図面 (/)

技術 半導体装置、および半導体装置の作製方法

出願人 株式会社半導体エネルギー研究所
発明者 畑勇気栃林克明菅尾惇平山崎舜平
出願日 2018年2月28日 (2年8ヶ月経過) 出願番号 2018-035555
公開日 2019年9月12日 (1年1ヶ月経過) 公開番号 2019-153613
状態 未査定
技術分野 薄膜トランジスタ 半導体メモリ
主要キーワード 設計支援ソフトウェア ラウンド状 隠れ線 冷暖房器具 自己制御性 金属マトリックス複合材 連続接合 GPUコア
関連する未来課題
重要な関連分野

この項目の情報は公開日時点(2019年9月12日)のものです。
また、この項目は機械的に抽出しているため、正しく解析できていない場合があります

図面 (20)

課題

オン電流が大きい半導体装置を提供する。

解決手段

トランジスタは、基板の上に配置された酸化物230aと、酸化物230aの上に配置された酸化物230bと、酸化物230aおよび酸化物230bを覆う、酸化物230cと、酸化物230cを覆う、絶縁体250と、酸化物230bおよび酸化物230cに、互いに離隔して形成された層253aおよび層253bと、層253aと層253bの間に、互いに離隔して形成された層252bと、絶縁体250上に配置され、酸化物230a乃至酸化物230cと重畳する、導電体260と、絶縁体250の上面および導電体260の側面と接する絶縁体266と、絶縁体266の上面および導電体260の側面と接し、層253aと層253bの間に重畳して開口263が形成された絶縁体280と、を有する。

概要

背景

トランジスタに適用可能な半導体薄膜として、シリコン系半導体材料が広く知られているが、その他の材料として酸化物半導体が注目されている。酸化物半導体としては、例えば、酸化インジウム酸化亜鉛などの一元系金属の酸化物のみでなく、多元系金属の酸化物も知られている。多元系金属の酸化物の中でも、特に、In−Ga−Zn酸化物(以下、IGZOとも呼ぶ。)に関する研究が盛んに行われている。

IGZOに関する研究により、酸化物半導体において、単結晶でも非晶質でもない、CAAC(c−axis aligned crystalline)構造およびnc(nanocrystalline)構造が見出された(非特許文献1乃至非特許文献3参照。)。非特許文献1および非特許文献2では、CAAC構造を有する酸化物半導体を用いてトランジスタを作製する技術も開示されている。さらに、CAAC構造およびnc構造よりも結晶性の低い酸化物半導体でさえも、微小な結晶を有することが、非特許文献4および非特許文献5に示されている。

さらに、IGZOを活性層として用いたトランジスタは極めて低いオフ電流を持ち(非特許文献6参照。)、その特性を利用したLSIおよびディスプレイ報告されている(非特許文献7および非特許文献8参照。)。

概要

オン電流が大きい半導体装置を提供する。トランジスタは、基板の上に配置された酸化物230aと、酸化物230aの上に配置された酸化物230bと、酸化物230aおよび酸化物230bを覆う、酸化物230cと、酸化物230cを覆う、絶縁体250と、酸化物230bおよび酸化物230cに、互いに離隔して形成された層253aおよび層253bと、層253aと層253bの間に、互いに離隔して形成された層252bと、絶縁体250上に配置され、酸化物230a乃至酸化物230cと重畳する、導電体260と、絶縁体250の上面および導電体260の側面と接する絶縁体266と、絶縁体266の上面および導電体260の側面と接し、層253aと層253bの間に重畳して開口263が形成された絶縁体280と、を有する。

目的

本発明の一態様は、オン電流が大きい半導体装置を提供する

効果

実績

技術文献被引用数
0件
牽制数
0件

この技術が所属する分野

(分野番号表示ON)※整理標準化データをもとに当社作成

ライセンス契約や譲渡などの可能性がある特許掲載中! 開放特許随時追加・更新中 詳しくはこちら

請求項1

第1の酸化物と、前記第1の酸化物上の第2の酸化物と、前記第1の酸化物、および前記第2の酸化物を覆う、第3の酸化物と、前記第3の酸化物を覆う、第1の絶縁体と、前記第1の絶縁体上に配置され、前記第1乃至第3の酸化物と重畳する、導電体と、前記第1の絶縁体の上面、および前記導電体の側面と接する第2の絶縁体と、前記第2の絶縁体の上面、および前記導電体の側面と接する第3の絶縁体と、前記導電体の上面、および前記第3の絶縁体の上面と接する第4の絶縁体と、を有し、前記第2の酸化物は、第1の領域、第2の領域、前記第1の領域と前記第2の間に位置する第3の領域、前記第1の領域と前記第3の領域の間に位置する第4の領域、および前記第2の領域と前記第3の領域の間に位置する第5の領域を有し、前記第1の領域、および前記第2の領域の抵抗は、前記第3の領域の抵抗より低く、前記第4の領域、および前記第5の領域の抵抗は、前記第3の領域の抵抗より低く、かつ前記第1の領域、および前記第2の領域の抵抗より高く、前記導電体は、前記第3の領域、前記第4の領域、および前記第5の領域と重畳するように、前記第3の領域、前記第4の領域、および前記第5の領域の上方に設けられる、ことを特徴とする半導体装置

請求項2

請求項1において、前記導電体は、前記第1の領域および前記第2の領域の少なくとも一部と重畳する、ことを特徴とする半導体装置。

請求項3

請求項1または請求項2において、さらに、前記第1の絶縁体と前記第2の絶縁体の間に第5の絶縁体を有し、前記第5の絶縁体は、前記導電体の側面に接する、ことを特徴とする半導体装置。

請求項4

請求項1乃至請求項3のいずれか一項において、前記第1の領域、前記第2の領域、前記第4の領域、および前記第5の領域は、リン、およびホウ素の一方を含むことを特徴とする半導体装置。

請求項5

請求項4において、前記第1の領域および前記第2の領域は、前記第4の領域および前記第5の領域よりも、リン、またはホウ素を多く含むことを特徴とする半導体装置。

請求項6

請求項1乃至請求項5のいずれか一項において、前記第1の領域、前記第2の領域、前記第4の領域、および前記第5の領域は、前記第3の領域よりも、酸素欠損を多く有することを特徴とする半導体装置。

請求項7

請求項1乃至請求項6のいずれか一項において、前記第1の領域、前記第2の領域、前記第4の領域、および前記第5の領域は、前記第3の領域よりも、水素を多く有することを特徴とする半導体装置。

請求項8

第1の酸化物、および前記第1の酸化物上の第2の酸化物を形成し、前記第1の酸化物、および前記第2の酸化物を覆って第3の酸化物を成膜し、前記第3の酸化物を覆って第1の絶縁膜を成膜し、前記第1の絶縁膜の上に、前記第2の酸化物を重畳して第1のダミーゲートを形成し、前記第1のダミーゲートをマスクとして、前記第2の酸化物に第1のドーパントを添加し、前記第1のダミーゲートの一部を除去して第2のダミーゲートを形成し、前記第2の酸化物の一部を、当該第2のダミーゲートから露出させ、前記第2のダミーゲートをマスクとして、前記第2の酸化物に第2のドーパントを添加し、前記第1の絶縁膜、および前記第2のダミーゲートを覆って、第2の絶縁膜を成膜し、前記第2の絶縁膜の上に第3の絶縁膜を成膜し、前記第2の絶縁膜および前記第3の絶縁膜の一部を、前記第2のダミーゲートの上部が露出するまで除去し、前記第2のダミーゲート、および前記第2の絶縁膜の一部を除去して、開口を形成し、前記開口の中に埋め込むように、導電膜を成膜し、導電膜の一部を、前記第3の絶縁膜の上部が露出するまで除去する、ことを特徴とする半導体装置の作製方法

請求項9

請求項8において、前記第1のドーパント、および前記第2のドーパントとして、リンまたはホウ素を用いる、ことを特徴とする半導体装置の作製方法。

請求項10

請求項8または請求項9において、前記第1のドーパントの添加量は、および前記第2のドーパントの添加量より多い、ことを特徴とする半導体装置の作製方法。

請求項11

請求項8乃至請求項10のいずれか一項において、前記第1のドーパントの添加、および前記第2のドーパントの添加は、イオン注入法、またはイオンドーピング法が用いられる、ことを特徴とする半導体装置の作製方法。

請求項12

請求項8乃至請求項11のいずれか一項において、前記第1のダミーゲートは、炭素を含むことを特徴とする半導体装置の作製方法。

請求項13

請求項8乃至請求項12のいずれか一項において、前記第2のダミーゲートの形成は、酸素ラジカルを用いたアッシング処理によって行われる、ことを特徴とする半導体装置の作製方法。

技術分野

0001

本発明の一態様は、半導体装置、ならびに半導体装置の作製方法に関する。または、本発明の一態様は、半導体ウエハモジュール、および電子機器に関する。

0002

なお、本明細書等において半導体装置とは、半導体特性を利用することで機能し得る装置全般を指す。トランジスタなどの半導体素子をはじめ、半導体回路演算装置記憶装置は、半導体装置の一態様である。表示装置液晶表示装置発光表示装置など)、投影装置照明装置電気光学装置蓄電装置、記憶装置、半導体回路、撮像装置、および電子機器などは、半導体装置を有すると言える場合がある。

0003

なお、本発明の一態様は、上記の技術分野に限定されない。本明細書等で開示する発明の一態様は、物、方法、または、製造方法に関するものである。または、本発明の一態様は、プロセス、マシン、マニュファクチャ、または、組成物コンポジションオブマター)に関するものである。

背景技術

0004

トランジスタに適用可能な半導体薄膜として、シリコン系半導体材料が広く知られているが、その他の材料として酸化物半導体が注目されている。酸化物半導体としては、例えば、酸化インジウム酸化亜鉛などの一元系金属の酸化物のみでなく、多元系金属の酸化物も知られている。多元系金属の酸化物の中でも、特に、In−Ga−Zn酸化物(以下、IGZOとも呼ぶ。)に関する研究が盛んに行われている。

0005

IGZOに関する研究により、酸化物半導体において、単結晶でも非晶質でもない、CAAC(c−axis aligned crystalline)構造およびnc(nanocrystalline)構造が見出された(非特許文献1乃至非特許文献3参照。)。非特許文献1および非特許文献2では、CAAC構造を有する酸化物半導体を用いてトランジスタを作製する技術も開示されている。さらに、CAAC構造およびnc構造よりも結晶性の低い酸化物半導体でさえも、微小な結晶を有することが、非特許文献4および非特許文献5に示されている。

0006

さらに、IGZOを活性層として用いたトランジスタは極めて低いオフ電流を持ち(非特許文献6参照。)、その特性を利用したLSIおよびディスプレイ報告されている(非特許文献7および非特許文献8参照。)。

先行技術

0007

S. Yamazaki et al., “SID Symposium Digest of Technical Papers”, 2012, volume 43, issue 1, p.183−186
S. Yamazaki et al., “Japanese Journal of Applied Physics”, 2014, volume 53, Number 4S, p.04ED18−1−04ED18−10
S. Ito et al., “The Proceedings of AM−FPD’13 Digest of Technical Papers”, 2013, p.151−154
S. Yamazaki et al., “ECS Journal of Solid State Science and Technology”, 2014, volume 3, issue 9, p.Q3012−Q3022
S. Yamazaki, “ECS Transactions”,2014, volume 64, issue 10, p.155−164
K. Kato et al., “Japanese Journal of Applied Physics”, 2012, volume 51, p.021201−1−021201−7
S. Matsuda et al., “2015 Symposium onVLSITechnology Digest of Technical Papers”, 2015, p.T216−T217
S. Amano et al., “SID Symposium Digest of Technical Papers”, 2010, volume 41, issue 1, p.626−629

発明が解決しようとする課題

0008

本発明の一態様は、オン電流が大きい半導体装置を提供することを課題の一つとする。または、本発明の一態様は、高い周波数特性を有する半導体装置を提供することを課題の一つとする。または、本発明の一態様は、信頼性が良好な半導体装置を提供することを課題の一つとする。または、本発明の一態様は、微細化または高集積化が可能な半導体装置を提供することを課題の一つとする。または、本発明の一態様は、良好な電気特性を有する半導体装置を提供することを課題の一つとする。または、本発明の一態様は、生産性の高い半導体装置を提供することを課題の一つとする。

0009

本発明の一態様は、長期間においてデータの保持が可能な半導体装置を提供することを課題の一つとする。本発明の一態様は、情報の書き込み速度が速い半導体装置を提供することを課題の一つとする。本発明の一態様は、設計自由度が高い半導体装置を提供することを課題の一つとする。本発明の一態様は、消費電力を抑えることができる半導体装置を提供することを課題の一つとする。本発明の一態様は、新規な半導体装置を提供することを課題の一つとする。

0010

なお、これらの課題の記載は、他の課題の存在を妨げるものではない。なお、本発明の一態様は、これらの課題の全てを解決する必要はないものとする。なお、これら以外の課題は、明細書、図面、請求項などの記載から、自ずと明らかとなるものであり、明細書、図面、請求項などの記載から、これら以外の課題を抽出することが可能である。

課題を解決するための手段

0011

本発明の一態様は、1の酸化物と、第1の酸化物上の第2の酸化物と、第1の酸化物、および第2の酸化物を覆う、第3の酸化物と、第3の酸化物を覆う、第1の絶縁体と、第1の絶縁体上に配置され、第1乃至第3の酸化物と重畳する、導電体と、第1の絶縁体の上面、および導電体の側面と接する第2の絶縁体と、第2の絶縁体の上面、および導電体の側面と接する第3の絶縁体と、導電体の上面、および第3の絶縁体の上面と接する第4の絶縁体と、を有し、第2の酸化物は、第1の領域、第2の領域、第1の領域と第2の間に位置する第3の領域、第1の領域と第3の領域の間に位置する第4の領域、および第2の領域と第3の領域の間に位置する第5の領域を有し、第1の領域、および第2の領域の抵抗は、第3の領域の抵抗より低く、第4の領域、および第5の領域の抵抗は、第3の領域の抵抗より低く、かつ第1の領域、および第2の領域の抵抗より高く、導電体は、第3の領域、第4の領域、および第5の領域と重畳するように、第3の領域、第4の領域、および第5の領域の上方に設けられる、半導体装置である。

0012

上記において、導電体は、第1の領域および第2の領域の少なくとも一部と重畳する、ことが好ましい。また、上記において、さらに、第1の絶縁体と第2の絶縁体の間に第5の絶縁体を有し、第5の絶縁体は、導電体の側面に接する、ことが好ましい。

0013

上記において、第1の領域、第2の領域、第4の領域、および第5の領域は、リン、およびホウ素の一方を含む、ことが好ましい。また、上記において、第1の領域および第2の領域は、第4の領域および第5の領域よりも、リン、またはホウ素を多く含む、ことが好ましい。また、第1の領域、第2の領域、第4の領域、および第5の領域は、第3の領域よりも、酸素欠損を多く有する、ことが好ましい。また、第1の領域、第2の領域、第4の領域、および第5の領域は、第3の領域よりも、水素を多く有する、ことが好ましい。

0014

また、本発明の他の一態様は、第1の酸化物、および第1の酸化物上の第2の酸化物を形成し、第1の酸化物、および第2の酸化物を覆って第3の酸化物を成膜し、第3の酸化物を覆って第1の絶縁膜を成膜し、第1の絶縁膜の上に、第2の酸化物を重畳して第1のダミーゲートを形成し、第1のダミーゲートをマスクとして、第2の酸化物に第1のドーパントを添加し、第1のダミーゲートの一部を除去して第2のダミーゲートを形成し、第2の酸化物の一部を、当該第2のダミーゲートから露出させ、第2のダミーゲートをマスクとして、第2の酸化物に第2のドーパントを添加し、第1の絶縁膜、および第2のダミーゲートを覆って、第2の絶縁膜を成膜し、第2の絶縁膜の上に第3の絶縁膜を成膜し、第2の絶縁膜および第3の絶縁膜の一部を、第2のダミーゲートの上部が露出するまで除去し、第2のダミーゲート、および第2の絶縁膜の一部を除去して、開口を形成し、開口の中に埋め込むように、導電膜を成膜し、導電膜の一部を、第3の絶縁膜の上部が露出するまで除去する、半導体装置の作製方法である。

0015

また、上記において、第1のドーパント、および第2のドーパントとして、リンまたはホウ素を用いる、ことが好ましい。また、上記において、第1のドーパントの添加量は、および第2のドーパントの添加量より多い、ことが好ましい。また、上記において、第1のドーパントの添加、および第2のドーパントの添加は、イオン注入法、またはイオンドーピング法が用いられる、ことが好ましい。また、上記において、第1のダミーゲートは、炭素を含むことが好ましい。また、上記において、第2のダミーゲートの形成は、酸素ラジカルを用いたアッシング処理によって行われる、ことが好ましい。

発明の効果

0016

本発明の一態様により、オン電流が大きい半導体装置を提供することができる。または、本発明の一態様により、高い周波数特性を有する半導体装置を提供することができる。または、本発明の一態様により、信頼性が良好な半導体装置を提供することができる。または、本発明の一態様により、微細化または高集積化が可能な半導体装置を提供することができる。または、本発明の一態様により、良好な電気特性を有する半導体装置を提供することができる。または、本発明の一態様により、生産性の高い半導体装置を提供することができる。

0017

または、長期間においてデータの保持が可能な半導体装置を提供することができる。または、データの書き込み速度が速い半導体装置を提供することができる。または、設計自由度が高い半導体装置を提供することができる。または、消費電力を抑えることができる半導体装置を提供することができる。または、新規な半導体装置を提供することができる。

0018

なお、これらの効果の記載は、他の効果の存在を妨げるものではない。なお、本発明の一態様は、これらの効果の全てを有する必要はない。なお、これら以外の効果は、明細書、図面、請求項などの記載から、自ずと明らかとなるものであり、明細書、図面、請求項などの記載から、これら以外の効果を抽出することが可能である。

図面の簡単な説明

0019

本発明の一態様に係る半導体装置の上面図および断面図。
本発明の一態様に係る半導体装置の断面図。
本発明の一態様に係る半導体装置の断面図。
本発明の一態様に係る半導体装置の上面図および断面図。
本発明の一態様に係る半導体装置の作製方法を示す上面図および断面図。
本発明の一態様に係る半導体装置の作製方法を示す上面図および断面図。
本発明の一態様に係る半導体装置の作製方法を示す上面図および断面図。
本発明の一態様に係る半導体装置の作製方法を示す上面図および断面図。
本発明の一態様に係る半導体装置の作製方法を示す上面図および断面図。
本発明の一態様に係る半導体装置の作製方法を示す上面図および断面図。
本発明の一態様に係る半導体装置の作製方法を示す上面図および断面図。
本発明の一態様に係る半導体装置の作製方法を示す上面図および断面図。
本発明の一態様に係る半導体装置の作製方法を示す上面図および断面図。
本発明の一態様に係る半導体装置の作製方法を示す上面図および断面図。
本発明の一態様に係る半導体装置の上面図および断面図。
本発明の一態様に係る半導体装置の作製方法を示す上面図および断面図。
本発明の一態様に係る半導体装置の作製方法を示す上面図および断面図。
本発明の一態様に係る半導体装置の作製方法を示す上面図および断面図。
本発明の一態様に係る半導体装置の上面図および断面図。
本発明の一態様に係る記憶装置の構成を示す断面図。
本発明の一態様に係る記憶装置の構成を示す断面図。
本発明の一態様に係る記憶装置の構成例を示すブロック図。
本発明の一態様に係る記憶装置の構成例を示す回路図。
本発明の一態様に係る半導体装置の模式図。
本発明の一態様に係る記憶装置の模式図。
本発明の一態様に係る電子機器を示す図。

実施例

0020

以下、実施の形態について図面を参照しながら説明する。ただし、実施の形態は多くの異なる態様で実施することが可能であり、趣旨およびその範囲から逸脱することなくその形態および詳細を様々に変更し得ることは、当業者であれば容易に理解される。したがって、本発明は、以下の実施の形態の記載内容に限定して解釈されるものではない。

0021

また、図面において、大きさ、層の厚さ、または領域は、明瞭化のために誇張されている場合がある。よって、必ずしもそのスケールに限定されない。なお、図面は、理想的な例を模式的に示したものであり、図面に示す形状または値などに限定されない。例えば、実際の製造工程において、エッチングなどの処理により層やレジストマスクなどが意図せずに目減りすることがあるが、理解を容易とするために省略して示すことがある。また、図面において、同一部分または同様な機能を有する部分には同一の符号を異なる図面間で共通して用い、その繰り返しの説明は省略する場合がある。また、同様の機能を指す場合には、ハッチパターンを同じくし、特に符号を付さない場合がある。

0022

また、特に上面図(「平面図」ともいう。)や斜視図などにおいて、発明の理解を容易とするため、一部の構成要素の記載を省略する場合がある。また、一部の隠れ線などの記載を省略する場合がある。

0023

また、本明細書等において、第1、第2等として付される序数詞は便宜上用いるものであり、工程順または積層順を示すものではない。そのため、例えば、「第1の」を「第2の」または「第3の」などと適宜置き換えて説明することができる。また、本明細書等に記載されている序数詞と、本発明の一態様を特定するために用いられる序数詞は一致しない場合がある。

0024

また、本明細書等において、「上に」、「下に」などの配置を示す語句は、構成同士の位置関係を、図面を参照して説明するために、便宜上用いている。また、構成同士の位置関係は、各構成を描写する方向に応じて適宜変化するものである。したがって、明細書で説明した語句に限定されず、状況に応じて適切に言い換えることができる。

0025

例えば、本明細書等において、XとYとが直接的に接続されている場合と、XとYとが接続されている、と明示的に記載されている場合は、XとYとが電気的に接続されている場合と、XとYとが機能的に接続されている場合とが、本明細書等に開示されているものとする。したがって、所定の接続関係、例えば、図または文章に示された接続関係に限定されず、図または文章に示された接続関係以外のものも、図または文章に記載されているものとする。

0026

ここで、X、Yは、対象物(例えば、装置、素子、回路、配線電極端子、導電膜、層、など)であるとする。

0027

また、ソースドレインの機能は、異なる極性のトランジスタを採用する場合や、回路動作において電流の方向が変化する場合などには入れ替わることがある。このため、本明細書等においては、ソースやドレインの用語は、入れ替えて用いることができる場合がある。

0028

なお、本明細書等において、トランジスタの構造によっては、実際にチャネルの形成される領域におけるチャネル幅(以下、「実効的なチャネル幅」ともいう。)と、トランジスタの上面図において示されるチャネル幅(以下、「見かけ上のチャネル幅」ともいう。)と、が異なる場合がある。例えば、ゲート電極半導体の側面を覆う場合、実効的なチャネル幅が、見かけ上のチャネル幅よりも大きくなり、その影響が無視できなくなる場合がある。例えば、微細かつゲート電極が半導体の側面を覆うトランジスタでは、半導体の側面に形成されるチャネル形成領域の割合が大きくなる場合がある。その場合は、見かけ上のチャネル幅よりも、実効的なチャネル幅の方が大きくなる。

0029

このような場合、実効的なチャネル幅の、実測による見積もりが困難となる場合がある。例えば、設計値から実効的なチャネル幅を見積もるためには、半導体の形状が既知という仮定が必要である。したがって、半導体の形状が正確にわからない場合には、実効的なチャネル幅を正確に測定することは困難である。

0030

本明細書では、単にチャネル幅と記載した場合には、見かけ上のチャネル幅を指す場合がある。または、本明細書では、単にチャネル幅と記載した場合には、実効的なチャネル幅を指す場合がある。なお、チャネル長、チャネル幅、実効的なチャネル幅、見かけ上のチャネル幅などは、断面TEM像などを解析することなどによって、値を決定することができる。

0031

なお、半導体の不純物とは、例えば、半導体を構成する主成分以外をいう。例えば、濃度が0.1原子%未満の元素は不純物と言える。不純物が含まれることにより、例えば、半導体のDOS(Density of States)が高くなることや、結晶性が低下することなどが起こる場合がある。半導体が酸化物半導体である場合、半導体の特性を変化させる不純物としては、例えば、第1族元素、第2族元素、第13族元素、第14族元素、第15族元素、および酸化物半導体の主成分以外の遷移金属などがあり、例えば、水素、リチウムナトリウムシリコン、ホウ素、リン、炭素、窒素などがある。酸化物半導体の場合、水も不純物として機能する場合がある。また、酸化物半導体の場合、例えば不純物の混入によって酸素欠損を形成する場合がある。また、半導体がシリコンである場合、半導体の特性を変化させる不純物としては、例えば、酸素、水素を除く第1族元素、第2族元素、第13族元素、第15族元素などがある。

0032

なお、本明細書等において、酸化窒化シリコンとは、その組成として、窒素よりも酸素の含有量が多いものである。また、窒化酸化シリコンとは、その組成として、酸素よりも窒素の含有量が多いものである。

0033

また、本明細書等において、「絶縁体」という用語を、絶縁膜または絶縁層と言い換えることができる。また、「導電体」という用語を、導電膜または導電層と言い換えることができる。また、「半導体」という用語を、半導体膜または半導体層と言い換えることができる。

0034

また、本明細書等において、「平行」とは、二つの直線が−10度以上10度以下の角度で配置されている状態をいう。したがって、−5度以上5度以下の場合も含まれる。また、「概略平行」とは、二つの直線が−30度以上30度以下の角度で配置されている状態をいう。また、「垂直」とは、二つの直線が80度以上100度以下の角度で配置されている状態をいう。したがって、85度以上95度以下の場合も含まれる。また、「概略垂直」とは、二つの直線が60度以上120度以下の角度で配置されている状態をいう。

0035

なお、本明細書において、バリア膜とは、水、水素などの不純物および酸素の透過を抑制する機能を有する膜のことであり、当該バリア膜に導電性を有する場合は、導電性バリア膜と呼ぶことがある。

0036

本明細書等において、金属酸化物(metal oxide)とは、広い表現での金属の酸化物である。金属酸化物は、酸化物絶縁体酸化物導電体(透明酸化物導電体を含む。)、酸化物半導体(Oxide Semiconductorまたは単にOSともいう。)などに分類される。例えば、トランジスタの半導体層に金属酸化物を用いた場合、当該金属酸化物を酸化物半導体と呼称する場合がある。つまり、OSFETあるいはOSトランジスタと記載する場合においては、酸化物または酸化物半導体を有するトランジスタと換言することができる。

0037

また、本明細書等において、ノーマリーオフとは、ゲート電位印加しない、またはゲートに接地電位を与えたときに、トランジスタに流れるチャネル幅1μmあたりの電流が、室温において1×10−20A以下、85℃において1×10−18A以下、または125℃において1×10−16A以下であることをいう。

0038

(実施の形態1)
以下では、本発明の一態様に係るトランジスタ200を有する半導体装置の具体的な構成の一例について、図1乃至図19を用いて説明する。

0039

<半導体装置の構成例>
図1(A)、図1(B)、図1(C)、および図1(D)は、本発明の一態様に係るトランジスタ200、およびトランジスタ200周辺の上面図および断面図である。

0040

図1(A)は、トランジスタ200を有する半導体装置の上面図である。また、図1(B)、および図1(C)は、当該半導体装置の断面図である。ここで、図1(B)は、図1(A)にA1−A2の一点鎖線で示す部位の断面図であり、トランジスタ200のチャネル長方向の断面図でもある。また、図1(C)は、図1(A)にA3−A4の一点鎖線で示す部位の断面図であり、トランジスタ200のチャネル幅方向の断面図でもある。また、図1(D)は、図1(A)にA5−A6の一点鎖線で示す部位の断面図である。なお、図1(A)の上面図では、図の明瞭化のために一部の要素を省いて図示している。また、図2は、図1(B)における酸化物230bおよびその近傍の拡大図である。

0041

[トランジスタ200]
図1に示すように、トランジスタ200は、基板(図示しない。)の上に配置された酸化物230aと、酸化物230aの上に配置された酸化物230bと、酸化物230a、および酸化物230bを覆う、酸化物230cと、酸化物230cを覆う、絶縁体250と、酸化物230bおよび酸化物230cに、互いに離隔して形成された層253a、および層253bと、層253aと層253bの間に、互いに離隔して形成された層252a、および層252bと、絶縁体250上に配置され、酸化物230a乃至酸化物230cと重畳する、導電体260と、絶縁体250の上面、および導電体260の側面と接する絶縁体266と、絶縁体266の上面、および導電体260の側面と接し、層253aと層253bの間に重畳して開口263が形成された絶縁体280と、を有する。ここで、図1(B)(C)に示すように、導電体260の上面は、絶縁体280の上面と略一致することが好ましい。

0042

なお、以下において、酸化物230a、酸化物230b、および酸化物230cをまとめて酸化物230という場合がある。また、層252aおよび層252bをまとめて層252という場合がある。また、層253aおよび層253bをまとめて層253という場合がある。

0043

なお、トランジスタ200では、チャネルが形成される領域(以下、チャネル形成領域ともいう。)と、その近傍において、酸化物230a、酸化物230b、および酸化物230cの3層を積層する構成について示しているが、本発明はこれに限られるものではない。例えば、酸化物230bと酸化物230cの2層構造、または4層以上の積層構造を設ける構成にしてもよい。また、酸化物230a、酸化物230b、および酸化物230cのそれぞれが2層以上の積層構造を有していてもよい。また、トランジスタ200では、導電体260を2層の積層構造として示しているが、本発明はこれに限られるものではない。例えば、導電体260が、単層構造であってもよいし、3層以上の積層構造であってもよい。

0044

例えば、酸化物230cが第1の酸化物と、第1の酸化物上の第2の酸化物からなる積層構造を有する場合、第1の酸化物は、酸化物230bと同様の組成を有し、第2の酸化物は、酸化物230aと同様の組成を有することが好ましい。

0045

ここで、導電体260は、トランジスタのゲート電極として機能し、層252aおよび層253a、ならびに層252bおよび層253bは、それぞれソース領域またはドレイン領域として機能する。上記のように、導電体260は、絶縁体280、絶縁体266の開口263、および層253aと層253bに挟まれた領域に埋め込まれるように形成される。ここで、導電体260、層252a、層252b、層253aおよび層253bの配置は、開口263に対して、自己整合的に選択される。つまり、トランジスタ200において、ゲート電極を、ソース電極ドレイン電極の間に、自己整合的に配置させることができる。よって、導電体260を位置合わせのマージンを設けることなく形成することができるので、トランジスタ200の占有面積縮小を図ることができる。これにより、半導体装置の微細化、高集積化を図ることができる。

0046

また、図1に示すように、導電体260は、開口263の内側に設けられた導電体260aと、導電体260aの内側に埋め込まれるように設けられた導電体260bと、を有することが好ましい。

0047

また、トランジスタ200は、基板(図示しない。)の上に配置された絶縁体214と、絶縁体214の上に配置された絶縁体216と、絶縁体216に埋め込まれるように配置された導電体205と、絶縁体216と導電体205の上に配置された絶縁体222と、絶縁体222の上に配置された絶縁体224と、を有することが好ましい。絶縁体224の上に酸化物230aが配置されることが好ましい。

0048

また、トランジスタ200の上に、層間膜として機能する絶縁体274、および絶縁体281が配置されることが好ましい。ここで、絶縁体274は、導電体260、および絶縁体280の上面に接して配置されることが好ましい。

0049

絶縁体222、絶縁体266、および絶縁体274は、水素(例えば、水素原子水素分子など)の拡散を抑制する機能を有することが好ましい。例えば、絶縁体222、絶縁体266、および絶縁体274は、絶縁体224、絶縁体250、および絶縁体280より水素透過性が低いことが好ましい。また、絶縁体222、絶縁体266、および絶縁体274は、酸素(例えば、酸素原子酸素分子など)の拡散を抑制する機能を有することが好ましい。例えば、絶縁体222、絶縁体266、および絶縁体274は、絶縁体224、絶縁体250、および絶縁体280より酸素透過性が低いことが好ましい。

0050

ここで、絶縁体224、酸化物230a、酸化物230b、および絶縁体250は、絶縁体280および絶縁体281から、絶縁体266、酸化物230c、および絶縁体274によって離隔されている。ゆえに、絶縁体280および絶縁体281に含まれる水素などの不純物や、過剰な酸素が、絶縁体224、酸化物230a、酸化物230b、および絶縁体250に、混入するのを抑制することができる。

0051

また、図1(B)(D)に示すように、トランジスタ200と電気的に接続し、プラグとして機能する導電体240(導電体240a、および導電体240b)が設けられることが好ましい。なお、プラグとして機能する導電体240の側面に接して絶縁体241(絶縁体241a、および絶縁体241b)が設けられる。つまり、絶縁体266、絶縁体280、絶縁体274、および絶縁体281の開口の内壁に接して絶縁体241が設けられる。また、絶縁体241の側面に接して導電体240の第1の導電体が設けられ、さらに内側に導電体240の第2の導電体が設けられる構成にしてもよい。ここで、導電体240の上面の高さと、絶縁体281の上面の高さは同程度にできる。なお、トランジスタ200では、導電体240の第1の導電体および導電体240の第2の導電体を積層する構成について示しているが、本発明はこれに限られるものではない。例えば、導電体240を単層、または3層以上の積層構造として設ける構成にしてもよい。構造体が積層構造を有する場合、形成順に序数を付与し、区別する場合がある。

0052

また、トランジスタ200は、チャネル形成領域を含む酸化物230(酸化物230a、酸化物230b、および酸化物230c)に、酸化物半導体として機能する金属酸化物(以下、酸化物半導体ともいう。)を用いることが好ましい。例えば、酸化物230のチャネル形成領域となる金属酸化物としては、バンドギャップが2eV以上、好ましくは2.5eV以上のものを用いることが好ましい。このように、バンドギャップの大きい金属酸化物を用いることで、トランジスタの非導通状態におけるリーク電流(オフ電流)を極めて小さくすることができる。このようなトランジスタを用いることで、低消費電力の半導体装置を提供できる。

0053

例えば、酸化物230として、In−M−Zn酸化物(元素Mは、アルミニウムガリウムイットリウム、錫、銅、バナジウムベリリウム、ホウ素、チタン、鉄、ニッケルゲルマニウムジルコニウムモリブデンランタンセリウムネオジムハフニウムタンタルタングステン、またはマグネシウムなどから選ばれた一種、または複数種)等の金属酸化物を用いるとよい。特に、元素Mは、アルミニウム、ガリウム、イットリウム、または錫を用いるとよい。また、酸化物230として、酸化インジウム、酸化亜鉛、In−Ga酸化物、In−Zn酸化物、Ga−Zn酸化物、または酸化ガリウムを用いてもよい。

0054

ここで、酸化物230は、酸素欠損を形成する元素、または酸素欠損と結合する元素を添加されることで、キャリア密度が増大し、低抵抗化する場合がある。このような元素としては、代表的にはホウ素やリンが挙げられる。また、ホウ素やリン以外にも、水素、炭素、窒素、フッ素硫黄塩素、チタン、希ガス等を用いることができる。また、希ガス元素の代表例としては、ヘリウムネオンアルゴンクリプトン、及びキセノン等がある。また、酸化物230は、アルミニウム、クロム、銅、銀、金、白金、タンタル、ニッケル、チタン、モリブデン、タングステン、ハフニウム、バナジウム、ニオブマンガン、マグネシウム、ジルコニウム、ベリリウム、インジウムルテニウムイリジウムストロンチウム、ランタンなどの金属元素の中から選ばれるいずれか一つまたは複数の金属元素を添加してもよい。上述した中でも、添加される元素は、ホウ素、及びリンが好ましい。ホウ素およびリンの添加には、アモルファスシリコン、または低温ポリシリコン製造ラインの装置を使用することができるため、設備投資を抑制することができる。上記元素の濃度は、二次イオン質量分析法SIMS:Secondary Ion Mass Spectrometry)などを用いて測定すればよい。

0055

特に、酸化物230中に添加する元素として、酸化物を形成しやすい元素を用いることが好ましい。このような元素としては、代表的にはホウ素、リン、アルミニウム、マグネシウム等がある。酸化物230中に添加された当該元素は、酸化物230中の酸素を奪って酸化物を形成しうる。その結果、酸化物230中には多くの酸素欠損が生じる。当該酸素欠損と、酸化物230中の水素とが結合することでキャリアが生じ、極めて低抵抗な領域となる。さらに、酸化物230中に添加された元素は安定な酸化物の状態で酸化物230中に存在するため、その後の工程で高い温度を要する処理が行われたとしても、酸化物230から脱離しにくい。すなわち、酸化物230に添加する元素として、酸化物を形成しやすい元素を用いることで、酸化物230中に高温のプロセスを経ても高抵抗化しにくい領域を形成できる。

0056

層252は、酸化物230に上記の元素が添加されて形成された層である。図1(B)および図2に示すように、層252aおよび層252bは、導電体260を挟んで対向して形成されており、上面が絶縁体250と接することが好ましい。上面視において、層252aおよび層252bの少なくとも一部が導電体260と重畳することが好ましい。ここで、層252の上記元素の濃度は、酸化物230の層252および層253が形成されていない部分よりも高いことが好ましい。また、層252に含まれる酸素欠損の量は、酸化物230の層252および層253が形成されていない部分の酸素欠損の量よりも高いことが好ましい。これにより、層252は、酸化物230の層252および層253が形成されていない部分と比較して、キャリア密度が大きく、抵抗が低くなる。

0057

層253は、酸化物230に上記の元素が添加されて形成された層であり、層252より多くの上記の元素が添加されて形成されている。図1(B)および図2に示すように、層253aおよび層253bは、導電体260および層252を挟んで対向して形成されており、上面が絶縁体250と接することが好ましい。上面視において、層253aおよび層253bの導電体260側の側面は、導電体260の側面と一致する、または、層253aおよび層253bの一部が導電体260と重畳する、ことが好ましい。ここで、層253の上記元素の濃度は、層252の上記元素の濃度と、同等、またはそれよりも高いことが好ましい。また、層253に含まれる酸素欠損の量は、酸化物230の層252および層253が形成されていない部分の酸素欠損の量よりも高いことが好ましい。これにより、層253は、酸化物230の層252および層253が形成されていない部分と比較して、キャリア密度が大きく、抵抗が低くなる。

0058

図2に示すように、酸化物230において、導電体260と重畳し、層252aおよび層252bに挟まれる領域を領域234とし、層253と重畳する領域を領域231(領域231a、および領域231b)とし、層252と重畳する領域を領域232(領域232a、および領域232b)とする。図2に示すように、領域234は、領域231aと領域231bの間に位置し、領域232aは領域231aと領域234の間に位置し、領域232bは領域231bと領域234の間に位置する。ここで、領域231は、領域234と比較して、キャリア密度が高く、低抵抗な領域である。また、領域232は、領域234と比較して、キャリア密度が高く、低抵抗な領域であり、領域231と比較して、キャリア密度が低く、高抵抗な領域である。または、領域232は、領域231と同等なキャリア密度を有し、同等な抵抗を有していてもよい。よって、領域234はトランジスタ200のチャネル形成領域として機能し、領域231はソース領域またはドレイン領域として機能し、領域232は接合領域として機能する。

0059

以上のような構成にすることで、導電体260と重畳する層252が所謂オーバーラップ領域Lov領域ともいう)として機能する。よって、酸化物230のチャネル形成領域とソース領域またはドレイン領域との間に、オフセット領域が形成されるのを防ぎ、実効的なチャネル長が導電体260の幅より大きくなるのを抑制することができる。これにより、トランジスタ200のオン電流を大きくし、S値を良好にし、周波数特性の向上を図ることができる。

0060

酸化物230にソース領域またはドレイン領域として機能する領域231を形成することで、金属で形成されたソース電極およびドレイン電極を設けることなく、領域231にプラグとして機能する導電体240を接続することができる。酸化物230に接して金属で形成されたソース電極およびドレイン電極を設けると、トランジスタ200の作製工程または後工程において、高温の熱処理を行った場合、金属で形成されたソース電極およびドレイン電極が酸化し、トランジスタ200のオン電流、S値、および周波数特性が劣化する場合がある。しかしながら、本実施の形態に示す半導体装置では、金属で形成されたソース電極およびドレイン電極を設ける必要がない。よって、トランジスタ200の作製工程または後工程において、高温の熱処理を行っても、良好なオン電流、S値、および周波数特性を示す半導体装置を提供することができる。例えば、本実施の形態に示す半導体装置では、トランジスタ200の作製後に、450℃以上800℃以下、代表的には600℃以上750℃以下の高温がかかるプロセスを行うことができる。

0061

また、上記のように、層252および層253に酸素欠損を形成する元素を添加して、熱処理を行うことで、チャネル形成領域として機能する領域234に含まれる水素を、層253に含まれる酸素欠損で捕獲できる場合がある。ここで、層253または層252に含まれる水素の濃度は、酸化物230の層252および層253が形成されていない部分の水素の濃度よりも高いことが好ましい。これにより、トランジスタ200に安定な電気特性を与え、信頼性の向上を図ることができる。

0062

さらに、詳細は後述するが、本実施の形態に示す作製方法を用いてトランジスタ200を形成することで、導電体260を自己整合的に、層253aと層253bの間に配置させ、且つ層252aおよび層252bと重畳させることができる。よって、良好な電気特性を有する半導体装置を歩留まり良く製造することができる。また、チャネル長(領域234のA1−A2方向の長さ、または層252aと層252bの距離ということもできる。)を露光装置解像限界以下にすることもできる。例えば、チャネル長を1nm以上60nm以下、より好ましくは15nm以上40nm以下にすることもできる。このように、チャネル長を短くすることにより、トランジスタ200のオン電流を大きくし、S値を良好にし、周波数特性の向上を図ることができる。

0063

また、半導体装置の作製方法について、詳細は後述するが、層252および層253は、上記元素をドーパントとして、絶縁体250を介して酸化物230に添加することで形成されることが好ましい。このとき、ドーパントは酸化物230だけでなく、絶縁体250にも添加される場合がある。

0064

酸化物230の領域231および領域232に添加されたドーパントは、酸化物230中の酸素と結合するため、領域231および領域232において、酸化物230には酸素欠損が生成される。ここで、酸化物230の領域234に含まれる水素は、領域231および領域232に拡散し、該酸素欠損に捕獲されるため、領域234の酸化物230は、成膜後の抵抗値と比較して高抵抗化すると考えられる。一方、領域231の酸化物230は、該酸素欠損が該水素を捕獲することで、成膜後の抵抗値と比較して低抵抗化すると考えられる。

0065

また、領域231と重畳する絶縁体250が酸素(あるいは後述する過剰酸素)を含む場合、該酸素が酸化物230に拡散すると、領域231において酸化物230が高抵抗化し、ソース領域、およびドレイン領域として十分機能しないことが懸念される。しかし、絶縁体250に該ドーパントが添加されることで、絶縁体250に含まれる酸素は該ドーパントに捕獲され、固定化される。よって、絶縁体250からの酸素の放出が抑制され、領域231において酸化物230の抵抗値は、成膜後の抵抗値より低い状態を維持することができる。

0066

以上のメカニズムにより、酸化物230において、領域234は、高い抵抗値を維持し、チャネル形成領域として機能し、領域231は、低い抵抗値を維持し、ソース領域、あるいはドレイン領域として機能することができると考えられる。また、酸化物230に添加されたドーパントは、後工程における加熱処理に対しても拡散などを起こさず、安定であるため、領域234、領域232および領域231は、該加熱処理が行われても、拡大や縮小を起こさず、安定である。すなわち、本発明によるトランジスタは、加熱処理によりチャネル長の増加や減少、ソース領域とドレイン領域の接続といった電気特性上、および信頼性上の不良を引き起こす恐れが低減される。

0067

なお、図2では、層252および層253が、酸化物230bおよび酸化物230cの膜厚方向において、酸化物230bおよび酸化物230cと、絶縁体250の界面近傍に形成されているが、これに限られない。例えば、層252および層253は、酸化物230bの膜厚と概略同じ厚さを有していてもよいし、酸化物230aにも、形成されていてもよい。

0068

また、酸化物230において、各領域の境界を明確に検出することが困難な場合がある。各領域内で検出される金属元素、ならびに水素、および窒素などの不純物元素の濃度は、領域ごとの段階的な変化に限らず、各領域内でも連続的に変化(グラデーションともいう。)していてもよい。つまり、チャネル形成領域に近い領域であるほど、金属元素、ならびに水素、および窒素などの不純物元素の濃度が減少していればよい。

0069

なお、図2においては、導電体260が領域234および領域232(層252)と重畳する構成について示したが、本実施の形態はこれに限られるものではない。例えば、図3に示すように、導電体260が領域234、領域232(層252)、および領域231(層253)の一部と重畳する構成にしてもよい。このような構成にすることで導電体260と重畳する層252に加えて、層253の一部もオーバーラップ領域として機能する。よって、酸化物230のチャネル形成領域とソース領域またはドレイン領域との間に、オフセット領域が形成されるのをより確実に防ぎ、実効的なチャネル長が導電体260の幅より大きくなるのを抑制することができる。これにより、トランジスタ200のオン電流を大きくし、S値を良好にし、周波数特性の向上を図ることができる。

0070

上より、オン電流が大きいトランジスタを有する半導体装置を提供することができる。または、高い周波数特性を有するトランジスタを有する半導体装置を提供することができる。または、電気特性の変動を抑制し、安定した電気特性を有するとともに、信頼性を向上させた半導体装置を提供することができる。または、オフ電流が小さいトランジスタを有する半導体装置を提供することができる。

0071

以下では、本発明の一態様に係るトランジスタ200を有する半導体装置の詳細な構成について説明する。

0072

導電体205は、酸化物230、および導電体260と、重なるように配置する。また、導電体205は、絶縁体216に埋め込まれて設けることが好ましい。ここで、導電体205の上面の平坦性を良好にすることが好ましい。例えば、導電体205上面の平均面粗さ(Ra)を1nm以下、好ましくは0.5nm以下、より好ましくは0.3nm以下にすればよい。これにより、導電体205の上に形成される、絶縁体224の平坦性を良好にし、酸化物230a、酸化物230bおよび酸化物230cの結晶性の向上を図ることができる。

0073

ここで、導電体260は、第1のゲート(トップゲートともいう。)電極として機能する場合がある。また、導電体205は、第2のゲート(ボトムゲートともいう。)電極として機能する場合がある。その場合、導電体205に印加する電位を、導電体260に印加する電位と、連動させず、独立して変化させることで、トランジスタ200のVthを制御することができる。特に、導電体205に負の電位を印加することにより、トランジスタ200のVthを0Vより大きくし、オフ電流を低減することが可能となる。したがって、導電体205に負の電位を印加したほうが、印加しない場合よりも、導電体260に印加する電位が0Vのときのドレイン電流を小さくすることができる。

0074

また、導電体205は、酸化物230におけるチャネル形成領域よりも、大きく設けるとよい。特に、図1(C)に示すように、導電体205は、酸化物230のチャネル幅方向と交わる端部よりも外側の領域においても、延伸していることが好ましい。つまり、酸化物230のチャネル幅方向における側面において、導電体205と、導電体260とは、絶縁体を介して重畳していることが好ましい。

0075

上記構成を有することで、第1のゲート電極としての機能を有する導電体260の電界と、第2のゲート電極としての機能を有する導電体205の電界によって、酸化物230のチャネル形成領域を電気的に取り囲むことができる。

0076

また、図1(C)に示すように、導電体205は延伸させて、配線としても機能させている。ただし、これに限られることなく、導電体205の下に、配線として機能する導電体を設ける構成にしてもよい。また、導電体205は、必ずしも各トランジスタに一個ずつ設ける必要はない。例えば、導電体205を複数のトランジスタで共有する構成にしてもよい。

0077

また、導電体205は、絶縁体216の開口の内壁に接して第1の導電体が形成され、さらに内側に第2の導電体が形成されている。ここで、導電体205の第1の導電体および第2の導電体の高さと、絶縁体216の上面の高さは同程度にできる。なお、トランジスタ200では、導電体205の第1の導電体と第2の導電体を積層する構成について示しているが、本発明はこれに限られるものではない。例えば、導電体205は、単層、または3層以上の積層構造として設ける構成にしてもよい。構造体が積層構造を有する場合、形成順に序数を付与し、区別する場合がある。

0078

また、導電体205の第1の導電体として、水素原子、水素分子、水分子窒素原子窒素分子酸化窒素分子(N2O、NO、NO2など)、銅原子などの不純物の拡散を抑制する機能を有する(上記不純物が透過しにくい。)導電体を用いてもよい。または、酸素(例えば、酸素原子、酸素分子など)の少なくとも一の拡散を抑制する機能を有する(上記酸素が透過しにくい。)導電体を用いることが好ましい。なお、本明細書において、不純物、または酸素の拡散を抑制する機能とは、上記不純物、または上記酸素のいずれか一またはすべての拡散を抑制する機能とする。

0079

導電体205の第1の導電体として、酸素の拡散を抑制する機能を有する導電体を用いることにより、導電体205が酸化して導電率が低下することを抑制することができる。酸素の拡散を抑制する機能を有する導電体としては、例えば、タンタル、窒化タンタル、ルテニウムまたは酸化ルテニウムなどを用いることが好ましい。したがって、導電体205の第1の導電体としては、上記導電性材料を単層または積層とすればよい。

0080

また、導電体205の第2の導電体として、タングステン、銅、またはアルミニウムを主成分とする導電性材料を用いることが好ましい。

0081

絶縁体214は、水または水素などの不純物が、基板側からトランジスタ200に混入するのを抑制するバリア絶縁膜として機能することが好ましい。したがって、絶縁体214は、水素原子、水素分子、水分子、窒素原子、窒素分子、酸化窒素分子(N2O、NO、NO2など)、銅原子などの不純物の拡散を抑制する機能を有する(上記不純物が透過しにくい。)絶縁性材料を用いることが好ましい。または、酸素(例えば、酸素原子、酸素分子など)の少なくとも一の拡散を抑制する機能を有する(上記酸素が透過しにくい。)絶縁性材料を用いることが好ましい。

0082

例えば、絶縁体214として、酸化アルミニウムまたは窒化シリコンなどを用いることが好ましい。これにより、水または水素などの不純物が絶縁体214よりも基板側からトランジスタ200側に拡散するのを抑制することができる。または、絶縁体224などに含まれる酸素が、絶縁体214よりも基板側に、拡散するのを抑制することができる。

0083

また、層間膜として機能する絶縁体216、絶縁体280、および絶縁体281は、絶縁体214よりも誘電率が低いことが好ましい。誘電率が低い材料を層間膜とすることで、配線間に生じる寄生容量を低減することができる。例えば、絶縁体216、絶縁体280、および絶縁体281として、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、フッ素を添加した酸化シリコン、炭素を添加した酸化シリコン、炭素および窒素を添加した酸化シリコン、または空孔を有する酸化シリコンなどを適宜用いればよい。

0084

また、絶縁体216を積層構造にしてもよい。例えば、絶縁体216において、少なくとも導電体205の側面と接する部分に、絶縁体214と同様の絶縁体を設ける構成にしてもよい。このような構成にすることで、絶縁体216に含まれる酸素によって、導電体205が酸化するのを抑制することができる。あるいは、導電体205により、絶縁体216に含まれる酸素が吸収されるのを抑制することができる。

0085

絶縁体222および絶縁体224は、ゲート絶縁体としての機能を有する。

0086

ここで、酸化物230と接する絶縁体224は、加熱により酸素を脱離することが好ましい。本明細書では、加熱により離脱する酸素を過剰酸素と呼ぶことがある。例えば、絶縁体224は、酸化シリコンまたは酸化窒化シリコンなどを適宜用いればよい。酸素を含む絶縁体を酸化物230に接して設けることにより、酸化物230中の酸素欠損を低減し、トランジスタ200の信頼性を向上させることができる。

0087

絶縁体224として、具体的には、加熱により一部の酸素が脱離する酸化物材料を用いることが好ましい。加熱により酸素を脱離する酸化物とは、TDS(Thermal Desorption Spectroscopy)分析にて、酸素原子に換算しての酸素の脱離量が1.0×1018atoms/cm3以上、好ましくは1.0×1019atoms/cm3以上、さらに好ましくは2.0×1019atoms/cm3、または3.0×1020atoms/cm3以上である酸化物膜である。なお、上記TDS分析時における膜の表面温度としては100℃以上700℃以下、または100℃以上400℃以下の範囲が好ましい。

0088

また、図1(C)に示すように、絶縁体224は、酸化物230bと重ならない領域の膜厚が、それ以外の領域の膜厚より薄くなることが好ましい。また、絶縁体224は酸化物230bと重なる島状の形状としてもよい。このような構成にすることで、導電体260の下端部をより下側に位置させることができるので、第1のゲート電極としての機能する導電体260の電界を、酸化物230の側面に作用させやすくなる。よって、トランジスタ200のオン電流を増大させ、周波数特性を向上させることができる。また、絶縁体224を、酸化物230bおよび酸化物230aと重畳させて、島状に設ける構成にしてもよい。

0089

絶縁体222は、絶縁体214などと同様に、水または水素などの不純物が、基板側からトランジスタ200に混入するのを抑制するバリア絶縁膜として機能することが好ましい。例えば、絶縁体222は、絶縁体224より水素透過性が低いことが好ましい。絶縁体222、絶縁体266、および絶縁体274によって、絶縁体224、酸化物230、および絶縁体250などを囲むことにより、外方から水または水素などの不純物がトランジスタ200に侵入することを抑制することができる。

0090

さらに、絶縁体222は、酸素(例えば、酸素原子、酸素分子など)の少なくとも一の拡散を抑制する機能を有する(上記酸素が透過しにくい。)ことが好ましい。例えば、絶縁体222は、絶縁体224より酸素透過性が低いことが好ましい。絶縁体222が、酸素や不純物の拡散を抑制する機能を有することで、酸化物230が有する酸素が、基板側へ拡散することを低減できるので、好ましい。また、導電体205が、絶縁体224や、酸化物230が有する酸素と反応することを抑制することができる。

0091

絶縁体222は、絶縁性材料であるアルミニウムおよびハフニウムの一方または双方の酸化物を含む絶縁体を用いるとよい。アルミニウムおよびハフニウムの一方または双方の酸化物を含む絶縁体として、酸化アルミニウム、酸化ハフニウム、アルミニウムおよびハフニウムを含む酸化物(ハフニウムアルミネート)などを用いることが好ましい。このような材料を用いて絶縁体222を形成した場合、絶縁体222は、酸化物230からの酸素の放出や、トランジスタ200の周辺部から酸化物230への水素等の不純物の混入を抑制する層として機能する。

0092

または、これらの絶縁体に、例えば、酸化アルミニウム、酸化ビスマス酸化ゲルマニウム酸化ニオブ、酸化シリコン、酸化チタン酸化タングステン酸化イットリウム酸化ジルコニウムを添加してもよい。またはこれらの絶縁体を窒化処理してもよい。上記の絶縁体に酸化シリコン、酸化窒化シリコンまたは窒化シリコンを積層して用いてもよい。

0093

また、絶縁体222は、例えば、酸化アルミニウム、酸化ハフニウム、酸化タンタル、酸化ジルコニウム、チタン酸ジルコン酸鉛PZT)、チタン酸ストロンチウム(SrTiO3)または(Ba,Sr)TiO3(BST)などのいわゆるhigh−k材料を含む絶縁体を単層または積層で用いてもよい。トランジスタの微細化、および高集積化が進むと、ゲート絶縁体の薄膜化により、リーク電流などの問題が生じる場合がある。ゲート絶縁体として機能する絶縁体にhigh−k材料を用いることで、物理膜厚を保ちながら、トランジスタ動作時のゲート電位の低減が可能となる。

0094

なお、絶縁体222、および絶縁体224が、2層以上の積層構造を有していてもよい。その場合、同じ材料からなる積層構造に限定されず、異なる材料からなる積層構造でもよい。例えば、絶縁体222の下に絶縁体224と同様の絶縁体を設ける構成にしてもよい。

0095

酸化物230は、酸化物230aと、酸化物230a上の酸化物230bと、酸化物230b上の酸化物230cと、を有する。酸化物230b下に酸化物230aを有することで、酸化物230aよりも下方に形成された構造物から、酸化物230bへの不純物の拡散を抑制することができる。また、酸化物230b上に酸化物230cを有することで、酸化物230cよりも上方に形成された構造物から、酸化物230bへの不純物の拡散を抑制することができる。

0096

なお、酸化物230は、各金属原子原子数比が異なる酸化物により、積層構造を有することが好ましい。具体的には、酸化物230aに用いる金属酸化物において、構成元素中の元素Mの原子数比が、酸化物230bに用いる金属酸化物における、構成元素中の元素Mの原子数比より、大きいことが好ましい。また、酸化物230aに用いる金属酸化物において、Inに対する元素Mの原子数比が、酸化物230bに用いる金属酸化物における、Inに対する元素Mの原子数比より大きいことが好ましい。また、酸化物230bに用いる金属酸化物において、元素Mに対するInの原子数比が、酸化物230aに用いる金属酸化物における、元素Mに対するInの原子数比より大きいことが好ましい。また、酸化物230cは、酸化物230aまたは酸化物230bに用いることができる金属酸化物を、用いることができる。

0097

酸化物230a、酸化物230bおよび酸化物230cは、結晶性を有することが好ましく、特に、CAAC−OSを用いることが好ましい。CAAC−OSなどの結晶性を有する酸化物は、不純物や欠陥(酸素欠損など)が少なく、結晶性の高い、緻密な構造を有している。このような酸化物230を有することで、トランジスタ200は、製造工程における高い温度(所謂サーマルバジェット)に対して安定になる。

0098

また、酸化物230aおよび酸化物230cの伝導帯下端のエネルギーが、酸化物230bの伝導帯下端のエネルギーより高くなることが好ましい。また、言い換えると、酸化物230aおよび酸化物230cの電子親和力が、酸化物230bの電子親和力より小さいことが好ましい。この場合、酸化物230cは、酸化物230aに用いることができる金属酸化物を用いることが好ましい。具体的には、酸化物230cに用いる金属酸化物において、構成元素中の元素Mの原子数比が、酸化物230bに用いる金属酸化物における、構成元素中の元素Mの原子数比より、大きいことが好ましい。また、酸化物230cに用いる金属酸化物において、Inに対する元素Mの原子数比が、酸化物230bに用いる金属酸化物における、Inに対する元素Mの原子数比より大きいことが好ましい。また、酸化物230bに用いる金属酸化物において、元素Mに対するInの原子数比が、酸化物230cに用いる金属酸化物における、元素Mに対するInの原子数比より大きいことが好ましい。

0099

ここで、酸化物230a、酸化物230b、および酸化物230cの接合部において、伝導帯下端のエネルギー準位はなだらかに変化する。換言すると、酸化物230a、酸化物230b、および酸化物230cの接合部における伝導帯下端のエネルギー準位は、連続的に変化または連続接合するともいうことができる。このようにするためには、酸化物230aと酸化物230bとの界面、および酸化物230bと酸化物230cとの界面において形成される混合層欠陥準位密度を低くするとよい。

0100

具体的には、酸化物230aと酸化物230b、酸化物230bと酸化物230cが、酸素以外に共通の元素を有する(主成分とする。)ことで、欠陥準位密度が低い混合層を形成することができる。例えば、酸化物230bがIn−Ga−Zn酸化物の場合、酸化物230aおよび酸化物230cとして、In−Ga−Zn酸化物、Ga−Zn酸化物、酸化ガリウムなどを用いてもよい。また、酸化物230cを積層構造としてもよい。例えば、In−Ga−Zn酸化物と、当該In−Ga−Zn酸化物上のGa−Zn酸化物との積層構造、またはIn−Ga−Zn酸化物と、当該In−Ga−Zn酸化物上の酸化ガリウムとの積層構造を用いることができる。別言すると、In−Ga−Zn酸化物と、Inを含まない酸化物との積層構造を、酸化物230cとして用いても良い。

0101

具体的には、酸化物230aとして、In:Ga:Zn=1:3:4[原子数比]、または1:1:0.5[原子数比]の金属酸化物を用いればよい。また、酸化物230bとして、In:Ga:Zn=4:2:3[原子数比]、または3:1:2[原子数比]の金属酸化物を用いればよい。また、酸化物230cとして、In:Ga:Zn=1:3:4[原子数比]、In:Ga:Zn=4:2:3[原子数比]、Ga:Zn=2:1[原子数比]、またはGa:Zn=2:5[原子数比]の金属酸化物を用いればよい。また、酸化物230cを積層構造とする場合の具体例としては、In:Ga:Zn=4:2:3[原子数比]とIn:Ga:Zn=1:3:4[原子数比]との積層構造、In:Ga:Zn=4:2:3[原子数比]と、Ga:Zn=2:1[原子数比]との積層構造、In:Ga:Zn=4:2:3[原子数比]と、Ga:Zn=2:5[原子数比]との積層構造、In:Ga:Zn=4:2:3[原子数比]と、酸化ガリウムとの積層構造などが挙げられる。

0102

このとき、キャリアの主たる経路は酸化物230b、およびその界面近傍となる。酸化物230a、酸化物230cを上述の構成とすることで、酸化物230aと酸化物230bとの界面、および酸化物230bと酸化物230cとの界面における欠陥準位密度を低くすることができる。そのため、界面散乱によるキャリア伝導への影響が小さくなり、トランジスタ200は高いオン電流、および高い周波数特性を得ることができる。なお、酸化物230cを積層構造とした場合、上述の酸化物230bと、酸化物230cとの界面における欠陥準位密度を低くする効果に加え、酸化物230cが有する構成元素が、絶縁体250側に拡散するのを抑制することが期待される。より具体的には、酸化物230cを積層構造とし、積層構造の上方にInを含まない酸化物を位置させるため、絶縁体250側に拡散しうるInを抑制することができる。絶縁体250は、ゲート絶縁体として機能するため、Inが拡散した場合、トランジスタの特性不良となる。したがって、酸化物230cを積層構造とすることで、信頼性の高い半導体装置を提供することが可能となる。

0103

絶縁体250は、ゲート絶縁体として機能する。絶縁体250は、酸化物230cの上面に接し、酸化物230cを覆って配置することが好ましい。絶縁体250は、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、フッ素を添加した酸化シリコン、炭素を添加した酸化シリコン、炭素および窒素を添加した酸化シリコン、空孔を有する酸化シリコンを用いることができる。特に、酸化シリコン、および酸化窒化シリコンは熱に対し安定であるため好ましい。

0104

絶縁体250は、絶縁体224と同様に、絶縁体250中の水または水素などの不純物濃度が低減されていることが好ましい。絶縁体250の膜厚は、1nm以上20nm以下とするのが好ましい。

0105

また、後述するが、絶縁体250は、層252および層253を形成する際の保護膜としての機能を有してもよい。層252および層253の形成にイオンインプランテーションイオンドーピングを用いる場合、保護膜として絶縁体250を設けることで、酸化物230の表面がイオンプラズマに直接曝されることが無く、層252および層253の形成における酸化物230のダメージを抑制できるため、好ましい。ここで、酸化物230のダメージとは、酸化物230中における、過度の酸素欠損の形成や、過度の酸化物230の結晶性の低下などをいう。このような保護膜として機能する絶縁体250の上に、さらに、上述のバリア絶縁膜を積層してもよい。

0106

また、絶縁体250と導電体260との間に金属酸化物を設けてもよい。当該金属酸化物は、絶縁体250から導電体260への酸素拡散を抑制することが好ましい。これにより、絶縁体250の酸素による導電体260の酸化を抑制することができる。例えば、上記の酸化物230cとして用いることができる金属酸化物を用いればよい。

0107

また、当該金属酸化物は、ゲート絶縁体の一部としての機能を有する場合がある。したがって、絶縁体250に酸化シリコンや酸化窒化シリコンなどを用いる場合、当該金属酸化物は、比誘電率が高いhigh−k材料である金属酸化物を用いることが好ましい。ゲート絶縁体を、絶縁体250と当該金属酸化物との積層構造とすることで、熱に対して安定、かつ比誘電率の高い積層構造とすることができる。したがって、ゲート絶縁体の物理膜厚を保持したまま、トランジスタ動作時に印加するゲート電位の低減化が可能となる。また、ゲート絶縁体として機能する絶縁体の等価酸化膜厚EOT)の薄膜化が可能となる。

0108

具体的には、ハフニウム、アルミニウム、ガリウム、イットリウム、ジルコニウム、タングステン、チタン、タンタル、ニッケル、ゲルマニウム、または、マグネシウムなどから選ばれた一種、または二種以上が含まれた金属酸化物を用いることができる。特に、アルミニウム、またはハフニウムの一方または双方の酸化物を含む絶縁体である、酸化アルミニウム、酸化ハフニウム、アルミニウムおよびハフニウムを含む酸化物(ハフニウムアルミネート)などを用いることが好ましい。

0109

導電体260は、図1では2層構造として示しているが、単層構造でもよいし、3層以上の積層構造であってもよい。

0110

導電体260aは、上述の、水素原子、水素分子、水分子、窒素原子、窒素分子、酸化窒素分子(N2O、NO、NO2など)、銅原子などの不純物の拡散を抑制する機能を有する導電体を用いることが好ましい。または、酸素(例えば、酸素原子、酸素分子など)の少なくとも一の拡散を抑制する機能を有する導電性材料を用いることが好ましい。

0111

また、導電体260aが酸素の拡散を抑制する機能を持つことにより、絶縁体250に含まれる酸素により、導電体260bが酸化して導電率が低下することを抑制することができる。酸素の拡散を抑制する機能を有する導電性材料としては、例えば、タンタル、窒化タンタル、ルテニウム、または酸化ルテニウムなどを用いることが好ましい。

0112

また、導電体260bは、タングステン、銅、またはアルミニウムを主成分とする導電性材料を用いることが好ましい。また、導電体260は、配線としても機能するため、導電性が高い導電体を用いることが好ましい。例えば、タングステン、銅、またはアルミニウムを主成分とする導電性材料を用いることができる。また、導電体260bは積層構造としてもよく、例えば、チタン、窒化チタンと上記導電性材料との積層構造としてもよい。

0113

また、絶縁体250と導電体260aの間に、酸化物230として用いることができる金属酸化物を設けてもよい。このとき、該金属酸化物は、導電体260と同様にゲート電極として機能する。金属酸化物を設けることにより、絶縁体250、および酸化物230の少なくとも一方に酸素を供給することができ、好ましい。また、該金属酸化物として、酸素の透過を抑制する機能を有する金属酸化物を用いることにより、絶縁体250、または絶縁体280に含まれる酸素によって、導電体260が酸化するのを抑制することができる。あるいは、絶縁体250に含まれる酸素が、導電体260に吸収されることを抑制できる。

0114

また、図1(A)(C)に示すように、酸化物230bの層252および層253と重ならない領域、言い換えると、酸化物230のチャネル形成領域において、酸化物230の側面が導電体260で覆うように配置されている。これにより、第1のゲート電極としての機能する導電体260の電界を、酸化物230の側面に作用させやすくなる。よって、トランジスタ200のオン電流を大きくし、S値を良好にし、周波数特性の向上を図ることができる。

0115

絶縁体266は、絶縁体214などと同様に、水または水素などの不純物が、絶縁体280側からトランジスタ200に混入するのを抑制するバリア絶縁膜として機能することが好ましい。例えば、絶縁体266は、絶縁体224より水素透過性が低いことが好ましい。さらに、図1(B)(C)に示すように、絶縁体266は、導電体260の側面の一部、および絶縁体250の上面に接することが好ましい。このような構成にすることで、絶縁体280に含まれる水素が、酸化物230および絶縁体224に侵入するのを抑制することができる。

0116

さらに、絶縁体266は、酸素(例えば、酸素原子、酸素分子など)の少なくとも一の拡散を抑制する機能を有する(上記酸素が透過しにくい。)ことが好ましい。例えば、絶縁体266は、絶縁体280または絶縁体224より酸素透過性が低いことが好ましい。

0117

また、絶縁体266は、スパッタリング法を用いて成膜される構成にしてもよい。絶縁体266を、酸素を含む雰囲気でスパッタリング法を用いて成膜することで、絶縁体250の絶縁体266と接する領域近傍に酸素を添加することができる。これにより、当該領域から、絶縁体250を介して酸化物230中に酸素を供給することができる。ここで、絶縁体266が、上方への酸素の拡散を抑制する機能を有することで、酸素が酸化物230から絶縁体280へ拡散することを防ぐことができる。また、絶縁体222が、下方への酸素の拡散を抑制する機能を有することで、酸素が酸化物230から基板側へ拡散することを防ぐことができる。このようにして、酸化物230のチャネル形成領域に酸素が供給される。これにより、酸化物230の酸素欠損を低減し、トランジスタのノーマリーオン化を抑制することができる。

0118

絶縁体266としては、例えば、アルミニウムおよびハフニウムの一方または双方の酸化物を含む絶縁体を成膜するとよい。なお、アルミニウムおよびハフニウムの一方または双方の酸化物を含む絶縁体として、酸化アルミニウム、酸化ハフニウム、アルミニウムおよびハフニウムを含む酸化物(ハフニウムアルミネート)などを用いることが好ましい。

0119

また、絶縁体266は、積層構造としてもよい。絶縁体266を積層構造とする場合、スパッタリング法を用いて形成された第1の絶縁体上にALD法を用いて第2の絶縁体を形成してもよい。このとき、第1の絶縁体と、第2の絶縁体は上述した材料から選ばれた、同じ材料を用いてもよいし、異なる材料を用いてもよい。例えば、第1の絶縁体として、スパッタリング法により形成された酸化アルミニウムを用い、第2の絶縁体として、ALD法により形成された酸化アルミニウムを用いてもよい。ALD法により形成される膜は被覆性が高く、酸化物230などの構造体による段差部にも高い均一性を有する膜を形成することができる。また、スパッタリング法により形成された第1の絶縁膜における成膜不良を補てんすることができ、好ましい。

0120

また、絶縁体266としては、例えば、窒化アルミニウムを含む絶縁体を用いればよい。絶縁体266として、組成式がAlNx(xは0より大きく2以下の実数、好ましくは、xは0.5より大きく1.5以下の実数)を満たす窒化物絶縁体を用いることが好ましい。これにより、絶縁性に優れ、且つ熱伝導性に優れた膜とすることができるため、トランジスタ200を駆動したときに生じる熱の放熱性を高めることができる。また、絶縁体266として、窒化アルミニウムチタン、窒化チタンなどを用いることもできる。この場合、スパッタリング法を用いて成膜することで、成膜ガスに酸素またはオゾンなどの酸化性の強いガスを用いずに成膜することができるので、好ましい。また、窒化シリコンまたは窒化酸化シリコンなどを用いることもできる。

0121

このように、水素に対してバリア性を有する絶縁体266によって、絶縁体250、および酸化物230を覆うことで、絶縁体280は、絶縁体250、および酸化物230と離隔されている。これにより、トランジスタ200の外方から水素などの不純物が浸入することを抑制できるので、トランジスタ200に良好な電気特性および信頼性を与えることができる。

0122

また、絶縁体266としては、例えば、アルミニウムおよびハフニウムの一方または双方の酸化物を含む絶縁体を成膜するとよい。なお、アルミニウムおよびハフニウムの一方または双方の酸化物を含む絶縁体として、酸化アルミニウム、酸化ハフニウム、アルミニウムおよびハフニウムを含む酸化物(ハフニウムアルミネート)などを用いることが好ましい。この場合、絶縁体266は、ALD法を用いて成膜されることが好ましい。ALD法は、被覆性の良好な成膜法なので、被形成面の凹凸によって、段切れなどが形成されるのを防ぐことができる。

0123

絶縁体280は、絶縁体266を介して、絶縁体224、酸化物230、および絶縁体250上に設けられる。例えば、絶縁体280として、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、フッ素を添加した酸化シリコン、炭素を添加した酸化シリコン、炭素および窒素を添加した酸化シリコン、または空孔を有する酸化シリコンなどを有することが好ましい。特に、酸化シリコンおよび酸化窒化シリコンは、熱的に安定であるため好ましい。特に、酸化シリコン、酸化窒化シリコン、空孔を有する酸化シリコンなどの材料は、加熱により脱離する酸素を含む領域を容易に形成することができるため好ましい。

0124

絶縁体280中の水または水素などの不純物濃度が低減されていることが好ましい。また、絶縁体280の上面は、平坦化されていてもよい。

0125

絶縁体274は、絶縁体214などと同様に、水または水素などの不純物が、上方から絶縁体280に混入するのを抑制するバリア絶縁膜として機能することが好ましい。例えば、絶縁体274は、絶縁体280より水素透過性が低いことが好ましい。

0126

さらに、絶縁体274は、酸素(例えば、酸素原子、酸素分子など)の少なくとも一の拡散を抑制する機能を有する(上記酸素が透過しにくい。)ことが好ましい。例えば、絶縁体274は、絶縁体280より酸素透過性が低いことが好ましい。絶縁体274が、酸素の拡散を抑制する機能を有することで、絶縁体280に含まれる酸素が外方拡散するのを抑制することができる。

0127

絶縁体274としては、例えば、絶縁体214、絶縁体222等に用いることができる絶縁体を用いればよい。また、水または水素などの不純物に対するバリア絶縁膜と、酸素の拡散を抑制する機能を有する絶縁膜を積層する構成にしてもよい。

0128

また、絶縁体274の上に、層間膜として機能する絶縁体281を設けることが好ましい。絶縁体281は、絶縁体224などと同様に、膜中の水または水素などの不純物濃度が低減されていることが好ましい。

0129

また、絶縁体281、絶縁体274、絶縁体280、および絶縁体266に形成された開口に、導電体240aおよび導電体240bを配置する。導電体240aおよび導電体240bは、導電体260を挟んで対向して設ける。なお、導電体240aおよび導電体240bの上面の高さは、絶縁体281の上面と、同一平面上としてもよい。

0130

なお、絶縁体281、絶縁体274、絶縁体280、および絶縁体266の開口の内壁に接して、絶縁体241aが設けられ、その側面に接して導電体240aの第1の導電体が形成されている。当該開口の底部の少なくとも一部には層253aが位置しており、導電体240aが層253aと接する。ここで、図1(D)に示すように、導電体240aの第1の導電体は、層253aの上面および側面(酸化物230bの上面および側面といってもよい。)と接することが好ましい。このように導電体240aを設けることで、導電体240aと層253aの接触面積が増大するので、トランジスタ200のオン電流および移動度の向上、ならびにS値の低減を図ることができる。同様に、絶縁体281、絶縁体274、絶縁体280、および絶縁体266の開口の内壁に接して、絶縁体241bが設けられ、その側面に接して導電体240bの第1の導電体が形成されている。当該開口の底部の少なくとも一部には層253bが位置しており、導電体240bが層253bと接する。図示していないが、導電体240aと同様に、導電体240bの第1の導電体は、層253bの上面および側面(酸化物230bの上面および側面といってもよい。)と接することが好ましい。このように導電体240bを設けることで、導電体240bと層253bの接触面積が増大するので、トランジスタ200のオン電流および移動度の向上、ならびにS値の低減を図ることができる。

0131

なお、図1(B)(D)等においては、導電体240が酸化物230cに形成された層253と接する構成について示しているが、本実施の形態はこれに限られるものではない。例えば、導電体240が酸化物230cを貫通し、酸化物230bに形成された層253に接する構成にしてもよい。

0132

導電体240aおよび導電体240bは、タングステン、銅、またはアルミニウムを主成分とする導電性材料を用いることが好ましい。また、導電体240aおよび導電体240bは積層構造としてもよい。

0133

また、導電体240を積層構造とする場合、酸化物230a、酸化物230b、絶縁体266、絶縁体280、絶縁体274、絶縁体281と接する導電体には、上述の、水または水素などの不純物の拡散を抑制する機能を有する導電体を用いることが好ましい。例えば、タンタル、窒化タンタル、チタン、窒化チタン、ルテニウム、または酸化ルテニウムなどを用いることが好ましい。また、水または水素などの不純物の拡散を抑制する機能を有する導電性材料は、単層または積層で用いてもよい。当該導電性材料を用いることで、絶縁体280に添加された酸素が導電体240aおよび導電体240bに吸収されるのを防ぐことができる。また、絶縁体281より上層から水または水素などの不純物が、導電体240aおよび導電体240bを通じて酸化物230に混入するのを抑制することができる。

0134

絶縁体241aおよび絶縁体241bとしては、絶縁体214等に用いることができる絶縁体、例えば、酸化アルミニウムまたは窒化シリコンなどを用いればよい。絶縁体241aおよび絶縁体241bは、絶縁体266に接して設けられるので、絶縁体280などから水または水素などの不純物が、導電体240aおよび導電体240bを通じて酸化物230に混入するのを抑制することができる。また、絶縁体280に含まれる酸素が導電体240aおよび導電体240bに吸収されるのを防ぐことができる。

0135

絶縁体241aおよび絶縁体241bの形成には、ALD法やCVD法を用いることができる。

0136

また、図示しないが、導電体240aの上面、および導電体240bの上面に接して配線として機能する導電体を配置してもよい。配線として機能する導電体は、タングステン、銅、またはアルミニウムを主成分とする導電性材料を用いることが好ましい。また、当該導電体は、積層構造としてもよく、例えば、チタン、窒化チタンと上記導電性材料との積層としてもよい。当該導電体は、絶縁体に設けられた開口に埋め込むように形成してもよい。

0137

また、図示しないが、当該導電体を覆うように、抵抗率が1.0×1013Ωcm以上1.0×1015Ωcm以下、好ましくは5.0×1013Ωcm以上5.0×1014Ωcm以下の絶縁体を設けることが好ましい。当該導電体上に上記のような抵抗率を有する絶縁体を設けることで、当該絶縁体は、絶縁性を維持しつつ、トランジスタ200、当該導電体等の配線間に蓄積される電荷を分散し、該電荷によるトランジスタや、該トランジスタを有する電子機器の特性不良や静電破壊を抑制することができ、好ましい。

0138

酸化物230c、および絶縁体274として、それぞれ積層絶縁膜を用い、さらに、絶縁体256aおよび絶縁体256b(以下、まとめて絶縁体256と表記する場合がある。)を設けたトランジスタ200について図4に示す。図1と同様に、図4(A)(B)(C)(D)は、トランジスタ200、およびトランジスタ200周辺の上面図および断面図である。図4(A)は、トランジスタ200を有する半導体装置の上面図である。また、図4(B)、および図4(C)は、当該半導体装置の断面図である。ここで、図4(B)は、図4(A)にA1−A2の一点鎖線で示す部位の断面図であり、トランジスタ200のチャネル長方向の断面図でもある。また、図4(C)は、図4(A)にA3−A4の一点鎖線で示す部位の断面図であり、トランジスタ200のチャネル幅方向の断面図でもある。また、図4(D)は、図4(A)にA5−A6の一点鎖線で示す部位の断面図である。なお、図4(A)の上面図では、図の明瞭化のために一部の要素を省いて図示している。

0139

図4に示すトランジスタ200では、酸化物230cとして、酸化物230c1とその上に積層された酸化物230c2を用い、絶縁体274として、絶縁体274aとその上に積層された絶縁体274bを用いている。

0140

ここで、酸化物230c1として、酸化物230bとして用いることができる金属酸化物を、酸化物230c2として、酸化物230aとして用いることができる金属酸化物を、用いればよい。例えば、酸化物230c1として、In:Ga:Zn=4:2:3[原子数比]の金属酸化物を用い、酸化物230c2として、In:Ga:Zn=1:3:4[原子数比]を用いればよい。

0141

また、絶縁体274aとして、酸素の拡散を抑制する機能を有する絶縁体を、絶縁体274bとして、水または水素などの不純物が混入するのを抑制するバリア絶縁膜として機能する絶縁体を、用いればよい。例えば、絶縁体274aとして、スパッタリング法で成膜した酸化アルミニウムなどを用いることができる。また、絶縁体274bとして、窒化シリコン、窒化酸化シリコン、窒化アルミニウムなどを用いることができる。

0142

さらに、図4に示すように、絶縁体250と絶縁体266の間に絶縁体256を設けることが好ましい。図4に示すように、絶縁体256は、絶縁体256aとその上の絶縁体256bの積層構造になっている。

0143

絶縁体256aは、層252および層253を形成する際の保護膜としての機能を有してもよい。層252および層253の形成にイオンインプランテーションやイオンドーピングを用いる場合、保護膜として絶縁体256aを設けることで、酸化物230の表面がイオンやプラズマに直接曝されることが無く、層252および層253の形成における酸化物230のダメージを抑制できるため、好ましい。ここで、酸化物230のダメージとは、酸化物230中における、過度の酸素欠損の形成や、過度の酸化物230の結晶性の低下などをいう。

0144

絶縁体256bは、絶縁体214などと同様に、水または水素などの不純物が、絶縁体280側からトランジスタ200に混入するのを抑制するバリア絶縁膜として機能することが好ましい。例えば、絶縁体256bは、絶縁体250より水素透過性が低いことが好ましい。さらに、図4(B)(C)に示すように、絶縁体256bは、絶縁体250の上面、および導電体260の側面に接するように配置されることが好ましい。この様な構成とすることで、絶縁体280に含まれる水素が、酸化物230および絶縁体250に侵入するのを抑制することができる。

0145

このように、水素に対してバリア性を有する絶縁体266および絶縁体256bによって、絶縁体224、絶縁体250、および酸化物230を覆うことで、絶縁体280は、絶縁体224、酸化物230、および絶縁体250と離隔されている。これにより、トランジスタ200の外方から水素などの不純物が浸入することを抑制できるので、トランジスタ200に良好な電気特性および信頼性を与えることができる。

0146

さらに、絶縁体256bは、酸素(例えば、酸素原子、酸素分子など)の少なくとも一の拡散を抑制する機能を有する(上記酸素が透過しにくい。)ことが好ましい。例えば、絶縁体256bは、絶縁体224より酸素透過性が低いことが好ましい。絶縁体256bが、酸素の拡散を抑制する機能を有することで、酸化物230が、絶縁体280が有する過剰な酸素と反応することを抑制することができる。

0147

絶縁体256bとしては、例えば、絶縁体266に用いることができるバリア絶縁膜を用いればよい。ただし、絶縁体266が十分に水素に対するバリア性を有する場合、絶縁体256bは必ずしも、バリア絶縁膜を用いなくてもよい。

0148

例えば、絶縁体256aとして、酸化物230および絶縁体250を形成する際の保護膜としての機能する絶縁体を、絶縁体256bとして、水または水素などの不純物が混入するのを抑制するバリア絶縁膜として機能する絶縁体を、用いればよい。例えば、絶縁体256aとして、酸化窒化シリコンまたは酸化シリコンを用いることができる。また、絶縁体256bとして、窒化シリコン、窒化酸化シリコン、窒化アルミニウム、酸化アルミニウムなどを用いることができる。

0149

なお、図4では、絶縁体256が、絶縁体256aと絶縁体256bの積層構造になっているが、本実施の形態はこれに限られるものではない。絶縁体256を単層にしてもよいし、3層以上の積層構造にしてもよい。

0150

<半導体装置の構成材料
以下では、半導体装置に用いることができる構成材料について説明する。

0151

<<基板>>
トランジスタ200を形成する基板としては、例えば、絶縁体基板半導体基板、または導電体基板を用いればよい。絶縁体基板としては、例えば、ガラス基板石英基板サファイア基板、安定化ジルコニア基板イットリア安定化ジルコニア基板など)、樹脂基板などがある。また、半導体基板としては、例えば、シリコン、ゲルマニウムなどの半導体基板、または炭化シリコンシリコンゲルマニウムヒ化ガリウムリン化インジウム、酸化亜鉛、酸化ガリウムからなる化合物半導体基板などがある。さらには、前述の半導体基板内部に絶縁体領域を有する半導体基板、例えば、SOI(Silicon On Insulator)基板などがある。導電体基板としては、黒鉛基板金属基板合金基板導電性樹脂基板などがある。または、金属の窒化物を有する基板、金属の酸化物を有する基板などがある。さらには、絶縁体基板に導電体または半導体が設けられた基板、半導体基板に導電体または絶縁体が設けられた基板、導電体基板に半導体または絶縁体が設けられた基板などがある。または、これらの基板に素子が設けられたものを用いてもよい。基板に設けられる素子としては、容量素子抵抗素子スイッチ素子発光素子記憶素子などがある。

0152

<<絶縁体>>
絶縁体としては、絶縁性を有する酸化物、窒化物、酸化窒化物窒化酸化物、金属酸化物、金属酸化窒化物、金属窒化酸化物などがある。

0153

例えば、トランジスタの微細化、および高集積化が進むと、ゲート絶縁体の薄膜化により、リーク電流などの問題が生じる場合がある。ゲート絶縁体として機能する絶縁体に、high−k材料を用いることで物理膜厚を保ちながら、トランジスタ動作時の低電圧化が可能となる。一方、層間膜として機能する絶縁体には、比誘電率が低い材料を層間膜とすることで、配線間に生じる寄生容量を低減することができる。したがって、絶縁体の機能に応じて、材料を選択するとよい。

0154

また、比誘電率の高い絶縁体としては、酸化ガリウム、酸化ハフニウム、酸化ジルコニウム、アルミニウムおよびハフニウムを有する酸化物、アルミニウムおよびハフニウムを有する酸化窒化物、シリコンおよびハフニウムを有する酸化物、シリコンおよびハフニウムを有する酸化窒化物、またはシリコンおよびハフニウムを有する窒化物などがある。

0155

また、比誘電率が低い絶縁体としては、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、フッ素を添加した酸化シリコン、炭素を添加した酸化シリコン、炭素および窒素を添加した酸化シリコン、空孔を有する酸化シリコン、または樹脂などがある。

0156

また、酸化物半導体を用いたトランジスタは、水素などの不純物および酸素の透過を抑制する機能を有する絶縁体(絶縁体214、絶縁体222、絶縁体256、および絶縁体274など)で囲うことによって、トランジスタの電気特性を安定にすることができる。水素などの不純物および酸素の透過を抑制する機能を有する絶縁体としては、例えば、ホウ素、炭素、窒素、酸素、フッ素、マグネシウム、アルミニウム、シリコン、リン、塩素、アルゴン、ガリウム、ゲルマニウム、イットリウム、ジルコニウム、ランタン、ネオジム、ハフニウム、またはタンタルを含む絶縁体を、単層で、または積層で用いればよい。具体的には、水素などの不純物および酸素の透過を抑制する機能を有する絶縁体として、酸化アルミニウム、酸化マグネシウム、酸化ガリウム、酸化ゲルマニウム、酸化イットリウム、酸化ジルコニウム、酸化ランタン酸化ネオジム、酸化ハフニウム、または酸化タンタルなどの金属酸化物、窒化アルミニウム、窒化アルミニウムチタン、窒化チタン、窒化酸化シリコンまたは窒化シリコンなどの金属窒化物を用いることができる。

0157

また、ゲート絶縁体として機能する絶縁体は、加熱により脱離する酸素を含む領域を有する絶縁体であることが好ましい。例えば、加熱により脱離する酸素を含む領域を有する酸化シリコンまたは酸化窒化シリコンを酸化物230と接する構造とすることで、酸化物230が有する酸素欠損を補償することができる。

0158

<<導電体>>
導電体としては、アルミニウム、クロム、銅、銀、金、白金、タンタル、ニッケル、チタン、モリブデン、タングステン、ハフニウム、バナジウム、ニオブ、マンガン、マグネシウム、ジルコニウム、ベリリウム、インジウム、ルテニウム、イリジウム、ストロンチウム、ランタンなどから選ばれた金属元素、または上述した金属元素を成分とする合金か、上述した金属元素を組み合わせた合金等を用いることが好ましい。例えば、窒化タンタル、窒化チタン、タングステン、チタンとアルミニウムを含む窒化物、タンタルとアルミニウムを含む窒化物、酸化ルテニウム、窒化ルテニウム、ストロンチウムとルテニウムを含む酸化物、ランタンとニッケルを含む酸化物などを用いることが好ましい。また、窒化タンタル、窒化チタン、チタンとアルミニウムを含む窒化物、タンタルとアルミニウムを含む窒化物、酸化ルテニウム、窒化ルテニウム、ストロンチウムとルテニウムを含む酸化物、ランタンとニッケルを含む酸化物は、酸化しにくい導電性材料、または、酸素を吸収しても導電性を維持する材料であるため、好ましい。また、リン等の不純物元素を含有させた多結晶シリコンに代表される、電気伝導度が高い半導体、ニッケルシリサイドなどのシリサイドを用いてもよい。

0159

また、上記の材料で形成される導電層を複数積層して用いてもよい。例えば、前述した金属元素を含む材料と、酸素を含む導電性材料と、を組み合わせた積層構造としてもよい。また、前述した金属元素を含む材料と、窒素を含む導電性材料と、を組み合わせた積層構造としてもよい。また、前述した金属元素を含む材料と、酸素を含む導電性材料と、窒素を含む導電性材料と、を組み合わせた積層構造としてもよい。

0160

なお、トランジスタのチャネル形成領域に酸化物を用いる場合において、ゲート電極として機能する導電体には、前述した金属元素を含む材料と、酸素を含む導電性材料と、を組み合わせた積層構造を用いることが好ましい。この場合は、酸素を含む導電性材料をチャネル形成領域側に設けるとよい。酸素を含む導電性材料をチャネル形成領域側に設けることで、当該導電性材料から離脱した酸素がチャネル形成領域に供給されやすくなる。

0161

特に、ゲート電極として機能する導電体として、チャネルが形成される金属酸化物に含まれる金属元素および酸素を含む導電性材料を用いることが好ましい。また、前述した金属元素および窒素を含む導電性材料を用いてもよい。例えば、窒化チタン、窒化タンタルなどの窒素を含む導電性材料を用いてもよい。また、インジウム錫酸化物、酸化タングステンを含むインジウム酸化物、酸化タングステンを含むインジウム亜鉛酸化物、酸化チタンを含むインジウム酸化物、酸化チタンを含むインジウム錫酸化物、インジウム亜鉛酸化物、シリコンを添加したインジウム錫酸化物を用いてもよい。また、窒素を含むインジウムガリウム亜鉛酸化物を用いてもよい。このような材料を用いることで、チャネルが形成される金属酸化物に含まれる水素を捕獲することができる場合がある。または、外方の絶縁体などから混入する水素を捕獲することができる場合がある。

0162

<<金属酸化物>>
酸化物230として、酸化物半導体として機能する金属酸化物(以下、酸化物半導体ともいう)を用いることが好ましい。以下では、本発明に係る酸化物230に適用可能な金属酸化物について説明する。

0163

酸化物半導体は、少なくともインジウムまたは亜鉛を含むことが好ましい。特にインジウムおよび亜鉛を含むことが好ましい。また、それらに加えて、アルミニウム、ガリウム、イットリウムまたはスズなどが含まれていることが好ましい。また、ホウ素、シリコン、チタン、鉄、ニッケル、ゲルマニウム、ジルコニウム、モリブデン、ランタン、セリウム、ネオジム、ハフニウム、タンタル、タングステン、またはマグネシウムなどから選ばれた一種、または複数種が含まれていてもよい。

0164

ここでは、酸化物半導体が、インジウム、元素Mおよび亜鉛を有するIn−M−Zn酸化物である場合を考える。なお、元素Mは、アルミニウム、ガリウム、イットリウムまたはスズなどとする。そのほかの元素Mに適用可能な元素としては、ホウ素、シリコン、チタン、鉄、ニッケル、ゲルマニウム、ジルコニウム、モリブデン、ランタン、セリウム、ネオジム、ハフニウム、タンタル、タングステン、マグネシウムなどがある。ただし、元素Mとして、前述の元素を複数組み合わせても構わない場合がある。

0165

なお、本明細書等において、窒素を有する金属酸化物も金属酸化物(metal oxide)と総称する場合がある。また、窒素を有する金属酸化物を、金属酸窒化物(metal oxynitride)と呼称してもよい。

0166

酸化物半導体は、単結晶酸化物半導体と、非単結晶酸化物半導体と、に分けられる。非単結晶酸化物半導体としては、例えば、多結晶酸化物半導体、および非晶質酸化物半導体などが知られている。

0167

トランジスタの半導体に用いる酸化物半導体として、結晶性の高い薄膜を用いることが好ましい。該薄膜を用いることで、トランジスタの安定性または信頼性を向上させることができる。該薄膜として、例えば、単結晶酸化物半導体の薄膜または多結晶酸化物半導体の薄膜が挙げられる。しかしながら、単結晶酸化物半導体の薄膜または多結晶酸化物半導体の薄膜を基板上に形成するには、高温またはレーザー加熱の工程が必要とされる。よって、製造工程のコストが増加し、さらに、スループットも低下してしまう。

0168

2009年に、CAAC構造を有するIn−Ga−Zn酸化物(CAAC−IGZOと呼ぶ。)が発見されたことが、非特許文献1および非特許文献2で報告されている。ここでは、CAAC−IGZOは、c軸配向性を有する、結晶粒界が明確に確認されない、低温で基板上に形成可能である、ことが報告されている。さらに、CAAC−IGZOを用いたトランジスタは、優れた電気特性および信頼性を有することが報告されている。

0169

また、2013年には、nc構造を有するIn−Ga−Zn酸化物(nc−IGZOと呼ぶ。)が発見された(非特許文献3参照。)。ここでは、nc−IGZOは、微小な領域(例えば、1nm以上3nm以下の領域)において原子配列周期性を有し、異なる該領域間結晶方位規則性が見られないことが報告されている。

0170

非特許文献4および非特許文献5では、上記のCAAC−IGZO、nc−IGZO、および結晶性の低いIGZOのそれぞれの薄膜に対する電子線の照射による平均結晶サイズ推移が示されている。結晶性の低いIGZOの薄膜において、電子線が照射される前でさえ、1nm程度の結晶性IGZOが観察されている。よって、ここでは、IGZOにおいて、完全な非晶質構造(completely amorphous structure)の存在を確認できなかった、と報告されている。さらに、結晶性の低いIGZOの薄膜と比べて、CAAC−IGZOの薄膜およびnc−IGZOの薄膜は電子線照射に対する安定性が高いことが示されている。よって、トランジスタの半導体として、CAAC−IGZOの薄膜またはnc−IGZOの薄膜を用いることが好ましい。

0171

酸化物半導体を用いたトランジスタは、非導通状態において極めてリーク電流が小さい、具体的には、トランジスタのチャネル幅1μmあたりのオフ電流がyA/μm(10−24A/μm)オーダである、ことが非特許文献6に示されている。例えば、酸化物半導体を用いたトランジスタのリーク電流が低いという特性を応用した低消費電力のCPUなどが開示されている(非特許文献7参照。)。

0172

また、酸化物半導体を用いたトランジスタのリーク電流が低いという特性を利用した、該トランジスタの表示装置への応用が報告されている(非特許文献8参照。)。表示装置では、表示される画像が1秒間に数十回切り換っている。1秒間あたりの画像の切り換え回数リフレッシュレートと呼ばれている。また、リフレッシュレートを駆動周波数と呼ぶこともある。このような人の目で知覚が困難である高速画面切り換えが、目の疲労の原因として考えられている。そこで、表示装置のリフレッシュレートを低下させて、画像の書き換え回数を減らすことが提案されている。また、リフレッシュレートを低下させた駆動により、表示装置の消費電力を低減することが可能である。このような駆動方法を、アイドリングストップ(IDS)駆動と呼ぶ。

0173

CAAC構造およびnc構造の発見は、CAAC構造またはnc構造を有する酸化物半導体を用いたトランジスタの電気特性および信頼性の向上、ならびに、製造工程のコスト低下およびスループットの向上に貢献している。また、該トランジスタのリーク電流が低いという特性を利用した、該トランジスタの表示装置およびLSIへの応用研究が進められている。

0174

[金属酸化物の構成]
以下では、本発明の一態様で開示されるトランジスタに用いることができるCAC(Cloud−Aligned Composite)−OSの構成について説明する。

0175

なお、本明細書等において、CAAC(c−axis aligned crystal)、及びCAC(Cloud−Aligned Composite)と記載する場合がある。なお、CAACは結晶構造の一例を表し、CACは機能、または材料の構成の一例を表す。

0176

CAC−OSまたはCAC−metal oxideとは、材料の一部では導電性の機能と、材料の一部では絶縁性の機能とを有し、材料の全体では半導体としての機能を有する。なお、CAC−OSまたはCAC−metal oxideを、トランジスタの活性層に用いる場合、導電性の機能は、キャリアとなる電子(またはホール)を流す機能であり、絶縁性の機能は、キャリアとなる電子を流さない機能である。導電性の機能と、絶縁性の機能とを、それぞれ相補的に作用させることで、スイッチングさせる機能(On/Offさせる機能)をCAC−OSまたはCAC−metal oxideに付与することができる。CAC−OSまたはCAC−metal oxideにおいて、それぞれの機能を分離させることで、双方の機能を最大限に高めることができる。

0177

また、CAC−OSまたはCAC−metal oxideは、導電性領域、及び絶縁性領域を有する。導電性領域は、上述の導電性の機能を有し、絶縁性領域は、上述の絶縁性の機能を有する。また、材料中において、導電性領域と、絶縁性領域とは、ナノ粒子ベルで分離している場合がある。また、導電性領域と、絶縁性領域とは、それぞれ材料中に偏在する場合がある。また、導電性領域は、周辺がぼけクラウド状に連結して観察される場合がある。

0178

また、CAC−OSまたはCAC−metal oxideにおいて、導電性領域と、絶縁性領域とは、それぞれ0.5nm以上10nm以下、好ましくは0.5nm以上3nm以下のサイズで材料中に分散している場合がある。

0179

また、CAC−OSまたはCAC−metal oxideは、異なるバンドギャップを有する成分により構成される。例えば、CAC−OSまたはCAC−metal oxideは、絶縁性領域に起因するワイドギャップを有する成分と、導電性領域に起因するナローギャップを有する成分と、により構成される。当該構成の場合、キャリアを流す際に、ナローギャップを有する成分において、主にキャリアが流れる。また、ナローギャップを有する成分が、ワイドギャップを有する成分に相補的に作用し、ナローギャップを有する成分に連動してワイドギャップを有する成分にもキャリアが流れる。このため、上記CAC−OSまたはCAC−metal oxideをトランジスタのチャネル形成領域に用いる場合、トランジスタのオン状態において高い電流駆動力、つまり大きなオン電流、及び高い電界効果移動度を得ることができる。

0180

すなわち、CAC−OSまたはCAC−metal oxideは、マトリックス複合材(matrix composite)、または金属マトリックス複合材(metal matrix composite)と呼称することもできる。

0181

[金属酸化物の構造]
酸化物半導体は、単結晶酸化物半導体と、それ以外の非単結晶酸化物半導体と、に分けられる。非単結晶酸化物半導体としては、例えば、CAAC−OS(c−axis aligned crystalline oxide semiconductor)、多結晶酸化物半導体、nc−OS(nanocrystalline oxide semiconductor)、擬似非晶質酸化物半導体(a−like OS:amorphous−like oxide semiconductor)および非晶質酸化物半導体などがある。

0182

CAAC−OSは、c軸配向性を有し、かつa−b面方向において複数のナノ結晶が連結し、歪みを有した結晶構造となっている。なお、歪みとは、複数のナノ結晶が連結する領域において、格子配列の揃った領域と、別の格子配列の揃った領域と、の間で格子配列の向きが変化している箇所を指す。

0183

ナノ結晶は、六角形を基本とするが、正六角形状とは限らず、非正六角形状である場合がある。また、歪みにおいて、五角形、および七角形などの格子配列を有する場合がある。なお、CAAC−OSにおいて、歪み近傍においても、明確な結晶粒界(グレインバウンダリーともいう)を確認することはできない。即ち、格子配列の歪みによって、結晶粒界の形成が抑制されていることがわかる。これは、CAAC−OSが、a−b面方向において酸素原子の配列が稠密でないことや、金属元素が置換することで原子間の結合距離が変化することなどによって、歪みを許容することができるためと考えられる。

0184

また、CAAC−OSは、インジウム、および酸素を有する層(以下、In層)と、元素M、亜鉛、および酸素を有する層(以下、(M,Zn)層)とが積層した、層状の結晶構造(層状構造ともいう)を有する傾向がある。なお、インジウムと元素Mは、互いに置換可能であり、(M,Zn)層の元素Mがインジウムと置換した場合、(In,M,Zn)層と表すこともできる。また、In層のインジウムが元素Mと置換した場合、(In,M)層と表すこともできる。

0185

CAAC−OSは結晶性の高い酸化物半導体である。一方、CAAC−OSは、明確な結晶粒界を確認することはできないため、結晶粒界に起因する電子移動度の低下が起こりにくいといえる。また、酸化物半導体の結晶性は不純物の混入や欠陥の生成などによって低下する場合があるため、CAAC−OSは不純物や欠陥(酸素欠損など)の少ない酸化物半導体ともいえる。従って、CAAC−OSを有する酸化物半導体は、物理的性質が安定する。そのため、CAAC−OSを有する酸化物半導体は熱に強く、信頼性が高い。

0186

nc−OSは、微小な領域(例えば、1nm以上10nm以下の領域、特に1nm以上3nm以下の領域)において原子配列に周期性を有する。また、nc−OSは、異なるナノ結晶間で結晶方位に規則性が見られない。そのため、膜全体で配向性が見られない。したがって、nc−OSは、分析方法によっては、a−like OSや非晶質酸化物半導体と区別が付かない場合がある。

0187

a−like OSは、nc−OSと非晶質酸化物半導体との間の構造を有する酸化物半導体である。a−like OSは、鬆または低密度領域を有する。即ち、a−like OSは、nc−OSおよびCAAC−OSと比べて、結晶性が低い。

0188

酸化物半導体は、多様な構造をとり、それぞれが異なる特性を有する。本発明の一態様の酸化物半導体は、非晶質酸化物半導体、多結晶酸化物半導体、a−like OS、nc−OS、CAAC−OSのうち、二種以上を有していてもよい。

0189

[酸化物半導体を有するトランジスタ]
続いて、上記酸化物半導体をトランジスタに用いる場合について説明する。

0190

なお、上記酸化物半導体をトランジスタに用いることで、高い電界効果移動度のトランジスタを実現することができる。また、信頼性の高いトランジスタを実現することができる。

0191

また、トランジスタには、キャリア密度の低い酸化物半導体を用いることが好ましい。酸化物半導体膜のキャリア密度を低くする場合においては、酸化物半導体膜中の不純物濃度を低くし、欠陥準位密度を低くすればよい。本明細書等において、不純物濃度が低く、欠陥準位密度の低いことを高純度真性または実質的に高純度真性と言う。例えば、酸化物半導体は、キャリア密度が8×1011/cm3未満、好ましくは1×1011/cm3未満、さらに好ましくは1×1010/cm3未満であり、1×10−9/cm3以上とすればよい。

0192

また、高純度真性または実質的に高純度真性である酸化物半導体膜は、欠陥準位密度が低いため、トラップ準位密度も低くなる場合がある。

0193

また、酸化物半導体のトラップ準位に捕獲された電荷は、消失するまでに要する時間が長く、あたかも固定電荷のように振る舞うことがある。そのため、トラップ準位密度の高い酸化物半導体にチャネル形成領域が形成されるトランジスタは、電気特性が不安定となる場合がある。

0194

従って、トランジスタの電気特性を安定にするためには、酸化物半導体中の不純物濃度を低減することが有効である。また、酸化物半導体中の不純物濃度を低減するためには、近接する膜中の不純物濃度も低減することが好ましい。不純物としては、水素、窒素、アルカリ金属アルカリ土類金属、鉄、ニッケル、シリコン等がある。

0195

[不純物]
ここで、酸化物半導体中における各不純物の影響について説明する。

0196

酸化物半導体において、第14族元素の一つであるシリコンや炭素が含まれると、酸化物半導体において欠陥準位が形成される。このため、酸化物半導体におけるシリコンや炭素の濃度と、酸化物半導体との界面近傍のシリコンや炭素の濃度(二次イオン質量分析法(SIMS:Secondary Ion Mass Spectrometry)により得られる濃度)を、2×1018atoms/cm3以下、好ましくは2×1017atoms/cm3以下とする。

0197

また、酸化物半導体にアルカリ金属またはアルカリ土類金属が含まれると、欠陥準位を形成し、キャリアを生成する場合がある。従って、アルカリ金属またはアルカリ土類金属が含まれている酸化物半導体を用いたトランジスタはノーマリーオン特性となりやすい。このため、酸化物半導体中のアルカリ金属またはアルカリ土類金属の濃度を低減することが好ましい。具体的には、SIMSにより得られる酸化物半導体中のアルカリ金属またはアルカリ土類金属の濃度を、1×1018atoms/cm3以下、好ましくは2×1016atoms/cm3以下にする。

0198

また、酸化物半導体において、窒素が含まれると、キャリアである電子が生じ、キャリア密度が増加し、n型化しやすい。この結果、窒素が含まれている酸化物半導体を半導体に用いたトランジスタはノーマリーオン特性となりやすい。従って、該酸化物半導体において、窒素はできる限り低減されていることが好ましい、例えば、酸化物半導体中の窒素濃度は、SIMSにおいて、5×1019atoms/cm3未満、好ましくは5×1018atoms/cm3以下、より好ましくは1×1018atoms/cm3以下、さらに好ましくは5×1017atoms/cm3以下とする。

0199

また、酸化物半導体に含まれる水素は、金属原子と結合する酸素と反応して水になるため、酸素欠損を形成する場合がある。該酸素欠損に水素が入ることで、キャリアである電子が生成される場合がある。また、水素の一部が金属原子と結合する酸素と結合して、キャリアである電子を生成することがある。従って、水素が含まれている酸化物半導体を用いたトランジスタはノーマリーオン特性となりやすい。このため、酸化物半導体中の水素はできる限り低減されていることが好ましい。具体的には、酸化物半導体において、SIMSにより得られる水素濃度を、1×1020atoms/cm3未満、好ましくは1×1019atoms/cm3未満、より好ましくは5×1018atoms/cm3未満、さらに好ましくは1×1018atoms/cm3未満とする。

0200

不純物が十分に低減された酸化物半導体をトランジスタのチャネル形成領域に用いることで、安定した電気特性を付与することができる。

0201

真空ベークの効果]
ここでは、金属酸化物に含まれる、弱いZn−O結合について説明し、該結合を構成する酸素原子および亜鉛原子を低減する方法の一例について示す。

0202

金属酸化物を用いたトランジスタにおいて、トランジスタの電気特性の不良に繋がる欠陥の一例として酸素欠損がある。例えば、膜中に酸素欠損が含まれている金属酸化物を用いたトランジスタは、閾値電圧マイナス方向に変動しやすく、ノーマリーオン特性となりやすい。これは、金属酸化物に含まれる酸素欠損に起因したドナーが生成され、キャリア濃度が増加するためである。トランジスタがノーマリーオン特性を有すると、動作時に動作不良が発生しやすくなる、または非動作時の消費電力が高くなるなどの、様々な問題が生じる。

0203

また、モジュールを作製するための接続配線を形成する工程における熱履歴(サーマルバジェット)により、閾値電圧の変動、寄生抵抗の増大、などのトランジスタの電気特性の劣化、該電気特性の劣化に伴う電気特性のばらつきの増大、などの問題がある。これらの問題は、製造歩留りの低下に直結するため、対策の検討は重要である。また、長期間の使用によって起こるトランジスタの特性変化経年変化)を短時間で評価することができるストレス試験でも電気特性の劣化が生じる。該電気特性の劣化は、熱履歴の過程で行われる高温処理、またはストレス試験時に与えられる電気的なストレスによって金属酸化物中の酸素が欠損することに起因すると推測される。

0204

金属酸化物中には、金属原子との結合が弱く、酸素欠損となりやすい酸素原子が存在する。特に、金属酸化物がIn−Ga−Zn酸化物である場合は、亜鉛原子と酸素原子とが弱い結合(弱いZn−O結合、ともいう)を形成しやすい。ここで、弱いZn−O結合とは、熱履歴の過程で行われる高温処理、またはストレス試験時に与えられる電気的なストレスによって切断される程度の強さで結合した、亜鉛原子と酸素原子の間に生じる結合である。弱いZn−O結合が金属酸化物中に存在すると、熱履歴または電流ストレスによって、該結合が切断され、酸素欠損が形成される。酸素欠損が形成されることにより、熱履歴に対する耐性、ストレス試験における耐性などといった、トランジスタの安定性が低下する。

0205

亜鉛原子と多く結合している酸素原子と、該亜鉛原子との間に生じる結合は、弱いZn−O結合である場合がある。ガリウム原子と比べて、亜鉛原子は、酸素原子との結合が弱い。したがって、亜鉛原子と多く結合している酸素原子は欠損しやすい。すなわち、亜鉛原子と酸素原子との間に生じる結合は、その他の金属との結合よりも弱いと推測される。

0206

また、金属酸化物中に不純物が存在する場合、弱いZn−O結合が形成されやすいと推測される。金属酸化物中の不純物としては、例えば、水分子や水素がある。金属酸化物中に水分子や水素が存在することで、水素原子が、金属酸化物を構成する酸素原子と結合する(OH結合ともいう。)場合がある。金属酸化物を構成する酸素原子は、In−Ga−Zn酸化物が単結晶である場合、金属酸化物を構成する金属原子4つと結合している。しかしながら、水素原子と結合した酸素原子は、2つまたは3つの金属原子と結合している場合がある。酸素原子に結合している金属原子の数が減少することで、該酸素原子は欠損しやすくなる。なお、OH結合を形成している酸素原子に亜鉛原子が結合している場合、該酸素原子と該亜鉛原子との結合は弱いと推測される。

0207

また、弱いZn−O結合は、複数のナノ結晶が連結する領域に存在する歪みに形成される場合がある。ナノ結晶は六角形を基本とするが、該歪みにおいて、五角形、および七角形などの格子配列を有する。該歪みでは、原子間の結合距離が一様でないため、弱いZn−O結合が形成されていると推測される。

0208

また、弱いZn−O結合は、金属酸化物の結晶性が低い場合に形成されやすいと推測される。金属酸化物の結晶性が高い場合、金属酸化物を構成する亜鉛原子は、酸素原子4つまたは5つと結合している。しかし、金属酸化物の結晶性が低くなると、亜鉛原子と結合する酸素原子の数が減少する傾向がある。亜鉛原子に結合する酸素原子の数が減少すると、該亜鉛原子は欠損しやすくなる。すなわち、亜鉛原子と酸素原子との間に生じる結合は、単結晶で生じる結合よりも弱いと推測される。

0209

上記の弱いZn−O結合を構成する酸素原子および亜鉛原子を低減することで、熱履歴または電流ストレスによる酸素欠損の形成を抑制し、トランジスタの安定性を向上させることができる。なお、弱いZn−O結合を構成する酸素原子のみを低減し、弱いZn−O結合を構成する亜鉛原子が減少しない場合、該亜鉛原子近傍に酸素原子を供給すると、弱いZn−O結合が再形成される場合がある。したがって、弱いZn−O結合を構成する亜鉛原子および酸素原子を低減することが好ましい。

0210

弱いZn−O結合を構成する酸素原子および亜鉛原子を低減する方法の一つとして、金属酸化物を成膜した後、真空ベークを実施する方法が挙げられる。真空ベークとは、真空雰囲気下で行う加熱処理のことである。真空雰囲気は、ターボ分子ポンプ等で排気を行うことで維持される。なお、処理室の圧力は、1×10−2Pa以下、好ましくは1×10−3Pa以下とすればよい。また、加熱処理時の基板の温度は、300℃以上、好ましくは400℃以上とすればよい。

0211

真空ベークを実施することで、弱いZn−O結合を構成する酸素原子および亜鉛原子を低減することができる。また、真空ベークによって金属酸化物に熱が与えられるため、弱いZn−O結合を構成する酸素原子および亜鉛原子を低減した後、金属酸化物を構成する原子が再配列することで、4つの金属原子と結合している酸素原子が増える。したがって、弱いZn−O結合を構成する酸素原子および亜鉛原子を低減するとともに、弱いZn−O結合が再形成されるのを抑制することができる。

0212

また、金属酸化物中に不純物が存在する場合、真空ベークを実施することで、金属酸化物中の水分子または水素を放出し、OH結合を低減することができる。金属酸化物中のOH結合が減少することで、4つの金属原子と結合している酸素原子の割合が増える。また、水分子または水素が放出される際、金属酸化物を構成する原子が再配列することで、4つの金属原子と結合している酸素原子が増える。したがって、弱いZn−O結合が再形成されるのを抑制することができる。

0213

以上のように、金属酸化物を成膜した後、真空ベークを実施することで、弱いZn−O結合を構成する酸素原子および亜鉛原子を低減することができる。したがって、該工程により、トランジスタの安定性を向上することができる。また、トランジスタの安定性が向上することで、材料や形成方法の選択の自由度が高くなる。

0214

<半導体装置の作製方法>
次に、図1に示す、本発明の一態様に係るトランジスタ200を有する半導体装置について、作製方法を図5乃至図14を用いて説明する。また、図5乃至図14において、各図の(A)は上面図を示す。また、各図の(B)は、(A)に示すA1−A2の一点鎖線で示す部位に対応する断面図であり、トランジスタ200のチャネル長方向の断面図でもある。また、各図の(C)は、(A)にA3−A4の一点鎖線で示す部位に対応する断面図であり、トランジスタ200のチャネル幅方向の断面図でもある。また、各図の(D)は、(A)にA5−A6の一点鎖線で示す部位に対応する断面図である。なお、各図の(A)の上面図では、図の明瞭化のために一部の要素を省いて図示している。

0215

まず、基板(図示しない。)を準備し、当該基板上に絶縁体214を成膜する。絶縁体214の成膜は、スパッタリング法、化学気相成長CVD:Chemical Vapor Deposition)法、分子線エピタキシー(MBE:Molecular Beam Epitaxy)法、パルスレーザ堆積PLD:Pulsed Laser Deposition)法、またはALD(Atomic Layer Deposition)法などを用いて行うことができる。

0216

なお、CVD法は、プラズマを利用するプラズマCVD(PECVD:Plasma Enhanced CVD)法、熱を利用する熱CVD(TCVD:Thermal CVD)法、光を利用する光CVD(Photo CVD)法などに分類できる。さらに用いる原料ガスによって金属CVD(MCVD:Metal CVD)法、有機金属CVD(MOCVD:Metal Organic CVD)法に分けることができる。

0217

プラズマCVD法は、比較的低温で高品質の膜が得られる。また、熱CVD法は、プラズマを用いないため、被処理物へのプラズマダメージを小さくすることが可能な成膜方法である。例えば、半導体装置に含まれる配線、電極、素子(トランジスタ、容量素子など)などは、プラズマから電荷を受け取ることでチャージアップする場合がある。このとき、蓄積した電荷によって、半導体装置に含まれる配線、電極、素子などが破壊される場合がある。一方、プラズマを用いない熱CVD法の場合、こういったプラズマダメージが生じないため、半導体装置の歩留まりを高くすることができる。また、熱CVD法では、成膜中のプラズマダメージが生じないため、欠陥の少ない膜が得られる。

0218

また、ALD法は、原子の性質である自己制御性を利用し、一層ずつ原子を堆積することができるので、極薄の成膜が可能、アスペクト比の高い構造への成膜が可能、ピンホールなどの欠陥の少ない成膜が可能、被覆性に優れた成膜が可能、および低温での成膜が可能、などの効果がある。また、ALD法には、プラズマを利用した成膜方法PEALD(Plasma Enhanced ALD)法も含まれる。プラズマを利用することで、より低温での成膜が可能となり好ましい場合がある。なお、ALD法で用いるプリカーサには炭素などの不純物を含むものがある。このため、ALD法により設けられた膜は、他の成膜法により設けられた膜と比較して、炭素などの不純物を多く含む場合がある。なお、不純物の定量は、X線光電子分光法(XPS:X−ray Photoelectron Spectroscopy)を用いて行うことができる。

0219

CVD法およびALD法は、ターゲットなどから放出される粒子が堆積する成膜方法とは異なり、被処理物の表面における反応により膜が形成される成膜方法である。したがって、被処理物の形状の影響を受けにくく、良好な段差被覆性を有する成膜方法である。特に、ALD法は、優れた段差被覆性と、優れた厚さの均一性を有するため、アスペクト比の高い開口部の表面を被覆する場合などに好適である。ただし、ALD法は、比較的成膜速度が遅いため、成膜速度の速いCVD法などの他の成膜方法と組み合わせて用いることが好ましい場合もある。

0220

CVD法およびALD法は、原料ガスの流量比によって、得られる膜の組成を制御することができる。例えば、CVD法およびALD法では、原料ガスの流量比によって、任意の組成の膜を成膜することができる。また、例えば、CVD法およびALD法では、成膜しながら原料ガスの流量比を変化させることによって、組成が連続的に変化した膜を成膜することができる。原料ガスの流量比を変化させながら成膜する場合、複数の成膜室を用いて成膜する場合と比べて、搬送や圧力調整に掛かる時間を要さない分、成膜に掛かる時間を短くすることができる。したがって、半導体装置の生産性を高めることができる場合がある。

0221

本実施の形態では、絶縁体214として、スパッタリング法によって酸化アルミニウムを成膜する。また、絶縁体214は、多層構造としてもよい。例えば、スパッタリング法によって酸化アルミニウムを成膜し、当該酸化アルミニウム上に、ALD法によって酸化アルミニウムを成膜する構造としてもよい。または、ALD法によって酸化アルミニウムを成膜し、当該酸化アルミニウム上に、スパッタリング法によって酸化アルミニウムを成膜する構造としてもよい。

0222

次に絶縁体214上に絶縁体216を成膜する。絶縁体216の成膜は、スパッタリング法、CVD法、MBE法PLD法、またはALD法などを用いて行うことができる。本実施の形態では、絶縁体216として、CVD法によって酸化シリコンを成膜する。

0223

次に、リソグラフィー法を用いて、絶縁体216に、絶縁体214に達する開口を形成する。開口とは、例えば、溝やスリットなども含まれる。また、開口が形成された領域を指して開口部とする場合がある。開口の形成にはウエットエッチング法を用いてもよいが、ドライエッチング法を用いるほうが微細加工には好ましい。また、絶縁体214は、絶縁体216をエッチングして開口を形成する際のエッチングストッパとして機能する絶縁体を選択することが好ましい。例えば、開口を形成する絶縁体216に酸化シリコンを用いた場合は、絶縁体214は、エッチングストッパとして機能する絶縁体として、窒化シリコン、酸化アルミニウム、酸化ハフニウムを用いるとよい。

0224

なお、リソグラフィー法では、まず、マスクを介してレジスト露光する。次に、露光された領域を、現像液を用いて除去または残存させてレジストマスクを形成する。次に、当該レジストマスクを介してエッチング処理することで導電体、半導体または絶縁体などを所望の形状に加工することができる。例えば、KrFエキシマレーザ光ArFエキシマレーザ光、EUV(Extreme Ultraviolet)光などを用いて、レジストを露光することでレジストマスクを形成すればよい。また、基板と投影レンズとの間に液体(例えば水)を満たして露光する、液浸技術を用いてもよい。また、前述した光に代えて、電子ビームイオンビームを用いてもよい。なお、電子ビームやイオンビームを用いる場合には、マスクは不要となる。なお、レジストマスクの除去には、アッシングなどのドライエッチング処理を行う、ウェットエッチング処理を行う、ドライエッチング処理後にウェットエッチング処理を行う、またはウェットエッチング処理後にドライエッチング処理を行うことができる。

0225

また、レジストマスクの代わりに絶縁体や導電体からなるハードマスクを用いてもよい。ハードマスクを用いる場合、絶縁体216となる絶縁膜上にハードマスク材料となる絶縁膜や導電膜を形成し、その上にレジストマスクを形成し、ハードマスク材料をエッチングすることで所望の形状のハードマスクを形成することができる。絶縁体216となる絶縁膜のエッチングは、レジストマスクを除去してから行っても良いし、レジストマスクを残したまま行っても良い。後者の場合、エッチング中にレジストマスクが消失することがある。絶縁体216となる絶縁膜のエッチング後にハードマスクをエッチングにより除去しても良い。一方、ハードマスクの材料が後工程に影響が無い、あるいは後工程で利用できる場合、必ずしもハードマスクを除去する必要は無い。

0226

ドライエッチング装置としては、平行平板型電極を有する容量結合型プラズマ(CCP:Capacitively Coupled Plasma)エッチング装置を用いることができる。平行平板型電極を有する容量結合型プラズマエッチング装置は、平行平板型電極の一方の電極に高周波電源を印加する構成でもよい。または平行平板型電極の一方の電極に複数の異なった高周波電源を印加する構成でもよい。または平行平板型電極それぞれに同じ周波数の高周波電源を印加する構成でもよい。または平行平板型電極それぞれに周波数の異なる高周波電源を印加する構成でもよい。または高密度プラズマ源を有するドライエッチング装置を用いることができる。高密度プラズマ源を有するドライエッチング装置は、例えば、誘導結合型プラズマ(ICP:Inductively Coupled Plasma)エッチング装置などを用いることができる。

0227

開口の形成後に、導電体205の第1の導電体となる導電膜を成膜する。当該導電膜は、不純物や酸素の透過を抑制する機能を有する導電性バリア膜を用いることが好ましい。例えば、窒化タンタル、窒化タングステン、窒化チタンなどを用いることができる。またはタンタル、タングステン、チタン、モリブデン、アルミニウム、銅、モリブデンタングステン合金との積層膜とすることができる。導電体205の第1の導電体となる導電膜の成膜は、スパッタリング法、CVD法、MBE法、PLD法、またはALD法などを用いて行うことができる。

0228

本実施の形態では、導電体205の第1の導電体となる導電膜として、窒化タンタル、または、窒化タンタルの上に窒化チタンを積層した膜を成膜する。導電体205の第1の導電体としてこのような金属窒化物を用いることにより、導電体205の第2の導電体で銅など拡散しやすい金属を用いても、当該金属が導電体205の第1の導電体から外に拡散するのを抑制することができる。

0229

次に、導電体205の第1の導電体となる導電膜上に、導電体205の第2の導電体となる導電膜を成膜する。当該導電膜の成膜は、スパッタリング法、CVD法、MBE法、PLD法、またはALD法などを用いて行うことができる。本実施の形態では、導電体205の第2の導電体となる導電膜として、タングステン、銅、アルミニウムなどの低抵抗導電性材料を成膜する。

0230

次に、CMP(Chemical Mechanical Polishing)処理を行うことで、導電体205の第1の導電体となる導電膜、および導電体205の第2の導電体となる導電膜の一部を研磨により除去し、絶縁体216を露出する。その結果、開口部のみに、導電体205の第1の導電体となる導電膜、および導電体205の第2の導電体となる導電膜が残存する。これにより、上面が平坦な、導電体205の第1の導電体、および導電体205の第2の導電体を含む導電体205を形成することができる(図5参照。)。なお、当該CMP処理により、絶縁体216の一部が除去される場合がある。

0231

なお、絶縁体216および導電体205の作製方法は上記に限られるものではない。例えば、絶縁体214の上に導電体205となる導電膜を成膜し、リソグラフィー法を用いて当該導電膜加工することで導電体205を形成する。次に、導電体205を覆うように絶縁体216となる絶縁膜を設け、CMP処理により当該絶縁膜の一部を、導電体205の一部が露出するまで除去することで導電体205、および絶縁体216を形成してもよい。

0232

上記のようにCMP処理を用いて導電体205、および絶縁体216を形成することで、導電体205と絶縁体216の上面の平坦性を向上させることができ、後工程にて酸化物230a、酸化物230bおよび酸化物230cを構成するCAAC−OSの結晶性を向上させることができる。

0233

次に、絶縁体216、および導電体205上に絶縁体222を成膜する。絶縁体222として、アルミニウムおよびハフニウムの一方または双方の酸化物を含む絶縁体を成膜するとよい。なお、アルミニウムおよびハフニウムの一方または双方の酸化物を含む絶縁体として、酸化アルミニウム、酸化ハフニウム、アルミニウムおよびハフニウムを含む酸化物(ハフニウムアルミネート)などを用いることが好ましい。アルミニウムおよびハフニウムの一方または双方の酸化物を含む絶縁体は、酸素、水素、および水に対するバリア性を有する。絶縁体222が、水素および水に対するバリア性を有することで、トランジスタ200の周辺に設けられた構造体に含まれる水素、および水が、絶縁体222を通じてトランジスタ200の内側へ拡散することが抑制され、酸化物230中の酸素欠損の生成を抑制することができる。

0234

絶縁体222の成膜は、スパッタリング法、CVD法、MBE法、PLD法、またはALD法などを用いて行うことができる。

0235

次に、絶縁体222上に絶縁体224を成膜する。絶縁体224の成膜は、スパッタリング法、CVD法、MBE法、PLD法、またはALD法などを用いて行うことができる。

0236

続いて、加熱処理を行うと好ましい。加熱処理は、250℃以上650℃以下、好ましくは300℃以上500℃以下、さらに好ましくは320℃以上450℃以下で行えばよい。なお、加熱処理は、窒素または不活性ガス雰囲気、または酸化性ガスを10ppm以上、1%以上、もしくは10%以上含む雰囲気で行う。また、加熱処理は減圧状態で行ってもよい。または、加熱処理は、窒素または不活性ガス雰囲気で加熱処理した後に、脱離した酸素を補うために酸化性ガスを10ppm以上、1%以上、または10%以上含む雰囲気で加熱処理を行ってもよい。

0237

本実施の形態では、加熱処理として、絶縁体224の成膜後に窒素雰囲気にて400℃の温度で1時間の処理を行う。当該加熱処理によって、絶縁体224に含まれる水、水素などの不純物を除去することなどができる。また、加熱処理は、絶縁体222の成膜後などのタイミングで行うこともできる。

0238

ここで、絶縁体224に過剰酸素領域を形成するために、減圧状態で酸素を含むプラズマ処理を行ってもよい。酸素を含むプラズマ処理は、例えばマイクロ波を用いた高密度プラズマを発生させる電源を有する装置を用いることが好ましい。または、基板側にRF(Radio Frequency)を印加する電源を有してもよい。高密度プラズマを用いることより、高密度の酸素ラジカルを生成することができ、基板側にRFを印加することで、高密度プラズマによって生成された酸素ラジカルを効率よく絶縁体224内に導くことができる。または、この装置を用いて不活性ガスを含むプラズマ処理を行った後に、脱離した酸素を補うために酸素を含むプラズマ処理を行ってもよい。なお、当該プラズマ処理の条件を適宜選択することにより、絶縁体224に含まれる水、水素などの不純物を除去することができる。その場合、加熱処理は行わなくてもよい。

0239

次に、絶縁体224上に、酸化膜230A、および酸化膜230Bを順に成膜する(図5参照。)。なお、上記酸化膜は、大気環境に曝さずに連続して成膜することが好ましい。大気開放せずに成膜することで、酸化膜230A、および酸化膜230B上に大気環境からの不純物または水分が付着することを防ぐことができ、酸化膜230Aと酸化膜230Bとの界面近傍を清浄に保つことができる。

0240

酸化膜230A、および酸化膜230Bの成膜はスパッタリング法、CVD法、MBE法、PLD法、またはALD法などを用いて行うことができる。

0241

例えば、酸化膜230A、および酸化膜230Bをスパッタリング法によって成膜する場合は、スパッタリングガスとして酸素、または、酸素と希ガスの混合ガスを用いる。スパッタリングガスに含まれる酸素の割合を高めることで、成膜される酸化膜中の過剰酸素を増やすことができる。また、上記の酸化膜をスパッタリング法によって成膜する場合は、上記のIn−M−Zn酸化物ターゲットなどを用いることができる。また、ターゲットには、直流(DC)電源または、高周波(RF)電源などの交流(AC)電源が接続され、ターゲットの電気伝導度に応じて、必要な電力を印加することができる。

0242

特に、酸化膜230Aの成膜時に、スパッタリングガスに含まれる酸素の一部が絶縁体224に供給される場合がある。したがって、酸化膜230Aのスパッタリングガスに含まれる酸素の割合は70%以上、好ましくは80%以上、より好ましくは100%とすればよい。

0243

また、酸化膜230Bをスパッタリング法で形成する場合、スパッタリングガスに含まれる酸素の割合を1%以上30%以下、好ましくは5%以上20%以下として成膜すると、酸素欠乏型の酸化物半導体が形成される。酸素欠乏型の酸化物半導体をチャネル形成領域に用いたトランジスタは、比較的高い電界効果移動度が得られる。また、基板を加熱しながら成膜を行うことによって、当該酸化膜の結晶性を向上させることができる。ただし、本発明の一態様はこれに限定されない。酸化物230bとなる酸化膜をスパッタリング法で形成する場合、スパッタリングガスに含まれる酸素の割合を、30%を超えて100%以下、好ましくは70%以上100%以下として成膜すると、酸素過剰型の酸化物半導体が形成される。酸素過剰型の酸化物半導体をチャネル形成領域に用いたトランジスタは、比較的高い信頼性が得られる。

0244

本実施の形態では、酸化膜230Aとして、スパッタリング法によって、In:Ga:Zn=1:1:0.5[原子数比](2:2:1[原子数比])、あるいは1:3:4[原子数比]のターゲットを用いて成膜する。また、酸化膜230Bとして、スパッタリング法によって、In:Ga:Zn=4:2:4.1[原子数比]のターゲットを用いて成膜する。なお、各酸化膜は、成膜条件、および原子数比を適宜選択することで、酸化物230に求める特性に合わせて形成するとよい。

0245

ここで、絶縁体222、絶縁体224、酸化膜230A、および酸化膜230Bを、大気暴露することなく成膜することが好ましい。例えば、マルチチャンバー方式の成膜装置を用いればよい。

0246

次に、加熱処理を行ってもよい。加熱処理は、上述した加熱処理条件を用いることができる。加熱処理によって、酸化膜230A、および酸化膜230B中の水、水素などの不純物を除去することなどができる。本実施の形態では、窒素雰囲気にて400℃の温度で1時間の処理を行った後に、連続して酸素雰囲気にて400℃の温度で1時間の処理を行う。

0247

次に、酸化膜230A、および酸化膜230Bを島状に加工して、酸化物230a、および酸化物230bを形成する(図6参照。)。なお、当該工程において、絶縁体224の酸化物230aと重ならない領域の膜厚が薄くなることがある。また、当該工程において、絶縁体224を、酸化物230aと重畳する島状に加工し、絶縁体222の一部が露出される構成にしてもよい。

0248

ここで、酸化物230a、および酸化物230bは、少なくとも一部が導電体205と重なるように形成する。また、酸化物230a、および酸化物230bの側面と絶縁体222の上面のなす角が低い角度になる構成にしてもよい。その場合、酸化物230a、および酸化物230bの側面と絶縁体222の上面のなす角は60°以上70°未満が好ましい。この様な形状とすることで、これより後の工程において、絶縁体266などの被覆性が向上し、鬆などの欠陥を低減することができる。または、酸化物230bの側面は、絶縁体222の上面に対し、概略垂直にしてもよい。酸化物230a、および酸化物230bの側面が、絶縁体222の上面に対し、概略垂直であることで、複数のトランジスタ200を設ける際に、小面積化高密度化が可能となる。

0249

また、酸化物230bの側面と酸化物230bの上面との間に、湾曲面を有する。つまり、側面の端部と上面の端部は、湾曲していることが好ましい(以下、ラウンド状ともいう)。湾曲面は、例えば、酸化物230b層の端部において、曲率半径が、3nm以上10nm以下、好ましくは、5nm以上6nm以下とする。端部に角を有さないことで、以降の成膜工程における膜の被覆性が向上する。

0250

なお、酸化膜230A、および酸化膜230Bの加工はリソグラフィー法を用いて行えばよい。また、当該加工はドライエッチング法やウェットエッチング法を用いることができる。ドライエッチング法による加工は微細加工に適している。

0251

また、ドライエッチングなどの処理を行うことによって、エッチングガスなどに起因した不純物が酸化物230a、および酸化物230bなどの表面または内部に付着または拡散することがある。不純物としては、例えば、フッ素または塩素などがある。

0252

上記の不純物などを除去するために、洗浄を行う。洗浄方法としては、洗浄液など用いたウェット洗浄、プラズマを用いたプラズマ処理、または熱処理による洗浄などがあり、上記洗浄を適宜組み合わせて行ってもよい。

0253

ウェット洗浄としては、シュウ酸リン酸、またはフッ化水素酸などを炭酸水または純水で希釈した水溶液を用いて洗浄処理を行ってもよい。または、純水または炭酸水を用いた超音波洗浄を行ってもよい。本実施の形態では、純水または炭酸水を用いた超音波洗浄を行う。

0254

次に、酸化物230cとなる酸化膜の成膜前に加熱処理を行うことが好ましい。加熱処理は、100℃以上400℃以下で行えばよく、例えば200℃で行えばよい。あるいは、酸化物230cとなる酸化膜の成膜温度と同じ温度で行うことが好ましい。ここで、成膜温度とは、成膜中の基板温度に限らず、成膜装置の設定温度の場合を含む。例えば、酸化物230cとなる酸化膜を300℃で成膜する場合、当該加熱処理は300℃とすることが好ましい。当該加熱処理は、減圧下で行うことが好ましく、例えば、真空雰囲気で行ってもよい。真空雰囲気は、ターボ分子ポンプ等で排気を行うことで維持される。真空雰囲気では、処理室の圧力は、1×10−2Pa以下、好ましくは1×10−3Pa以下とすればよい。

ページトップへ

この技術を出願した法人

この技術を発明した人物

ページトップへ

関連する挑戦したい社会課題

関連する公募課題

該当するデータがありません

ページトップへ

技術視点だけで見ていませんか?

この技術の活用可能性がある分野

分野別動向を把握したい方- 事業化視点で見る -

(分野番号表示ON)※整理標準化データをもとに当社作成

ページトップへ

おススメ サービス

おススメ astavisionコンテンツ

新着 最近 公開された関連が強い技術

  • 株式会社ジャパンディスプレイの「 半導体装置および半導体装置の製造方法」が 公開されました。( 2020/08/31)

    【課題】製造コストが低く、簡単なプロセスにより、半導体と配線との間に良好なコンタクトを形成し、コンタクト抵抗増大を抑制した半導体装置を提供すること。【解決手段】半導体装置は、凹部を有する第1半導体層と... 詳細

  • 東芝メモリ株式会社の「 半導体記憶装置」が 公開されました。( 2020/08/31)

    【課題】信頼性を向上させた抵抗変化型の半導体記憶装置を提供する。【解決手段】 半導体記憶装置は、第1方向に延びる第1配線と、前記第1方向と交差する第2方向に延び、前記第1配線に沿って前記第1方向に配... 詳細

  • 東芝メモリ株式会社の「 半導体記憶装置および検査方法」が 公開されました。( 2020/08/31)

    【課題】導電層を貫通したコンタクトによるショートを精度よく検出すること。【解決手段】実施形態の半導体記憶装置1は、基板Subと、基板Subの上方に、複数の導電層WLが絶縁層ILを介して積層され、複数の... 詳細

この 技術と関連性が強い人物

関連性が強い人物一覧

この 技術と関連する社会課題

関連する挑戦したい社会課題一覧

この 技術と関連する公募課題

該当するデータがありません

astavision 新着記事

サイト情報について

本サービスは、国が公開している情報(公開特許公報、特許整理標準化データ等)を元に構成されています。出典元のデータには一部間違いやノイズがあり、情報の正確さについては保証致しかねます。また一時的に、各データの収録範囲や更新周期によって、一部の情報が正しく表示されないことがございます。当サイトの情報を元にした諸問題、不利益等について当方は何ら責任を負いかねることを予めご承知おきのほど宜しくお願い申し上げます。

主たる情報の出典

特許情報…特許整理標準化データ(XML編)、公開特許公報、特許公報、審決公報、Patent Map Guidance System データ