図面 (/)

技術 回路装置、発振器、電子機器及び移動体

出願人 セイコーエプソン株式会社
発明者 須藤泰宏
出願日 2018年3月29日 (2年7ヶ月経過) 出願番号 2018-064906
公開日 2019年10月10日 (1年1ヶ月経過) 公開番号 2019-176403
状態 未査定
技術分野 電気機械共振器を用いた発振回路 発信器の安定化、同期、周波数シンセサイザ
主要キーワード 温度依存電圧 発振信号生成回路 ウェアラブル機器 タイムステップ毎 ネットワークルーター 二重積分型 事前推定値 温度検出データ
関連する未来課題
重要な関連分野

この項目の情報は公開日時点(2019年10月10日)のものです。
また、この項目は機械的に抽出しているため、正しく解析できていない場合があります

図面 (16)

課題

発振周波数の長期的な時間変動カルマンフィルターにより推定する場合に、短時間での収束と高精度な推定とを両立することが可能な回路装置発振器、電子機器及び移動体を提供すること。

解決手段

回路装置100は処理回路50と発振信号生成回路140とを含む。処理回路50は、発振信号に基づく入力信号基準信号CKRFとの位相比較結果に対するカルマンフィルター処理と、位相比較結果に対するループフィルター処理とを行う。発振信号生成回路140は、ループフィルター処理の出力データである周波数制御データLQ振動子XTALとを用いて、周波数制御データLQにより設定される発振周波数の発振信号を生成する。処理回路50は、位相比較結果の観測値に対する真値を、カルマンフィルター処理により推定する。

概要

背景

従来より、OCXO(Oven Controlled crys(X)tal Oscillator)、TCXO(Temperature Compensated crys(X)tal Oscillator)等の発振器が知られている。例えばOCXOは、基地局、ネットワークルーター測定機器等における基準信号源として用いられている。

このようなOCXO、TCXOなどの発振器では、高い周波数安定度が望まれている。しかしながら、発振器の発振周波数にはエージングと呼ばれる経年変化があり、経過時間と共に発振周波数が変動してしまうという問題がある。例えば、GPS信号などの基準信号が受信不能になり、いわゆるホールドオーバー状態になった場合において、エージングにより発振周波数が変動する。このような発振周波数の変動を抑える手法としてエージング補正がある。例えば、エージング補正の従来技術として特許文献1に開示される技術がある。

特許文献1では、基準信号が受信可能である非ホールドオーバー状態において、PLL回路ループフィルター発振信号生成回路に対して周波数制御データを出力しており、その周波数制御データをカルマンフィルターに入力し、カルマンフィルターが周波数制御データの真値及び時間変化の傾きを推定する。そして、基準信号が受信不能であるホールドオーバー状態に変化したとき、カルマンフィルターが、ホールドオーバー状態に変化したときの真値及び時間変化の傾きの推定値を保持し、エージング補正部が、その推定値に基づいてエージング補正した周波数制御データを生成して発振信号生成回路に出力する。

概要

発振周波数の長期的な時間変動をカルマンフィルターにより推定する場合に、短時間での収束と高精度な推定とを両立することが可能な回路装置、発振器、電子機器及び移動体を提供すること。回路装置100は処理回路50と発振信号生成回路140とを含む。処理回路50は、発振信号に基づく入力信号と基準信号CKRFとの位相比較結果に対するカルマンフィルター処理と、位相比較結果に対するループフィルター処理とを行う。発振信号生成回路140は、ループフィルター処理の出力データである周波数制御データLQ振動子XTALとを用いて、周波数制御データLQにより設定される発振周波数の発振信号を生成する。処理回路50は、位相比較結果の観測値に対する真値を、カルマンフィルター処理により推定する。

目的

このようなOCXO、TCXOなどの発振器では、高い周波数安定度が望まれている

効果

実績

技術文献被引用数
0件
牽制数
0件

この技術が所属する分野

(分野番号表示ON)※整理標準化データをもとに当社作成

ライセンス契約や譲渡などの可能性がある特許掲載中! 開放特許随時追加・更新中 詳しくはこちら

請求項1

発振信号に基づく入力信号基準信号との位相比較結果に対するカルマンフィルター処理と、前記位相比較結果に対するループフィルター処理とを行う処理回路と、前記ループフィルター処理の出力データである周波数制御データ振動子とを用いて、前記周波数制御データにより設定される発振周波数の前記発振信号を生成する発振信号生成回路と、を含み、前記処理回路は、前記位相比較結果の観測値に対する真値を、前記カルマンフィルター処理により推定することを特徴とする回路装置

請求項2

請求項1に記載の回路装置において、前記処理回路は、前記カルマンフィルター処理のシステムノイズ分散値及び観測ノイズ分散値を設定し、設定された前記システムノイズ分散値及び前記観測ノイズ分散値に基づいて、前記カルマンフィルター処理を行うことを特徴とする回路装置。

請求項3

請求項2に記載の回路装置において、前記システムノイズ分散値の初期値である第1初期値を記憶する記憶部を含み、前記処理回路は、前記システムノイズ分散値を前記第1初期値から変化させる第1処理を行うことを特徴とする回路装置。

請求項4

請求項3に記載の回路装置において、前記第1処理は、前記システムノイズ分散値を前記第1初期値から単調減少させる処理であることを特徴とする回路装置。

請求項5

請求項2に記載の回路装置において、前記観測ノイズ分散値の初期値である第2初期値を記憶する記憶部を含み、前記処理回路は、前記観測ノイズ分散値を前記第2初期値から変化させる第2処理を行うことを特徴とする回路装置。

請求項6

請求項5に記載の回路装置において、前記第2処理は、前記観測ノイズ分散値を前記第2初期値から単調増加させる処理であることを特徴とする回路装置。

請求項7

請求項1乃至6のいずれか一項に記載の回路装置において、前記処理回路は、前記発振信号が前記基準信号にロックした状態であると判断されたときに、前記ループフィルター処理のカットオフ周波数を第1の周波数から、前記第1の周波数より低い第2の周波数に変化させることを特徴とする回路装置。

請求項8

請求項2に記載の回路装置において、前記システムノイズ分散値の初期値である第1初期値を記憶する記憶部を含み、前記処理回路は、前記発振信号が前記基準信号にロックした状態であると判断されたときに、前記ループフィルター処理のカットオフ周波数を第1の周波数から、前記第1の周波数より低い第2の周波数に変化させると共に、前記システムノイズ分散値を前記第1初期値から変化させる第1処理を行うことを特徴とする回路装置。

請求項9

請求項8に記載の回路装置において、前記第1処理は、前記システムノイズ分散値を前記第1初期値から単調増加させる処理であることを特徴とする回路装置。

請求項10

請求項2に記載の回路装置において、前記観測ノイズ分散値の初期値である第2初期値を記憶する記憶部を含み、前記処理回路は、前記発振信号が前記基準信号にロックした状態であると判断されたときに、前記ループフィルター処理のカットオフ周波数を第1の周波数から、前記第1の周波数より低い第2の周波数に変化させると共に、前記観測ノイズ分散値を前記第2初期値から変化させる第2処理を行うことを特徴とする回路装置。

請求項11

請求項10に記載の回路装置において、前記第2処理は、前記観測ノイズ分散値を前記第2初期値から単調減少させる処理であることを特徴とする回路装置。

請求項12

請求項1乃至11のいずれか一項に記載の回路装置において、前記処理回路は、前記基準信号の消失又は異常によるホールドオーバーが検出された場合に、前記ホールドオーバーの検出タイミングに対応するタイミングでの前記真値を保持し、前記真値に基づく前記ループフィルター処理を行うことで、エージング補正された前記周波数制御データを生成することを特徴とする回路装置。

請求項13

請求項2乃至6のいずれか一項に記載の回路装置において、前記処理回路は、前記カルマンフィルター処理の収束状態において、前記システムノイズ分散値及び前記観測ノイズ分散値により設定されるカットオフ周波数のローパスフィルター処理を行うことを特徴とする回路装置。

請求項14

請求項1乃至13のいずれか一項に記載の回路装置と、前記振動子と、を含むことを特徴とする発振器。

請求項15

請求項1乃至13のいずれか一項に記載の回路装置を含むことを特徴とする電子機器

請求項16

請求項1乃至13のいずれか一項に記載の回路装置を含むことを特徴とする移動体

技術分野

0001

本発明は、回路装置発振器、電子機器及び移動体等に関する。

背景技術

0002

従来より、OCXO(Oven Controlled crys(X)tal Oscillator)、TCXO(Temperature Compensated crys(X)tal Oscillator)等の発振器が知られている。例えばOCXOは、基地局、ネットワークルーター測定機器等における基準信号源として用いられている。

0003

このようなOCXO、TCXOなどの発振器では、高い周波数安定度が望まれている。しかしながら、発振器の発振周波数にはエージングと呼ばれる経年変化があり、経過時間と共に発振周波数が変動してしまうという問題がある。例えば、GPS信号などの基準信号が受信不能になり、いわゆるホールドオーバー状態になった場合において、エージングにより発振周波数が変動する。このような発振周波数の変動を抑える手法としてエージング補正がある。例えば、エージング補正の従来技術として特許文献1に開示される技術がある。

0004

特許文献1では、基準信号が受信可能である非ホールドオーバー状態において、PLL回路ループフィルター発振信号生成回路に対して周波数制御データを出力しており、その周波数制御データをカルマンフィルターに入力し、カルマンフィルターが周波数制御データの真値及び時間変化の傾きを推定する。そして、基準信号が受信不能であるホールドオーバー状態に変化したとき、カルマンフィルターが、ホールドオーバー状態に変化したときの真値及び時間変化の傾きの推定値を保持し、エージング補正部が、その推定値に基づいてエージング補正した周波数制御データを生成して発振信号生成回路に出力する。

先行技術

0005

特開2017−123628号公報

発明が解決しようとする課題

0006

上述したエージング補正を行う場合や、或いはエージングによる発振周波数の変動をデータとして取得したい場合等においては、発振周波数の変動をモニターする必要がある。エージングによる発振周波数の変動は長期的な変動であり、且つその時間変化の傾きは小さい。このような長期的な変動に対して短時間で追従すると共に、小さな値の時間変化を高精度に推定することは困難であるという課題がある。

課題を解決するための手段

0007

本発明の一態様は、発振信号に基づく入力信号と基準信号との位相比較結果に対するカルマンフィルター処理と、前記位相比較結果に対するループフィルター処理とを行う処理回路と、前記ループフィルター処理の出力データである周波数制御データと振動子とを用いて、前記周波数制御データにより設定される発振周波数の前記発振信号を生成する発振信号生成回路と、を含み、前記処理回路は、前記位相比較結果の観測値に対する真値を、前記カルマンフィルター処理により推定する回路装置に関係する。

0008

また本発明の一態様では、前記処理回路は、前記カルマンフィルター処理のシステムノイズ分散値及び観測ノイズ分散値を設定し、設定された前記システムノイズ分散値及び前記観測ノイズ分散値に基づいて、前記カルマンフィルター処理を行ってもよい。

0009

また本発明の一態様では、前記システムノイズ分散値の初期値である第1初期値を記憶する記憶部を含み、前記処理回路は、前記システムノイズ分散値を前記第1初期値から変化させる第1処理を行ってもよい。

0010

また本発明の一態様では、前記第1処理は、前記システムノイズ分散値を前記第1初期値から単調減少させる処理であってもよい。

0011

また本発明の一態様では、前記観測ノイズ分散値の初期値である第2初期値を記憶する記憶部を含み、前記処理回路は、前記観測ノイズ分散値を前記第2初期値から変化させる第2処理を行ってもよい。

0012

また本発明の一態様では、前記第2処理は、前記観測ノイズ分散値を前記第2初期値から単調増加させる処理であってもよい。

0013

また本発明の一態様では、前記処理回路は、前記発振信号が前記基準信号にロックした状態であると判断されたときに、前記ループフィルター処理のカットオフ周波数を第1の周波数から、前記第1の周波数より低い第2の周波数に変化させてもよい。

0014

また本発明の一態様では、前記システムノイズ分散値の初期値である第1初期値を記憶する記憶部を含み、前記処理回路は、前記発振信号が前記基準信号にロックした状態であると判断されたときに、前記ループフィルター処理のカットオフ周波数を第1の周波数から、前記第1の周波数より低い第2の周波数に変化させると共に、前記システムノイズ分散値を前記第1初期値から変化させる第1処理を行ってもよい。

0015

また本発明の一態様では、前記第1処理は、前記システムノイズ分散値を前記第1初期値から単調増加させる処理であってもよい。

0016

また本発明の一態様では、前記観測ノイズ分散値の初期値である第2初期値を記憶する記憶部を含み、前記処理回路は、前記発振信号が前記基準信号にロックした状態であると判断されたときに、前記ループフィルター処理のカットオフ周波数を第1の周波数から、前記第1の周波数より低い第2の周波数に変化させると共に、前記観測ノイズ分散値を前記第2初期値から変化させる第2処理を行ってもよい。

0017

また本発明の一態様では、前記第2処理は、前記観測ノイズ分散値を前記第2初期値から単調減少させる処理であってもよい。

0018

また本発明の一態様では、前記処理回路は、前記基準信号の消失又は異常によるホールドオーバーが検出された場合に、前記ホールドオーバーの検出タイミングに対応するタイミングでの前記真値を保持し、前記真値に基づく前記ループフィルター処理を行うことで、エージング補正された前記周波数制御データを生成してもよい。

0019

また本発明の一態様では、前記処理回路は、前記カルマンフィルター処理の収束状態において、前記システムノイズ分散値及び前記観測ノイズ分散値により設定されるカットオフ周波数のローパスフィルター処理を行ってもよい。

0020

また本発明の他の態様は、上記のいずれかに記載の回路装置と、前記振動子と、を含む発振器に関係する。

0021

また本発明の更に他の態様は、上記のいずれかに記載の回路装置を含む電子機器に関係する。

0022

また本発明の更に他の態様は、上記のいずれかに記載の回路装置を含む移動体に関係する。

図面の簡単な説明

0023

本実施形態に対する比較例の回路装置。
本実施形態の回路装置の構成例。
回路装置の動作を説明する図。
カルマンフィルターの詳細な構成例。
カルマンフィルターの動作を説明する図。
第1処理のみを行う場合のシミュレーション結果例。
第2処理のみを行う場合のシミュレーション結果例。
第1処理及び第2処理の両方を行う場合のシミュレーション結果例。
システムノイズ分散値及び観測ノイズ分散値を変化させなかった場合におけるカルマンフィルター処理のシミュレーション結果例。
観測ノイズ分散値を変化させた場合におけるカルマンフィルター処理のシミュレーション結果例。
ループフィルターの詳細な構成例。
PLL回路のシミュレーション結果例。
発振器の構成例、及び回路装置の第2の構成例。
電子機器の構成例。
移動体の例。

実施例

0024

以下、本発明の好適な実施の形態について詳細に説明する。なお以下に説明する本実施形態は特許請求の範囲に記載された本発明の内容を不当に限定するものではなく、本実施形態で説明される構成の全てが本発明の解決手段として必須であるとは限らない。

0025

1.回路装置
図1は、本実施形態に対する比較例の回路装置105である。回路装置105は、位相比較回路65とループフィルター56とカルマンフィルター55とエージング補正部58とセレクター57とD/A変換回路85と発振回路155とを含む。

0026

位相比較回路65は、基準信号CKFAと、発振回路155が出力するクロック信号CKAとの間の位相差を検出し、その位相差を示す位相差データPDAを出力する。基準信号CKRFAは、例えばGPS受信器から入力される時刻パルス信号等である。ループフィルター56は、位相差データPDAに基づいて、発振周波数を制御する周波数制御データLQAとして出力する。セレクター57は、ホールドオーバー状態であるか否かを示すホールドオーバー判定信号SHLAに基づいて、ループフィルター56からの周波数制御データLQA又はエージング補正部58からの周波数制御データACQを選択する。非ホールドオーバー状態である場合、セレクター57はループフィルター56からの周波数制御データLQAを選択し、出力データSQAとして出力する。D/A変換回路85は、出力データSQAをD/A変換し、出力データSQAに対応する制御電圧VQAを出力する。発振回路155はVCO(Voltage Controlled Oscillator)であり、制御電圧VQAに対応する発振周波数で振動子XTALAを発振させ、その発振信号に基づいてクロック信号CKAを出力する。

0027

カルマンフィルター55は、ループフィルター56からの周波数制御データLQAを観測値として、周波数制御データLQAの真値を推定する。このとき、タイムステップkにおける事前推定値x^−(k)を下式(1)により求める。x^(k−1)はタイムステップk−1における事後推定値であり、D(k−1)はタイムステップk−1における補正値である。事後推定値x^(k)が周波数制御データLQAの真値に相当し、補正値D(k)が1タイムステップあたりの周波数制御データLQAの変化に相当する。

0028

カルマンフィルター55にはホールドオーバー判定信号SHLAが入力され、カルマンフィルター55は、非ホールドオーバー状態からホールドオーバー状態に遷移したときの事後推定値x^(k)をオフセットELQとして保持し、補正値D(k)を補正値DLQとして保持する。エージング補正部58は、オフセットELQに対して1タイムステップ毎に補正値DLQを加算し、その結果を周波数制御データACQとして出力する。この周波数制御データACQがエージング補正された周波数制御データとなる。セレクター57は、ホールドオーバー状態のとき、エージング補正部58からの周波数制御データACQを選択し、出力データSQAとして出力する。D/A変換回路85が、この出力データSQAを制御電圧VQAにD/A変換し、発振回路155が、制御電圧VQAに対応する発振周波数で振動子XTALAを発振させる。このようにして、振動子XTALA及び発振回路155のエージングによる発振周波数の時間変動を補正している。

0029

上式(1)において、補正値D(k−1)は周波数制御データLQAの長期的な時間変動を示す値であるため、補正値D(k)は事後推定値x^(k)に比べて非常に小さい値である。このため、カルマンフィルター処理において相対的に大きさに差がある2つの値を扱うことになり、演算精度が低下するおそれがある。例えば、上式(1)では相対的に大きさに差がある2つの値を加算しているため、カルマンフィルター処理の演算精度において補正値D(k)の下位桁の情報が失われるおそれがある。このように、ループフィルター56の後段においてカルマンフィルター55による推定を行う場合、推定精度が低下するおそれがある。

0030

また、カルマンフィルター55は、補正値D(k)の演算に用いられるローパスフィルター59を含む。例えば、ローパスフィルター59は、カルマンフィルター55が推定した補正値D(k)に対してローパスフィルター処理を行う。このようなローパスフィルター59を用いることで、周波数制御データLQAの長期的な時間変動を精度良く演算することが可能である。しかしながら、補正値D(k)の精度を高くしようとするほど、低いカットオフ周波数のローパスフィルターが必要となり、推定開始から推定が収束するまでの時間が長くなってしまう。

0031

以上のように、エージングによる発振周波数の長期的な時間変動をモニターする場合に、短時間での収束と高精度な推定とを両立することが難しいという課題がある。

0032

図2は、本実施形態の回路装置100の構成例である。回路装置100は、位相比較回路60と処理回路50と発振信号生成回路140とを含む。

0033

位相比較回路60は、基準信号CKRFと、発振回路150からのクロック信号CKとの間の位相比較を行い、その位相比較結果である位相差データPDを出力する。位相比較回路60は、例えばカウンターを含み、そのカウンターが基準信号CKRFの1周期をクロック信号CKでカウントする。そして、位相比較回路60は、カウント値周波数設定値との差分を位相差データPDとして出力する。周波数設定値は発振周波数を設定する設定値であり、例えばレジスター設定等によって設定される。或いは、位相比較回路60は、基準信号CKRFのエッジとクロック信号CKのエッジとの間の時間差を測定する時間デジタル変換回路である。この場合、位相比較回路60は、測定した時間差を示す時間差データを位相差データPDとして出力する。

0034

基準信号CKRFは、例えばGPS受信器から入力される時刻パルス信号、或いはネットワークから供給される基準クロック信号等である。或いは、図2の構成の前段に設けられた発振器又は発振回路から供給されるクロック信号であってもよい。基準信号CKRFは、回路装置100の内部で生成された信号であってもよいし、回路装置100の外部から供給される信号であってもよい。

0035

なお、図2では、クロック信号CKが入力信号として位相比較回路60に入力されるが、これに限定されず、入力信号は発振信号に基づく信号であればよい。例えば、回路装置100が不図示の分周回路を含み、分周回路がクロック信号CKを分周し、その分周されたクロック信号が入力信号として位相比較回路60に入力されてもよい。

0036

処理回路50は位相差データPDに基づく種々のデジタル信号処理を行い、その処理結果として周波数制御データLQを出力する。処理回路50はカルマンフィルター51、セレクター53、ループフィルター52を含む。例えば処理回路50はDSP(Digital Signal Processor)である。この場合、DSPはカルマンフィルター51、セレクター53、ループフィルター52の処理を時分割に行う。或いは、カルマンフィルター51、セレクター53、ループフィルター52を個別のロジック回路で構成してもよい。

0037

カルマンフィルター51は、位相差データPDを観測値とするカルマンフィルター処理を行い、位相差データPDの真値を推定する。例えば非ホールドオーバー状態のときホールドオーバー判定信号SHLがローレベルであり、ホールドオーバー状態のときホールドオーバー判定信号SHLがハイレベルであるとする。カルマンフィルター51は、ホールドオーバー判定信号SHLがローレベルの間は真値の推定を行い、ホールドオーバー判定信号SHLがローレベルからハイレベルになったとき真値を保持し、その保持した真値を推定位相差データEPDとして出力する。カルマンフィルター処理の詳細については後述する。なお、ローレベルは広義には第1論理レベルであり、ハイレベルは広義には第2論理レベルである。

0038

セレクター53は、ホールドオーバー判定信号SHLがローレベルのとき位相差データPDを選択して出力データSQとして出力し、ホールドオーバー判定信号SHLがハイレベルのとき推定位相差データEPDを選択して出力データSQとして出力する。なお、エージング補正を行わずに位相差データPDの真値推定を行う場合には、セレクター53を省略し、位相差データPDを直接ループフィルター52へ入力してもよい。この場合、カルマンフィルター51は推定値を例えば不図示のインターフェース回路を介して回路装置100の外部へ出力してもよい。

0039

ループフィルター52は、出力データSQに対するループフィルター処理を行う。ループフィルター52は、出力データSQをループフィルター処理し、その結果を周波数制御データLQとして出力する。ループフィルター処理は、積分処理を含むローパスフィルター処理である。

0040

発振信号生成回路140は、周波数制御データLQと振動子XTALとを用いて、周波数制御データLQにより設定される発振周波数の発振信号を生成する。発振信号生成回路140は、発振信号に基づいてクロック信号CKを出力する。例えば発振信号生成回路140は、発振信号をバッファリングするバッファー回路を含み、そのバッファー回路の出力信号がクロック信号CKとして出力される。発振信号生成回路140は、D/A変換回路80と発振回路150とを含む。

0041

D/A変換回路80は、周波数制御データLQをD/A変換し、周波数制御データLQに対応する制御電圧VQを出力する。D/A変換回路80の方式として、例えば抵抗ストリング型や、抵抗ラダー型、容量アレイ型等の種々の方式を採用できる。

0042

発振回路150は、制御電圧VQと振動子XTALを用いて発振信号を生成する。発振回路150は、振動子XTALに接続され、制御電圧VQにより制御された発振周波数で振動子XTALを発振させることで発振信号を生成する。例えば発振回路150はVCOである。VCOは、振動子XTALを駆動する駆動回路と、可変容量キャパシターとを含む。駆動回路は振動子XTALの一端に接続される第1ノードと、振動子XTALの他端に接続される第2ノードとを有する。可変容量キャパシターの一端は、第1ノード又は第2ノードに接続され、可変容量キャパシターの容量値が制御電圧VQによって制御されることで、発振周波数が制御される。

0043

なお、発振信号生成回路140の構成は図2の構成に限定されない。例えば、発振信号生成回路140は、発振回路と、発振回路に接続される可変容量回路を含んでもよい。可変容量回路は、キャパシターアレイと、周波数制御データLQに基づき各スイッチ素子オン又はオフに制御されるスイッチアレイとを有する。各スイッチ素子がオン又はオフされることで、キャパシターアレイのうち、振動子XTALの一端に接続されるキャパシター個数が変化する。これにより、可変容量回路の容量値が制御され、発振周波数が制御される。或いは、発振信号生成回路140は、ダイレクトデジタルシンセサイザー方式により実現してもよい。この場合には振動子XTALの発振信号に対して、周波数制御データLQに基づくデジタル演算処理を行うことで、周波数制御データLQに対応する発振周波数の発信信号を生成する。

0044

図3は、回路装置100の動作を説明する図である。図3において、時間TLAまで非ホールドオーバー状態であり、時間TLAからホールドオーバー状態である。ホールドオーバー状態は基準信号CKRFが消失した又は異常となった状態である。ホールドオーバー状態か否かを示す信号は、例えば回路装置100の外部から入力される。

0045

まず時間TLAより前の期間における動作を説明する。ホールドオーバー判定信号SHLがローレベルのとき、図2のセレクター53は位相比較回路60からの位相差データPDを選択するので、位相比較回路60、ループフィルター52及び発振信号生成回路140がPLL回路を形成している。このPLL回路は、クロック信号CKの位相が基準信号CKRFの位相に対してロックした状態となるようにフィードバック制御を行う。以下では、「PLL回路」は、非ホールドオーバー状態における図2の構成を意味する。

0046

図3はエージングによる時間変動を模式的に示すものである。仮に同一の周波数制御データLQを発振信号生成回路140に入力し続けたとすると、発振周波数はエージングによって変化していく。即ち、同一の発振周波数を実現する周波数制御データLQは変化していくことになる。PLL回路は、発振周波数が一定となるようにフィードバック制御するので、エージングによって周波数制御データLQが変化していく。周波数制御データLQは位相差データPDを積分したものなので、位相差データPDの時間平均は周波数制御データLQの時間微分に相当する変化をする。但し、位相差データPDは位相比較タイミング毎に出力されるので、実際には時間平均を中心としてばらついた値となっている。

0047

エージングによる周波数制御データLQの時間変化は、近似的に一次の変化とみなすことができる。周波数制御データLQが時間に対して一次の変化をするとき、位相差データPDの時間平均は、周波数制御データLQの時間変化の傾きに相当する。カルマンフィルター51は位相差データPDの真値を推定するので、その真値は、周波数制御データLQの時間変化の傾きに相当する値となる。

0048

次に、時間TLA以降の期間における動作を説明する。ホールドオーバー状態に遷移してホールドオーバー判定信号SHLがローレベルからハイレベルに変化したとき、カルマンフィルター51は推定値を推定位相差データEPDとして保持する。推定値は、推定した真値のことである。この推定位相差データEPDは、時間TLAにおける周波数制御データLQの傾きに相当している。

0049

ホールドオーバー判定信号SHLがハイレベルのとき、セレクター53は推定位相差データEPDを選択するので、ループフィルター52は推定位相差データEPDを積分処理する。推定位相差データEPDは、エージングによる周波数制御データLQの時間変化の傾きに相当するので、その傾きを積分処理することで周波数制御データLQの推定値が求められる。この推定値は、エージングによる時間変化を補正した周波数制御データLQである。この周波数制御データLQに基づいて発振信号生成回路140が発振することで、発振周波数のエージング補正が実現される。

0050

以上の実施形態によれば、処理回路50は、発振信号に基づく入力信号と基準信号CKRFとの位相比較結果に対するカルマンフィルター処理と、位相比較結果に対するループフィルター処理とを行う。発振信号生成回路140は、ループフィルター処理の出力データである周波数制御データLQと振動子XTALとを用いて、周波数制御データLQにより設定される発振周波数の発振信号を生成する。そして処理回路50は、位相比較結果の観測値に対する真値を、カルマンフィルター処理により推定する。

0051

このように本実施形態ではループフィルター52よりも前段にカルマンフィルター51が設けられており、位相比較結果である位相差データPDを観測値としてカルマンフィルター51が位相差データPDの真値を推定する。上述したように、位相差データPDの真値は、エージングによる周波数制御データLQの時間変化の傾きに相当しており、カルマンフィルター51が推定するのは、この位相差データPDの真値である。図1の比較例では、周波数制御データの真値と、それに対して小さい値である補正値とを推定していたため、推定精度が低下するおそれがあった。この点、本実施形態によれば、カルマンフィルター51が位相差データPDの真値を推定するので、相対的に大きさが異なる2つの値を演算で扱わなくてもよくなり、真値の推定精度を向上できる。

0052

また、図1の比較例では、周波数制御データの真値に対する補正値として時間変化の傾きを求めていたため、その補正値に対してローパスフィルター処理を行っていた。このため、ローパスフィルター処理が推定の収束時間が長くなる一因となっていた。この点、本実施形態によれば、カルマンフィルター51は、周波数制御データLQの時間変化の傾きに相当する位相差データPDの真値を推定している。後述するように収束状態におけるカルマンフィルター51はローパスフィルターとして機能するため、比較例のようなローパスフィルター処理が不要となる。また後述するように、ローパスフィルターとして機能するカルマンフィルター51のカットオフ周波数を適応的に変化させることが可能であり、これによって推定の収束時間を更に短縮することが可能である。

0053

以上のように、本実施形態によればループフィルター52よりも前段にカルマンフィルター51を設けたことで、短時間での収束と高精度な推定とを両立できる。

0054

また本実施形態では、処理回路50は、基準信号CKRFの消失又は異常によるホールドオーバーが検出される前の期間において、位相比較結果の観測値に対する真値を、カルマンフィルター処理により推定する処理を行う。即ち、図3で説明したように、時間TLAより前の期間においてカルマンフィルター51が位相差データPDを観測値とするカルマンフィルター処理を行う。処理回路50は、ホールドオーバーが検出された場合に、ホールドオーバーの検出タイミングに対応するタイミングでの真値を保持し、その真値に基づくループフィルター処理を行うことで、エージング補正された周波数制御データLQを生成する。即ち、図3で説明したように、カルマンフィルター51は、ホールドオーバー判定信号SHLがローレベルからハイレベルに遷移したときの真値を推定位相差データEPDとして保持する。ループフィルター52は、推定位相差データEPDをループフィルター処理することで、エージング補正された周波数制御データLQを出力する。

0055

本実施形態によれば、基準信号CKRFの消失又は異常によるホールドオーバー状態となったときに、位相比較回路60からの位相差データPDではなくカルマンフィルター51からの推定位相差データEPDに基づいて周波数制御データLQが生成される。これにより、ホールドオーバー状態において発振回路150が自走発振することができる。そして、非ホールドオーバー状態においてカルマンフィルター51が推定した位相差データPDの真値、即ち推定位相差データEPDに基づいてループフィルター処理を行うことで、ホールドオーバー状態におけるエージング補正を実現できる。

0056

2.カルマンフィルター
図4は、カルマンフィルター51の詳細な構成例である。カルマンフィルター51は、しきい値判定部121と線形カルマンフィルター122とラッチ部123とノイズ分散値出力部124とを含む。

0057

しきい値判定部121は、位相比較回路60からの位相差データPDに対してしきい値判定を行い、位相差データPDがしきい値以下である場合には位相差データPDを出力データPD’として出力し、位相差データPDがしきい値を超えている場合には位相差データPDをしきい値と同じ値にリミット処理する。ノイズ分散値出力部124は、システムノイズ分散値v2及び観測ノイズ分散値w2を設定する。線形カルマンフィルター122は、設定されたシステムノイズ分散値v2及び観測ノイズ分散値w2に基づいて、しきい値判定部121の出力データPD’を観測値とするカルマンフィルター処理を行う。線形カルマンフィルター122は、推定値を出力データCAFQとして出力する。ラッチ部123は、ホールドオーバー判定信号SHLがローレベルからハイレベルに遷移したときの出力データCAFQを保持し、その保持した出力データCAFQを推定位相差データEPDとして出力する。

0058

本実施形態によれば、カルマンフィルター処理のシステムノイズ分散値v2及び観測ノイズ分散値w2を設定することで、カルマンフィルター処理のカルマンゲインを制御することが可能となる。これにより、カルマンフィルター処理の特性を制御できる。即ち、カルマンゲインが高い場合には観測値が推定値に反映されやすくなるため、カルマンゲインを大きくすることで推定値の収束時間を短縮できる。一方、カルマンゲインが低い場合には推定値が変化しにくくなるが、これはローパスフィルターと同様な特性であるため、カルマンゲインを小さくすることで高精度な推定値が得られる。

0059

以下、線形カルマンフィルター122及びノイズ分散値出力部124の詳細な動作を説明する。

0060

線形カルマンフィルター122は、下式(2)〜(6)によりカルマンフィルター処理を行う。下式(2)、(3)は時間更新の式であり、下式(4)〜(6)は観測更新の式である。

0061

上式(2)〜(6)において、x^(k)はタイムステップkにおける事後推定値であり、x^−(k)はタイムステップkにおける事前推定値である。またP(k)はタイムステップkにおける事後共分散であり、P−(k)は事前共分散である。またg(k)はタイムステップkにおけるカルマンゲインである。またy(k)はタイムステップkにおける観測値である。またv2(k)はタイムステップkにおけるシステムノイズ分散値であり、w2(k)はタイムステップkにおける観測ノイズ分散値である。なお、x^等における「^」は便宜的にxの上付き文字として記載している。図4において、観測値y(k)はしきい値判定部121の出力データPD’である。また事後推定値x^(k)は線形カルマンフィルター122の出力データCAFQである。

0062

上式(2)〜(6)のカルマンフィルター処理の収束状態において、カルマンフィルター処理の周波数特性はローパスフィルター特性を含んでおり、近似的に下式(7)が成り立つ。収束状態とは、観測値に対して推定値が追従したことでカルマンゲインや推定値の変動が小さくなった状態である。

0063

上式(7)において、gは収束状態におけるカルマンゲインであり、vはシステムノイズ分散値の平方根であり、wは観測ノイズ分散値の平方根である。fcは収束状態において線形カルマンフィルター122が有するローパスフィルター特性のカットオフ周波数である。fsは線形カルマンフィルター122の動作周波数、即ちサンプリング周波数である。

0064

上式(7)によれば、システムノイズ分散値v2及び観測ノイズ分散値w2を制御することで、収束状態におけるカルマンゲインgを制御できることが分かる。また、収束状態におけるローパスフィルター特性のカットオフ周波数fcはカルマンゲインgによって決まることから、カルマンゲインgを制御することでカットオフ周波数fcを制御できることが分かる。即ち、カルマンフィルター処理の収束状態において、線形カルマンフィルター122は、システムノイズ分散値v2及び観測ノイズ分散値w2により設定されるカットオフ周波数fcのローパスフィルターとして動作する。

0065

本実施形態によれば、処理回路50は、カルマンフィルター処理の収束状態において、システムノイズ分散値v2及び観測ノイズ分散値w2により設定されるカットオフ周波数fcのローパスフィルター処理を行う。このようにすれば、カルマンフィルター処理のシステムノイズ分散値v2及び観測ノイズ分散値w2を設定することで、カルマンフィルター処理の収束状態におけるローパスフィルター特性のカットオフ周波数fcを制御することが可能となる。

0066

図13に示すように、回路装置100は記憶部30を含む。記憶部30は、システムノイズ分散値v2の初期値である第1初期値を記憶する。記憶部30は、例えばレジスターやRAM、不揮発性メモリー等である。処理回路50は、システムノイズ分散値v2を第1初期値から変化させる第1処理を行う。具体的には、図4のノイズ分散値出力部124が第1処理を行う。

0067

本実施形態によれば、システムノイズ分散値v2を第1初期値から変化させることで、収束状態におけるローパスフィルター特性のカットオフ周波数fcを変化させることができる。これにより、観測値に対する推定値の追従性を制御できるようになる。具体的には、線形カルマンフィルター122の動作開始時にはカルマンゲインgを大きくしてカットオフ周波数fcを高くしておき、その後にカルマンゲインgを小さくしてカットオフ周波数fcを低下させる。これにより、線形カルマンフィルター122の動作開始時に推定値の追従性を向上させると共に、追従後における推定精度を向上できる。

0068

また、記憶部30は、観測ノイズ分散値w2の初期値である第2初期値を記憶する。処理回路50は、観測ノイズ分散値w2を第2初期値から変化させる第2処理を行う。具体的には、図4のノイズ分散値出力部124が第2処理を行う。

0069

本実施形態によれば、観測ノイズ分散値w2を第2初期値から変化させることで、収束状態におけるローパスフィルター特性のカットオフ周波数fcを変化させることができる。これにより、観測値に対する推定値の追従性を制御できるようになる。具体的には、線形カルマンフィルター122の動作開始時にはカルマンゲインgを大きくしてカットオフ周波数fcを高くしておき、その後にカルマンゲインgを小さくしてカットオフ周波数fcを低下させる。これにより、線形カルマンフィルター122の動作開始時に推定値の追従性を向上させると共に、追従後における推定精度を向上できる。

0070

なお、処理回路50は第1処理及び第2処理の少なくとも一方を行う。即ち、処理回路50が第1処理を行って第2処理を行わなくてもよい。この場合、記憶部30は第1初期値を記憶する。又は、処理回路50は第2処理を行って第1処理を行わなくてもよい。この場合、記憶部30は第2初期値を記憶する。又は、処理回路50は第1処理及び第2処理の両方を行ってもよい。この場合、記憶部30は第1初期値及び第2初期値を記憶する。

0071

以下、ノイズ分散値出力部124の構成及び動作を詳細に説明する。なお、以下ではv2及びw2の少なくとも一方を線形に時間変化させる例を説明するが、これに限定されず非線形な時間変化であってもよい。

0072

図4に示すように、ノイズ分散値出力部124は、セレクター131、135と加算器132、136と遅延素子133、137とリミッター134、138とを含む。

0073

ノイズ分散値出力部124にはロック判定信号SLKが入力される。ロック判定信号SLKは、非ホールドオーバー状態における図2のPLL回路がロック状態であるか否かを示す信号であり、例えば図13ロック判定回路70から入力される。以下では、ロック状態においてロック判定信号SLKがハイレベルであり、非ロック状態においてロック判定信号SLKがローレベルであるとする。

0074

セレクター131は、ロック判定信号SLKがローレベルのとき係数0を選択し、ロック判定信号SLKがハイレベルのとき係数CFAを選択する。係数CFAは例えば図13の記憶部30に記憶されている。加算器132及び遅延素子133は第1積分器を構成しており、第1積分器はセレクター131の出力データを積分する。遅延素子133はラッチ回路又はレジスターである。ロック判定信号SLKがローレベルのとき遅延素子133には第1初期値が設定されている。ロック判定信号SLKがハイレベルのとき遅延素子133が保持するデータは、第1積分器の処理によって更新されていく。リミッター134は第1積分器の出力データに対して、第1リミット値を上限とする第1リミット処理を行い、処理後のデータをシステムノイズ分散値v2として出力する。第1リミット値は例えば図13の記憶部30に記憶されている。

0075

セレクター135は、ロック判定信号SLKがローレベルのとき係数0を選択し、ロック判定信号SLKがハイレベルのとき係数CFBを選択する。係数CFBは例えば図13の記憶部30に記憶されている。加算器136及び遅延素子137は第2積分器を構成しており、第2積分器はセレクター135の出力データを積分する。遅延素子137はラッチ回路又はレジスターである。ロック判定信号SLKがローレベルのとき遅延素子137には第2初期値が設定されている。ロック判定信号SLKがハイレベルのとき遅延素子137が保持するデータは、第2積分器の処理によって更新されていく。リミッター138は第2積分器の出力データに対して、第2リミット値を上限値とする第2リミット処理を行い、処理後のデータを観測ノイズ分散値w2として出力する。第2リミット値は例えば図13の記憶部30に記憶されている。

0076

図5は、図4のカルマンフィルター51の動作を説明する図である。図2のPLL回路が基準信号CKRFに対するロック動作を開始すると、発振周波数fが目標周波数fdに収束していく。発振周波数fが目標周波数fdに十分近づいたタイミングTLでロック判定信号SLKがローレベルからハイレベルに遷移する。

0077

ロック判定信号SLKがローレベルの間はセレクター131、135が係数0を選択するので、第1積分器は第1初期値を出力し続け、第2積分器は第2初期値を出力し続ける。即ち、システムノイズ分散値v2及び観測ノイズ分散値w2は変化しない。この場合、線形カルマンフィルター122のカルマンゲインg(k)は一定値に収束していく。カルマンゲインg(k)が一定値に収束すると線形カルマンフィルター122は上式(7)で決まるカットオフ周波数fcのローパスフィルターとして動作する。

0078

ロック判定信号SLKがハイレベルの間はセレクター131が係数CFAを選択するので、第1積分器の出力データは第1初期値から減少していく。ここでCFA<0である。システムノイズ分散値v2は、第1初期値から第1リミット値まで減少し、その後は第1リミット値を維持する。この処理は、上述した第1処理に相当する。また、セレクター135は係数CFBを選択するので、第2積分器の出力データは第2初期値から増加していく。ここでCFB>0である。観測ノイズ分散値w2は、第2初期値から第2リミット値まで増加し、その後は第2リミット値を維持する。この処理は、上述した第2処理に相当する。

0079

本実施形態では、上記の第1処理及び第2処理の少なくとも一方を行う。第1処理のみ行う場合、CFA<0且つCFB=0とする。また第2処理のみ行う場合、CFA=0且つCFB>0とする。第1処理及び第2処理を行う場合、CFA<0且つCFB>0とする。第1処理及び第2処理の少なくとも一方を行うことで、図5に示すように、タイミングTLB以降においてカルマンゲインg(k)が減少し、一定値に漸近していく。カルマンゲインが一定値に収束したときのカットオフ周波数fcは上式(7)によって決まる。上式(7)においてカルマンゲインgが小さい方がカットオフ周波数fcが低くなるので、タイミングTLBより前におけるカットオフ周波数fcよりも、タイミングTLBより後におけるカットオフ周波数fcの方が低くなる。

0080

図6は、第1処理のみを行う場合のシミュレーション結果例である。システムノイズ分散値v2はタイミングTLBまで第1初期値SNiniであり、タイミングTLB後は第1リミット値SNminまで線形に減少する。減少する際の傾きは係数CFAによって決まる。観測ノイズ分散値w2は第2初期値KNiniのまま変化しない。

0081

タイミングTLBより前では、カルマンゲインg(k)が上昇して一定値ga1に漸近する。タイミングTLBより後では、システムノイズ分散値v2の減少に伴ってカルマンゲインg(k)が低下し、一定値ga2に漸近する。カルマンゲインg(k)が収束したときの線形カルマンフィルター122は上式(7)で決まるカットオフ周波数fcのローパスフィルターとして動作する。ga2<ga1なので、g=ga1のときのカットオフ周波数fcよりもg=ga2のときのカットオフ周波数fcの方が低い。

0082

図7は、第2処理のみを行う場合のシミュレーション結果例である。観測ノイズ分散値w2はタイミングTLBまで第2初期値KNiniであり、タイミングTLB後は第2リミット値KNmaxまで線形に増加する。増加する際の傾きは係数CFBによって決まる。システムノイズ分散値v2は第1初期値SNiniのまま変化しない。

0083

タイミングTLBより前では、カルマンゲインg(k)が上昇して一定値gb1に漸近する。タイミングTLBより後では、観測ノイズ分散値w2の増加に伴ってカルマンゲインg(k)が低下し、一定値gb2に漸近する。gb2<gb1なので、上式(7)より、g=gb1のときのカットオフ周波数fcよりもg=gb2のときのカットオフ周波数fcの方が低い。

0084

図8は、第1処理及び第2処理の両方を行う場合のシミュレーション結果例である。この場合も、タイミングTLBより前では、カルマンゲインg(k)が上昇して一定値gc1に漸近し、タイミングTLBより後では、カルマンゲインg(k)が低下して一定値gc2に漸近する。gc2<gc1なので、上式(7)より、g=gc1のときのカットオフ周波数fcよりもg=gc2のときのカットオフ周波数fcの方が低い。

0085

以上のように本実施形態では、第1処理は、システムノイズ分散値v2を第1初期値から単調減少させる処理である。また、第2処理は、観測ノイズ分散値w2を第2初期値から単調増加させる処理である。

0086

これにより、PLL回路が動作を開始した後、即ちカルマンフィルター51が真値の推定を開始した後はカルマンゲインを大きくしておき、推定の追従性を向上できる。また、PLL回路がロック状態となった後はカルマンゲインを小さくし、推定の精度を向上できる。

0087

図9は、システムノイズ分散値v2及び観測ノイズ分散値w2を変化させなかった場合におけるカルマンフィルター処理のシミュレーション結果例である。位相比較回路60が出力する位相差データPDは比較動作毎に変動するが、PLL回路が基準信号CKRFに対してロックしていくと共に、位相差データPDの平均値が収束していく。カルマンフィルター51は、この平均値に相当する真値を推定する。図9に示すように、時間TLCでおおよそカルマンフィルター51が真値に収束している。

0088

図10は、観測ノイズ分散値w2を変化させた場合におけるカルマンフィルター処理のシミュレーション結果例である。システムノイズ分散値v2は一定である。図10に示すように、時間TLDでおおよそカルマンフィルター51が真値に収束している。図9図10を比較すると、TLD<TLCである。即ち、観測ノイズ分散値w2を変化させることでカルマンゲインを制御した方が、システムノイズ分散値v2及び観測ノイズ分散値w2を変化させない場合よりも、短時間でカルマンフィルター処理が収束していることが分かる。

0089

3.ループフィルター
図11は、ループフィルター52の詳細な構成例である。ループフィルター52は乗算器GA1〜GA4と、加算器AD1〜AD4と、遅延素子RG1と、セレクターSL1、SL2とを含む。

0090

乗算器GA1は、セレクター53の出力データSQに対して係数Kpeを乗算する。加算器AD1は乗算器GA1の出力データに対してオフセットOftcを加算する。係数Kpe、オフセットOftcは、入力に対するゲイン及びオフセットである。

0091

乗算器GA2は、加算器AD1の出力データに対して係数αを乗算する。セレクターSL1はロック判定信号SLKがローレベルのときα=AL1を選択し、ロック判定信号SLKがハイレベルのときα=AL2を選択する。AL1>AL2>0である。乗算器GA3は、加算器AD1の出力データに対して係数ρを乗算する。セレクターSL2はロック判定信号SLKがローレベルのときρ=RH1を選択し、ロック判定信号SLKがハイレベルのときρ=RH2を選択する。RH1>RH2>0、RH1<AL1、及びRH2<AL2である。加算器AD3及び遅延素子RG1は積分器を構成しており、その積分器は乗算器GA3の出力データを積分する。加算器AD2は、乗算器GA2の出力データと積分器の出力データとを加算する。

0092

乗算器GA4は、加算器AD2の出力データに対して係数Kdcoを乗算する。加算器AD4は乗算器GA4の出力データに対してオフセットOfdcoを加算する。係数Kdco、オフセットOfdcoは、出力に対するゲイン及びオフセットである。

0093

下式(8)にループフィルター52の伝達関数を示す。下式(8)は、Oftc=Ofdco=0、Kpe=Kdco=1とした場合の伝達関数である。

0094

上式(8)の伝達関数はローパスフィルター特性を有する。上式(8)の伝達関数において、係数αをAL1から、AL1より小さいAL2に切り替えると共に、係数ρをRH1から、RH1より小さいRH2に切り替えることで、ローパスフィルター特性のカットオフ周波数を低下させることができる。

0095

図12は、図11のループフィルター52を適用した図2のPLL回路のシミュレーション結果例である。PLL回路が基準信号CKRFに対するロック動作を行うことで、位相比較回路60が出力する位相差データPDは次第にゼロ付近に収束していく。位相差データPDが収束したと判定された場合、ロック判定信号SLKがローレベルからハイレベルになる。図12では、例えば時間TLEにおいてロック判定信号SLKがローレベルからハイレベルになる。

0096

ループフィルター52のカットオフ周波数は時間TLE後よりも時間TLE前の方が高いので、時間TLE前ではPLL回路の収束性が向上する。これにより、PLL回路がロック状態となるまでの時間を短縮できる。一方、PLL回路がロック状態となった時間TLE後ではループフィルター52のカットオフ周波数が低下するので、発振信号のノイズ特性を向上できる。図12に示すように、時間TLEより後の発振周波数偏差の変動は、時間TLEより前の周波数偏差の変動よりも小さくなっており、発振信号の特性が向上している。例えば発振信号のジッター特性を向上できる。ここで発振周波数偏差は、発振周波数と目標周波数との間の偏差である。

0097

以上の実施形態では、処理回路50は、発振信号が基準信号CKRFにロックした状態であると判断されたときに、ループフィルター処理のカットオフ周波数を第1の周波数から、第1の周波数より低い第2の周波数に変化させる。図11において、第1の周波数は、α=AL1、ρ=RH1のときのカットオフ周波数であり、第2の周波数は、α=AL2、ρ=RH2のときのカットオフ周波数である。

0098

本実施形態によれば、非ロック状態においてループフィルター52のカットオフ周波数が、第2の周波数より高い第1の周波数に設定されるので、PLL回路の収束性を向上できる。またロック状態においてループフィルター52のカットオフ周波数が、第1の周波数より低い第2の周波数に設定されるので、PLL回路のノイズ特性を向上できる。

0099

また本実施形態では、処理回路50は、発振信号が基準信号CKRFにロックした状態であると判断されたときに、ループフィルター52のカットオフ周波数を第1の周波数から第2の周波数に変化させると共に、カルマンフィルター処理のシステムノイズ分散値v2を第1初期値から変化させる第1処理、及び観測ノイズ分散値w2を第2初期値から変化させる第2処理の少なくとも一方を行う。第1処理及び第2処理については図4等で説明した通りである。

0100

本実施形態によれば、第1処理及び第2処理の少なくとも一方を行うことでカルマンフィルター処理の収束時間を短縮できる。このとき、ループフィルター52のカットオフ周波数を変化させることで、カルマンフィルター処理の観測値である位相差データPDの収束性が向上する。これにより、カルマンフィルター処理の収束時間を更に短縮することが可能となる。

0101

4.発振器、電子機器、移動体
図13は、発振器400の構成例、及び回路装置100の第2の構成例である。発振器400は振動子XTALと回路装置100とを含む。回路装置100は、TCXO(Temperature Compensated crys(X)tal Oscillator)やOCXO(Oven Controlled crys(X)tal Oscillator)等のデジタル方式の発振器を実現する回路装置である。回路装置100は、例えば集積回路装置である。例えば、回路装置100と振動子XTALをパッケージ収納することで、デジタル方式の発振器が実現される。

0102

回路装置100は、温度センサー10と、A/D変換回路20と、処理回路50と、発振信号生成回路140と、位相比較回路60と、ロック判定回路70とを含む。なお、位相比較回路60が処理回路50に含まれてもよいし、ロック判定回路70が処理回路50に含まれてもよい。また、温度センサーは回路装置100の外部に設けられてもよい。この場合、外部に設けられた温度センサーから温度検出電圧が回路装置100に入力される。

0103

温度センサー10は、環境(例えば回路装置や振動子)の温度に応じて変化する温度依存電圧を、温度検出電圧VTDとして出力する。環境の温度とは、回路装置100の基板の温度、或いは振動子XTALの温度である。温度センサー10は、温度依存性を有する回路素子を利用して温度依存電圧を生成し、温度に非依存電圧を基準として温度依存電圧を出力する。例えば、PN接合順方向電圧に基づいて温度依存電圧を出力する。温度に非依存の電圧は例えばバンドギャップリファレンス電圧である。

0104

A/D変換回路20は、温度センサー10からの温度検出電圧VTDのA/D変換を行い、その結果を温度検出データDTDとして出力する。A/D変換方式としては、例えば逐次比較型、フラッシュ型パイプライン型又は二重積分型等を採用できる。

0105

処理回路50は種々のデジタル信号処理を行う。処理回路50はカルマンフィルター51とループフィルター52と温度補償部54とを含む。カルマンフィルター51は、位相比較回路60からの位相差データPDを観測値としてカルマンフィルター処理を行う。ループフィルター52は、ロック判定信号SLKが非ロック状態を示す場合には位相比較回路60からの位相差データPDに対するループフィルター処理を行い、ロック判定信号SLKがロック状態を示す場合にはカルマンフィルター51が保持した推定位相差データに対するループフィルター処理を行う。温度補償部54は、温度検出データDTDに基づいて、振動子XTALの発振周波数の温度特性補償する温度補償処理を行う。具体的には温度補償部54は、温度変化による発振周波数の変動を低減する近似関数に温度検出データDTDを代入することにより、温度補償データを求める。温度補償部54は、ループフィルター52の出力データを温度補償データに基づいて補正し、その補正後のデータを周波数制御データLQとして出力する。処理回路50はロジック回路である。例えば処理回路50は、DSP(Digital Signal Processor)、又はASICである。或いは処理回路50は、プロセッサーとプロセッサー上で動作するプログラムにより実現してもよい。プロセッサーはCPU、MPU等である。

0106

発振信号生成回路140は、D/A変換回路80と発振回路150とを含む。なお、図2で説明したように発振信号生成回路140の構成はこれに限定されない。D/A変換回路80は、周波数制御データLQをD/A変換し、周波数制御データLQに対応する制御電圧VQを出力する。発振回路150は、制御電圧VQに対応する発振周波数で振動子XTALを発振させ、その発振信号に基づいてクロック信号CKを出力する。

0107

記憶部30は、回路装置100の動作設定情報、或いは処理回路50が用いる種々のパラメーター等を記憶する。例えば記憶部30は、図4の係数CFA、CFB、第1初期値、第2初期値、第1リミット値、第2リミット値を記憶する。また記憶部30は、図11の係数AL1、AL2、RH1、RH2を記憶する。また記憶部30は、温度補償処理に用いる近似関数の係数を記憶する。記憶部30は、例えば不揮発性メモリーである。或いは記憶部30はレジスター又はRAM等であってもよい。また回路装置100が不図示のインターフェース回路を含み、インターフェース回路を介して外部の処理装置が記憶部30に係数CFA等のパラメーターを設定できるように構成してもよい。

0108

位相比較回路60は、基準信号CKRFとクロック信号CKの位相を比較し、その比較結果を位相差データPDとして処理回路50に出力する。位相比較回路60は例えばカウンター或いは時間デジタル変換回路である。

0109

ロック判定回路70は、位相差データPDに基づいてPLL回路がロック状態であるか否かを判定し、その判定結果をロック判定信号SLKとして処理回路50に出力する。PLL回路は、位相比較回路60、ループフィルター52、及び発振信号生成回路140により構成される。ロック判定回路70は、例えば所定時間前から現在までの位相差データPDを積算し、その積算値所定値以下である場合にロック状態であると判定する。

0110

図14は、回路装置100を含む電子機器300の構成例である。この電子機器300は、回路装置100と振動子XTALを有する発振器400と、処理部520を含む。また通信部510、操作部530、表示部540、記憶部550、アンテナNTを含むことができる。

0111

電子機器300としては種々の機器を想定できる。例えば、GPS内蔵時計生体情報測定機器又は頭部装着型表示装置等のウェアラブル機器を想定できる。生体情報測定機器は脈波計歩数計等である。或いは、スマートフォン携帯電話機携帯型ゲーム装置ノートPC又はタブレットPC等の携帯情報端末を想定できる。或いは、コンテンツを配信するコンテンツ提供端末や、デジタルカメラ又はビデオカメラ等の映像機器や、或いは基地局又はルーター等のネットワーク関連機器などを想定できる。或いは、距離、時間、流速又は流量等の物理量を計測する計測機器や、車載機器や、ロボットなどを想定できる。車載機器は自動運転用の機器等である。

0112

通信部510は、アンテナANTを介して外部からデータを受信したり、外部にデータを送信する処理を行う。通信部510は例えば通信回路である。処理部520は、電子機器の制御処理や、通信部510を介して送受信されるデータの種々のデジタル処理などを行う。この処理部520の機能は、例えばマイクロコンピューターなどのプロセッサーにより実現できる。操作部530は、ユーザー入力操作を行うためのものであり、操作ボタンタッチパネルディスプレイなどにより実現できる。操作部530は例えば操作装置である。表示部540は、各種の情報を表示するものであり、液晶有機ELなどのディスプレイにより実現できる。記憶部550は、データを記憶するものであり、その機能はRAMやROMなどの半導体メモリーハードディスクドライブなどにより実現できる。

0113

図15は、回路装置100を含む移動体の例である。回路装置100は、例えば、車、飛行機バイク自転車、ロボット、或いは船舶等の種々の移動体に組み込むことができる。移動体は、例えばエンジンモーター等の駆動機構ハンドル等の操舵機構、各種の電子機器を備えて、地上や空や海上を移動する機器・装置である。図15は移動体の具体例としての自動車206を概略的に示している。自動車206には、回路装置100を含む不図示の発振器が組み込まれる。制御装置208は、この発振器により生成されたクロック信号に基づいて種々の制御処理を行う。制御装置208は、例えば車体207の姿勢に応じてサスペンション硬軟を制御したり、個々の車輪209のブレーキを制御する。なお回路装置100又は発振器が組み込まれる機器は、このような制御装置208には限定されず、自動車206やロボット等の移動体に設けられる種々の機器に組み込むことができる。

0114

なお、上記のように本実施形態について詳細に説明したが、本発明の新規事項および効果から実体的に逸脱しない多くの変形が可能であることは当業者には容易に理解できるであろう。従って、このような変形例はすべて本発明の範囲に含まれるものとする。例えば、明細書又は図面において、少なくとも一度、より広義または同義な異なる用語と共に記載された用語は、明細書又は図面のいかなる箇所においても、その異なる用語に置き換えることができる。また本実施形態及び変形例の全ての組み合わせも、本発明の範囲に含まれる。また回路装置、発振器、電子機器、移動体の構成及び動作等も、本実施形態で説明したものに限定されず、種々の変形実施が可能である。

0115

10…温度センサー、20…A/D変換回路、30…記憶部、50…処理回路、51…カルマンフィルター、52…ループフィルター、53…セレクター、54…温度補償部、55…カルマンフィルター、56…ループフィルター、57…セレクター、58…エージング補正部、59…ローパスフィルター、60…位相比較回路、65…位相比較回路、70…ロック判定回路、80…D/A変換回路、85…D/A変換回路、100…回路装置、105…回路装置、121…しきい値判定部、122…線形カルマンフィルター、123…ラッチ部、124…ノイズ分散値出力部、131…セレクター、132…加算器、133…遅延素子、134…リミッター、135…セレクター、136…加算器、137…遅延素子、138…リミッター、140…発振信号生成回路、150…発振回路、155…発振回路、206…自動車、207…車体、208…制御装置、209…車輪、300…電子機器、400…発振器、510…通信部、520…処理部、530…操作部、540…表示部、550…記憶部、CK…クロック信号、CKRF…基準信号、KNini…第2初期値、LQ…周波数制御データ、PD…位相差データ、SHL…ホールドオーバー判定信号、SLK…ロック判定信号、SNini…第1初期値、VQ…制御電圧、XTAL…振動子、v2…システムノイズ分散値、w2…観測ノイズ分散値

ページトップへ

この技術を出願した法人

この技術を発明した人物

ページトップへ

関連する挑戦したい社会課題

関連する公募課題

ページトップへ

技術視点だけで見ていませんか?

この技術の活用可能性がある分野

分野別動向を把握したい方- 事業化視点で見る -

(分野番号表示ON)※整理標準化データをもとに当社作成

ページトップへ

おススメ サービス

おススメ astavisionコンテンツ

新着 最近 公開された関連が強い技術

この 技術と関連性が強い技術

関連性が強い 技術一覧

この 技術と関連性が強い人物

関連性が強い人物一覧

この 技術と関連する社会課題

関連する挑戦したい社会課題一覧

この 技術と関連する公募課題

関連する公募課題一覧

astavision 新着記事

サイト情報について

本サービスは、国が公開している情報(公開特許公報、特許整理標準化データ等)を元に構成されています。出典元のデータには一部間違いやノイズがあり、情報の正確さについては保証致しかねます。また一時的に、各データの収録範囲や更新周期によって、一部の情報が正しく表示されないことがございます。当サイトの情報を元にした諸問題、不利益等について当方は何ら責任を負いかねることを予めご承知おきのほど宜しくお願い申し上げます。

主たる情報の出典

特許情報…特許整理標準化データ(XML編)、公開特許公報、特許公報、審決公報、Patent Map Guidance System データ