図面 (/)

この項目の情報は公開日時点(2019年9月12日)のものです。
また、この項目は機械的に抽出しているため、正しく解析できていない場合があります

図面 (20)

課題

曲げなどの変形に対して、壊れにくい構造の蓄電体を提供する。

解決手段

電極板を2つ折りにされた絶縁体でなるシートで覆う。シートは電極板の周辺部で重なっている部分を接合することで、袋状あるいはエンベロープ状に加工されていることが好ましい。電極板は、シート共に外装体に固定されている。外装体が曲げなどにより変形した場合、電極板がシートと共に、外装体内部で滑ることができるため、電極板への曲げによる応力緩和することが可能である。

概要

背景

リチウムイオン2次電池リチウムイオンキャパシタ空気電池等、種々の蓄電体の開発
が盛んに行われている。特に高出力、高エネルギー密度であるリチウムイオン2次電池(
例えば、特許文献1参照)は、半導体産業発展に伴い急速にその需要が拡大している。
充放電可能な蓄電体は、携帯電話スマートフォンノート型パーソナルコンピュータ
携帯情報端末携帯音楽プレーヤデジタルカメラ等の電子機器、あるいは医療機器
どの様々な電子機器の電力供給源として現代情報化社会に不可欠なものとなっている

また、近年、頭部に装着する表示装置など、人体湾曲面に装着して使用される可撓性を
有する表示装置が提案されている。また、湾曲面に装着可能な可撓性を有する蓄電体が求
められている。特許文献2には、湾曲または屈曲することが可能な蓄電体が記載されてい
る。

概要

曲げなどの変形に対して、壊れにくい構造の蓄電体を提供する。電極板を2つ折りにされた絶縁体でなるシートで覆う。シートは電極板の周辺部で重なっている部分を接合することで、袋状あるいはエンベロープ状に加工されていることが好ましい。電極板は、シート共に外装体に固定されている。外装体が曲げなどにより変形した場合、電極板がシートと共に、外装体内部で滑ることができるため、電極板への曲げによる応力緩和することが可能である。

目的

本発明の一形態の課題は、新規な蓄電体、または新規なその作製方法等を提供する

効果

実績

技術文献被引用数
0件
牽制数
0件

この技術が所属する分野

(分野番号表示ON)※整理標準化データをもとに当社作成

ライセンス契約や譲渡などの可能性がある特許掲載中! 開放特許随時追加・更新中 詳しくはこちら

請求項1

外装体と、第1の電極板と、第2の電極板と、絶縁シートと、第1の封止体と、第2の封止体と、を有し、前記第1の電極板は二つに折られた前記絶縁シートに覆われており、前記第2の電極板は、前記絶縁シートの第1の領域を介して前記第1の電極板と隣接し、前記外装体は前記第1の電極板、前記絶縁シート及び前記第2の電極板を覆い、前記第1の封止体は前記外装体の第1の端部を封止し、前記第2の封止体は前記外装体の第2の端部を封止し、前記外装体の第2の端部は、前記外装体の第1の端部と向かい合わせであり、前記第1の電極板と前記絶縁シートの端部は、前記第1の封止体に覆われており、前記第2の電極板は前記第2の封止体に覆われており、前記第1の電極板と前記第1の封止体は、前記外装体が曲げられたとき、前記外装体の中で互いに移動する、蓄電装置

技術分野

0001

本発明は、物、方法、または、製造方法に関する。または、本発明は、プロセス、マシン
、マニュファクチャ、または、組成物コンポジションオブマター)に関する。例え
ば、本発明の一形態は、蓄電体、およびその作製方法等に関する。例えば、本発明の一形
態は、蓄電体、半導体装置表示装置発光装置記憶装置、それらの駆動方法、または
、それらの製造方法等に関する。

背景技術

0002

リチウムイオン2次電池リチウムイオンキャパシタ空気電池等、種々の蓄電体の開発
が盛んに行われている。特に高出力、高エネルギー密度であるリチウムイオン2次電池(
例えば、特許文献1参照)は、半導体産業発展に伴い急速にその需要が拡大している。
充放電可能な蓄電体は、携帯電話スマートフォンノート型パーソナルコンピュータ
携帯情報端末携帯音楽プレーヤデジタルカメラ等の電子機器、あるいは医療機器
どの様々な電子機器の電力供給源として現代情報化社会に不可欠なものとなっている

0003

また、近年、頭部に装着する表示装置など、人体湾曲面に装着して使用される可撓性を
有する表示装置が提案されている。また、湾曲面に装着可能な可撓性を有する蓄電体が求
められている。特許文献2には、湾曲または屈曲することが可能な蓄電体が記載されてい
る。

先行技術

0004

特開2012−9418号公報
特開2013−211262号公報

発明が解決しようとする課題

0005

本発明の一形態の課題は、新規な蓄電体、または新規なその作製方法等を提供することに
ある。例えば、本発明の一形態の課題は、曲げなどの変形に対して夫な蓄電体を提供す
ること、または、不良が起きにくい蓄電体を提供すること等である。

0006

なお、複数の課題の記載は、互いの課題の存在を妨げるものではない。なお、本発明の一
態様は、これらの課題の全て解決する必要はない。また、明細書、図面、請求項などの記
載から、列記した以外の課題が自ずと明らかとなるものであり、これらの課題も本発明の
一形態の課題となり得る。

課題を解決するための手段

0007

本発明の一形態は、第1の電極板と、第2の電極板と、絶縁体でなる第1のシートと、第
1および第2の電極板を収納する外装体とを有し、2つ折りにされた第1のシートにより
第1の電極板が覆われ、第1の電極板は、第1のシートと共に、外装体に固定されている
蓄電体である。

0008

本発明の一形態は、第1の電極板と、第2の電極板と、絶縁体でなる2枚の第1のシート
と、第1および第2の電極板を収納する外装体とを有し、前記2枚の第1のシートにより
第1の電極板が覆われ、第1の電極板は、2枚の第1のシートと共に、外装体に固定され
ている蓄電体である。

0009

上記形態らにおいて、第2の電極板が外装体に固定されていることが可能である。または
、上記形態らにおいて、絶縁体でなる2つ折りにされた第2のシートまたは、2枚の第2
のシートにより、第2の電極板が覆われ、第2の電極板が、第2のシートと共に、外装体
に固定されていることが可能である。

発明の効果

0010

本発明の一形態により、新規な蓄電体、または新規なその作製方法等を提供することがで
きる。例えば、本発明の一形態により、曲げなどの変形に対して丈夫な蓄電体を提供する
こと、または、不良が起きにくい蓄電体を提供すること等が可能になる。

0011

なお、これらの効果の記載は、他の効果の存在を妨げるものではない。また、本発明の一
形態は、必ずしも、これらの効果の全てを有する必要はない。また、本発明の形態につい
て、上記以外の課題、効果、および新規な特徴については、本明細書の記載および図面か
ら自ずと明らかになるものである。

図面の簡単な説明

0012

蓄電体の構成例を示す平面図。
図1の断面図。
図1の断面図。
図1の断面図。
図1の断面図。
正極板の構成例を示す図。
極板の構成例を示す図。
正極板および負極板の集電体の構成例を示す図。
セパレータの構成例および蓄電体の作製例を示す図。
セパレータの構成例および蓄電体の作製例を示す図。
蓄電体の構成例およびその作製例を示す図。
蓄電体の構成例およびその作製例を示す図。
蓄電体の構成例およびその作製例を示す図。
蓄電体の構成例およびその作製例を示す図。
蓄電体の構成例およびその作製例を示す図。
蓄電体の構成例およびその作製例を示す図。
蓄電体の断面構造を示す図。
蓄電体の断面構造を示す図。
蓄電体の断面構造を示す図。
電子機器の構成例を示す図。
電子機器の構成例を示す図。
電子機器の構成例を示す図。
電子機器の構成例を示す図。

実施例

0013

本明細書において、蓄電体とは、蓄電機能を有する素子及び装置全般を指すものである。
例えば、蓄電体として、電池一次電池、2次電池、リチウムイオン2次電池、リチウム
空気2次電池、キャパシタ、リチウムイオンキャパシタなどがあげられる。また、電気
デバイスとは、蓄電体、導電層抵抗容量素子などを利用することで機能しうる装置
全般を指している。また、電子機器、電気機器、および機械装置等は、本発明の一形態に
係る蓄電体を有している場合がある。

0014

以下に、図面を用いて、本発明の実施の形態について詳細に説明する。ただし、本発明の
実施の形態は以下の説明に限定されず、本発明の趣旨およびその範囲から逸脱することな
くその形態および詳細を様々に変更し得ることは、当業者であれば容易に理解される。し
たがって、本発明の形態は、以下に示す実施の形態の記載内容に限定して解釈されるもの
ではない。

0015

また、以下に複数の実施の形態を示すが、互いの実施の形態を適宜組み合わせることが可
能である。また、1つの実施の形態の中に、いくつかの構成例が示される場合は、互いの
構成例を適宜組み合わせることが可能である。

0016

本発明の一形態に係る蓄電体は、正極および負極を有する。正極、負極は、それぞれ、シ
ート状もしくは平板状の1つまたは複数の電極板(正極板、負極板)を有する。短絡を防
止するため、隣接する2つの電極板の少なくとも一方は、その両面が絶縁体でなるシート
(あるいは、フィルムと呼ぶこともできる。)で覆われている。以下の説明において、電
極板を覆うシートを”セパレータ”と呼ぶ場合がある。
本実施の形態では、蓄電体の構成例、およびその作製方法例などを説明する。

0017

<<蓄電体の構成例1>>
図1図16を参照して、蓄電体の構成例、およびその作製方法例などを説明する。

0018

図1は蓄電体の構成例を示す上面図である。図2図5図1の断面図である。図2はA
1−A2線断面図であり、図3はB1−B2線断面図であり、図4はC1−C2線断面図
であり、図5はD1−D2線断面図である。図2図5には、部分拡大図も示している。

0019

図1に示すように、蓄電体300は、正極101、負極102、封止体104、封止体1
05、および外装体107を有する。ここでは、蓄電体300の一例として、外装体10
7の平面形態四角形である構成を説明する。なお、本発明の形態の理解を容易にするた
め、上、下、左、右、縦、横等の用語を、参照している図面の図示の方法を基準に使用す
る場合がある。例えば、図1においては、正極101は外装体107の下側側面に存在し
ており、負極102は、その側面に対向する上側側面に存在していると、説明することが
できる。

0020

正極101および負極102は、蓄電体300の端子として機能する部分(101a、1
02a)を除いて、外装体107内に封入されている。外装体107内には、電解液10
3も封入されている(図2図3)。以下では、部分101a、部分102aを、それぞ
れ、”端子部101a”、”端子部102a”と呼ぶことにする。

0021

図1図3に示すように、外装体107の対向する2つの側面(下側と上側の側面)の一
方から、端子部101aが出ており、他方から端子部102aが出ている。蓄電体300
充電および放電は、端子部101aおよび端子部102aを介して行われる。端子部1
01aに正極用リードを接続することができる。端子部102aに負極用リードを接続す
ることができる。

0022

ここでは、蓄電体300の一例として、正極101は3つの正極板(111)を有し、負
極102は4つの負極板(120、121)を有する構成を説明する(図2図3)。正
極板111は、正極集電体11および正極活物質層12を有し、負極板120と負極板1
21は、それぞれ負極集電体21および負極活物質層22を有する。端子部101aは、
互いに電気的に接続された3つの正極集電体11で構成されている。端子部102aは、
互いに電気的に接続された4つの負極集電体21で構成されている。複数の正極集電体1
1の電気的な接続、および複数の負極集電体21の電気的な接続は、例えば、これらを接
合することで行うことができる。

0023

蓄電体300の各電極板(111、120、121)の両面は、セパレータ130で覆わ
れている。セパレータ130は、例えば、2つ折りにされた1枚の絶縁体のシート30で
構成することができる(図9参照)。セパレータ130については、後述する。ここでは
、蓄電体300の一例として、正/負の両方の電極板がセパレータ130で覆われている
構成について説明する。もちろん、本発明の一形態は、これに限定されず、正極板または
負極板の何れか一方をセパレータ130で覆う構成にすることが可能である。

0024

外装体107は、例えば、1枚のフィルム70を2つに折り曲げることで作製できる(図
15、図16)。フィルム70を袋状にするため、外装体107の3辺(左辺上辺、下
辺)に沿ってフィルム70同士を固定するための接合部71が形成されている。外装体1
07については後述する。

0025

蓄電体300には、外装体107に挟まれた封止体104および封止体105が設けられ
ている。図1図3に示すように、封止体104は、正極101と外装体107の隙間を
埋めるように、外装体107の下端に設けられている。封止体105は、負極102と外
装体107の隙間を埋めるように、外装体107の上端に設けられている。接合部71の
外装体107の下端に形成された部分において、外装体107は封止体104に固定され
ている。接合部71の外装体107の上端に形成された部分において、外装体107は封
止体105に固定されている。図4は、接合部71における封止体104および正極10
1の断面構造を示し、図5は、接合部71における封止体105および負極102の断面
構造を示している。

0026

以下、図面を参照して、蓄電体300の構成要素の構成例、および蓄電体300の作製方
法例を説明する。

0027

<電極板>
図6A−図6Cは、正極板の構成例を示す斜視図である。図7A−図7Cは、負極板の構
成例を示す斜視図である。図8A−図8Cは、正極板、負極板の集電体の構成例を示す平
面図である。

0028

正極板110は、正極集電体11および正極活物質層12を有する(図6A)。負極板1
20は、負極集電体21および負極活物質層22を有する(図7A)。正極板110、負
極板120は、片面に活物質層が形成されている電極板である。

0029

正極、負極とも、2つ以上の電極板で構成する場合、両面に活物質層が形成されている電
極板が用いられる。正極板(111、112)、負極板(121、122)はこのような
構成を持つ電極板である。正極板111には、1つの正極集電体11の両面に正極活物質
層12が形成されている(図6B)。負極板121には、1つの負極集電体21の両面に
負極活物質層22が形成されている(図7B)。正極板112は、2枚の正極板110を
中合わせにした構造の電極板に相当し、2枚の正極集電体11を有する(図6C)。負
極板122は、2枚の負極板120を背中合わせにした構造の電極板に相当し、2枚の負
極集電体21を有する(図7C)。ここでは、正極101は、3つの正極板111で構成
されており、負極102は2つの負極板120と2つの負極板121で構成されている。

0030

図8Aは正極集電体11の構成例を示す平面図である。図8Bは負極集電体21の構成例
を示す平面図である。正極集電体11は、2つの部分(11a、11b)を有する。片面
または両面に正極活物質層12が形成される部分が、部分11bである。部分11aには
、正極活物質層12が形成されない。部分11aは、正極101の端子部101aを構成
する。負極集電体21も、同様に、2つの部分(21a、21b)を有する。片面または
両面に負極活物質層22が形成される部分が部分21bである。部分21aには、負極活
物質層22が形成されない。部分21aは、負極102の端子部102aを構成する。こ
こでは、部分11aを”タブ11a”と呼び、部分21aを”タブ21a”と呼ぶことに
する。

0031

図8Cは、電極板(111、120、121)を積層した状態を説明する図であり、集電
体(11、21)の平面図である。負極活物質層22が形成される部分21bの縦、横の
サイズを正極集電体11の部分11bよりも長くすることにより、正極板111、負極板
(120、121)を積層した状態で、正極集電体11の周辺端部が、負極集電体21表
面に存在するようにしている。このような構成により、負極板121の周辺端部で電界
集中するのを緩和することができるため、この領域でのウィスカー析出が抑制される。
これにより、蓄電体300の充放電サイクル寿命延ばすことができる。

0032

或いは、負極活物質層22が正極活物質層12と確実に対向するように、部分21bの外
形サイズを部分11bよりも小さくすることで、負極集電体21の周辺端部が正極集電体
11と確実に重なるように、電極板(111、120、121)を重ねることが可能であ
る。また、部分11bと部分21bを同じサイズにし、これらの周辺端部が一致するよう
に、電極板(111、120、121)を重ねることも可能である。

0033

電極板(111、120、121)は、集電体、活物質層以外を有してもよい。以下、電
極板(111、120、121)を構成する部材や材料等について説明する。

0034

[正極集電体]
正極集電体11には、ステンレス、金、白金アルミニウムチタン等の金属、及びこれ
らの合金など、導電性が高く、リチウム等のキャリアイオン合金化しない材料を用いる
ことができる。また、シリコン、チタン、ネオジムスカンジウムモリブデンなどの耐
熱性を向上させる元素が添加されたアルミニウム合金を用いることができる。また、シリ
コンと反応してシリサイドを形成する金属元素で形成してもよい。シリコンと反応してシ
サイドを形成する金属元素としては、ジルコニウム、チタン、ハフニウムバナジウム
ニオブタンタルクロム、モリブデン、タングステンコバルトニッケル等がある
。正極集電体11には、箔状、板状、シート状、網状、パンチングメタル状、エキスパン
ドメタル状等の部材を適宜用いることができる。正極集電体11の厚さは、例えば、5μ
m以上30μm以下とすることができる。厚さを5μm以上10μm以下とすることで、
蓄電体300を薄く、軽量化することができ、また、蓄電体300を曲げやすくすること
ができるので、好ましい。

0035

また、正極集電体11の表面に、グラファイト等でなるアンダーコート層を設けもよい。

0036

[正極活物質層]
正極活物質層12は、正極活物質の他、正極活物質の密着性を高めるための結着剤バイ
ンダ)、正極活物質層12の導電性を高めるための導電助剤等を有してもよい。

0037

正極活物質としては、オリビン型結晶構造、層状岩塩型の結晶構造、またはスピネル型
の結晶構造を有する複合酸化物等がある。正極活物質として、例えば、LiFeO2、L
iCoO2、LiNiO2、LiMn2O4、V2O5、Cr2O5、MnO2等の化合
物を用いる。

0038

特に、LiCoO2は、容量が大きいこと、LiNiO2に比べて大気中で安定であるこ
と、LiNiO2に比べて熱的に安定であること等の利点があるため、好ましい。

0039

また、LiMn2O4等のマンガンを含むスピネル型の結晶構造を有する化合物に、少量
ニッケル酸リチウム(LiNiO2やLiNi1−xMO2(M=Co、Al等))を
混合すると、マンガンの溶出を抑制する、電解液の分解を抑制する等の利点があり好まし
い。

0040

また、正極活物質には、複合材料一般式LiMPO4(Mは、Fe(II)、Mn(I
I)、Co(II)、Ni(II)の一以上))を用いることができる。一般式LiMP
O4の代表例としては、LiFePO4、LiNiPO4、LiCoPO4、LiMnP
O4、LiFeaNibPO4、LiFeaCobPO4、LiFeaMnbPO4、L
iNiaCobPO4、LiNiaMnbPO4(a+bは1以下、0<a<1、0<b
<1)、LiFecNidCoePO4、LiFecNidMnePO4、LiNicC
odMnePO4(c+d+eは1以下、0<c<1、0<d<1、0<e<1)、Li
FefNigCohMniPO4(f+g+h+iは1以下、0<f<1、0<g<1、
0<h<1、0<i<1)等のリチウム化合物を材料として用いることができる。

0041

特にLiFePO4は、安全性、安定性高容量密度高電位初期酸化(充電)時に引
き抜けるリチウムイオンの存在等、正極活物質に求められる事項バランスよく満たして
いるため、好ましい。

0042

また、正極活物質には、一般式Li(2−j)MSiO4(Mは、Fe(II)、Mn(
II)、Co(II)、Ni(II)の一以上、0≦j≦2)等の複合材料を用いること
ができる。一般式Li(2−j)MSiO4の代表例としては、Li(2−j)FeSi
O4、Li(2−j)NiSiO4、Li(2−j)CoSiO4、Li(2−j)Mn
SiO4、Li(2−j)FekNilSiO4、Li(2−j)FekColSiO4
、Li(2−j)FekMnlSiO4、Li(2−j)NikColSiO4、Li(
2−j)NikMnlSiO4(k+lは1以下、0<k<1、0<l<1)、Li(2
−j)FemNinCoqSiO4、Li(2−j)FemNinMnqSiO4、Li
(2−j)NimConMnqSiO4(m+n+qは1以下、0<m<1、0<n<1
、0<q<1)、Li(2−j)FerNisCotMnuSiO4(r+s+t+uは
1以下、0<r<1、0<s<1、0<t<1、0<u<1)等のリチウム化合物を材料
として用いることができる。

0043

また、正極活物質には、AxM2(XO4)3(A=Li、Na、Mg、M=Fe、Mn
、Ti、V、Nb、Al、X=S、P、Mo、W、As、Si)の一般式で表されるナシ
コン型化合物を用いることができる。ナシコン型化合物としては、Fe2(MnO4)3
、Fe2(SO4)3、Li3Fe2(PO4)3等がある。また、正極活物質として、
Li2MPO4F、Li2MP2O7、Li5MO4(M=Fe、Mn)の一般式で表さ
れる化合物、NaFeF3、FeF3等のペロブスカイト型フッ化物、TiS2、MoS
2等の金属カルコゲナイド硫化物セレン化物テルル化物)、LiMVO4等の逆ス
ネル型の結晶構造を有する酸化物バナジウム酸化物系(V2O5、V6O13、Li
V3O8等)、マンガン酸化物有機硫黄等の材料を用いることができる。

0044

キャリアイオンが、リチウムイオン以外のアルカリ金属イオンや、アルカリ土類金属イオ
ンの場合、正極活物質として、上記リチウム化合物、リチウム含有複合リン酸塩及びリチ
ウム含有複合ケイ酸塩等において、リチウムの代わりに、アルカリ金属(例えば、ナトリ
ウムやカリウム等)、アルカリ土類金属(例えば、カルシウムストロンチウムバリ
ム、ベリリウムマグネシウム等)を用いてもよい。例えば、NaFeO2や、Na2/
3[Fe1/2Mn1/2]O2などのナトリウム含有層状酸化物を正極活物質として用
いることができる。

0045

また、正極活物質には、上記材料を複数組み合わせた材料を用いてもよい。例えば、上記
材料を複数組み合わせた固溶体を正極活物質として用いることができる。例えば、LiC
o1/3Mn1/3Ni1/3O2とLi2MnO3の固溶体を用いることができる。

0046

正極活物質層12の表面に炭素層や、酸化ジルコニウムなどの酸化物層を設けてもよい。
炭素層や酸化物層を設けることで、電極の導電性を向上させることができる。正極活物質
層12への炭素層の被覆は、正極活物質の焼成時にグルコース等の炭水化物を混合するこ
とで形成することができる。

0047

粒状の正極活物質層12の一次粒子としては、平均粒径が50nm以上100μm以下の
ものを用いるとよい。

0048

導電助剤としては、アセチレンブラック(AB)、グラファイト(黒鉛粒子カーボン
ナノチューブグラフェンフラーレンなどを用いることができる。

0049

導電助剤により、正極活物質層12中に電子伝導ネットワークを形成することができる
。導電助剤により、正極活物質どうしの電気伝導経路を維持することができる。正極活
物質層12中に導電助剤を添加することにより、高い電子伝導性を有する正極活物質層1
2を実現することができる。

0050

グラフェンは、高い導電性を有するという優れた電気特性、及び柔軟性並びに機械的強度
という優れた物理特性を有する。また、グラフェンは、負極活物質層22の導電助剤とし
ても用いることができる。グラフェンを、導電助剤として用いることにより、活物質同士
接触点や、接触面積を増大させることができる。

0052

正極活物質層12の総量に対するバインダの含有量は、1wt%以上10wt%以下が好
ましく、2wt%以上8wt%以下がより好ましく、3wt%以上5wt%以下がさらに
好ましい。また、正極活物質層12の総量に対する導電助剤の含有量は、1wt%以上1
0wt%以下が好ましく、1wt%以上5wt%以下がより好ましい。

0053

[負極集電体]
負極集電体21には、ステンレス、金、白金、亜鉛、鉄、銅、タンタル、チタン等の金属
、及びこれらの合金など、導電性の高く、リチウム等のキャリアイオンと合金化しない材
料を用いることができる。また、シリコン、チタン、ネオジム、スカンジウム、モリブ
ンなどの耐熱性を向上させる元素が添加されたアルミニウム合金を用いることができる。
また、シリコンと反応してシリサイドを形成する金属元素で形成してもよい。シリコンと
反応してシリサイドを形成する金属元素としては、ジルコニウム、チタン、ハフニウム、
バナジウム、ニオブ、タンタル、クロム、モリブデン、タングステン、コバルト、ニッケ
ル等がある。負極集電体21は、箔状、板状(シート状)、網状、パンチングメタル状、
エキスパンドメタル状等の形状を適宜用いることができる。負極集電体21の厚さは、例
えば、5μm以上30μm以下とすることができる。厚さを5μm以上20μm以下とす
ることで、蓄電体300を薄く、かつ軽量化することができ、さらに、蓄電体300を曲
げやすくすることができるので、好ましい。

0054

また、負極集電体21の表面に、グラファイトなどを用いてアンダーコート層を設けても
よい。

0055

[負極活物質層]
負極活物質層22は、負極活物質の他、負極活物質の密着性を高めるための結着剤(バイ
ンダ)、負極活物質層22の導電性を高めるための導電助剤等を有してもよい。

0056

負極活物質は、リチウムの溶解・析出、又はリチウムイオンの挿入・脱離が可能な材料で
あれば、特に限定されない。負極活物質の材料としては、リチウム金属チタン酸リチウ
ムの他、蓄電体の分野で一般的な炭素系材料や、合金系材料等が挙げられる。

0057

リチウム金属は、酸化還元電位が低く(標準水素電極に対して−3.045V)、重量及
体積当たり比容量が大きい(それぞれ3860mAh/g、2062mAh/cm3
)ため、好ましい。

0058

炭素系材料としては、黒鉛、易黒鉛化性炭素ソフトカーボン)、難黒鉛化性炭素(ハー
ドカボン)、カーボンナノチューブ、グラフェン、カーボンブラック等が挙げられる。
黒鉛としては、メソカーボンマイクロビーズMCMB)、コークス人造黒鉛ピッチ
系人造黒鉛等の人造黒鉛や、球状化天然黒鉛等の天然黒鉛が挙げられる。黒鉛は、リチウ
イオンが層間に挿入されたときに(リチウム−黒鉛層間化合物の生成時に)、リチウム
金属と同程度に卑な電位を示す(0.1乃至0.3V vs.Li/Li+)。これによ
り、リチウムイオン電池は高い作動電圧を示すことができる。さらに、黒鉛は、単位体積
当たりの容量が比較的高い、体積膨張が小さい、安価である、リチウム金属に比べて安全
性が高い等の利点を有するため、好ましい。

0059

負極活物質には、リチウムとの合金化・脱合金化反応により充放電反応を行うことが可能
な合金系材料も用いることができる。例えば、キャリアイオンがリチウムイオンである場
合、合金系材料としては、Al、Si、Ge、Sn、Pb、Sb、Bi、Ag、Zn、C
d、In、Ga等のうち少なくとも一つを含む材料が挙げられる。このような元素は炭素
に対して容量が大きく、特にシリコンは理論容量が4200mAh/gと飛躍的に高い。
このため、負極活物質にシリコンを用いることが好ましい。このような元素を用いた合金
系材料としては、例えば、Mg2Si、Mg2Ge、Mg2Sn、SnS2、V2Sn3
、FeSn2、CoSn2、Ni3Sn2、Cu6Sn5、Ag3Sn、Ag3Sb、N
i2MnSb、CeSb3、LaSn3、La3Co2Sn7、CoSb3、InSb、
SbSn等が挙げられる。

0060

また、負極活物質には、SiO、SnO、SnO2、二酸化チタン(TiO2)、リチウ
チタン酸化物(Li4Ti5O12)、リチウム−黒鉛層間化合物(LixC6)、五
酸化ニオブ(Nb2O5)、酸化タングステン(WO2)、酸化モリブデン(MoO2)
等の酸化物を用いることができる。

0061

また、負極活物質には、リチウムと遷移金属の複窒化物である、Li3N型構造をもつL
i3−xMxN(M=Co、Ni、Cu)を用いることができる。例えば、Li2.6C
o0.4N3は大きな充放電容量(900mAh/g、1890mAh/cm3)を示し
好ましい。

0062

リチウムと遷移金属の複窒化物を用いると、負極活物質中にリチウムイオンを含むため、
正極活物質としてリチウムイオンを含まないV2O5、Cr3O8等の材料と組み合わせ
ることができ好ましい。なお、正極活物質にリチウムイオンを含む材料を用いる場合でも
、あらかじめ正極活物質に含まれるリチウムイオンを脱離させておくことで、負極活物質
としてリチウムと遷移金属の複窒化物を用いることができる。

0063

また、コンバージョン反応が生じる材料を負極活物質として用いることもできる。例えば
酸化コバルト(CoO)、酸化ニッケル(NiO)、酸化鉄(FeO)等の、リチウム
合金化反応を行わない遷移金属酸化物を負極活物質に用いてもよい。コンバージョン
応が生じる材料としては、さらに、Fe2O3、CuO、Cu2O、RuO2、Cr2O
3等の酸化物、CoS0.89、NiS、CuS等の硫化物、Zn3N2、Cu3N、G
e3N4等の窒化物、NiP2、FeP2、CoP3等のリン化物、FeF3、BiF3
等のフッ化物でも起こる。なお、上記フッ化物の電位は高いため、正極活物質として用い
てもよい。

0064

また、負極活物質の表面に、グラフェンを形成してもよい。例えば、負極活物質をシリコ
ンとした場合、充放電サイクルにおけるキャリアイオンの吸蔵・放出に伴う体積の変化が
大きいため、負極集電体21と負極活物質層22との密着性が低下し、充放電により電池
特性が劣化してしまう。そこで、シリコンを含む負極活物質の表面にグラフェンを形成す
ると、充放電サイクルにおいて、シリコンの体積が変化しても、負極集電体21と負極活
物質層22との密着性の低下を抑制することができ、電池特性の劣化が低減されるため好
ましい。

0065

また、負極活物質の表面に、酸化物等の被膜を形成してもよい。充電時において電解液の
分解等により形成される被膜は、その形成時に消費された電荷量を放出することができず
不可逆容量を形成する。これに対し、酸化物等の被膜をあらかじめ負極活物質の表面に
設けておくことで、不可逆容量の発生を抑制又は防止することができる。

0066

このような負極活物質を被覆する被膜には、ニオブ、チタン、バナジウム、タンタル、タ
ングステン、ジルコニウム、モリブデン、ハフニウム、クロム、アルミニウム若しくはシ
リコンのいずれか一の酸化膜、又はこれら元素のいずれか一とリチウムとを含む酸化膜を
用いることができる。このような被膜は、従来の電解液の分解生成物により負極表面に形
成される被膜に比べ、十分緻密な膜である。

0067

例えば、五酸化ニオブ(Nb2O5)は、電気伝導度が10−9S/cmと低く、高い絶
縁性を示す。このため、酸化ニオブ膜は負極活物質と電解液との電気化学的な分解反応
阻害する。一方で、酸化ニオブのリチウム拡散係数は10−9cm2/secであり、高
リチウムイオン伝導性を有する。このため、リチウムイオンを透過させることが可能で
ある。また、酸化シリコン酸化アルミニウムを用いてもよい。

0068

負極活物質を被覆する被膜の形成には、例えばゾルゲル法を用いることができる。ゾル
−ゲル法とは、金属アルコキシド金属塩等からなる溶液を、加水分解反応重縮合反応
により流動性を失ったゲルとし、このゲルを焼成して薄膜を形成する方法である。ゾル−
ゲル法は液相から薄膜を形成する方法であるから、原料分子レベル均質に混合するこ
とができる。このため、溶媒の段階の金属酸化膜の原料に、黒鉛等の負極活物質を加える
ことで、容易にゲル中に活物質を分散させることができる。このようにして、負極活物質
の表面に被膜を形成することができる。当該被膜を用いることで、蓄電体の容量の低下を
防止することができる。

0069

<電極板の作製>
塗布法等を用いて、正極活物質層12を形成することができる。例えば、正極活物質とバ
インダと導電助剤を混合して正極ペーストスラリー)を作製する。正極集電体11を構
成する導電体でなる箔(例えば、アルミニウム箔)の両面に正極ペーストを塗布し、乾燥
させる。正極活物質層12が形成されたアルミニウム箔を加工する。この加工は、例えば
打ち抜き器を使用すればよい。以上の工程で、正極板111を作製することができる。
負極板120、121も同様に作製することができる。負極集電体21には、例えば、銅
箔を用いればよい。負極板120を形成する場合は、銅箔の片面に負極ペーストを塗布し
、負極板121を形成する場合は、銅箔の両面に負極ペーストを塗布する。

0070

<セパレータ>
図9に示すように、セパレータ130は、2つ折りにされた1枚の絶縁体でなるシート3
0から作製することができる。シート30には、ポリプロピレン(PP)、ポリエチレン
(PE)、ポリブテンナイロンポリエステルポリスルホンポリアクリロニトリル
、ポリフッ化ビニリデン、テトラフルオロエチレン等の多孔性絶縁体でなるシートを用い
ることができる。また、絶縁材料でなる繊維(ガラス繊維高分子繊維セルロース)で
形成された不織布を用いることができる。また、シート30は、複数のシートを積層した
シートでもよい。また、樹脂材料等で表面をコートして、耐熱性や、親水性を向上させて
もよい。シート30の厚さは、例えば、10μm以上50μm以下とすればよい。

0071

図9を参照して、正極板111を覆うセパレータ130の作製方法の一例を説明する。シ
ート30に折り目30aを形成する(図9A)。シート30上に正極板111を重ねる(
図9B)。次いで、シート30を折り目30aで折り、シート30で正極板111を挟む
図9C)。これにより、正極板111の両面(上面、下面)がシート30で覆われた状
態になる。ここでは、この状態を維持するため、シート30が重なっている領域(正極板
111の左、右の外周部)でシート30同士を接合する。シート30の接合方法は、加熱
による溶着超音波接合接着剤による接着等が挙げられる。接合方法は、シート30、
電解液103等の材料によって適宜選択すればよい。

0072

以上の工程で、セパレータ130が完成する。セパレータ130は、袋状あるいはエン
ロープ状の絶縁体のシート30と呼ぶことが可能である。接合部31、32を形成するこ
とで、セパレータ130を正極板111により密着することができる。そのため、セパレ
ータ130から正極板111がずれることを防止することができる。また、セパレータ1
30にしわが発生することを防止することができる。

0073

図9の例では、1枚のシートからセパレータを形成したが、2枚のシートからセパレータ
を形成することもできる。2枚のシート30で、正極板111を挟む(図10A)。2枚
のシート30を接合することで、セパレータ131が完成する(図10B)。図10Bの
例では、セパレータ131には、セパレータ130と同様に、接合部31、32が形成さ
れ、さらに、図9Aのシート30の折り目30aに対応する部分に接合部33が形成され
ている。

0074

なお、シート30をエンベロープ状(袋状)にするために形成される接合部は、図9D、
図10Bの構成に限定されるものではない。正極板111が1枚または2枚のシート30
で覆われるように、セパレータ130、131が作製できればよい。以下、図11を参照
して、いくつかの構成例を説明する。例えば、セパレータ130において、タブ11aと
重なる領域以外を除く外周部(シート30の左右の外周部)に、開口が残らないように、
接合部31、接合部32を形成することができる(図11A)。また、セパレータ130
の外周部に、一部に開口35が存在するように接合部31、32を形成することが可能で
ある(図11B)。

0075

正/負両方の電極板をセパレータで覆うことで、電極板間の短絡の防止効果が向上する。
この場合、セパレータを構成する絶縁体のシートを、正極用と負極用に異ならせることが
可能である。例えば、負極用では、析出物の除去のため、セルロース等の不織布でなるセ
レータを使用する。正極用は、シャットダウン機能を有する多孔性樹脂シートでなる
セパレータを用いる。これにより、蓄電体の安全性を向上することができる。

0076

正/負の一方の電極板をセパレータで覆うことで、正/負両方の電極板をセパレータで覆
うよりも、蓄電体を薄く、軽量化することができる。例えば、蓄電体の製造後の充放電に
よるエージング工程でガスが発生する場合がある。この場合、ガス抜きを容易にするため
に、ガスが発生しやすい方の電極板をセパレータで覆わない構成とすればよい。例えば、
蓄電体300の使用時では、充放電を繰り返すことで、特性を劣化させるような析出物が
生じやすい場合がある。この場合、正極と負極間の短絡の防止をより効果的にするために
、析出物が生じやすい電極板の方をセパレータで覆う構成とすればよい。例えば、リチウ
ムイオン2次電池の場合は、負極板にリチウムのウィスカーが形成される場合があるので
、負極板をセパレータで覆う構成が好ましい。

0077

電極積層体、封止体>
次に、負極板(120、121)と正極板(111)を交互に積層し、複数の電極板を含
む電極積層体を形成する。本実施の形態では、電極積層体には、封止体104を形成する
ための部材を隣接する正極板の間に設け、また、封止体105を形成するための部材を負
極板と負極板の間に設ける。ここでは、一例として、封止体104、105を絶縁体でな
融着テープで形成する例を説明する。

0078

電極板(111、120、121)を積層する前に、各電極板に融着テープを取り付ける
。ここでは、正極板111を例に融着テープを取り付ける方法を説明する。負極板(12
0、121)についても同様である。図12Aに示すように、融着テープ50は、エンベ
ロープ状のセパレータ130の解放端部と重なるように正極板111に取り付けられてお
り、タブ11aおよびセパレータ130に取り付けられている。正極板111において、
融着テープ50と重なる部分には正極活物質層12が形成されていないことが好ましい。
図12Aは、正極板111の片面に融着テープ50を取り付ける例を示しており、正極板
111の両面を図示している。また、図12B、図12Cに示すように、正極板111の
両面に融着テープ50を取り付けることもできる。また、正極板111の片面、あるいは
両面に2層以上融着テープ50を取り付けることができる。正極板111、シート30、
および融着テープ50の厚さに応じて、融着テープ50の取り付け方法を決定することが
できる。電極積層体の最上層最下層の電極板には、両面に融着テープを取り付ける。こ
れにより、外装体と電極板のタブとの隙間を封止体で埋めることができる。

0079

図13Aに示すように、融着テープ50を取り付けた電極板(111、120、121)
を積層する。ここでは、一番上の電極板(111、120)の両面に融着テープ50を取
り付けてある。タブ11a同士、タブ21a同士が重なるように、負極板(120、12
1)と正極板(111)を交互に積層し、電極積層体180(図13B)を作製する。電
極積層体180において、タブ11aに取り付けられた融着テープ50同士が融着するこ
とで封止体104が形成される。タブ21aに取り付けられた融着テープ50同士が融着
することで、封止体105が形成される。

0080

また、図14に示すように、封止体104、封止体105に、それぞれ、さらに融着テー
プ51を取り付けてもよい。融着テープ51は、封止体104、封止体105を構成する
ことになる。封止体104、封止体105の何れか一方に融着テープ51を取り付けるこ
とも可能である。融着テープ50、51としては、粘着部が合成ゴム等の絶縁性および防
水性を有する材料でなるテープを用いればよい。

0081

封止体104、封止体105を構成する部材は、融着テープ50に限定されるものでない
。隣接する2つの集電体(タブ)間、および集電体(タブ)と外装体の隙間を埋めて、電
解液が漏れないように封止体104、105が形成できる絶縁体でなる部材、または材料
等であればよい。例えば、絶縁性のシーリング材を用いることができる。シーリング材の
ように流動性を有する部材を用いる場合は、あらかじめ電極板に部材を塗布してもよいし
、電極板を積層しながら、電極板に部材を塗布することもできる。

0082

<外装体>
外装体107中に、電極積層体180を封止する。この封止工程では、タブ11a、21
aが外装体107の外部に露出するように、外装体107が形成される。ここでは、1枚
のフィルム70を折り、袋状に成形することで、外装体107を形成する(図15図1
6)。外装体107を形成するためのフィルム70としては、金属フィルムアルミニウ
ム、ステンレス、ニッケル鋼など)、有機材料からなるプラスチックフィルム、有機材料
有機樹脂や繊維など)と無機材料セラミックなど)とを含むハイブリッド材料フィル
ム、および、炭素含有フィルム(カーボンフィルムグラファイトフィルムなど)から選
ばれる単層フィルムを用いることができる。また、フィルム70としてはこれらのフィル
ムを複数積層させた積層フィルムを用いることができる。フィルム70として、凹部およ
び/または凸部が形成されたフィルムを用いてもよい。これにより、フィルム70のフィ
ルムの表面積が増えるため、外装体107を放熱効果の高めることができる。凹部および
/または凸部の形成は、例えば、エンボス加工で行うことができる。

0083

蓄電体300が変形した場合、外装体107に曲げ応力が加わり、その一部にしわなどの
変形や、破壊が生じる恐れがある。外装体107に凹部および/または凸部を形成するこ
とにより、外装体107で生じた応力によるひずみを緩和することができる。これにより
、蓄電体300の信頼性を高めることができる。ひずみとは物体の基準(初期状態)長さ
に対する物体内の物質点の変位を示す変形の尺度である。

0084

外装体107を形成するには、電極積層体180の外形に合わせて、フィルム70を折り
曲げる、または凹部(凸部)を形成する。ここでは、図15Aに示すように、フィルム7
0に折り目70aを形成する。そして、フィルム70上に電極積層体180を重ね(図1
5B)、折り目70aでフィルムを折り曲げる(図15C)。例えば熱圧着等により、フ
ィルム70の外周部を接合し、外装体107を形成する。この工程では、電解液103の
導入口72を残すように、フィルム70の接合部71が形成される(図16A)。この工
程で、フィルム70が封止体104、105に接合されるため、電極積層体180がフィ
ルム70(外装体107)に固定されることになる。

0085

図16Aは、接合部71は、外装体107の周囲の上部と下部の2か所に形成し、外装体
107の左側側面は解放端として導入口72とする作製例を示している。蓄電体300の
サイズが大きい等、場合によっては、図16Bに示すように、外装体107の左側側面の
一部に導入口72を形成することもできる。

0086

<端子部>
外装体107の外部に取り出されているタブ11a同士、およびタブ11b同士を電気的
に接続し、正極101の端子部101a、および負極102の端子部102aを形成する
図1図3等)。これらの電気的な接続は、超音波溶接で行うとよい。また、端子部1
01aおよび端子部102aの形成は、電極積層体180を外装体107で封止する前に
行うことも可能である。

0087

図3の例では、正極101の端子部101aを形成するため、最も左側にある正極板11
1のタブ11a(正極集電体11)が位置合わせの基準に用いられている。このタブ11
aは曲げずに、他の2つのタブ11aを左方向に曲げることで、3つのタブ11a同士を
接合して、端子部101aを形成している。また、負極102の端子部102aも同様で
ある。最も左側にある負極板120のタブ21a(負極集電体21)は曲げずに、他の3
つのタブ21aを左方向に曲げることで、4つのタブ21a同士を接合して形成されてい
る。この例では、右側2つのタブ11aは、封止体104の固定部から、タブ11a同士
の接合部にわたって、略S字状、略円弧状、あるいは状の湾曲部を有している。また、
右側3つのタブ21aは、タブ21a同士の接合部から封止体105による固定部にわた
って、略S字状、略円弧状、あるいは弓状の湾曲部を有している。もちろん、タブ11a
、21aの湾曲形状は、図3の例に限定されるものでない。

0088

このように湾曲部が形成されるように、タブ11a同士、およびタブ21a同士をそれぞ
れ接合することで、曲げに対して壊れにくい蓄電体300とすることができる。特に、タ
ブ11aおよびタブ21aの湾曲部を伸張させるような外装体107の変形に対して強い
構造となる。図3の図示の方法では、外装体107の右側平面が凸状になるように(図2
の図示の方法では、上側が凸になるように)、外装体107を曲げる、あるいはたわませ
るような変形に対して、特に強い構造となっている。そのため、蓄電体300は、蓄電体
7407(図20C)のように、一方向に曲げることが可能な電子機器の蓄電体に好適で
ある。また、蓄電体300は、蓄電体7104(図20E)のように、曲げられた、ある
いはたわませた状態で筐体に組み込まれる蓄電体に好適である。すなわち、蓄電体300
は、曲げられた電子機器の蓄電体に好適である。

0089

<電解液>
減圧雰囲気下、或いは不活性ガス雰囲気下で電解液103を導入口72から外装体107
の内部に注入し、セパレータ130を電解液103に含浸させる。

0090

電解液103としては、非プロトン性有機溶媒が好ましく、例えば、エチレンカーボネ
ト(EC)、プロピレンカーボネート(PC)、ブチレンカーボネートクロロエチレン
カーボネートビニレンカーボネートγ−ブチロラクトン、γ−バレロラクトン、ジメ
チルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボ
ート(EMC)、ギ酸メチル酢酸メチル酪酸メチル、1,3−ジオキサン、1,4−
ジオキサン、ジメトキシエタン(DME)、ジメチルスルホキシドジエチルエーテル
メチルジグライムアセトニトリルベンゾニトリルテトラヒドロフランスルホラン
スルトン等の1種、又はこれらのうちの2種以上を任意の組み合わせ及び比率で用いる
ことができる。

0091

また、電解液103の溶媒としてゲル化される高分子材料を用いることで、漏液性等に対
する安全性が高まる。また、2次電池の薄型化及び軽量化が可能である。ゲル化される高
分子材料の代表例としては、シリコーンゲルアクリルゲルアクリロニトリルゲル、ポ
エチレンオキサイドポリプロピレンオキサイドフッ素系ポリマー等がある。

0092

また、電解液103の溶媒には、難燃性及び難揮発性であるイオン液体常温溶融塩)を
一つ又は複数用いることで、蓄電体の内部短絡や、過充電等によって内部温度が上昇して
も、蓄電体の破裂発火などを防ぐことができる。

0093

また、上記の溶媒に溶解させる電解質には、キャリアにリチウムイオンを用いる場合、例
えばLiPF6、LiClO4、LiAsF6、LiBF4、LiAlCl4、LiSC
N、LiBr、LiI、Li2SO4、Li2B10Cl10、Li2B12Cl12、
LiCF3SO3、LiC4F9SO3、LiC(CF3SO2)3、LiC(C2F5
SO2)3、LiN(CF3SO2)2、LiN(C4F9SO2)(CF3SO2)、
LiN(C2F5SO2)2等のリチウム塩一種、又はこれらのうちの二種以上を任意
の組み合わせ及び比率で用いることができる。

0094

電解液103は、粒状のごみや電解液の構成元素以外の元素(以下、単に「不純物」とも
いう。)の含有量が少ない高純度化された電解液を用いることが好ましい。具体的には、
電解液に対する不純物の重量比を1%以下、好ましくは0.1%以下、より好ましくは0
.01%以下とすることが好ましい。また、電解液103にビニレンカーボネートなどの
添加剤を加えてもよい。

0095

<エージング工程>
導入口72を仮封止する。次いで、蓄電体300を実際に使用可能な状態にするため、エ
ジング工程を行う。エージング工程は、例えば、充電と放電を1サイクル上行う。蓄
電体300を充電すると、電解液103の一部が分解してガスが発生する場合がある。そ
のため、エージング工程の完了後、導入口72(図16)を開封して、外装体107内部
で発生したガスを抜く。

0096

<蓄電体の完成>
ガス抜きを行った後、電解液103を補充してもよい。また、エージング工程とガス抜き
工程とを2サイクル以上行ってもよい。導入口72を封止することで、実際に使用可能な
状態の蓄電体300が完成する(図1)。

0097

図1図5に示すように、正/負の電極板(111、120、121)が、セパレータ1
30と共に、外装体107に固定されている構造にすることにより、蓄電体300を曲げ
に強い蓄電体とすることができる。曲げ等により外装体107が変形すると、これに応じ
て、各電極板(111、120、121)がセパレータ130とともに外装体107内部
で滑るため、電極板(111、120、121)に加わる外装体107の変形による応力
が緩和される。また、電極板(111、120、121)の集電体(11、21)が外装
体107の外側で接続され、内部では、封止体104、105による固定箇所以外に、集
電体(11、21)は固定されている部分を有していない。このため、外装体107の内
部で電極板(111、120、121)がより移動しやすくなっているため、外装体10
7の変形により電極板(111、120、121)に加わる応力を、より緩和することが
できる。蓄電体300が曲げ等の変形に強い構造を有することは、蓄電体300の安全性
の向上にもつながる。

0098

また、正極集電体11のタブ11a、および負極集電体21のタブ21aは、切欠き部
ないことで、切欠き部がある構造の集電体よりも、破損しにくい。このことも、蓄電体3
00の構造の強さの向上に寄与する。なお、タブ11a、タブ21aの一方あるいは双方
に、切欠き部を設けることも可能である。切欠き部を設けた場合、タブ11aとタブ21
aを、外装体107の同じ側面から取り出すことが可能になる。例えば、図1において、
タブ11aをタブ21aと同じ、外装体107の上側側面から取り出せばよい。

0099

また、セパレータ130、131のように、袋状あるいはエンベロープ状に加工されてい
るセパレータを用いることが好ましい。これにより、電極板(111、120、121)
が外装体107内部で移動しても、セパレータ130からずれにくくなるため、正極10
1と負極102間の短絡が防止され、蓄電体300の安全性が向上する。

0100

<<蓄電体の構成例2>>
図1等には、正極板および負極板の双方とも、セパレータで覆われている蓄電体の構成例
を示したが、正極板または負極板の何れか一方をセパレータで覆い、他方を覆わない構成
とすることができる。そのような構成の一例を、図17図18に示す。図17図18
に示す蓄電体301は蓄電体300の変形例である。蓄電体301の平面図は、図1に相
当し、図17図18は蓄電体301の構成例を示す断面図であり、それぞれ、A1−A
2線、B1−B2線による図1の断面図である。

0101

蓄電体301において、正極板111はセパレータ130で覆われており、負極板(12
0、121)はセパレータ130で覆われていない。もちろん、正極板111をセパレー
タ130で覆わず、負極板(120、121)をセパレータ130で覆う構成とすること
も可能である。

0102

<<蓄電体の構成例3>>
図19に蓄電体の他の構成例を示す。図19に示す蓄電体302は、蓄電体300の変形
例であり、正極および負極の端子部の構造が蓄電体300(図3)と異なる。蓄電体30
2の平面図は、図1に相当し、図19は蓄電体302の構成例を示す断面図であり、図1
のB1−B2線断面図である。

0103

図3に示すように、蓄電体300では、正極101の端子部101aは、最も左側にある
正極集電体11のタブ11aが位置合わせのための基準に用いられている。このタブ11
aは曲げずに、他の2つのタブ11aを左方向に曲げることで、隣接するタブ11a同士
を接触させ、この状態で3つのタブ11a同士を接合している。また、負極102の端子
部102aも同様であり、最も左側にある負極集電体21のタブ21aが位置合わせの基
準に用いられている。このタブ21aは曲げずに、他の3つのタブ21aを左方向に曲げ
ることで、隣接するタブ21a同士を接触させ、この状態で4つのタブ21a同士を接合
している。

0104

蓄電体300の端子部101aおよび端子部102aは非対称な構造となっていることか
ら、図3において右側を凸状に湾曲させるような外装体107の変形に対しては、非常に
強い構造となっている。他方、右側を凹状に湾曲するような外装体107の変形には、相
対的に弱い構造となっている。そこで、蓄電体302(図19)は、端子部101aおよ
び端子部102aを対称性の高い構造とすることで、外装体107を凸状、凹状のどちら
曲げに対しても、端子部101aおよび端子部102aが同様の強度を有するようにして
いる。そのため、蓄電体300と比較して、蓄電体302は、凹状、凸状の2つの方向に
曲げることが可能な電子機器の蓄電体により好適である。

0105

図19に示す蓄電体302では、端子部101a、102aを形成するため、外装体10
7に封止されている複数の電極板の中央の電極板を位置合わせの基準に用いて、その他の
電極板のタブ(11a、21a)を曲げている。ここでは、右から2番目の正極板111
の正極集電体11が位置合わせの基準になっている。正極101の端子部101aでは、
中央のタブ11aを曲げずに、右側の1つのタブ11aが左方向に曲げられ、左側の1つ
のタブ11aが右方向に曲げられて、隣接するタブ11a同士が接触させられ、この状態
で3つのタブ11a同士が接合されている。負極102の端子部102aでは、右側の2
つのタブ21aが左方向に曲げられ、左側の2つのタブ21aが右方向に曲げられている
ことで、隣接するタブ21a同士が接触させられ、この状態で4つのタブ21a同士が接
合されている。

0106

(実施の形態2)
本発明の一形態に係る蓄電体は、電力により駆動する様々な電子機器の電源として用いる
ことができる。図20乃至図23に、本発明の一形態に係る蓄電体を用いた電子機器の具
体例を示す。

0107

本発明の一形態に係る蓄電体を用いた電子機器として、テレビモニタ等の表示装置、照
明装置、デスクトップ型或いはノート型パーソナルコンピュータワードプロセッサ
DVD(Digital Versatile Disc)などの記録媒体に記憶された
静止画又は動画再生する画像再生装置ポータブルCDプレーヤラジオ、テープレコ
ーダ、ヘッドホンステレオステレオ置き時計壁掛け時計コードレス電話子機、ト
ランシーバ、携帯電話、自動車電話携帯型ゲーム機タブレット型情報端末パチンコ
機などの大型ゲーム機電卓、携帯情報端末、電子手帳電子書籍端末電子翻訳機、音
入力機器ビデオカメラデジタルスチルカメラ電気シェーバ電子レンジ等の高周
波加熱装置、電気炊飯器電気洗濯機電気掃除機温水器扇風機毛髪乾燥機、エア
コンディショナー加湿器除湿器などの空調設備食器洗い器食器乾燥器衣類乾燥
器、布団乾燥器、電気冷蔵庫、電気冷凍庫電気冷凍冷蔵庫、DNA保存用冷凍庫、懐中
電灯チェーンソー等の工具煙感知器透析装置等の医療機器などが挙げられる。さら
に、誘導灯信号機ベルトコンベアエレベータエスカレータ産業用ロボット、電
貯蔵システム、電力の平準化スマートグリッドのための蓄電装置等の産業機器が挙げ
られる。また、燃料を用いたエンジンや、非水系2次電池からの電力を用いて電動機によ
推進する移動体なども、電子機器の範疇に含まれるものとする。上記移動体として、例
えば、電気自動車EV)、内燃機関と電動機を併せ持ったハイブリッド車HEV)、
プラグインハイブリッド車(PHEV)、これらのタイヤ車輪無限軌道に変えた装軌車
両、電動アシスト自転車を含む原動機付自転車自動二輪車電動車椅子ゴルフ用カー
ト、小型又は大型船舶潜水艦ヘリコプター航空機ロケット人工衛星宇宙探査
機や惑星探査機宇宙船などが挙げられる。

0108

また、本発明の一形態に係る蓄電体を、家屋ビル内壁または外壁や、自動車内装
たは外装の曲面に沿って組み込むことも可能である。

0109

図20Aは、携帯電話機(あるいは、スマートフォン)の一例を示している。携帯電話機
7400は、筐体7401に組み込まれた表示部7402の他、操作ボタン7403、外
接続ポート7404、スピーカ7405、マイク7406などを備えている。なお、携
帯電話機7400は、蓄電体7407を有している。

0110

図20Bは、携帯電話機7400を湾曲させた状態を示している。携帯電話機7400を
外部の力により変形させて全体を湾曲させると、その内部に設けられている蓄電体740
7も湾曲される。図20Cに、携帯電話機7400を湾曲させた状態での蓄電体7407
を示す。

0111

図20Dは、バングル型の表示装置の一例を示している。携帯表示装置7100は、筐体
7101、表示部7102、操作ボタン7103、及び蓄電体7104を備える。また、
図20Eに、筐体7101に組み込まれている状態の蓄電体7104を示す。図20Eに
示すように、蓄電体7104は、曲がっている状態で筐体7101内に収納されている。

0112

図20Fは、腕時計型の携帯情報端末の一例を示している。携帯情報端末7200は、筐
体7201、表示部7202、バンド7203、バックル7204、操作ボタン7205
入出力端子7206などを備える。携帯情報端末7200は、移動電話、電子メール、
文章閲覧及び作成、音楽再生インターネット通信コンピュータゲームなどの種々のア
プリケーションを実行することができる。

0113

表示部7202はその表示面が湾曲しており、湾曲した表示面に沿って表示を行うことが
できる。また、表示部7202はタッチセンサを備え、指やスタイラスなどで画面に触れ
ることで操作することができる。例えば、表示部7202に表示されたアイコン7207
に触れることで、アプリケーション起動することができる。

0114

操作ボタン7205は、時刻設定のほか、電源のオンオフ動作無線通信のオン、オフ
動作、マナーモードの実行及び解除省電力モードの実行及び解除など、様々な機能を持
たせることができる。例えば、携帯情報端末7200に組み込まれたオペレーションシス
テムにより、操作ボタン7205の機能を自由に設定することもできる。

0115

また、携帯情報端末7200は、通信規格された近距離無線通信を実行することが可能で
ある。例えば無線通信可能なヘッドセット相互通信することによって、ハンズフリー
通話することもできる。

0116

また、携帯情報端末7200は入出力端子7206を備え、他の情報端末コネクタを介
して直接データのやりとりを行うことができる。また入出力端子7206を介して充電を
行うこともできる。なお、充電動作は入出力端子7206を介さずに無線給電により行っ
てもよい。

0117

携帯情報端末7200は、蓄電体を有している。例えば、図20Eに示した蓄電体710
4を、筐体7201の内部に湾曲した状態で、またはバンド7203の内部に湾曲可能な
状態で組み込むことができる。

0118

図20Gは、腕章型の表示装置の一例を示している。表示装置7300は、表示部730
4を有し、本発明の一形態の蓄電体7104のような蓄電体を有している。また、表示装
置7300は、表示部7304にタッチセンサを備えることもでき、また、携帯情報端末
として機能させることもできる。

0119

表示部7304はその表示面が湾曲しており、湾曲した表示面に沿って表示を行うことが
できる。また、表示装置7300は、通信規格された近距離無線通信などにより、表示状
況を変更することができる。

0120

また、表示装置7300は入出力端子を備え、他の情報端末とコネクタを介して直接デー
タのやりとりを行うことができる。また入出力端子を介して充電を行うこともできる。な
お、充電動作は入出力端子を介さずに無線給電により行ってもよい。

0121

図21Aおよび図21Bに、2つ折り可能なタブレット型情報端末の一例を示す。図21
Aは、タブレット型情報端末9600を開いた状態を示し、図21Bは、タブレット型情
報端末9600を閉じた状態を示している。タブレット型情報端末9600は、筐体96
30a、筐体9630b、筐体9630aと筐体9630bを接続する可動部9640、
表示部9631aと表示部9631bを有する表示部9631、表示モード切り替えスイ
ッチ9626、電源スイッチ9627、省電力モード切り替えスイッチ9625、留め具
9629、操作スイッチ9628等を有する。

0122

タブレット型情報端末9600は、筐体9630aおよび筐体9630bの内部に蓄電体
9635を有する。蓄電体9635は、可動部9640を通り、筐体9630aと筐体9
630bに渡って設けられている。

0123

表示部9631aは、一部をタッチパネルの領域9632aとすることができ、表示され
操作キー9638にふれることでデータ入力をすることができる。なお、表示部963
1aにおいては、一例として半分の領域が表示のみの機能を有する構成、もう半分の領域
がタッチパネルの機能を有する構成を示しているが該構成に限定されない。表示部963
1aの全ての領域がタッチパネルの機能を有する構成としても良い。例えば、表示部96
31aの全面をキーボードボタン表示させてタッチパネルとし、表示部9631bを表示
画面として用いることができる。

0124

表示部9631bにおいても表示部9631aと同様に、表示部9631bの一部をタッ
パネルの領域9632bとすることができる。また、タッチパネルのキーボード表示
替えボタン9639が表示されている位置に指やスタイラスなどでふれることで表示部
9632bにキーボードボタン9641を表示することができる。タッチパネルの領域9
632aとタッチパネルの領域9632bに対して同時にタッチ入力することもできる。

0125

表示モード切り替えスイッチ9626により、縦表示又は横表示などの表示の向きを切り
替え、白黒表示カラー表示の切り替えなどを選択できる。省電力モード切り替えスイッ
チ9625は、タブレット型情報端末9600に内蔵している光センサで検出される使用
時の外光の光量に応じて表示の輝度を最適なものとすることができる。タブレット型情報
端末は光センサだけでなく、ジャイロ加速度センサ等の傾きを検出するセンサなどの他
検出装置を内蔵させてもよい。

0126

図21Aでは、表示部9631bと表示部9631aの表示面積が同じ例を示しているが
特に限定されず、一方のサイズともう一方のサイズが異なっていてもよく、表示の品質
異なっていてもよい。例えば一方が他方よりも高精細な表示を行える表示パネルとしても
よい。

0127

図21Bは、閉じた状態であり、タブレット型情報端末は、筐体9630、太陽電池96
33、DCDCコンバータ9636を含む充放電制御回路9634有する。また、蓄電体
9635として、本発明の一形態の蓄電体を用いる。

0128

なお、タブレット型情報端末9600は2つ折り可能なため、未使用時に筐体9630a
および筐体9630bを重ね合せるように折りたたむことができる。折りたたむことによ
り、表示部9631a、表示部9631bを保護できるため、タブレット型情報端末96
00の耐久性を高めることができる。また、本発明の一形態の蓄電体を用いた蓄電体96
35は可撓性を有し、曲げ伸ばしを繰り返しても充放電容量が低下しにくい。よって、信
頼性の優れたタブレット型情報端末を提供できる。

0129

タブレット型情報端末9600は、この他にも、様々な情報(静止画、動画、テキスト画
像など)を表示する機能、カレンダー、日付又は時刻などを表示部に表示する機能、表示
部に表示した情報をタッチ入力操作又は編集するタッチ入力機能、様々なソフトウェア
プログラム)によって処理を制御する機能等を有することができる。

0130

タブレット型情報端末9600の表面に装着された太陽電池9633によって、電力をタ
ッチパネル、表示部、又は映像信号処理部等に供給することができる。なお、太陽電池9
633は、筐体9630の片面又は両面に設けることができ、蓄電体9635の充電を効
率的に行う構成とすることができるため好適である。なお蓄電体9635としては、リチ
ウムイオン電池を用いると、小型化を図れる等の利点がある。

0131

図21Cは、充放電制御回路9634の構成の一例を示すブロック図である。充放電制御
回路9634は、蓄電体9635、DCDCコンバータ9636、コンバータ9637、
スイッチSW1、SW2、SW3等を有する。

0132

太陽電池9633が発電状態の充放電制御回路9634の動作の一例を説明する。太陽電
池9633で生成された電力は、蓄電体9635を充電するための電圧となるようDCD
Cコンバータ9636で昇圧又は降圧がなされる。そして、表示部9631の動作に太陽
電池9633からの電力が用いられる際にはスイッチSW1をオンにし、コンバータ96
37で表示部9631に必要な電圧に昇圧又は降圧をすることとなる。また、表示部96
31での表示を行わない際には、SW1をオフにし、SW2をオンにして蓄電体9635
の充電を行う構成とすればよい。

0133

ここでは、発電手段の一例として太陽電池9633が用いられる例を示したが、特に限定
されず、圧電素子ピエゾ素子)や熱電変換素子ペルティエ素子)などの他の発電手段
により蓄電体9635の充電を行う構成であってもよい。例えば、無線(非接触)で電力
送受信して充電する無接点電力伝送モジュールや、また他の充電手段を組み合わせて行
う構成としてもよい。

0134

図22に、他の電子機器の例を示す。

0135

表示装置8000は、本発明の一形態に係る蓄電体8004を用いた電子機器の一例であ
る。具体的に、表示装置8000は、TV放送受信用の表示装置に相当し、筐体8001
、表示部8002、スピーカ部8003、蓄電体8004等を有する。本発明の一形態に
係る蓄電体8004は、筐体8001の内部に設けられている。表示装置8000は、商
用電源から電力の供給を受けることもできるし、蓄電体8004に蓄積された電力を用い
ることもできる。よって、停電などにより商用電源から電力の供給が受けられない時でも
、本発明の一形態に係る蓄電体8004を無停電電源として用いることで、表示装置80
00の利用が可能となる。

0136

表示部8002には、液晶表示装置有機EL素子などの発光素子を各画素に備えた発光
装置、電気泳動表示装置DMD(Digital Micromirror Devi
ce)、PDP(Plasma Display Panel)、FED(Field
Emission Display)などの表示装置を用いることができる。

0137

なお、表示装置には、TV放送受信用の他、パーソナルコンピュータ用、広告表示用など
、全ての情報表示用表示装置が含まれる。

0138

据え付け型の照明装置8100は、本発明の一形態に係る蓄電体8103を用いた電子機
器の一例である。具体的に、照明装置8100は、筐体8101、光源8102、蓄電体
8103等を有する。図22には、蓄電体8103が、筐体8101及び光源8102が
据え付けられた天井8104の内部に設けられている場合を例示しているが、蓄電体81
03は、筐体8101の内部に設けられていても良い。照明装置8100は、商用電源か
ら電力の供給を受けることもできるし、蓄電体8103に蓄積された電力を用いることも
できる。よって、停電などにより商用電源から電力の供給が受けられない時でも、蓄電体
8103を無停電電源として用いることで、照明装置8100の利用が可能となる。

0139

図22には、天井8104に設けられた据え付け型の照明装置8100を例示しているが
、本発明の一形態に係る蓄電体は、天井8104以外、例えば側壁8105、床8106
、窓8107等に設けられた据え付け型の照明装置に用いることもできるし、卓上型の照
明装置などに用いることもできる。また、光源8102には、電力を利用して人工的に光
を得る人工光源を用いることができる。人工光源としては、白熱電球蛍光灯などの放電
ランプLEDや有機EL素子などの発光素子などが挙げられる。

0140

室内機8200及び室外機8204を有するエアコンディショナーは、本発明の一形態に
係る蓄電体8203を用いた電子機器の一例である。具体的に、室内機8200は、筐体
8201、送風口8202、蓄電体8203等を有する。図22では、蓄電体8203が
、室内機8200に設けられている場合を例示しているが、蓄電体8203は室外機82
04に設けられていても良い。或いは、室内機8200と室外機8204の両方に、蓄電
体8203が設けられていても良い。エアコンディショナーは、商用電源から電力の供給
を受けることもできるし、蓄電体8203に蓄積された電力を用いることもできる。特に
、室内機8200と室外機8204の両方に蓄電体8203が設けられている場合、停電
などにより商用電源から電力の供給が受けられない時でも、本発明の一形態に係る蓄電体
8203を無停電電源として用いることで、エアコンディショナーの利用が可能となる。

0141

図22には、室内機と室外機で構成されるセパレート型のエアコンディショナーを例示し
ているが、室内機の機能と室外機の機能とを1つの筐体に有する一体型エアコンディ
ョナーに、本発明の一形態に係る蓄電体を用いることもできる。

0142

電気冷凍冷蔵庫8300は、本発明の一形態に係る蓄電体8304を用いた電子機器の一
例である。具体的に、電気冷凍冷蔵庫8300は、筐体8301、冷蔵室用扉8302、
冷凍室用扉8303、蓄電体8304等を有する。蓄電体8304が、筐体8301の内
部に設けられている。電気冷凍冷蔵庫8300は、商用電源から電力の供給を受けること
もできるし、蓄電体8304に蓄積された電力を用いることもできる。よって、停電など
により商用電源から電力の供給が受けられない時でも、本発明の一形態に係る蓄電体83
04を無停電電源として用いることで、電気冷凍冷蔵庫8300の利用が可能となる。

0143

なお、上述した電子機器のうち、電子レンジ等の高周波加熱装置、電気炊飯器などの電子
機器は、短時間で高い電力を必要とする。よって、商用電源で賄いきれない電力を補助
るための補助電源として、本発明の一形態に係る蓄電体を用いることで、電子機器の使用
時に商用電源のブレーカー落ちるのを防ぐことができる。

0144

また、電子機器が使用されない時間帯、特に、商用電源の供給元が供給可能な総電力量
うち、実際に使用される電力量の割合(電力使用率と呼ぶ)が低い時間帯において、蓄電
体に電力を蓄えておくことで、上記時間帯以外において電力使用率が高まるのを抑えるこ
とができる。例えば、電気冷凍冷蔵庫8300の場合、気温が低く、冷蔵室用扉8302
、冷凍室用扉8303の開閉が行われない夜間において、蓄電体8304に電力を蓄える
。そして、気温が高くなり、冷蔵室用扉8302、冷凍室用扉8303の開閉が行われる
昼間において、蓄電体8304を補助電源として用いることで、昼間の電力使用率を低く
抑えることができる。

0145

本発明の一形態に係る蓄電体は、電気モーターの電源として用いることができる。電気モ
ーターおよび蓄電体を備えた電子機器の例を図23に示す。蓄電体を車両に搭載すると、
ハイブリッド車(HEV)、電気自動車(EV)、又はプラグインハイブリッド車(PH
EV)等の次世代クリーンエネルギー自動車を実現できる。

0146

図23Aに示す自動車8400は、走行のための動力源として電気モーターを用いる電気
自動車である。または、走行のための動力源として電気モーターとエンジンを適宜選択し
て用いることが可能なハイブリッド自動車である。自動車8400に組み込まれている蓄
電体は電気モーターを駆動するだけでなく、ヘッドライト8401やルームライト(図示
せず)などの発光装置に電力を供給することができる。また、蓄電体は、自動車8400
が有するスピードメータータコメーターなどの表示装置に電力を供給することができる
。また、蓄電体は、自動車8400が有するナビゲーションシステムなどの半導体装置に
電力を供給することができる。

0147

図23Bに示す自動車8500は、自動車8500が有する蓄電体にプラグイン方式や非
接触給電方式等により外部の充電設備から電力供給を受けて、充電することができる構成
を有する。図23Bに、地上設置型充電装置8021から自動車8500に搭載された
蓄電体に、ケーブル8022を介して充電を行っている状態を示す。充電に際しては、充
電方法やコネクタの規格等はCHAdeMO(登録商標)やコンボ等の所定の方式で適宜
行えばよい。充電装置8021は、商用施設に設けられた充電ステーションでもよく、ま
家庭の電源であってもよい。例えば、プラグイン技術によって、外部からの電力供給に
より自動車8500に搭載された蓄電体を充電することができる。充電は、ACDCコン
バータ等の変換装置を介して、交流電力直流電力に変換して行うことができる。

0148

また、図示しないが、受電装置を車両に搭載し、地上の送電装置から電力を非接触で供給
して充電することもできる。この非接触給電方式の場合には、道路や外壁に送電装置を組
み込むことで、停車中に限らず走行中に充電を行うこともできる。また、この非接触給電
の方式を利用して、車両どうしで電力の送受信を行ってもよい。さらに、車両の外装部に
太陽電池を設け、停車時や走行時に蓄電体の充電を行ってもよい。このような非接触での
電力の供給には、電磁誘導方式磁界共鳴方式を用いることができる。

0149

本発明の一態様によれば、蓄電体のサイクル特性が良好となり、信頼性を向上させること
ができる。また、本発明の一態様によれば、蓄電体の特性を向上することができ、よって
、蓄電体自体を小型軽量化することができる。蓄電体自体を小型軽量化できれば、車両の
軽量化に寄与するため、航続距離を向上させることができる。また、車両に搭載した蓄電
体を車両以外の電力供給源として用いることもできる。この場合、電力需要ピーク時に
商用電源を用いることを回避することができる。

0150

11正極集電体
11aタブ
12正極活物質層
21負極集電体
21a タブ
22負極活物質層
30シート
31−33接合部
50、51融着テープ
70フィルム
71 接合部
72 導入口
101 正極
101a端子部
102 負極
102a 端子部
103電解液
104、105封止体
107外装体
110−112正極板
120−122 負極板
130、131セパレータ
180電極積層体
300、301、302 蓄電体

ページトップへ

この技術を出願した法人

この技術を発明した人物

ページトップへ

関連する挑戦したい社会課題

関連する公募課題

該当するデータがありません

ページトップへ

技術視点だけで見ていませんか?

この技術の活用可能性がある分野

分野別動向を把握したい方- 事業化視点で見る -

(分野番号表示ON)※整理標準化データをもとに当社作成

ページトップへ

おススメ サービス

おススメ astavisionコンテンツ

新着 最近 公開された関連が強い技術

  • 株式会社日立製作所の「 積層型二次電池及びその製造方法」が 公開されました。( 2020/02/13)

    【課題】積層型二次電池の体積損失を小さくする。【解決手段】正極は正極タブを有し、負極は負極タブを有し、電池ユニット中で正極タブ同士および負極タブ同士が接合され、正極、電解質層、および負極で構成される電... 詳細

  • 株式会社日立製作所の「 全固体電池およびその製造方法」が 公開されました。( 2020/02/13)

    【課題】 出力特性に優れた全固体電池を提供することを目的とする。【解決手段】 本発明に係る全固体電池の製造方法は、正極層と、負極層と、固体電解質層と、を備え、正極活物質と、酸化物ガラス粉末と、分解... 詳細

  • FDK株式会社の「 円筒型電池」が 公開されました。( 2020/02/13)

    【課題】製造工程における、電池缶内の局所的な圧力の上昇によって電解液が電池缶外へ漏出することを抑制できる円筒型電池を提供する。【解決手段】下方を底とした有底円筒状の電池缶2の開口端が、ガスケット6aを... 詳細

この 技術と関連性が強い人物

関連性が強い人物一覧

この 技術と関連する社会課題

関連する挑戦したい社会課題一覧

この 技術と関連する公募課題

該当するデータがありません

astavision 新着記事

サイト情報について

本サービスは、国が公開している情報(公開特許公報、特許整理標準化データ等)を元に構成されています。出典元のデータには一部間違いやノイズがあり、情報の正確さについては保証致しかねます。また一時的に、各データの収録範囲や更新周期によって、一部の情報が正しく表示されないことがございます。当サイトの情報を元にした諸問題、不利益等について当方は何ら責任を負いかねることを予めご承知おきのほど宜しくお願い申し上げます。

主たる情報の出典

特許情報…特許整理標準化データ(XML編)、公開特許公報、特許公報、審決公報、Patent Map Guidance System データ