図面 (/)

技術 光の取り出しが高められた発光ダイオードを備えている光電子デバイス

出願人 アルディアコミサリアアエナジーアトミックエオックスエナジーズオルタネティヴ
発明者 デュポン,ティフェインデジール,ヨハン
出願日 2019年6月18日 (2年1ヶ月経過) 出願番号 2019-113055
公開日 2019年10月3日 (1年9ヶ月経過) 公開番号 2019-169735
状態 未査定
技術分野
  • -
主要キーワード 誘電性領域 マイクロワイヤ 密閉層 三次元要素 光学指数 折衷案 フォトリソグラフィ工程後 半導体要素
関連する未来課題
重要な関連分野

この項目の情報は公開日時点(2019年10月3日)のものです。
また、この項目は機械的に抽出しているため、正しく解析できていない場合があります

図面 (20)

課題

発光ダイオード、特にマイクロワイヤ又はナノワイヤを備えた上記の光電子デバイス、及びこのような光電子デバイスの製造方法の不利点の少なくとも一部を克服することである。

解決手段

表面12を有する半導体基板10と、表面に配置され、ワイヤ状円錐状又は円錐台形状の半導体要素20を有する発光ダイオード(DEL)と、発光ダイオードを覆って、1.6〜1.8の範囲内の屈折率を有する少なくとも部分的に透明な誘電体層34とを備えている光電子デバイス5に関する。

概要

背景

発光ダイオードを備えた光電子デバイス」という用語は、電気信号電磁放射線に変換することができるデバイス、特に電磁放射線、特に光の放射のためのデバイスを表す。発光ダイオードを形成することができる三次元要素の例として、以降III-V族化合物と称される少なくとも1つのIII族元素及び1つのV 族元素を主として含む化合物(例えば窒化ガリウムGaN )に基づく半導体材料を有するマイクロワイヤ又はナノワイヤがある。

概要

発光ダイオード、特にマイクロワイヤ又はナノワイヤを備えた上記の光電子デバイス、及びこのような光電子デバイスの製造方法の不利点の少なくとも一部を克服することである。表面12を有する半導体基板10と、表面に配置され、ワイヤ状円錐状又は円錐台形状の半導体要素20を有する発光ダイオード(DEL)と、発光ダイオードを覆って、1.6〜1.8の範囲内の屈折率を有する少なくとも部分的に透明な誘電体層34とを備えている光電子デバイス5に関する。

目的

従って、実施形態の目的は、発光ダイオード、特にマイクロワイヤ又はナノワイヤを備えた上記の光電子デバイス、及びこのような光電子デバイスの製造方法の不利点の少なくとも一部を克服することである

効果

実績

技術文献被引用数
0件
牽制数
0件

この技術が所属する分野

(分野番号表示ON)※整理標準化データをもとに当社作成

該当するデータがありません

ライセンス契約や譲渡などの可能性がある特許掲載中! 開放特許随時追加・更新中 詳しくはこちら

請求項1

表面を有する半導体基板と、前記表面に支持され、ワイヤ状円錐状又は円錐台形状の半導体要素を有する発光ダイオードとを備えており、前記発光ダイオードは、前記表面の一部に亘って分散しており、前記一部の周囲の長さの、前記一部の表面積に対する割合が単位表面積当たり4以上であることを特徴とする光電子デバイス

請求項2

前記一部は、開口した表面に相当することを特徴とする請求項1に記載の光電子デバイス。

請求項3

前記発光ダイオードは、前記表面の一部に亘って分散しており、前記一部における前記発光ダイオードの面密度が、前記一部の縁部から離れるにつれて減少することを特徴とする請求項1に記載の光電子デバイス。

請求項4

前記発光ダイオードを覆って、1.6 〜1.8 の範囲内の屈折率及び250 nm〜50μmの範囲内の最大の厚さを有する少なくとも部分的に透明な誘電体層を更に備えていることを特徴とする請求項1に記載の光電子デバイス。

請求項5

前記誘電体層の屈折率は、1.7 〜1.75の範囲内であることを特徴とする請求項4に記載の光電子デバイス。

請求項6

前記誘電体層は、第2の材料の粒子が分散している少なくとも部分的に透明な第1の材料から形成されたマトリクスを有しており、前記第2の材料の屈折率が前記第1の材料の屈折率より大きいことを特徴とする請求項4に記載の光電子デバイス。

請求項7

前記第1の材料はポリシロキサンであることを特徴とする請求項6に記載の光電子デバイス。

請求項8

前記第2の材料は、酸化チタン(TiO2)、酸化ジルコニウム(ZrO2)及び硫化亜鉛(ZnS) から選択された誘電体材料であることを特徴とする請求項6に記載の光電子デバイス。

請求項9

前記誘電体層は、エポキシドポリマー、SiOxタイプの酸化シリコン(ここでxは0より大きく2以下の実数である)、SiOyNzタイプの酸化シリコン(ここでyは0より大きく2以下の実数であり、zは0より大きく0.57以下である)、及び酸化アルミニウム(Al2O3)を含む群から選択された材料から形成されていることを特徴とする請求項4に記載の光電子デバイス。

請求項10

前記半導体要素はIII-V族化合物から主として形成されていることを特徴とする請求項1に記載の光電子デバイス。

請求項11

前記半導体要素は窒化ガリウムを主として含んでいることを特徴とする請求項10に記載の光電子デバイス。

請求項12

前記半導体要素の平均直径は、200 nm〜1μmの範囲内であることを特徴とする請求項1に記載の光電子デバイス。

技術分野

0001

本発明は一般に、半導体材料に基づく光電子デバイス、及び該光電子デバイスを製造する方法に関する。本発明はより具体的には、三次元要素、特に半導体マイクロワイヤ又はナノワイヤによって形成された発光ダイオードを備えた光電子デバイスに関する。

背景技術

0002

「発光ダイオードを備えた光電子デバイス」という用語は、電気信号電磁放射線に変換することができるデバイス、特に電磁放射線、特に光の放射のためのデバイスを表す。発光ダイオードを形成することができる三次元要素の例として、以降III-V族化合物と称される少なくとも1つのIII族元素及び1つのV 族元素を主として含む化合物(例えば窒化ガリウムGaN )に基づく半導体材料を有するマイクロワイヤ又はナノワイヤがある。

先行技術

0003

米国特許出願公開第2013/313583号明細書

発明が解決しようとする課題

0004

光電子デバイスの取り出し効率は、光電子デバイスから出る光子の数の、発光ダイオードによって放射される光子の数に対する割合によって一般に定められる。光電子デバイスの取り出し効率は、可能な限り高いことが望ましい。

0005

既存の光電子デバイスの不利点は、各発光ダイオード内で放射される光子の一部が発光ダイオードから出ないということである。

0006

既存の光電子デバイスの別の不利点は、各発光ダイオードによって放射される光子の一部が隣り合う発光ダイオードによって捕捉又は吸収されるということである。

0007

従って、実施形態の目的は、発光ダイオード、特にマイクロワイヤ又はナノワイヤを備えた上記の光電子デバイス、及びこのような光電子デバイスの製造方法の不利点の少なくとも一部を克服することである。

0008

実施形態の別の目的は、光電子デバイスの取り出し効率を高めることである。

0009

実施形態の別の目的は、各発光ダイオードから出ない光の割合を減少させることである。

0010

実施形態の別の目的は、発光ダイオードによって放射される光が隣り合う発光ダイオードに吸収/捕捉される割合を減少させることである。

0011

実施形態の別の目的は、発光ダイオードを備えた光電子デバイスが工業規模且つ低コストで製造され得ることである。

課題を解決するための手段

0012

従って、実施形態は、
表面を有する半導体基板と、
前記表面に支持され、ワイヤ状円錐状又は円錐台形状の半導体要素を有する発光ダイオードと、
該発光ダイオードを覆って、1.6 〜1.8 の範囲内の屈折率を有する少なくとも部分的に透明な誘電体層
を備えていることを特徴とする光電子デバイス
を提供する。

0013

実施形態によれば、前記誘電体層の屈折率は、1.7 〜1.75の範囲内である。

0014

実施形態によれば、前記半導体要素はIII-V族化合物から主として形成されている。

0015

実施形態によれば、前記半導体要素は窒化ガリウムを主として含んでいる。

0016

実施形態によれば、前記半導体要素の平均直径は、200 nm〜1μmの範囲内である。

0017

実施形態によれば、前記密閉層は、第2の材料の粒子が分散している少なくとも部分的に透明な第1の材料から形成されたマトリクスを有しており、前記第2の材料の屈折率が前記第1の材料の屈折率より大きい。

0018

実施形態によれば、前記第1の材料はポリシロキサンである。

0019

実施形態によれば、前記第2の材料は、酸化チタン(TiO2)、酸化ジルコニウム(ZrO2)及び硫化亜鉛(ZnS) から選択された誘電体材料である。

0020

実施形態によれば、前記密閉層は、エポキシドポリマー、SiOxタイプの酸化シリコン(ここでxは0より大きく2以下の実数である)、SiOyNzタイプの酸化シリコン(ここでyは0より大きく2以下の実数であり、zは0より大きく0.57以下である)、及び酸化アルミニウム(Al2O3)を含む群から選択された材料から形成されている。

0021

実施形態によれば、前記発光ダイオードは、前記表面の一部に分散しており、前記一部における前記発光ダイオードの面密度が、前記一部の縁部から離れるにつれて減少する。

0022

実施形態によれば、前記発光ダイオードは、前記表面の一部に分散しており、前記一部の周囲の長さの、前記一部の表面積に対する割合が単位表面積当たり4以上である。

0023

実施形態によれば、前記一部は、開口した表面に相当する。

0024

前述及び他の特徴及び利点を、添付図面を参照して本発明を限定するものではない具体的な実施形態について以下に詳細に説明する。

図面の簡単な説明

0025

マイクロワイヤ又はナノワイヤを備えた光電子デバイスの実施形態を示す部分的な断面略図である。
光線がたどるマイクロワイヤ又はナノワイヤ内の経路の形状を示す図である。
光線がたどるマイクロワイヤ又はナノワイヤ内の経路の形状を示す図である。
光線がたどるマイクロワイヤ又はナノワイヤ内の経路の形状を示す図である。
光線がたどるマイクロワイヤ又はナノワイヤ内の経路の形状を示す図である。
光線がたどるマイクロワイヤ又はナノワイヤ内の経路の形状を示す図である。
発光ダイオードを囲む材料の屈折率に応じた、マイクロワイヤ又はナノワイヤを有する発光ダイオードによる光の伝播モードの分散の変化を示す図である。
発光ダイオードを囲む材料の屈折率に応じた、発光ダイオードのマイクロワイヤ又はナノワイヤにおける捕捉案内モードの割合の変化曲線を示す図である。
マイクロワイヤ又はナノワイヤを有する発光ダイオードを備えた光電子デバイスを示す部分的な平面略図である。
図9の光電子デバイスの前面における対象の位置に応じた取り出し効率の変化を示す図である。
マイクロワイヤ又はナノワイヤを有する発光ダイオードを備えた光電子デバイスの実施形態を示す部分的な平面略図である。
マイクロワイヤ又はナノワイヤを有する発光ダイオードを備えた光電子デバイスの実施形態を示す部分的な平面略図である。
マイクロワイヤ又はナノワイヤを有する発光ダイオードを備えた光電子デバイスの実施形態を示す部分的な平面略図である。
マイクロワイヤ又はナノワイヤを有する発光ダイオードを備えた光電子デバイスの実施形態を示す部分的な平面略図である。
マイクロワイヤ又はナノワイヤを有する発光ダイオードを備えた光電子デバイスの実施形態を示す部分的な平面略図である。
マイクロワイヤ又はナノワイヤを有する発光ダイオードを備えた光電子デバイスの実施形態を示す部分的な平面略図である。
マイクロワイヤ又はナノワイヤを有する発光ダイオードを備えた光電子デバイスの実施形態を示す部分的な平面略図である。
マイクロワイヤ又はナノワイヤを有する発光ダイオードを備えた光電子デバイスの実施形態を示す部分的な平面略図である。
マイクロワイヤ又はナノワイヤを有する発光ダイオードを備えた光電子デバイスの実施形態を示す部分的な平面略図である。
マイクロワイヤ又はナノワイヤを有する発光ダイオードを備えた光電子デバイスの実施形態を示す部分的な平面略図である。

実施例

0026

明瞭化のために、同一の要素は様々な図面において同一の参照番号で示されており、更に電子回路の表示ではよくあるように、様々な図面は正しい縮尺で示されていない。更に、本開示の理解に有用な要素のみが示され記載されている。特に、光電子デバイスの発光ダイオードにバイアスをかけるための手段は公知であり、記載されていない。

0027

以下の記載では、「実質的に」、「およそ」及び「程度」という用語は、特に示されていない場合、「10%の範囲内」を意味する。更に、「材料から主として形成された化合物」又は「材料に基づく化合物」という用語は、化合物の割合が前記材料の95%以上であり、優先的には99%より大きいことを意味する。

0028

本記載は、三次元要素、例えばワイヤ状、円錐状又は円錐台形状の要素、特にはマイクロワイヤ又はナノワイヤを備えた光電子デバイスに関する。

0029

「マイクロワイヤ」又は「ナノワイヤ」という用語は、優先的な方向に沿って細長い形状の三次元構造を表し、このような三次元構造は、5nm〜2.5 μm、好ましくは50nm〜2.5 μmの範囲内の小寸法と称される少なくとも2つの寸法と、小寸法の最大の少なくとも1倍、好ましくは少なくとも5倍、更に好ましくは少なくとも10倍の大寸法と称される第3の寸法とを有する。ある実施形態では、小寸法は、およそ1μm以下であってもよく、好ましくは100 nm〜1μmの範囲内であってもよく、更に好ましくは100 nm〜800 nmの範囲内であってもよい。ある実施形態では、各マイクロワイヤ又はナノワイヤの高さは、500 nm以上であってもよく、好ましくは1μm〜50μmの範囲内であってもよい。

0030

以下の記載では、「ワイヤ」という用語は「マイクロワイヤ又はナノワイヤ」を意味すべく使用されている。好ましくは、ワイヤの優先的な方向に垂直な面における断面の重心を通るワイヤの平均線が実質的に直線的であり、以降ワイヤの「軸芯」と称される。

0031

図1は、発光ダイオードを備えた光電子デバイス5 の実施形態を示す部分的な断面略図である。

0032

図1は、下から上に、
第1の電極8 と、
下面11及び上面12を有する半導体基板10であって、下面11が第1の電極8 で覆われており、上面12が少なくとも発光ダイオードのレベルで好ましくは平面である基板10と、
ワイヤの成長を促す導電性材料から形成され、上面12に配置された複数の成長パッド16と、
成長パッド16の内の1つと夫々接する高さH1のワイヤ20であって、成長パッド16に接する高さH2の下方部分22と、下方部分22に連なる高さH3の上方部分24とを夫々有する複数のワイヤ20(6本のワイヤが示されている)と、
基板10の上面12と、各ワイヤ20の下方部分22の側面とに延びる絶縁層26と、
各上方部分24を覆う半導体層積層体を有するシェル28と、
各シェル28を覆って絶縁層26上を更に延びる、第2の電極を形成する電極層30と、
ワイヤ20上を延びることなくワイヤ20間の電極層30を覆う導電性ミラー層32と、
構造全体、特に電極層30を覆って、前面36を有する密閉層34と
を備えた構造を示す。

0033

光電子デバイス5 は、密閉層34上に設けられているか、又は密閉層34と同一化されている蛍光体蛍光体層(不図示)を更に備えてもよい。

0034

各ワイヤ20、関連する成長パッド16及びシェル28によって形成された組立体が発光ダイオードDEL を形成する。発光ダイオードDEL の基部が成長パッド16に相当する。シェル28は特に活性層を有し、活性層は、発光ダイオードDEL による電磁放射線の大部分が放射される層である。発光ダイオードDEL は平行に連結され、発光ダイオードの組立体を形成してもよい。組立体は、2, 3から1000の発光ダイオードDEL を備えてもよい。

0035

発光ダイオードDEL は上面12全体に亘って形成されないことが可能である。発光ダイオードが形成されている上面12の部分が活性領域と称される。

0036

基板10は固体構造に相当してもよく、又は別の材料から形成された支持体を覆う層に相当してもよい。基板10は、半導体基板、例えば、シリコンゲルマニウム炭化シリコン、GaN 若しくはGaAsのようなIII-V族化合物から形成された基板、又はZnO 基板であることが好ましい。基板10は単結晶シリコン基板であることが好ましい。基板は、マイクロエレクトロニクスで実施される製造方法と適合する半導体基板であることが好ましい。基板10は、シリコン・オンインシュレータSOI)タイプの多層構造に相当してもよい。

0037

基板は高濃度にドープされてもよく、低濃度にドープされてもよく、又はドープされなくてもよい。基板が高濃度にドープされる場合、半導体基板10をドープして、電気抵抗率を金属の抵抗率に近い抵抗率まで、好ましくは数メガオームセンチメートルより低く下げてもよい。基板10は、例えば5×1016atoms/cm3〜2×1020atoms/cm3の範囲内のドーパント濃度を有する高濃度にドープされた基板である。基板が、例えば5×1016atoms/cm3 以下、好ましくは実質的に1015atoms/cm3 のドーパント濃度で低濃度にドープされる場合、基板より更に高濃度にドープされる第1の導電型又は第1の導電型の反対の第2の導電型のドープ領域が、成長パッド16の下で上面12から基板10に延びてもよい。シリコン基板10の場合、P型ドーパントの例としてホウ素(B) 又はインジウム(In)があり、N型のドーパントの例としてリン(P) 、ヒ素(As)又はアンチモン(Sb)がある。

0038

シリコン基板10の上面12は(100) 表面であってもよい。

0039

成長アイランドとも称される成長パッド16は、ワイヤ20の成長を促す材料から形成されている。成長パッドの側面及び成長パッドで覆われていない基板の部分の表面でワイヤが成長することを防ぐために、成長パッドの側面及び成長パッドで覆われていない基板の部分の表面を保護する処理を施してもよい。この処理は、成長パッドの側面に誘電性領域を形成して基板の最上部及び/又は内部に延ばし、誘電性領域上にワイヤを成長させない工程を有してもよい。変形例として、成長パッド16は基板10の上面12を覆う成長層と置き換えられてもよい。そのため、望まないエリアにおけるワイヤの成長を防ぐべく、誘電性領域が成長層の上に形成されてもよい。

0040

例として、成長パッド16を形成する材料は、元素周期表のIV列、V 列又はVI列の遷移金属の窒化物炭化物又はホウ化物、或いはこれらの化合物の組合せであってもよい。例として、成長パッド16は、窒化アルミニウム(AlN) 、ホウ素(B) 、窒化ホウ素(BN)、チタン(Ti)、窒化チタン(TiN) 、タンタル(Ta)、窒化タンタル(TaN) 、ハフニウム(Hf)、窒化ハフニウム(HfN) 、ニオブ(Nb)、窒化ニオブ(NbN) 、ジルコニウム(Zr)、ホウ化ジルコニウム(ZrB2)、窒化ジルコニウム(ZrN) 、炭化シリコン(SiC) 、炭窒化タンタル(TaCN)、MgxNyの形態の窒化マグネシウム(ここでxはおよそ3に等しく、yはおよそ2に等しく、例えばMg3N2 の形態の窒化マグネシウム)、窒化マグネシウムガリウム(MgGaN) 、タングステン(W) 、窒化タングステン(WN)、又はこれらの組合せから形成されてもよい。

0041

成長パッド16は、基板10と同一の導電型でドープされてもよい。

0042

絶縁層26は、誘電体材料、例えば酸化シリコン(SiO2)、窒化シリコン(SixNy 、ここでxはおよそ3に等しく、yはおよそ4に等しく、例えばSi3N4 )、(特に一般的な式SiOxNyの)酸窒化シリコン(例えばSi2ON2)、酸化アルミニウム(Al2O3) 、酸化ハフニウム(HfO2)又はダイヤモンドから形成されてもよい。例として、絶縁層26の厚さは、5nm〜500 nmの範囲内であり、例えばおよそ30nmである。

0043

ワイヤ20は、少なくとも1つの半導体材料から少なくとも部分的に形成されている。ワイヤ20は、III-V族化合物、例えばIII-N化合物を主として含む半導体材料から少なくとも部分的に形成されてもよい。III族元素の例として、ガリウム(Ga)、インジウム(In)又はアルミニウム(Al)がある。III-N 化合物の例として、GaN ,AlN ,InN ,InGaN ,AlGaN 又はAlInGaN がある。他のV族元素、例えばリン又はヒ素が使用されてもよい。一般に、III-V 族化合物の元素は異なるモル分率化合されてもよい。

0044

ワイヤ20はドーパントを含んでもよい。例として、III-V族化合物に関して、ドーパントは、II族P型ドーパント、例えばマグネシウム(Mg)、亜鉛(Zn)、カドミウム(Cd)若しくは水銀(Hg)、IV族のP型ドーパント、例えば炭素(C) 、又はIV族のN型ドーパント、例えばシリコン(Si)、ゲルマニウム(Ge)、セレン(Se)、硫黄(S) 、テルビウム(Tb)若しくはスズ(Sn)を含む群から選択されてもよい。

0045

ワイヤ20の断面形状は異なってもよく、例えば楕円形円形又は多角形、特に三角形矩形正方形若しくは六角形であってもよい。従って、ワイヤ又はこのワイヤに成膜された層の断面に関連して述べられる「直径」という用語は、この断面における対象の構造の表面積に関連した量を表し、例えばワイヤの断面と同一の表面積を有するディスクの直径に相当すると理解すべきである。各ワイヤ20の高さH1は250 nm〜50μmの範囲内であってもよい。各ワイヤ20は、上面12に実質的に垂直な軸芯に沿って細長い半導体構造を有してもよい。各ワイヤ20は一般的な円筒状であってもよい。2つのワイヤ20の軸芯は、0.5 μm〜10μm、好ましくは1.5 μm〜6μm離れてもよい。例として、ワイヤ20は特に六角形の網目状に規則的に分散してもよい。

0046

例として、各ワイヤ20の下方部分22は、上方部分24と同一の導電型、例えばN型でドープされた、例えばシリコンでドープされたIII-N化合物、例えば窒化ガリウムから主として形成されている。下方部分22は、100 nm〜25μmの範囲内であってもよい高さH2に沿って延びている。

0047

例として、各ワイヤ20の上方部分24は、III-N化合物、例えばGaN から少なくとも部分的に形成されている。上方部分24は、場合によっては下方部分22ほど高濃度にドープされずに、N型でドープされてもよく、又は意図的にドープされなくてもよい。上方部分24は、100 nm〜25μmの範囲内であってもよい高さH3に沿って延びている。

0048

シェル28は、
−関連するワイヤ20の上方部分24を覆う活性層、
−活性層を覆う下方部分22の導電型の反対の導電型を有する中間層、及び
−中間層を覆って、電極層30で覆われている接合層
を特に含む複数の層の積層体を有してもよい。

0049

活性層は、発光ダイオードDEL による放射線の大部分が放射される層である。実施例によれば、活性層は、多重量子井戸のような閉込め手段を有してもよい。活性層は、例えば、厚さが5〜20nm(例えば8nm)のGaN 層及び厚さが1〜10nm(例えば2.5 nm)のInGaN 層を交互に形成することにより得られる。GaN 層は、例えばN型又はP型でドープされてもよい。別の例によれば、活性層は、例えば厚さが10nmより大きい1つのInGaN 層を有してもよい。

0050

例えばP型でドープされた中間層は、半導体層又は半導体層の積層体に相当してもよく、P-N接合又はP-I-N 接合を可能にし、活性層は、P-N 接合又はP-I-N 接合のP型の中間層及びN型の上方部分24間に設けられている。

0051

接合層は、半導体層又は半導体層の積層体に相当してもよく、中間層及び電極層30間のオーミック接触を可能にする。例として、接合層は、一又は複数の半導体層が変性するまで各ワイヤ20の下方部分22の導電型の反対の導電型で非常に高濃度にドープされてもよく、例えば1020atoms/cm3 以上の濃度でP型でドープされてもよい。

0052

半導体層の積層体は、活性層内の電気キャリアを十分分散させるために、三元合金、例えば窒化アルミニウムガリウム(AlGaN) 又は窒化アルミニウムインジウム(AlInN) から形成されて活性層及び中間層に接する電子障壁層を含んでもよい。

0053

電極層30は、各ワイヤ20の活性層にバイアスをかけて発光ダイオードDEL によって放射される電磁放射線を通すことが可能である。電極層30を形成する材料は、インジウムスズ酸化物(ITO) 、アルミニウムがドープされた亜鉛酸化物又はグラフェンのような透明な導電性材料であってもよい。例として、電極層30の厚さは、5nm〜200 nmの範囲内であり、好ましくは20nm〜50nmの範囲内である。

0054

導電性のミラー層32は、例えばアルミニウム、銀、銅又は亜鉛から形成された金属層に相当することが好ましい。例として、導電性のミラー層32の厚さは、20nm〜300 nmの範囲内であり、好ましくは100 nm〜200 nmの範囲内である。

0055

密閉層34は、少なくとも部分的に透明な絶縁材料から形成されている。密閉層34の最大の厚さは、ワイヤ20の高さH1より大きい。密閉層34はワイヤ20間に延びており、各ワイヤ20を覆っている。ワイヤ20間の空間は、密閉層34で完全に充填されている。密閉層34が発光ダイオードDEL の最上部で電極層30を完全に覆うように、密閉層34の最大の厚さは250 nm〜50μmの範囲内である。

0056

各発光ダイオードDEL のシェル28の活性層は、光を全ての方向に放射する。

0057

図2〜6は、光の放射の様々な形状に関する光線Rが進む経路を示す。図2〜6では、電極層30、ミラー層32及び密閉層34は示されていない。ワイヤ20の側壁に垂直な方向Dに対して光線Rによって形成される放射角をθと称し、ワイヤ20及びシェル28の活性層を有する組立体の臨界全反射角をθC と称する。

0058

放射角θに応じて、シェル28の活性層によって放射される光は、図2に示されているようなRLと称される放射モード、又は図3に示されているようなGLと称される案内モードに関連付けられてもよい。案内モードGLでは、放射角θが臨界全反射角θC より大きく、光がワイヤ20に沿ってジグザグ伝播する。逆に、放射モードRLでは、放射角θが臨界全反射角θC より小さく、光が密閉層34内を完全に伝わる。

0059

臨界全反射角θC は、以下の関係式(1) に従うスネルの法則によって与えられる。
θC =asin(nencap/nwire) (1)
ここで、nencapは密閉層34の光屈折率実部であり、nwireは、ワイヤ20及びそのシェル28の光屈折率の実部であり、nencapより大きい。

0060

光屈折率は、媒体光学特性、特に吸収及び拡散特徴付け無次元数である。屈折率は複素光学指数の実部と等しい。屈折率は、例えば偏光解析法によって決定されてもよい。

0061

入射角θでは、案内モードGLは、基板で失われるモードSGL (図4)、反射モードRGL (図5)及び伝送モードTGL (図6)に分かれる。モードSGL では、光がワイヤ20の基部に導かれて基板10で失われる。伝送モードTGL では、ワイヤ20の上面での入射角が臨界全反射角より小さく、従って光が密閉層34内を伝わる。反射モードRGL では、光がワイヤの上面で全反射条件下にあり、取り出されることなくワイヤ20の基部の方に戻される。

0062

案内モードGLの内、伝送モードTGL のみが観察者によって感知される光に関与する。基板の方に案内されるモードSGL では光が直接失われ、反射モードRGL では、光が基板10に吸収されるか基板で失われるまでワイヤ20の内部に捕捉されたままである。

0063

図7は、密閉層34の屈折率nencapに応じた放射モードRL、案内モードGL、モードSGL 、反射モードRGL 及び伝送モードTGL の割合を示す。発光ダイオードから取り出される光の割合は放射モードRLの割合及び伝送モードTGL の割合の合計である。

0064

図8は、密閉層34の屈折率nencapに応じた案内モードGLの総数に対する反射モードRGL の割合に相当する変化曲線CRGLを示す。図7及び8の曲線は、平均直径が800 nmの六角形の断面のGaNワイヤ、及び厚さが275 nmのシェルの場合に得られた。

0065

密閉層34の屈折率が増加するにつれて、放射モードRLの割合は増加する一方、案内モードGLの割合は減少する。更に、密閉層34の屈折率がおよそ1.73である場合、反射モードRGL における捕捉され案内される光の割合は減少して0になる。

0066

本発明者らは、ワイヤ20の平均直径が200 nmより大きいと、放射モードRL、案内モードGL、モードSGL 、反射モードRGL 及び伝送モードTGL の割合の変化曲線の形状がワイヤ20の平均直径とは無関係に実質的に同一であることを、シミュレーションによって示した。特に、ワイヤ20の平均直径が200 nmより大きいと、伝播する反射モードRGL が無効になる屈折率がワイヤ20の平均直径とは実質的に無関係である。

0067

光電子デバイス5 を見る観察者によって感知されるために、光は前面36を通って密閉層を出るべきである。前面36は自由表面に相当し、すなわち空気に接してもよい。密閉層34の屈折率と空気の屈折率との差が大きいほど、前面36に垂直な方向に関して測定される臨界全反射角がより小さくなり、すなわち、発光ダイオードDEL からの光が前面36でより多く反射する傾向がある。従って、密閉層34の屈折率が高過ぎることは望ましくない。

0068

ワイヤ及び活性層を形成する材料がIII-V族化合物であるとき、本発明者らは、密閉層34の屈折率が1.7 〜1.75の範囲内、好ましくは1.72〜1.74の範囲内、更に好ましくはおよそ1.73である状態で最良折衷案が得られることをシミュレーションによって示した。

0069

ワイヤ20の平均直径が200 nm〜1μmの範囲内であり、好ましくは300 nm〜800 nmの範囲内であることが好ましい。

0070

密閉層34は、誘電体材料の粒子が場合によっては分散している少なくとも部分的に透明な無機材料のマトリクスを含んでもよい。粒子を形成する誘電体材料の屈折率は、マトリクスを形成する材料の屈折率より大きい。例によれば、密閉層34は、ポリシロキサンとも称されるシリコーンから形成されたマトリクスを含んでおり、マトリクス内に分散している誘電体材料の粒子を更に含んでいる。粒子は、適した屈折率を有する相対的に球状のナノメートル範囲の粒子を与えるあらゆるタイプの材料から形成されている。例として、粒子は、酸化チタン(TiO2)、酸化ジルコニウム(ZrO2)、硫化亜鉛(ZnS) 、硫化鉛(PbS) 又はアモルファスシリコン(Si)から形成されてもよい。粒子の平均直径は、同一体積球体の直径であると定められる。誘電体材料の粒子の平均直径は、2nm〜250 nmの範囲内である。密閉層34の総重量に対する粒子の体積濃度は、1%〜50%の範囲内である。

0071

別の例によれば、無機材料は、エポキシドポリマー、SiOxタイプの酸化シリコン(ここでxは0より大きく2以下の実数である)、SiOyNzタイプの酸化シリコン(ここでyは0より大きく2以下の実数であり、zは0より大きく0.57以下である)、及び酸化アルミニウム(Al2O3)を含む群から選択される。

0072

密閉層34は、少なくとも部分的に透明な有機材料から形成されてもよい。例によれば、密閉層34はポリイミドから形成されている。別の例によれば、密閉層34は、マトリクス内に分散している誘電体材料の粒子を更に含むエポキシドポリマーから形成されている。粒子は、酸化チタン(TiO2)、酸化ジルコニウム(ZrO2)、硫化亜鉛(ZnS) 、硫化鉛(PbS) 又はアモルファスシリコン(Si)から形成されてもよい。

0073

光電子デバイス5 の取り出し効率を高めるために、密閉層34の前面36にテクスチャリングと称される表面処理を施して、高くしたエリアを前面36に形成してもよい。密閉層34が無機材料から形成される場合、前面36にテクスチャリングを施す方法は、場合によっては前面でのパターンの形成を促すべく処理された前面36の部分を保護するマスクの存在下で化学エッチング工程又は機械的な摩耗工程を有してもよい。密閉層34が有機材料から形成される場合、前面36にテクスチャリングを施す方法は、エンボス加工成型などの工程を有してもよい。

0074

光電子デバイス5 の取り出し効率を高めるために、密閉層34は少なくとも部分的に透明な追加の層で覆われてもよい。そのため、追加の層の屈折率は、密閉層34の屈折率と空気の屈折率との間である。変形例として、少なくとも2つの層の積層体が密閉層34を覆ってもよい。積層体の層の屈折率は、密閉層34に接する積層体の第1の層から空気に接する積層体の最後の層に向かって減少し、第1の層の屈折率は密閉層34の屈折率より小さく、最後の層の屈折率は空気の屈折率より大きい。

0075

上記に記載された実施形態に係る光電子デバイスは、光電子デバイスの一般的な取り出し効率、つまり前面36全体に亘って測定される効率を高め得ることが有利である。

0076

取り出し効率は局所的に、つまり前面36の一部で測定されてもよい。そのため、取り出し効率は、光電子デバイスから対象の部分を通って出る光の量の、この部分の発光ダイオードによる光の量に対する比率に相当する。観察者が光電子デバイス5 を見るときに輝度差を感知しないように、前面36全体に亘る局所的な取り出し効率の変化が可能な限り低いことが望ましい。

0077

図9は、図1に示されている光電子デバイス5 の全ての要素を備えており、発光ダイオードDEL が正方形の活性領域51に規則的に、例えば行及び列に分散している光電子デバイス50の例を示す平面図である。活性領域51の側縁部が参照番号52で表されており、活性領域51の角部が参照番号54で表されている。発光ダイオードは夫々点として概略的に示されている。例として、各角部に配置された発光ダイオード及び各側縁部の中間部分に配置された発光ダイオードを含む、側縁部52に沿って配置された発光ダイオードを除いて、発光ダイオードDEL は夫々正方形の中心部分に配置されている。

0078

図9に示されている例では、単位表面積当たりの発光ダイオードの密度は、活性領域51全体に亘って実質的に一定である。例として、発光ダイオードの面密度は実質的に一定であり、4×106/cm2 〜3×107/cm2 の範囲内である。

0079

図10は、活性領域51の4分の1に亘る図9の光電子デバイス50の局所的な取り出し効率の変化を示す。図10の曲線は、断面が六角形のGaNナノワイヤのアレイの場合に得られ、2つのナノワイヤの軸芯間の距離がシェル28の平均半径の3倍であり、密閉層34の材料の屈折率が1.75に等しい。

0080

側縁部52に沿った局所的な取り出し効率は、活性領域51の中心部分の局所的な取り出し効率より大きい。更に、角部54の局所的な取り出し効率は、活性領域51の側縁部52の局所的な取り出し効率より大きい。この現象は、ある発光ダイオードに近くに隣り合う発光ダイオードの数が多いほど、この発光ダイオードによって放射される光線が隣り合う発光ダイオードの内の1つに当たって隣り合う発光ダイオードよって吸収又は捕捉される可能性がより高くなることにより説明される。

0081

本発明者らは、2つの隣り合う発光ダイオードの軸芯間の距離がシェル28の平均半径より15分の1小さいと、取り出し効率が減少することをシミュレーションによって示した。

0082

隣り合う発光ダイオードの軸芯間の距離がシェル28の平均半径の15分の1より小さい場合、行及び列の数がおよそ50より大きいと、活性領域51の中心部分の取り出し効率が行及び列の数とは無関係に最小値に達することが観察された。

0083

図11は、光電子デバイス60の実施形態の図9と同様の図である。光電子デバイス60は、光電子デバイス50の要素を全て備えており、単位表面積当たりの発光ダイオードの密度が光電子デバイスの中心部分から側縁部52に向かって徐々に増加する点が異なる。より具体的には、活性領域51の中心部分にある発光ダイオードの面密度が、側縁部52に沿った発光ダイオードの面密度より小さい。更に、側縁部52に沿った発光ダイオードの面密度は、活性領域51の角部54の発光ダイオードの面密度より小さい。

0084

例として、発光ダイオードの面密度の変化は、図10に示されているような取り出し効率の変化の逆に相当してもよい。例として、光電子デバイスの活性領域の中心部分にある発光ダイオードの面密度は2×106/cm2 〜6×106/cm2 の範囲内であってもよい一方、光電子デバイスの活性領域の側縁部に沿った発光ダイオードの面密度は7×106/cm2 〜2×107/cm2 の範囲内であってもよい。

0085

別の実施形態によれば、本発明者らは、活性領域の周囲の長さの、活性領域の表面積に対する割合を増加させることにより、取り出し効率の均一性が高められ得ることを示した。活性領域の周囲の長さの、表面積に対する割合P/A は、活性領域の単位表面積当たり4より大きく、好ましくは4.5 以上であり、更に好ましくは5以上であり、特には6以上であることが好ましい。

0086

図12〜20は、活性領域の外形のみが夫々示されている光電子デバイスの実施形態を示す平面略図である。これらの例の各々では、活性領域の周囲の長さの、活性領域の表面積に対する割合が、表面積が同一の正方形で得られた割合より大きい。

0087

図12では、活性領域70が、正方形の外縁部72及び正方形の内縁部74を有する環状である。図13では、活性領域76が、一又は複数の矩形状のエリア78を有しており、2つの矩形状のエリアが示されている。図14では、活性領域80が、波状の縁部を有する一又は複数の細片82を有しており、2つの細片82が示されている。図15では、活性領域84が三角形状である。図16では、活性領域86が星状である。図17では、活性領域88が、星状の外縁部90及び星状の内縁部91を有する。活性領域の外周部、及び場合によっては内周部が、フラクタル曲線に近い曲線をたどることが有利である。図18、19及び20では、活性領域94、活性領域96及び活性領域98は夫々、2回、3回又は4回の繰返しの後のコッホ雪片の形状である。活性領域の単位表面積当たりの割合P/A は、活性領域94、活性領域96及び活性領域98に関して夫々6.4 、8.5 及び11.4である。図12及び17は、開口した表面に相当する活性領域の例を示す。

0088

光電子デバイス5 を製造する方法の実施形態は、以下の工程を有する。

0089

(1)基板10の上面12に成長パッド16を形成する工程
成長パッド16は、上面12に成長層を成膜して成長層の一部を基板10の上面12までエッチングして成長パッドを画定することにより得られてもよい。化学蒸着法(CVD) 又は有機金属気相エピタキシ法(MOVPE) としても知られている有機金属化学蒸着法(MOCVD) のような方法によって成長層を成膜してもよい。しかしながら、分子線エピタキシ法(MBE) 、ガスソースMBE 法(GSMBE) 、有機金属MBE 法(MOMBE) 、プラズマ支援MBE 法(PAMBE) 、原子層エピタキシ法(ALE) 、ハイドライド気相エピタキシ法(HVPE)、及び原子層成膜法(ALD) のような方法を使用してもよい。更に、蒸着法又は反応性カソードスパッタリング法のような方法を使用してもよい。

0090

成長パッド16が窒化アルミニウムから形成されている場合、成長パッドは実質的にテクスチャリングが施されてもよく、好ましい極性を有してもよい。成長パッド16のテクスチャリングは、成長層の成膜後に行われる追加の処理によって施されてもよい。テクスチャリングは、例えばアンモニア(NH3) の流れを用いたアニールである。

0091

(2)成長パッド16で覆われていない基板10の上面12の部分を保護して、これらの部分でのワイヤのその後の成長を防ぐ工程
この工程は、基板10の表面の成長パッド16間に窒化シリコン(例えばSiN 又はSi3N4)の領域を形成する窒化工程によって行われてもよい。この工程は、例えばSiO2、SiN 又はSi3N4の誘電体の層を成膜して成長パッド16間の基板10をマスクし、次に、フォトリソグラフィ工程後に成長パッド16の外側でこの層をエッチングする工程によって行われてもよい。この場合、マスキング層は成長パッド16に亘って延びてもよい。保護する工程(2) が基板10をマスクする工程によって行われる場合、成長層をエッチングする工程は省かれてもよい。そのため、ワイヤが交差する自由な残りの表面を有する均一な連続層から、成長パッド16が形成される。

0092

(3) 各ワイヤ20の下方部分22を高さH2に沿って成長させる工程
各ワイヤ20は下にある成長パッド16の最上部から成長する。

0093

CVD 、MOCVD、MBE 、GSMBE 、PAMBE 、ALE、HVPE、ALD のタイプの処理によってワイヤ20を成長させてもよい。更に、電気化学処理を用いてもよく、例えば化学浴析出法(CBD) 、熱水処理液体エーロゾル熱分解又は電着を用いてもよい。

0094

例として、ワイヤ成長法は、III族元素の前駆体及びV 族元素の前駆体を反応器注入する工程を有してもよい。III 族元素の前駆体の例として、トリメチルガリウム(TMGa)、トリエチルガリウム(TEGa)、トリメチルインジウム(TMIn)又はトリメチルアルミニウム(TMAl)がある。V 族元素の前駆体の例として、アンモニア(NH3) 、第三ブチルホスフィン(TBP )、アルシン(AsH3)又は非対称ジメチルヒドラジン(UDMH)がある。

0095

本発明の実施形態によれば、III-V族化合物のワイヤの成長の第1段階では、III-V 族化合物の前駆体に加えて追加の元素の前駆体を過度に加える。追加の元素はシリコン(Si)であってもよい。シリコンの前駆体の例としてシラン(SiH4)がある。

0096

前駆体ガスとしてシランが存在することにより、シリコンがGaN化合物内に取り込まれる。このようにして、N型でドープされた下方部分22が得られる。これは、下方部分22が成長するにつれて、最上部を除いて高さH2の下方部分22の周囲を覆う窒化シリコン層(不図示)が形成されると更に解釈される。

0097

(4) 下方部分22の最上部で各ワイヤ20の高さH3の上方部分24を成長させる工程
上方部分24を成長させるために、MOCVD反応器内のシランの流れが例えば10分の1以下に減少するか停止することがなければ、MOCVD 反応器の上述した動作条件が一例として維持される。シランの流れが停止する場合であっても、上方部分24は、隣り合う不動態化された部分からのドーパントのこの活性部分における拡散により、又はGaN の残りのドーピングによりN型でドープされてもよい。

0098

(5) 例えば、工程(4) で得られた構造全体に亘って絶縁層を共形的に成膜して絶縁層26を形成し、この絶縁層をエッチングして各ワイヤ20の上方部分24を露出させる工程

0099

(6)ワイヤ20毎に、シェル28を形成する層をエピタキシにより形成する工程
下方部分22の周囲を覆う絶縁層26が存在することを考慮すると、シェル28を形成する層の成膜が、絶縁層26で覆われていないワイヤ20の上方部分24のみで生じる。

0100

(7) 例えば共形成膜によって電極層30を形成する工程

0101

(8) 例えば、工程(7) で得られた構造全体に亘る物理蒸着PVD )によって、又は例えば蒸着法若しくはカソードスパッタリング法によって導電性のミラー層32を形成して、このミラー層をエッチングして各ワイヤ20を露出させる工程

0102

(9)密閉層34を形成する工程
密閉層34がシリコーンから形成される場合、密閉層34は、スピンコート成膜法インクジェット法又はシルクスクリーン法によって成膜されてもよい。密閉層34が酸化物である場合、密閉層はCVD によって成膜されてもよい。

0103

(10)基板10を切断して光電子デバイスを分離する工程

0104

上記に記載された実施形態では、絶縁層26は、各ワイヤ20の下方部分22の周囲全体を覆っている。変形例として、下方部分22の一部が絶縁層26で覆われないことが可能である。この場合、絶縁層26は高さH2より低い高さまでワイヤ20を覆っており、シェル28は高さH3より高い高さまでワイヤ20を覆っている。絶縁層26が各ワイヤ20の下方部分22を覆わないことが可能である。この場合、シェル28は、各ワイヤ20を高さH1まで覆ってもよい。

0105

上記に記載された実施形態では、絶縁層26は、各ワイヤ20の上方部分24の周囲を覆っていない。変形例として、絶縁層26は各ワイヤ20の上方部分24の一部を覆ってもよい。この場合、絶縁層26は高さH2より高い高さまでワイヤ20を覆っており、シェル28は高さH3より低い高さまでワイヤ20を覆っている。

0106

別の変形例によれば、絶縁層26は、ワイヤ20毎にシェル30の下方部分を部分的に覆ってもよい。

0107

上記に記載された製造方法の変形例によれば、シェル28を形成する層は、絶縁層26の前にワイヤ20全体に亘って、又はワイヤ20の一部、例えば上方部分24に亘ってのみ形成されてもよい。

0108

本発明の具体的な実施形態が記載されている。様々な変更及び調整が当業者想起される。更に、上記の実施形態では、各ワイヤ20が成長パッド16の内の1つに接するワイヤの基部で不動態化された下方部分22を有するが、不動態化された下方部分22が設けられなくてもよい。

0109

更に、本実施形態はシェル28が関連するワイヤ20の最上部及びワイヤ20の側面の一部を覆う光電子デバイスに関して記載されているが、ワイヤ20の最上部のみにシェルを設けることが可能である。

0110

様々な変形例を有する様々な実施形態が上記に述べられている。当業者は、いかなる進歩性も示さずにこれらの様々な実施形態及び変形例の様々な要素を組み合わせてもよいことに留意すべきである。特に、1.7 〜1.75の範囲内の屈折率を有する密閉層を備えた光電子デバイスが、例えば図11に示されているような発光ダイオードの様々な面密度を更に有してもよい。更に、1.7 〜1.75の範囲内の屈折率を有する密閉層を備えた光電子デバイスにおいて、活性領域の周囲の長さの、表面積に対する割合が、例えば図12〜20に関連して上記に記載されているように、正方形の活性領域に関して得られた割合より大きくてもよい。更に、活性領域の周囲の長さの、表面積に対する割合が正方形の活性領域に関して得られた割合より大きい光電子デバイスが、様々な面密度の発光ダイオードを更に備えてもよい。

ページトップへ

この技術を出願した法人

この技術を発明した人物

ページトップへ

関連する挑戦したい社会課題

該当するデータがありません

関連する公募課題

該当するデータがありません

ページトップへ

技術視点だけで見ていませんか?

この技術の活用可能性がある分野

分野別動向を把握したい方- 事業化視点で見る -

(分野番号表示ON)※整理標準化データをもとに当社作成

該当するデータがありません

ページトップへ

おススメ サービス

おススメ astavisionコンテンツ

この 技術と関連性が強い技術

該当するデータがありません

この 技術と関連性が強い法人

該当するデータがありません

この 技術と関連性が強い人物

該当するデータがありません

この 技術と関連する社会課題

該当するデータがありません

この 技術と関連する公募課題

該当するデータがありません

astavision 新着記事

サイト情報について

本サービスは、国が公開している情報(公開特許公報、特許整理標準化データ等)を元に構成されています。出典元のデータには一部間違いやノイズがあり、情報の正確さについては保証致しかねます。また一時的に、各データの収録範囲や更新周期によって、一部の情報が正しく表示されないことがございます。当サイトの情報を元にした諸問題、不利益等について当方は何ら責任を負いかねることを予めご承知おきのほど宜しくお願い申し上げます。

主たる情報の出典

特許情報…特許整理標準化データ(XML編)、公開特許公報、特許公報、審決公報、Patent Map Guidance System データ