイクロ流体回路材料116、及び/又は基板を酸素プラズマクリーナにおいて処理することを含むことができ、酸素プラズマクリーナは、様々な不純物を除去することができ、それと同時に酸化表面(例えば、表面における酸化物、本明細書に記載されるように共有結合的に修飾し得る)を導入することができる。代替的には、塩酸過酸化水素との混合物又は硫酸と過酸化水素との混合物(例えば、硫酸と過酸化水素との比率が約3:1〜約7:1であり得るピラニア溶液)等の液相処理を酸素プラズマクリーナの代わりに使用することもできる。

0151

幾つかの実施形態では、マイクロ流体デバイス200が組み立てられて、マイクロ流体回路120を画定するエンクロージャ102を形成した後、蒸着を使用して、マイクロ流体デバイス200の内面を被覆し得る。理論による限定を意図せずに、そのような被覆材料を完全に組み立てられたマイクロ流体回路120に堆積させることは、マイクロ流体回路材料116と電極活性化基板206の誘電層及び/又はカバー110との結合の弱化により生じる剥離を回避するに当たり有利であり得る。2ステッププロセスが利用される実施形態では、表面修飾リガンドは、上述したように蒸着を介して導入し得、続けて、生物学的微小物体の維持/増殖に適した有機分子及び/又は親水性分子の層を提供するように構成される部分が導入される。続く反応は、表面修飾マイクロ流体デバイスを溶液中の適する結合試薬に露出させることにより実行し得る。

0152

図2Hは、調整面を提供する例示的な共有結合被覆材料を有するマイクロ流体デバイス290の断面図を示す。示されるように、被覆材料298(概略的に示される)は、DEP基板であり得る基板286の内面294と、マイクロ流体デバイス290のカバー288の内面292と、の両方に共有結合した高密度分子の単層を含むことができる。被覆材料298は、幾つかの実施形態では、上述したように、マイクロ流体デバイス290内の回路要素及び/又は構造の画定に使用されるマイクロ流体回路材料(図示せず)の表面を含む、マイクロ流体デバイス290のエンクロージャ284に近くエンクロージャ284に向かって内側に面する略全ての内面294、292に配置することができる。代替の実施形態では、被覆材料298は、マイクロ流体デバイス290の内面の1つのみ又は幾つかに配置することができる。

0153

図2Hに示される実施形態では、被覆材料298は、オルガノシロキサン分子の単層を含むことができ、各分子は、シロキシリンカー296を介してマイクロ流体デバイス290の内面292、294に共有結合する。上記の被覆材料298のいずれかを使用することができ(例えば、アルキル末端、フルオロアルキル末端部分、PEG末端部分、デキストラン末端部分、又はオルガノシロキサン部分に正電荷又は負電荷を含む末端部分)、末端部分は、エンクロージャに面する末端に配置される(すなわち、内面292、294に結合されず、エンクロージャ284に近い被覆材料298の単層の部分)。

0154

他の実施形態では、マイクロ流体デバイス290の内面292、294の被覆に使用される被覆材料298はアニオン部分、カチオン部分、両性イオン部分、又はそれらの任意の組合せを含むことができる。理論による限定を意図せずに、カチオン部分、アニオン部分、及び/又は両性イオン部分をマイクロ流体回路120のエンクロージャ284の内面に提示することにより、被覆材料298は、その結果生成される水和の水が、生物学的微小物体を非生物学的分子(例えば、基板のケイ素及び/又は酸化ケイ素)との相互作用から分離する層(又は「シールド」)として機能するような、強力な水との水素結合を形成することができる。加えて、被覆材料298が被覆剤と併用される実施形態では、被覆材料298のアニオン、カチオン、又は両性イオンは、エンクロージャ284内の媒体180(例えば、被覆溶液)中に存在する非共有結合被覆剤(例えば、溶液中のタンパク質)の荷電部分とイオン結合を形成することができる。

0155

更に他の実施形態では、被覆材料は、エンクロージャに面した末端において親水性被覆剤を含み得るか、又は提示するように化学的に修飾し得る。幾つかの実施形態では、被覆材料は、PEG等のアルキレンエーテル含有ポリマーを含み得る。幾つかの実施形態では、被覆材料は、デキストラン等のポリサッカリドを含み得る。上述した荷電部分(例えば、アニオン部分、カチオン部分、及び両性イオン部分)のように、親水性被覆剤は、その結果生成される水和の水が、生物学的微小物体を非生物学的分子(例えば、基板のケイ素及び/又は酸化ケイ素)との相互作用から分離する層(又は「シールド」)として機能するような、強力な水との水素結合を形成することができる。適切な被覆処理及び修飾の更なる詳細については、2016年4月22日に出願された米国特許出願公開第15/135,707号において見出し得、この特許出願は全体的に参照により本明細書に援用される。

0156

マイクロ流体デバイスの隔離ペン内の細胞の生存性を維持する追加のシステム構成要素
細胞集団の成長及び/又は増殖を促進するために、システムの追加の構成要素により、機能的な細胞の維持を促す環境状況を提供し得る。例えば、そのような追加の構成要素は、栄養素、細胞成長シグナリング種、pH調整、ガス交換温度制御、及び細胞からの老廃物の除去を提供することができる。

0157

システム動作及び光学制御
図3A図3Bは、本開示によるマイクロ流体デバイス(例えば、100、200、230、250、280、290、500、550、560、600、620、640、670、700、720、720、750、760、780、808、810、812、900、1000、1100、1200、1300、1400、1500)を動作させるため及び観測のために使用することができるシステム150の様々な実施形態を示す。図3Aに示されるように、システム150は、マイクロ流体デバイス100(図示せず)又は本明細書に記載される任意の他のマイクロ流体デバイスを保持するように構成された構造体(「ネスト」)300を含むことができる。ネスト300は、マイクロ流体デバイス320(例えば、光学的に作動される動電学的デバイス100)と界面を接することができ、電源192からマイクロ流体デバイス320への電気接続を提供することができるソケット302を含むことができる。ネスト300は、一体型電気信号生成サブシステム304を更に含むことができる。電気信号生成サブシステム304は、マイクロ流体デバイス320がソケット302により保持されているとき、バイアス電圧がマイクロ流体デバイス320内の電極の対にわたり印加されるように、バイアス電圧をソケット302に供給するように構成され得る。したがって、電気信号生成サブシステム304は電源192の部分であり得る。バイアス電圧をマイクロ流体デバイス320に印加する能力は、マイクロ流体デバイス320がソケット302により保持されている場合には常にバイアス電圧が印加されることを意味しない。むしろ、大半の場合、バイアス電圧は、断続的に、例えば、マイクロ流体デバイス320内での電気泳動又は電子ウェッティング等の動電力の生成を促進するために必要な場合にのみ印加される。

0158

図3Aに示されるように、ネスト300は、プリント回路基板組立体(PCBA)322を含むことができる。電気信号生成サブシステム304は、PCBA322に搭載され、PCBA322に電気的に集積することができる。例示的な支持体は、同様にPCBA322に搭載されるソケット302も含む。

0159

通常、電気信号生成サブシステム304は波形生成器(図示せず)を含む。電気信号生成サブシステム304は、波形生成器から受信される波形増幅するように構成されたオシロスコープ(図示せず)及び/又は波形増幅回路(図示せず)を更に含むことができる。オシロスコープは、存在する場合、ソケット302により保持されるマイクロ流体デバイス320に供給される波形を測定するように構成され得る。特定の実施形態では、オシロスコープは、マイクロ流体デバイス320の基端位置(及び波形生成器の先端位置)において波形を測定し、それにより、デバイスに実際に印加されている波形を測定するに当たりより大きい精度を保証する。オシロスコープ測定から得られるデータは、例えば、フィードバックとして波形生成器に提供され得、波形生成器は、そのようなフィードバックに基づいて出力を調整するように構成され得る。適する結合された波形生成器及びオシロスコープの例は、Red Pitaya(商標)である。

0160

特定の実施形態では、ネスト300は、電気信号生成サブシステム304の検知及び/又は制御に使用される、マイクロプロセッサ等のコントローラ308を更に含む。適するマイクロプロセッサの例としては、Arduino Nano(商標)等のArduino(商標)マイクロプロセッサが挙げられる。コントローラ308を使用して機能及び分析を実行し、又は外部マスタコントローラ154(図1Aに示される)と通信して機能及び分析を実行し得る。図3Aに示される実施形態では、コントローラ308は、インタフェース310(例えば、プラグ又はコネクタ)を通してマスタコントローラ154と通信する。

0161

幾つかの実施形態では、ネスト300は、Red Pitaya(商標)波形生成器/オシロスコープユニット(「Red Pitayaユニット」)を含む電気信号生成サブシステム304と、Red Pitayaユニットにより生成された波形を増幅し、増幅電圧をマイクロ流体デバイス100に渡す波形増幅回路とを含むことができる。幾つかの実施形態では、Red Pitayaユニットは、マイクロ流体デバイス320での増幅電圧を測定し、次に、マイクロ流体デバイス320での測定電圧が所望の値であるように、必要に応じてそれ自体の出力電圧を調整するように構成される。幾つかの実施形態では、波形増幅回路は、PCBA322に搭載されるDC−DCコンバータの対により生成される+6.5V〜−6.5V電源を有することができ、その結果、マイクロ流体デバイス100において13Vppまでの信号が生成される。

ページトップへ

この技術を出願した法人

この技術を発明した人物

ページトップへ

関連する挑戦したい社会課題

関連する公募課題

ページトップへ

おススメ サービス

おススメ astavisionコンテンツ

新着 最近 公開された関連が強い技術

  • 株式会社MU研究所の「 超音波照射装置」が 公開されました。( 2019/09/19)

    【課題】サンプルに対して超音波を照射する場合に音響強度を高められるようにする。【解決手段】ポット本体18の外側側面26は、環状に連なる複数の平面により構成されている。複数の平面には複数の振動子が配置さ... 詳細

  • シスメックス株式会社の「 検体測定装置、電力供給の遮断方法」が 公開されました。( 2019/09/12)

    【課題】複数のモジュールへの電力供給を確実に一括して遮断する。【解決手段】検体測定装置(200)は、第1モジュール(62)および第2モジュール(61)を備え、第1接続部(511)と第1モジュール(62... 詳細

  • 株式会社島津製作所の「 分析システム」が 公開されました。( 2019/09/12)

    【課題】作業性を向上できる分析システムを提供する。【解決手段】分析システム1において自動補正の処理を行う場合には、ユーザは、表示部32に表示される表示画面を確認しながら、自動補正のためのボタンを選択す... 詳細

この 技術と関連性が強い技術

関連性が強い 技術一覧

この 技術と関連性が強い人物

関連性が強い人物一覧

この 技術と関連する社会課題

関連する挑戦したい社会課題一覧

この 技術と関連する公募課題

関連する公募課題一覧

astavision 新着記事

サイト情報について

本サービスは、国が公開している情報(公開特許公報、特許整理標準化データ等)を元に構成されています。出典元のデータには一部間違いやノイズがあり、情報の正確さについては保証致しかねます。また一時的に、各データの収録範囲や更新周期によって、一部の情報が正しく表示されないことがございます。当サイトの情報を元にした諸問題、不利益等について当方は何ら責任を負いかねることを予めご承知おきのほど宜しくお願い申し上げます。

主たる情報の出典

特許情報…特許整理標準化データ(XML編)、公開特許公報、特許公報、審決公報、Patent Map Guidance System データ