図面 (/)

技術 表示装置

出願人 株式会社半導体エネルギー研究所
発明者 木村肇
出願日 2019年6月11日 (9ヶ月経過) 出願番号 2019-108729
公開日 2019年9月12日 (6ヶ月経過) 公開番号 2019-152886
状態 未査定
技術分野 液晶表示装置の制御 陰極線管以外の表示装置の制御
主要キーワード 分配条件 分圧素子 帽子型 波状形状 Nチャネル 常圧CVD法 基幹部分 デジタル電圧信号
関連する未来課題
重要な関連分野

この項目の情報は公開日時点(2019年9月12日)のものです。
また、この項目は機械的に抽出しているため、正しく解析できていない場合があります

図面 (20)

課題

液晶素子印加される電圧を異ならせて視野角特性を改善する。

解決手段

本発明の一は、一画素に三以上の液晶素子を有し、該液晶素子の各々に印加される電圧値が異なる液晶表示装置である。各液晶素子に印加される電圧を異ならせるには、加えた電圧を分圧する素子を配置することにより行う。印加される電圧を異ならせるためには、容量素子抵抗素子、又はトランジスタ等を用いる。

概要

背景

近年、表示装置として、液晶表示装置及びEL表示装置の開発が急速に進んでいる。特
に、液晶表示装置の普及はめざましい。液晶表示装置には高輝度高コントラスト高速
応答性、及び広視野角等が求められる。また、携帯型の電子機器に搭載される液晶表示
置では消費電力の低減、軽量化、及び小型化も重要な課題である。

液晶表示装置の視野角を拡げるために、様々な技術が開発されている。視野角を拡げる
技術として、例えば、MVA(Multi Vertical Domain。以下、M
VAという。)方式PVA(Patterned Vertical Alignmen
t。以下、PVAという。)方式及びCPA(Continuous Pinwheel
Alignment)方式がある。このような技術により従来よりも視野角は拡がった
ものの、不十分であった。そのため、一画素を二のサブピクセルに分割することにより液
晶の配向状態を異ならせて、見かけ上は液晶分子傾斜角が平均化されてどの方向から見
ても均一な表示となるように錯覚を生じさせ、視野角特性の向上を図る技術が開発されて
いる(例えば、特許文献1)。

概要

液晶素子印加される電圧を異ならせて視野角特性を改善する。本発明の一は、一画素に三以上の液晶素子を有し、該液晶素子の各々に印加される電圧値が異なる液晶表示装置である。各液晶素子に印加される電圧を異ならせるには、加えた電圧を分圧する素子を配置することにより行う。印加される電圧を異ならせるためには、容量素子抵抗素子、又はトランジスタ等を用いる。

目的

また、携帯型の電子機器に搭載される液晶表示装
置では消費電力の低減、軽量化、及び小型化も重要な課題である

効果

実績

技術文献被引用数
0件
牽制数
0件

この技術が所属する分野

(分野番号表示ON)※整理標準化データをもとに当社作成

ライセンス契約や譲渡などの可能性がある特許掲載中! 開放特許随時追加・更新中 詳しくはこちら

請求項1

第1の液晶素子画素電極には、第1の配線電位が供給され、第2の液晶素子の画素電極には、前記第1の配線の電位と第2の配線の電位とが、第1のトランジスタ及び第2のトランジスタによって分圧された電位が供給され、前記第1のトランジスタのソースまたはドレインの一方は前記第2の液晶素子の画素電極と電気的に接続され、前記第1のトランジスタ及び前記第2のトランジスタは同時にオンすることができ、前記第1のトランジスタがオンのとき、前記第1の液晶素子の画素電極及び前記第2の液晶素子の画素電極は前記第1の配線と導通することができ、前記第1の配線又は前記第2の配線の少なくとも一方には、画像信号が供給される表示装置

請求項2

第1の液晶素子の画素電極には、第1の配線の電位が供給され、第2の液晶素子の画素電極には、前記第1の配線の電位と第2の配線の電位とが、第1のトランジスタ及び第2のトランジスタによって分圧された電位が供給され、前記第1のトランジスタのソースまたはドレインの一方は前記第2の液晶素子の画素電極と電気的に接続され、前記第1のトランジスタ及び前記第2のトランジスタは同時にオンすることができ、前記第1のトランジスタがオンのとき、前記第1の液晶素子の画素電極及び前記第2の液晶素子の画素電極は前記第1の配線と導通することができ、前記第1の配線及び前記第2の配線の少なくとも一方には、画像信号が供給され、前記第1のトランジスタ及び前記第2のトランジスタの一方または双方がマルチゲート構造である表示装置。

技術分野

0001

本発明は物、方法、または、物を生産する方法に関する。特に、表示装置または半導体
装置に関する。特に、表示装置に関する。特に、アクティブマトリクス型液晶表示装置
関する。

背景技術

0002

近年、表示装置として、液晶表示装置及びEL表示装置の開発が急速に進んでいる。特
に、液晶表示装置の普及はめざましい。液晶表示装置には高輝度高コントラスト高速
応答性、及び広視野角等が求められる。また、携帯型の電子機器に搭載される液晶表示
置では消費電力の低減、軽量化、及び小型化も重要な課題である。

0003

液晶表示装置の視野角を拡げるために、様々な技術が開発されている。視野角を拡げる
技術として、例えば、MVA(Multi Vertical Domain。以下、M
VAという。)方式PVA(Patterned Vertical Alignmen
t。以下、PVAという。)方式及びCPA(Continuous Pinwheel
Alignment)方式がある。このような技術により従来よりも視野角は拡がった
ものの、不十分であった。そのため、一画素を二のサブピクセルに分割することにより液
晶の配向状態を異ならせて、見かけ上は液晶分子傾斜角が平均化されてどの方向から見
ても均一な表示となるように錯覚を生じさせ、視野角特性の向上を図る技術が開発されて
いる(例えば、特許文献1)。

先行技術

0004

特開2006−276582号公報

発明が解決しようとする課題

0005

液晶表示装置では、画素にサブピクセルを設けて画素に複数の配向状態を有せしめるこ
とで、視野角特性を向上させることができる。しかし、視野角特性はまだ十分とは言えず
、サブピクセルを更に追加することで、視野角特性を向上させることができる可能性があ
る。

0006

しかし、サブピクセルの数を単純に増加させると、開口率の低下及び駆動回路の増加と
いう不都合が生じ、製造コストの増大を招くのみならず、表示装置としての性能自体が低
下するという弊害を生じる。具体的には、開口率が低下すると輝度及びコントラストが低
下し、消費電力が増加してしまう。または、画素のレイアウト密度が高くなり、製造歩留
まりが低下し、コストが上昇する。または、サブピクセル数の増加により、入力すべき画
像信号の数も増える。そのため、ガラス基板と、外付けの駆動回路との接続点数が増えて
しまう。その結果、接触不良等により、信頼性が低くなってしまう。

0007

本発明は、表示装置としての性能を維持しつつ、視野角特性に優れた表示装置を提供す
ることを課題とする。または、本発明は、信頼性の高い表示装置を提供することを課題と
する。または、本発明は、コントラストの高い表示装置を提供することを課題とする。ま
たは、本発明は、軽量な表示装置を提供することを課題とする。または、本発明は、サイ
ズが小さい表示装置を提供することを課題とする。または、本発明は、輝度の高い表示装
置を提供することを課題とする。または、本発明は、消費電力の低い表示装置を提供する
ことを課題とする。または、本発明は、開口率の高い表示装置を提供することを課題とす
る。または、本発明は、製造コストの低い表示装置を提供することを課題とする。

課題を解決するための手段

0008

本発明の一は、一画素に三以上の液晶素子を有し、該液晶素子の各々に印加される電圧
値が異なる液晶表示装置である。各液晶素子に印加される電圧を異ならせるには、加えた
電圧を分圧する素子を配置することにより行う。または、電流を電圧に変換する素子、ま
たは、電圧を電流に変換する素子を配置することにより行う。例としては、容量素子、抵
抗素子、非線形素子、スイッチ、トランジスタダイオード接続されたトランジスタ、ダ
イオード(PIN型、PN型、ショットキー型MIM型MIS型等)、インダクタ
子等を配置することにより行う。

0009

なお、スイッチは、様々な形態のものを用いることができる。例としては、電気的スイ
ッチや機械的なスイッチ等がある。つまり、電流の流れを制御できるものであればよく、
特定のものに限定されない。例えば、スイッチとして、トランジスタ(例えば、バイポ
ラトランジスタMOSトランジスタ等)、ダイオード(例えば、PNダイオード、PI
Nダイオード、ショットキーダイオード、MIM(Metal Insulator M
etal)ダイオード、MIS(Metal Insulator Semicondu
ctor)ダイオード、ダイオード接続のトランジスタ等)、サイリスタ等を用いること
ができる。または、これらを組み合わせた論理回路をスイッチとして用いることができる

0010

機械的なスイッチの例としては、デジタルマイクロミラーデバイスDMD)のように
MEMS(マイクロエレクトロメカニカル・システム)技術を用いたスイッチがあ
る。そのスイッチは、機械的に動かすことが出来る電極を有し、その電極が動くことによ
って、接続と非接続とを制御して動作する。

0011

スイッチとしてトランジスタを用いる場合、そのトランジスタは、単なるスイッチとし
て動作するため、トランジスタの極性導電型)は特に限定されない。ただし、オフ電流
を抑えたい場合、オフ電流が少ない方の極性のトランジスタを用いることが望ましい。オ
フ電流が少ないトランジスタとしては、LDD領域を有するトランジスタやマルチゲート
構造を有するトランジスタ等がある。または、スイッチとして動作させるトランジスタの
ソース端子電位が、低電位側電源(Vss、GND、0V等)の電位に近い状態で動作
する場合はNチャネル型トランジスタを用いることが望ましい。反対に、ソース端子の電
位が、高電位側電源(Vdd等)の電位に近い状態で動作する場合はPチャネル型トラン
スタを用いることが望ましい。なぜなら、Nチャネル型トランジスタではソース端子が
低電位側電源の電位に近い状態で動作するとき、Pチャネル型トランジスタではソース端
子が高電位側電源の電位に近い状態で動作するとき、ゲートソースの間の電圧の絶対値
を大きくできるため、スイッチとして、動作しやすいからである。ソースフォロワ動作を
してしまうことが少ないため、出力電圧の大きさが小さくなってしまうことが少ないから
である。

0012

なお、Nチャネル型トランジスタとPチャネル型トランジスタの両方を用いて、CMO
S型のスイッチをスイッチとして用いてもよい。CMOS型のスイッチにすると、Pチャ
ネル型トランジスタまたはNチャネル型トランジスタのどちらか一方のトランジスタが導
通すれば電流が流れるため、スイッチとして機能しやすくなる。例えば、スイッチへの入
力信号の電圧が高い場合でも、低い場合でも、適切に電圧を出力させることができる。さ
らに、スイッチをオンまたはオフさせるための信号の電圧振幅値を小さくすることができ
るので、消費電力を小さくすることもできる。

0013

なお、スイッチとしてトランジスタを用いる場合、スイッチは、入力端子(ソース端子
またはドレイン端子の一方)と、出力端子(ソース端子またはドレイン端子の他方)と、
導通を制御する端子ゲート端子)とを有している。一方、スイッチとしてダイオードを
用いる場合、スイッチは、導通を制御する端子を有していない場合がある。そのため、ト
ランジスタよりもダイオードをスイッチとして用いた方が、端子を制御するための配線
少なくすることができる。

0014

なお、AとBとが接続されている、と明示的に記載する場合は、AとBとが電気的に接
続されている場合と、AとBとが機能的に接続されている場合と、AとBとが直接接続
れている場合とを含むものとする。ここで、A、Bは、対象物(例えば、装置、素子、回
路、配線、電極、端子、導電膜、層、等)であるとする。従って、所定の接続関係、例え
ば、図または文章に示された接続関係に限定されず、図または文章に示された接続関係以
外のものも含むものとする。

0015

例えば、AとBとが電気的に接続されている場合として、AとBとの電気的な接続を可
能とする素子(例えば、スイッチ、トランジスタ、容量素子、インダクタ、抵抗素子、ダ
イオード等)が、AとBとの間に1個以上配置されていてもよい。あるいは、AとBとが
機能的に接続されている場合として、AとBとの機能的な接続を可能とする回路(例えば
、論理回路(インバータNAND回路NOR回路等)、信号変換回路DA変換回路
AD変換回路ガンマ補正回路等)、電位レベル変換回路電源回路昇圧回路降圧
回路等)、信号の電位レベルを変えるレベルシフタ回路等)、電圧源電流源切り替え
回路、増幅回路信号振幅または電流量等を大きくできる回路、オペアンプ差動増幅
路、ソースフォロワ回路バッファ回路等)、信号生成回路記憶回路制御回路等)が
、AとBとの間に1個以上配置されていてもよい。あるいは、AとBとが直接接続されて
いる場合として、AとBとの間に他の素子や他の回路を挟まずに、AとBとが直接接続さ
れていてもよい。

0016

なお、AとBとが直接接続されている、と明示的に記載する場合は、AとBとが直接接
続されている場合(つまり、AとBとの間に他の素子や他の回路を間に介さずに接続され
ている場合)と、AとBとが電気的に接続されている場合(つまり、AとBとの間に別の
素子や別の回路を挟んで接続されている場合)とを含むものとする。

0017

なお、AとBとが電気的に接続されている、と明示的に記載する場合は、AとBとが電
気的に接続されている場合(つまり、AとBとの間に別の素子や別の回路を挟んで接続さ
れている場合)と、AとBとが機能的に接続されている場合(つまり、AとBとの間に別
の回路を挟んで機能的に接続されている場合)と、AとBとが直接接続されている場合(
つまり、AとBとの間に別の素子や別の回路を挟まずに接続されている場合)とを含むも
のとする。つまり、電気的に接続されている、と明示的に記載する場合は、単に、接続さ
れている、とのみ明示的に記載されている場合と同じであるとする。

0018

表示装置
なお、表示素子、表示素子を有する装置である表示装置、発光素子、発光素子を有する
装置である発光装置は、様々な形態を用いることができ、様々な素子を有することができ
る。例えば、表示素子、表示装置、発光素子または発光装置としては、EL素子有機物
及び無機物を含むEL素子、有機EL素子無機EL素子)、電子放出素子、液晶素子、
電子インク電気泳動素子グレーティングライトバルブ(GLV)、プラズマディス
レイ(PDP)、デジタルマイクロミラーデバイス(DMD)、圧電セラミックディスプ
レイ、カーボンナノチューブ、等、電気磁気的作用により、コントラスト、輝度、反射率
透過率等が変化する表示媒体を用いることができる。なお、EL素子を用いた表示装置
としてはELディスプレイ、電子放出素子を用いた表示装置としてはフィールドエミッシ
ョンディスプレイ(FED)やSED方式平面型ディスプレイ(SED:Surface
−conduction Electron−emitter Disply)等、液晶
素子を用いた表示装置としては液晶ディスプレイ透過型液晶ディスプレイ半透過型
晶ディスプレイ、反射型液晶ディスプレイ直視型液晶ディスプレイ投射型液晶ディス
プレイ)、電子インクや電気泳動素子を用いた表示装置としては電子ペーパーがある。

0019

なお、EL素子とは、陽極と、陰極と、陽極と陰極との間に挟まれたEL層とを有する
素子である。なお、EL層としては、1重項励起子からの発光蛍光)を利用するもの、
3重項励起子からの発光(燐光)を利用するもの、1重項励起子からの発光(蛍光)を利
用するものと3重項励起子からの発光(燐光)を利用するものとを含むもの、有機物によ
って形成されたもの、無機物によって形成されたもの、有機物によって形成されたものと
無機物によって形成されたものとを含むもの、高分子の材料、低分子の材料、高分子の材
料と低分子の材料とを含むもの等を用いることができる。ただし、これに限定されず、E
L素子として様々なものを用いることができる。

0020

なお、電子放出素子とは、先鋭な陰極に高電界を集中して電子を引き出す素子である。
例えば、電子放出素子として、スピント型、カーボンナノチューブ(CNT)型、金属—
絶縁体—金属を積層したMIM(Metal−Insulator−Metal)型、金
属—絶縁体—半導体を積層したMIS(Metal−Insulator−Semico
nductor)型、MOS型、シリコン型薄膜ダイオード型、ダイヤモンド型、表面
伝導エミッタSCD型、オード型、ダイヤモンド型、表面伝導エミッタSCD型、金属—
絶縁体—半導体−金属型等の薄膜型HEED型、EL型ポーラスシリコン型、表面伝
導(SED)型等を用いることができる。ただし、これに限定されず、電子放出素子とし
て様々なものを用いることができる。

0021

なお、液晶素子とは、液晶の光学的変調作用によって光の透過または非透過を制御する
素子であり、一対の電極、及び液晶により構成される。なお、液晶の光学的変調作用は、
液晶にかかる電界(横方向の電界、縦方向の電界又は斜め方向の電界を含む)によって制
御される。なお、液晶素子としては、ネマチック液晶コレステリック液晶、スメクチッ
ク液晶、ディスコチック液晶サーモトロピック液晶ライオトロピック液晶リオトロ
ピック液晶、低分子液晶高分子液晶強誘電液晶、反強誘電液晶、主鎖型液晶、側鎖型
高分子液晶、プラズマアドレス液晶(PDLC)、バナナ型液晶、TN(Twisted
Nematic)モード、STN(Super Twisted Nematic)モ
ード、IPS(In−Plane−Switching)モード、FFS(Fringe
Field Switching)モード、MVA(Multi−domain Ve
rtical Alignment)モード、PVA(Patterned Verti
cal Alignment)、ASV(Advanced Super View)モ
ード、ASM(Axially Symmetric aligned Micro−c
ell)モード、OCB(Optical Compensated Birefrin
gence)モード、ECB(Electrically Controlled Bi
refringence)モード、FLC(Ferroelectric Liquid
Crystal)モード、AFLC(AntiFerroelectric Liqu
id Crystal)モード、PDLC(Polymer Dispersed Li
quid Crystal)モード、ゲストホストモード等を用いることができる。ただ
し、これに限定されず、液晶素子として様々なものを用いることができる。

0022

なお、電子ペーパーとしては、光学方性染料分子配向のような分子により表示され
るもの、電気泳動粒子移動、粒子回転、相変化のような粒子により表示されるもの、フ
ィルムの一端が移動することにより表示されるもの、分子の発色/相変化により表示され
るもの、分子の光吸収により表示されるもの、電子とホールが結合して時発光により表示
されるもの等のことをいう。例えば、電子ペーパーとして、マイクロカプセル型電気泳動
水平移動型電気泳動、垂直移動型電気泳動、球状ツイストボール磁気ツイストボール
円柱ツイストボール方式、帯電トナー電子粉流体磁気泳動型、磁気感熱式、エレ
トロウェテイング光散乱(透明白濁)、コレステリック液晶/光導電層コレステ
ック液晶、双安定性ネマチック液晶、強誘電性液晶2色性色素液晶分散型、可動フィ
ルム、ロイコ染料発消色、フォトクロミックエレクトロクロミック、エレクトロデポ
ションフレキシブル有機EL等を用いることができる。ただし、これに限定されず、電
ペーパーとして様々なものを用いることができる。ここで、マイクロカプセル型電気泳
動を用いることによって、電気泳動方式の欠点である泳動粒子凝集沈殿を解決するこ
とができる。電子粉流体は、高速応答性高反射率、広視野角、低消費電力メモリー性
等のメリットを有する。

0023

なお、プラズマディスプレイは、電極を表面に形成した基板と、電極及び微小な溝を表
面に形成し且つ溝内に蛍光体層を形成した基板とを狭い間隔で対向させて、希ガス封入
した構造を有する。なお、電極間に電圧をかけることによって紫外線を発生させ、蛍光体
を光らせることで、表示を行うことができる。なお、プラズマディスプレイとしては、D
C型PDP、AC型PDPでもよい。ここで、プラズマディスプレイパネルとしては、A
SW(Address While Sustain)駆動、サブフレームリセット
間、アドレス期間維持期間に分割するADS(Address Display Se
parated)駆動、CLEAR(Low Energy Address and
Reduction of False Contour Sequence)駆動、A
LIS(Alternate Lighting of Surfaces)方式、TE
ES(Techbology of Reciprocal Susfainer)駆
動等を用いることができる。ただし、これに限定されず、プラズマディスプレイとして様
々なものを用いることができる。

0024

なお、光源を必要とする表示装置、例えば、液晶ディスプレイ(透過型液晶ディスプレ
イ、半透過型液晶ディスプレイ、反射型液晶ディスプレイ、直視型液晶ディスプレイ、投
射型液晶ディスプレイ)、グレーティングライトバルブ(GLV)を用いた表示装置、デ
タルマイクロミラーデバイス(DMD)を用いた表示装置等の光源としては、エレクト
ルミネッセンス冷陰極管熱陰極管、LED、レーザー光源水銀ランプ等を用いる
ことができる。ただし、これに限定されず、光源して様々なものを用いることができる。

0025

トランジスタの種類
なお、トランジスタとして、様々な形態のトランジスタを用いることができる。よって
、用いるトランジスタの種類に限定はない。例えば、非晶質シリコン多結晶シリコン
微結晶(マイクロクリスタルセミアモルファスとも言う)シリコン等に代表される非単
結晶半導体膜を有する薄膜トランジスタ(TFT)等を用いることができる。TFTを用
いる場合、様々なメリットがある。例えば、単結晶シリコンの場合よりも低い温度で製造
できるため、製造コストの削減、又は製造装置の大型化を図ることができる。製造装置を
大きくできるため、大型基板上に製造できる。そのため、同時に多くの個数の表示装置を
製造できるため、低コストで製造できる。さらに、製造温度が低いため、耐熱性の弱い基
板を用いることができる。そのため、透明基板上にトランジスタを製造できる。そして、
透明な基板上のトランジスタを用いて表示素子での光の透過を制御することができる。あ
るいは、トランジスタの膜厚が薄いため、トランジスタを構成する膜の一部は、光を透過
させることができる。そのため、開口率が向上させることができる。

0026

なお、多結晶シリコンを製造するときに、触媒ニッケル等)を用いることにより、結
晶性をさらに向上させ、電気特性のよいトランジスタを製造することが可能となる。その
結果、ゲートドライバ回路走査線駆動回路)やソースドライバ回路信号線駆動回路
信号処理回路(信号生成回路、ガンマ補正回路、DA変換回路等)を基板上に一体形成
することができる。

0027

なお、微結晶シリコンを製造するときに、触媒(ニッケル等)を用いることにより、結
晶性をさらに向上させ、電気特性のよいトランジスタを製造することが可能となる。この
とき、レーザー照射を行うことなく、熱処理を加えるだけで、結晶性を向上させることが
できる。その結果、ゲートドライバ回路(走査線駆動回路)やソースドライバ回路の一部
アナログスイッチ等)を基板上に一体形成することができる。さらに、結晶化のために
レーザー照射を行わない場合は、シリコンの結晶性のムラを抑えることができる。そのた
め、綺麗な画像を表示することができる。

0028

ただし、触媒(ニッケル等)を用いずに、多結晶シリコンや微結晶シリコンを製造する
ことは可能である。

0029

なお、シリコンの結晶性を、多結晶または微結晶等へと向上させることは、パネル全体
で行うことが望ましいが、それに限定されない。パネルの一部の領域のみにおいて、シリ
コンの結晶性を向上させてもよい。選択的に結晶性を向上させることは、レーザー光を選
択的に照射すること等により可能である。例えば、画素以外の領域である周辺回路領域
のみ、レーザー光を照射してもよい。または、ゲートドライバ回路、ソースドライバ回路
等の領域にのみ、レーザー光を照射してもよい。あるいは、ソースドライバ回路の一部(
例えば、アナログスイッチ)の領域にのみ、レーザー光を照射してもよい。その結果、回
路を高速に動作させる必要がある領域にのみ、シリコンの結晶化を向上させることができ
る。画素領域は、高速に動作させる必要性が低いため、結晶性が向上されなくても、問題
なく画素回路を動作させることができる。結晶性を向上させる領域が少なくて済むため、
製造工程も短くすることができ、スループットが向上し、製造コストを低減させることが
できる。必要とされる製造装置の数も少なくて製造できるため、製造コストを低減させる
ことができる。

0030

または、半導体基板SOI基板等を用いてトランジスタを形成することができる。こ
れらにより、特性やサイズや形状等のバラツキが少なく、電流供給能力が高く、サイズの
小さいトランジスタを製造することができる。これらのトランジスタを用いると、回路の
低消費電力化、又は回路の高集積化を図ることができる。

0031

または、ZnO、a−InGaZnO、SiGe、GaAs、IZO、ITO、SnO
等の化合物半導体または酸化物半導体を有するトランジスタや、さらに、これらの化合物
半導体または酸化物半導体を薄膜化した薄膜トランジスタ等を用いることができる。これ
らにより、製造温度を低くでき、例えば、室温でトランジスタを製造することが可能とな
る。その結果、耐熱性の低い基板、例えばプラスチック基板フィルム基板に直接トラン
ジスタを形成することができる。なお、これらの化合物半導体または酸化物半導体を、ト
ランジスタのチャネル部分に用いるだけでなく、それ以外の用途で用いることもできる。
例えば、これらの化合物半導体または酸化物半導体を抵抗素子、画素電極透明電極とし
て用いることができる。さらに、それらをトランジスタと同時に成膜又は形成できるため
、コストを低減できる。

0032

または、インクジェット印刷法を用いて形成したトランジスタ等を用いることができ
る。これらにより、室温で製造、低真空度で製造、又は大型基板上に製造することができ
る。マスクレチクル)を用いなくても製造することが可能となるため、トランジスタの
レイアウトを容易に変更することができる。さらに、レジストを用いる必要がないので、
材料費が安くなり、工程数を削減できる。さらに、必要な部分にのみ膜を付けるため、全
面に成膜した後でエッチングする、という製法よりも、材料が無駄にならず、低コストに
できる。

0033

または、有機半導体やカーボンナノチューブを有するトランジスタ等を用いることがで
きる。これらにより、曲げることが可能な基板上にトランジスタを形成することができる
。そのため、衝撃に強くできる。

0034

さらに、様々な構造のトランジスタを用いることができる。例えば、MOS型トランジ
スタ、接合型トランジスタバイポーラトランジスタ等をトランジスタとして用いること
ができる。MOS型トランジスタを用いることにより、トランジスタのサイズを小さくす
ることができる。よって、多数のトランジスタを搭載することができる。バイポーラトラ
ンジスタを用いることにより、大きな電流を流すことができる。よって、高速に回路を動
作させることができる。

0035

なお、MOS型トランジスタ、バイポーラトランジスタ等を1つの基板に混在させて形
成してもよい。これにより、低消費電力、小型化、高速動作等を実現することができる。

0036

その他、様々なトランジスタを用いることができる。

0037

なお、トランジスタは、様々な基板を用いて形成することができる。基板の種類は、特
定のものに限定されることはない。その基板としては、例えば、単結晶基板、SOI基板
、ガラス基板、石英基板、プラスチック基板、紙基板セロファン基板、石材基板、木材
基板、布基板(天然繊維、綿、)、合成繊維ナイロンポリウレタンポリエス
テル)若しくは再生繊維アセテートキュプラレーヨン再生ポリエステル)等を含
む)、皮革基板、ゴム基板ステンレススチル基板、ステンレス・スチル・ホイルを有
する基板等を用いることができる。あるいは、人等の動物の皮膚(皮表、真皮)又は皮下
組織を基板として用いてもよい。または、ある基板を用いてトランジスタを形成し、その
後、別の基板にトランジスタを転置し、別の基板上にトランジスタを配置してもよい。ト
ランジスタが転置される基板としては、単結晶基板、SOI基板、ガラス基板、石英基板
、プラスチック基板、紙基板、セロファン基板、石材基板、木材基板、布基板(天然繊維
(絹、綿、麻)、合成繊維(ナイロン、ポリウレタン、ポリエステル)若しくは再生繊維
(アセテート、キュプラ、レーヨン、再生ポリエステル)等を含む)、皮革基板、ゴム
板、ステンレス・スチル基板、ステンレス・スチル・ホイルを有する基板等を用いること
ができる。あるいは、人等の動物の皮膚(皮表、真皮)又は皮下組織を基板として用いて
もよい。または、ある基板を用いてトランジスタを形成し、その基板を研磨して薄くして
もよい。研磨される基板としては、単結晶基板、SOI基板、ガラス基板、石英基板、プ
ラスチック基板、紙基板、セロファン基板、石材基板、木材基板、布基板(天然繊維(絹
、綿、麻)、合成繊維(ナイロン、ポリウレタン、ポリエステル)若しくは再生繊維(ア
セテート、キュプラ、レーヨン、再生ポリエステル)等を含む)、皮革基板、ゴム基板、
ステンレス・スチル基板、ステンレス・スチル・ホイルを有する基板等を用いることがで
きる。あるいは、人等の動物の皮膚(皮表、真皮)又は皮下組織を基板として用いてもよ
い。これらの基板を用いることにより、特性のよいトランジスタの形成、消費電力の小さ
いトランジスタの形成、壊れにくい装置の製造、耐熱性の付与、軽量化、又は薄型化を図
ることができる。

0038

なお、トランジスタの構成は、様々な形態をとることができる。特定の構成に限定され
ない。例えば、ゲート電極が2個以上のマルチゲート構造を用いてもよい。マルチゲート
構造にすると、チャネル領域直列に接続されるため、複数のトランジスタが直列に接続
された構成となる。マルチゲート構造により、オフ電流の低減、トランジスタの耐圧向上
による信頼性の向上を図ることができる。あるいは、マルチゲート構造により、飽和領域
で動作する時に、ドレインソース間電圧が変化しても、ドレイン・ソース間電流があま
り変化せず、電圧・電流特性の傾きがフラットな特性にすることができる。電圧・電流特
性の傾きがフラットである特性を利用すると、理想的な電流源回路や、非常に高い抵抗値
をもつ能動負荷を実現することができる。その結果、特性のよい差動回路カレントミラ
ー回路を実現することができる。別の例として、チャネルの上下にゲート電極が配置され
ている構造でもよい。チャネルの上下にゲート電極が配置されている構造にすることによ
り、チャネル領域が増えるため、電流値の増加、又は空乏層ができやすくなることによる
S値の低減を図ることができる。チャネルの上下にゲート電極が配置されると、複数のト
ランジスタが並列に接続されたような構成となる。

0039

あるいは、チャネル領域の上にゲート電極が配置されている構造でもよいし、チャネル
領域の下にゲート電極が配置されている構造でもよい。あるいは、正スタガ構造または逆
スタガ構造でもよいし、チャネル領域が複数の領域に分かれていてもよいし、チャネル領
域が並列に接続されていてもよいし、チャネル領域が直列に接続されていてもよい。ある
いは、チャネル領域(もしくはその一部)にソース電極ドレイン電極が重なっていても
よい。チャネル領域(もしくはその一部)にソース電極やドレイン電極が重なる構造にす
ることにより、チャネル領域の一部に電荷がたまって、動作が不安定になることを防ぐこ
とができる。あるいは、LDD領域を設けても良い。LDD領域を設けることにより、オ
フ電流の低減、又はトランジスタの耐圧向上による信頼性の向上を図ることができる。あ
るいは、LDD領域を設けることにより、飽和領域で動作する時に、ドレイン・ソース間
電圧が変化しても、ドレイン・ソース間電流があまり変化せず、電圧・電流特性の傾きが
フラットな特性にすることができる。

0040

なお、トランジスタは、様々なタイプを用いることができ、様々な基板を用いて形成さ
せることができる。従って、所定の機能を実現させるために必要な回路の全てが、同一の
基板に形成されていてもよい。例えば、所定の機能を実現させるために必要な回路の全て
が、ガラス基板、プラスチック基板、単結晶基板、またはSOI基板を用いて形成されて
いてもよく、さまざまな基板を用いてに形成されていてもよい。所定の機能を実現させる
ために必要な回路の全てが同じ基板を用いて形成されていることにより、部品点数の削減
によるコストの低減、又は回路部品との接続点数の低減による信頼性の向上を図ることが
できる。あるいは、所定の機能を実現させるために必要な回路の一部が、ある基板に形成
されており、所定の機能を実現させるために必要な回路の別の一部が、別の基板に形成さ
れていてもよい。つまり、所定の機能を実現させるために必要な回路の全てが同じ基板を
用いて形成されていなくてもよい。例えば、所定の機能を実現させるために必要な回路の
一部は、ガラス基板上にトランジスタを用いて形成され、所定の機能を実現させるために
必要な回路の別の一部は、単結晶基板に形成され、単結晶基板を用いて形成されたトラン
ジスタで構成されたICチップCOG(Chip On Glass)でガラス基板に
接続して、ガラス基板上にそのICチップを配置してもよい。あるいは、そのICチップ
TAB(Tape Automated Bonding)やプリント基板を用いてガ
ラス基板と接続してもよい。このように、回路の一部が同じ基板に形成されていることに
より、部品点数の削減によるコストの低減、又は回路部品との接続点数の低減による信頼
性の向上を図ることができる。あるいは、駆動電圧が高い部分及び駆動周波数が高い部分
の回路は、消費電力が大きくなってしまうので、そのような部分の回路は同じ基板に形成
せず、そのかわりに、例えば、単結晶基板にその部分の回路を形成して、その回路で構成
されたICチップを用いるようにすれば、消費電力の増加を防ぐことができる。

0041

なお、一画素とは、明るさを制御できる要素一つ分を示すものとする。よって、一例と
しては、一画素とは、一つの色要素を示すものとし、その色要素一つで明るさを表現する
。従って、そのときは、R(赤)G(緑)B(青)の色要素からなるカラー表示装置の場
合には、画像の最小単位は、Rの画素とGの画素とBの画素との三画素から構成されるも
のとする。なお、色要素は、三色に限定されず、三色以上を用いても良いし、RGB以外
の色を用いても良い。例えば、白色を加えて、RGBW(Wは白)としてもよい。あるい
は、RGBに、例えば、イエローシアンマゼンタエメラルドグリーン色等を一
色以上追加してもよい。あるいは、例えば、RGBの中の少なくとも一色に類似した色を
、RGBに追加してもよい。例えば、R、G、B1、B2としてもよい。B1とB2とは
、どちらも青色であるが、少し周波数が異なっている。同様に、R1、R2、G、Bとし
てもよい。このような色要素を用いることにより、より実物に近い表示を行うことができ
る。このような色要素を用いることにより、消費電力を低減することができる。別の例と
しては、1つの色要素について、複数の領域を用いて明るさを制御する場合は、その領域
一つ分を一画素としてもよい。よって、一例として、面積階調を行う場合または副画素(
サブ画素)を有している場合、一つの色要素につき、明るさを制御する領域が複数あり、
その全体で階調を表現するわけであるが、明るさを制御する領域の一つ分を一画素として
もよい。よって、その場合は、一つの色要素は、複数の画素で構成されることとなる。あ
るいは、明るさを制御する領域が1つの色要素の中に複数あっても、それらをまとめて、
1つの色要素を1画素としてもよい。よって、その場合は、一つの色要素は、一つの画素
で構成されることとなる。あるいは、1つの色要素について、複数の領域を用いて明るさ
を制御する場合、画素によって、表示に寄与する領域の大きさが異なっている場合がある
。あるいは、一つの色要素につき複数ある、明るさを制御する領域において、各々に供給
する信号を僅かに異ならせるようにして、視野角を広げるようにしてもよい。つまり、1
つの色要素について、複数個ある領域が各々有する画素電極の電位が、各々異なっていて
もよい。その結果、液晶分子に加わる電圧が各画素電極によって各々異なる。よって、視
野角を広くすることができる。

0042

なお、一画素(三色分)と明示的に記載する場合は、RとGとBの三画素分を一画素と
考える場合であるとする。一画素(一色分)と明示的に記載する場合は、一つの色要素に
つき、複数の領域がある場合、それらをまとめて一画素と考える場合であるとする。

0043

なお、画素は、マトリクス状に配置(配列)されている場合がある。ここで、画素がマ
トリクスに配置(配列)されているとは、縦方向もしくは横方向において、画素が直線上
に並んで配置されている場合、又はギザギザな線上に配置されている場合を含む。よって
、例えば三色の色要素(例えばRGB)でフルカラー表示を行う場合に、ストライプ配置
されている場合、又は三つの色要素のドットデルタ配置されている場合も含む。さらに
ベイヤー配置されている場合も含む。なお、色要素は、三色に限定されず、それ以上で
もよく、例えば、RGBW(Wは白)、又はRGBに、イエロー、シアン、マゼンタ等を
一色以上追加したもの等がある。なお、色要素のドット毎にその表示領域の大きさが異な
っていてもよい。これにより、低消費電力化、又は表示素子の長寿命化を図ることができ
る。

0044

なお、画素に能動素子を有するアクティブマトリクス方式、または、画素に能動素子を
有しないパッシブマトリクス方式を用いることができる。

0045

アクティブマトリクス方式では、能動素子(アクティブ素子、非線形素子)として、ト
ランジスタだけでなく、さまざまな能動素子(アクティブ素子、非線形素子)を用いるこ
とができる。例えば、MIM(Metal Insulator Metal)やTFD
(Thin Film Diode)等を用いることも可能である。これらの素子は、製
造工程が少ないため、製造コストの低減、又は歩留まりの向上を図ることができる。さら
に、素子のサイズが小さいため、開口率を向上させることができ、低消費電力化や高輝度
化をはかることができる。

0046

なお、アクティブマトリクス方式以外のものとして、能動素子(アクティブ素子、非線
形素子)を用いないパッシブマトリクス型を用いることも可能である。能動素子(アク
ィブ素子、非線形素子)を用いないため、製造工程が少なく、製造コストの低減、又は歩
留まりの向上を図ることができる。能動素子(アクティブ素子、非線形素子)を用いない
ため、開口率を向上させることができ、低消費電力化や高輝度化をはかることができる。

0047

なお、トランジスタとは、ゲートと、ドレインと、ソースとを含む少なくとも三つの端
子を有する素子であり、ドレイン領域とソース領域の間にチャネル領域を有しており、ド
レイン領域とチャネル領域とソース領域とを介して電流を流すことができる。ここで、ソ
ースとドレインとは、トランジスタの構造や動作条件等によって変わるため、いずれがソ
ースまたはドレインであるかを限定することが困難である。そこで、本書類(明細書、特
許請求の範囲又は図面等)においては、ソース及びドレインとして機能する領域を、ソー
スもしくはドレインと呼ばない場合がある。その場合、一例としては、それぞれを第1端
子、第2端子と表記する場合がある。あるいは、それぞれを第1の電極、第2の電極と表
記する場合がある。あるいは、ソース領域、ドレイン領域と表記する場合がある。

0048

なお、トランジスタは、ベースとエミッタとコレクタとを含む少なくとも三つの端子を
有する素子であってもよい。この場合も同様に、エミッタとコレクタとを、第1端子、第
2端子と表記する場合がある。

0049

なお、ゲートとは、ゲート電極とゲート配線ゲート線ゲート信号線走査線走査
信号線等とも言う)とを含んだ全体、もしくは、それらの一部のことを言う。ゲート電極
とは、チャネル領域を形成する半導体と、ゲート絶縁膜を介してオーバーラップしている
部分の導電膜のことを言う。なお、ゲート電極の一部は、LDD(Lightly Do
ped Drain)領域またはソース領域(またはドレイン領域)と、ゲート絶縁膜を
介してオーバーラップしている場合もある。ゲート配線とは、各トランジスタのゲート電
極の間を接続するための配線、各画素の有するゲート電極の間を接続するための配線、又
はゲート電極と別の配線とを接続するための配線のことを言う。

0050

ただし、ゲート電極としても機能し、ゲート配線としても機能するような部分(領域、
導電膜、配線等)も存在する。そのような部分(領域、導電膜、配線等)は、ゲート電極
と呼んでも良いし、ゲート配線と呼んでも良い。つまり、ゲート電極とゲート配線とが、
明確に区別できないような領域も存在する。例えば、延伸して配置されているゲート配線
の一部とチャネル領域がオーバーラップしている場合、その部分(領域、導電膜、配線等
)はゲート配線として機能しているが、ゲート電極としても機能していることになる。よ
って、そのような部分(領域、導電膜、配線等)は、ゲート電極と呼んでも良いし、ゲー
ト配線と呼んでも良い。

0051

なお、ゲート電極と同じ材料で形成され、ゲート電極と同じ島(アイランド)を形成し
てつながっている部分(領域、導電膜、配線等)も、ゲート電極と呼んでも良い。同様に
、ゲート配線と同じ材料で形成され、ゲート配線と同じ島(アイランド)を形成してつな
がっている部分(領域、導電膜、配線等)も、ゲート配線と呼んでも良い。このような部
分(領域、導電膜、配線等)は、厳密な意味では、チャネル領域とオーバーラップしてい
ない場合、又は別のゲート電極と接続させる機能を有していない場合がある。しかし、製
造時の仕様等の関係で、ゲート電極またはゲート配線と同じ材料で形成され、ゲート電極
またはゲート配線と同じ島(アイランド)を形成してつながっている部分(領域、導電膜
、配線等)がある。よって、そのような部分(領域、導電膜、配線等)もゲート電極また
はゲート配線と呼んでも良い。

0052

なお、例えば、マルチゲートのトランジスタにおいて、1つのゲート電極と、別のゲー
ト電極とは、ゲート電極と同じ材料で形成された導電膜で接続される場合が多い。そのよ
うな部分(領域、導電膜、配線等)は、ゲート電極とゲート電極とを接続させるための部
分(領域、導電膜、配線等)であるため、ゲート配線と呼んでも良いが、マルチゲートの
トランジスタを1つのトランジスタと見なすこともできるため、ゲート電極と呼んでも良
い。つまり、ゲート電極またはゲート配線と同じ材料で形成され、ゲート電極またはゲー
ト配線と同じ島(アイランド)を形成してつながっている部分(領域、導電膜、配線等)
は、ゲート電極やゲート配線と呼んでも良い。さらに、例えば、ゲート電極とゲート配線
とを接続させている部分の導電膜であって、ゲート電極またはゲート配線とは異なる材料
で形成された導電膜も、ゲート電極と呼んでも良いし、ゲート配線と呼んでも良い。

0053

なお、ゲート端子とは、ゲート電極の部分(領域、導電膜、配線等)または、ゲート電
極と電気的に接続されている部分(領域、導電膜、配線等)について、その一部分のこと
を言う。

0054

なお、ゲート配線、ゲート線、ゲート信号線、走査線、走査信号線等と呼ぶ場合、配線
にトランジスタのゲートが接続されていない場合もある。この場合、ゲート配線、ゲート
線、ゲート信号線、走査線、走査信号線は、トランジスタのゲートと同じ層で形成された
配線、トランジスタのゲートと同じ材料で形成された配線またはトランジスタのゲートと
同時に成膜された配線を意味している場合がある。例としては、保持容量用配線電源線
基準電位供給配線等がある。

0055

なお、ソースとは、ソース領域とソース電極とソース配線ソース線ソース信号線
データ線データ信号線等とも言う)とを含んだ全体、もしくは、それらの一部のことを
言う。ソース領域とは、P型不純物ボロンガリウム等)やN型不純物リンヒ素
)が多く含まれる半導体領域のことを言う。従って、少しだけP型不純物やN型不純物が
含まれる領域、いわゆる、LDD(Lightly Doped Drain)領域は、
ソース領域には含まれない。ソース電極とは、ソース領域とは別の材料で形成され、ソー
ス領域と電気的に接続されて配置されている部分の導電層のことを言う。ただし、ソース
電極は、ソース領域も含んでソース電極と呼ぶこともある。ソース配線とは、各トランジ
スタのソース電極の間を接続するための配線、各画素の有するソース電極の間を接続する
ための配線、又はソース電極と別の配線とを接続するための配線のことを言う。

0056

しかしながら、ソース電極としても機能し、ソース配線としても機能するような部分(
領域、導電膜、配線等)も存在する。そのような部分(領域、導電膜、配線等)は、ソー
ス電極と呼んでも良いし、ソース配線と呼んでも良い。つまり、ソース電極とソース配線
とが、明確に区別できないような領域も存在する。例えば、延伸して配置されているソー
ス配線の一部とソース領域とがオーバーラップしている場合、その部分(領域、導電膜、
配線等)はソース配線として機能しているが、ソース電極としても機能していることにな
る。よって、そのような部分(領域、導電膜、配線等)は、ソース電極と呼んでも良いし
、ソース配線と呼んでも良い。

0057

なお、ソース電極と同じ材料で形成され、ソース電極と同じ島(アイランド)を形成し
てつながっている部分(領域、導電膜、配線等)や、ソース電極とソース電極とを接続す
る部分(領域、導電膜、配線等)も、ソース電極と呼んでも良い。さらに、ソース領域と
オーバーラップしている部分も、ソース電極と呼んでも良い。同様に、ソース配線と同じ
材料で形成され、ソース配線と同じ島(アイランド)を形成してつながっている領域も、
ソース配線と呼んでも良い。このような部分(領域、導電膜、配線等)は、厳密な意味で
は、別のソース電極と接続させる機能を有していない場合がある。しかし、製造時の仕様
等の関係で、ソース電極またはソース配線と同じ材料で形成され、ソース電極またはソー
ス配線とつながっている部分(領域、導電膜、配線等)がある。よって、そのような部分
(領域、導電膜、配線等)もソース電極またはソース配線と呼んでも良い。

0058

なお、例えば、ソース電極とソース配線とを接続させている部分の導電膜であって、ソ
ース電極またはソース配線とは異なる材料で形成された導電膜も、ソース電極と呼んでも
良いし、ソース配線と呼んでも良い。

0059

なお、ソース端子とは、ソース領域の領域や、ソース電極や、ソース電極と電気的に接
続されている部分(領域、導電膜、配線等)について、その一部分のことを言う。

0060

なお、ソース配線、ソース線、ソース信号線、データ線、データ信号線等と呼ぶ場合、
配線にトランジスタのソース(ドレイン)が接続されていない場合もある。この場合、ソ
ース配線、ソース線、ソース信号線、データ線、データ信号線は、トランジスタのソース
(ドレイン)と同じ層で形成された配線、トランジスタのソース(ドレイン)と同じ材料
で形成された配線またはトランジスタのソース(ドレイン)と同時に成膜された配線を意
味している場合がある。例としては、保持容量用配線、電源線、基準電位供給配線等があ
る。

0061

なお、ドレインについては、ソースと同様である。

0062

なお、半導体装置とは半導体素子(トランジスタ、ダイオード、サイリスタ等)を含む
回路を有する装置のことをいう。さらに、半導体特性を利用することで機能しうる装置全
般を半導体装置と呼んでもよい。または、半導体材料を有する装置のことを半導体装置と
言う。

0063

なお、表示素子とは、光学変調素子、液晶素子、発光素子、EL素子(有機EL素子、
無機EL素子又は有機物及び無機物を含むEL素子)、電子放出素子、電気泳動素子、放
電素子光反射素子光回折素子、デジタルマイクロミラーデバイス(DMD)、等のこ
とを言う。ただし、これに限定されない。

0064

なお、表示装置とは、表示素子を有する装置のことを言う。なお、表示装置は、表示素
子を含む複数の画素を含んでいても良い。なお、表示装置は、複数の画素を駆動させる周
辺駆動回路を含んでいても良い。なお、複数の画素を駆動させる周辺駆動回路は、複数の
画素と同一基板上に形成されてもよい。なお、表示装置は、ワイヤボンディングバンプ
等によって基板上に配置された周辺駆動回路、いわゆる、チップオングラス(COG)で
接続されたICチップ、または、TAB等で接続されたICチップを含んでいても良い。
なお、表示装置は、ICチップ、抵抗素子、容量素子、インダクタ、トランジスタ等が取
り付けられたフレキシブルプリントサーキットFPC)を含んでもよい。なお、表示装
置は、フレキシブルプリントサーキット(FPC)等を介して接続され、ICチップ、抵
抗素子、容量素子、インダクタ、トランジスタ等が取り付けられたプリント配線基盤(P
WB)を含んでいても良い。なお、表示装置は、偏光板または位相差板等の光学シート
含んでいても良い。なお、表示装置は、照明装置筐体音声入出力装置光センサ等を
含んでいても良い。ここで、バックライトユニットのような照明装置は、導光板プリ
ムシート、拡散シート反射シート、光源(LED、冷陰極管等)、冷却装置水冷式
空冷式)等を含んでいても良い。

0065

なお、照明装置は、バックライトユニット、導光板、プリズムシート、拡散シート、反
シート、光源(LED、冷陰極管、熱陰極管等)、冷却装置等を有している装置のこと
をいう。

0066

なお、発光装置とは、発光素子等を有している装置のことをいう。表示素子として発光
素子を有している場合は、発光装置は、表示装置の具体例の一つである。

0067

なお、反射装置とは、光反射素子、光回折素子、光反射電極等を有している装置のこと
をいう。

0068

なお、液晶表示装置とは、液晶素子を有している表示装置をいう。液晶表示装置には、
直視型、投写型、透過型反射型、半透過型等がある。

0069

なお、駆動装置とは、半導体素子、電気回路電子回路を有する装置のことを言う。例
えば、ソース信号線から画素内への信号の入力を制御するトランジスタ(選択用トランジ
スタ、スイッチング用トランジスタ等と呼ぶことがある)、画素電極に電圧または電流を
供給するトランジスタ、発光素子に電圧または電流を供給するトランジスタ等は、駆動装
置の一例である。さらに、ゲート信号線に信号を供給する回路(ゲートドライバ、ゲート
線駆動回路等と呼ぶことがある)、ソース信号線に信号を供給する回路(ソースドライバ
ソース線駆動回路等と呼ぶことがある)等は、駆動装置の一例である。

0070

なお、表示装置、半導体装置、照明装置、冷却装置、発光装置、反射装置、駆動装置等
は、互いに重複して有している場合がある。例えば、表示装置が、半導体装置および発光
装置を有している場合がある。あるいは、半導体装置が、表示装置および駆動装置を有し
ている場合がある。

0071

なお、Aの上にBが形成されている、あるいは、A上にBが形成されている、と明示的
に記載する場合は、Aの上にBが直接接して形成されていることに限定されない。直接接
してはいない場合、つまり、AとBと間に別の対象物が介在する場合も含むものとする。
ここで、A、Bは、対象物(例えば、装置、素子、回路、配線、電極、端子、導電膜、層
、等)であるとする。

0072

従って例えば、層Aの上に(もしくは層A上に)、層Bが形成されている、と明示的に
記載されている場合は、層Aの上に直接接して層Bが形成されている場合と、層Aの上に
直接接して別の層(例えば層Cや層D等)が形成されていて、その上に直接接して層Bが
形成されている場合とを含むものとする。なお、別の層(例えば層Cや層D等)は、単層
でもよいし、複層でもよい。

0073

さらに、Aの上方にBが形成されている、と明示的に記載されている場合についても同
様であり、Aの上にBが直接接していることに限定されず、AとBとの間に別の対象物が
介在する場合も含むものとする。従って例えば、層Aの上方に、層Bが形成されている、
という場合は、層Aの上に直接接して層Bが形成されている場合と、層Aの上に直接接し
て別の層(例えば層Cや層D等)が形成されていて、その上に直接接して層Bが形成され
ている場合とを含むものとする。なお、別の層(例えば層Cや層D等)は、単層でもよい
し、複層でもよい。

0074

なお、Aの上にBが直接接して形成されている、と明示的に記載する場合は、Aの上に
直接接してBが形成されている場合を含み、AとBと間に別の対象物が介在する場合は含
まないものとする。

0075

なお、Aの下にBが、あるいは、Aの下方にBが、の場合についても、同様である。

0076

なお、明示的に単数として記載されているものについては、単数であることが望ましい
。ただし、これに限定されず、複数であることも可能である。同様に、明示的に複数とし
て記載されているものについては、複数であることが望ましい。ただし、これに限定され
ず、単数であることも可能である。

発明の効果

0077

本発明により、表示装置の性能を維持しつつ、視野角特性を従来よりも向上させること
ができる。または、本発明により、信頼性の高い表示装置を提供することができる。また
は、本発明により、コントラストの高い表示装置を提供することができる。または、本発
明により、軽量な表示装置を提供することができる。または、本発明により、サイズが小
さい表示装置を提供することができる。または、本発明により、輝度の高い表示装置を提
供することができる。または、本発明により、消費電力の低い表示装置を提供することが
できる。または、本発明により、開口率の高い表示装置を提供することができる。または
、本発明により、製造コストの低い表示装置を提供することができる。

図面の簡単な説明

0078

本発明の表示装置の画素回路を説明する図。
本発明の表示装置の画素回路を説明する図。
本発明の表示装置の画素回路を説明する図。
本発明の表示装置の画素回路を説明する図。
本発明の表示装置の画素回路を説明する図。
本発明の表示装置の画素回路を説明する図。
本発明の表示装置の画素回路を説明する図。
本発明の表示装置の画素回路を説明する図。
本発明の表示装置の画素回路を説明する図。
本発明の表示装置の画素回路を説明する図。
本発明の表示装置の画素回路を説明する図。
本発明の表示装置の画素回路を説明する図。
本発明の表示装置の画素回路を説明する図。
本発明の表示装置の画素回路を説明する図。
本発明の表示装置の画素回路を説明する図。
本発明の表示装置の画素回路を説明する図。
本発明の表示装置の画素回路を説明する図。
本発明の表示装置の画素回路を説明する図。
本発明の表示装置の画素回路を説明する図。
本発明の表示装置の画素回路を説明する図。
本発明の表示装置の画素回路を説明する図。
本発明の表示装置の画素回路を説明する図。
本発明の表示装置の画素回路を説明する図。
本発明の表示装置の画素回路を説明する図。
本発明の表示装置の画素回路を説明する図。
本発明の表示装置の画素回路を説明する図。
本発明の表示装置の画素回路を説明する図。
本発明の表示装置の画素回路を説明する図。
本発明の表示装置の画素回路を説明する図。
本発明の表示装置の画素回路が有する分圧素子を説明する図。
本発明の表示装置を説明する図。
本発明の表示装置の画素の上面レイアウトの一例を説明する図。
本発明の表示装置の画素回路を説明する図。
本発明の表示装置の画素の上面レイアウトの一例を説明する図。
本発明の表示装置の画素回路を説明する図。
本発明の表示装置の画素回路を説明する図。
本発明の表示装置の画素回路を説明する図。
本発明の表示装置の画素回路を説明する図。
本発明の表示装置の画素回路を説明する図。
本発明の表示装置の画素回路を説明する図。
本発明の表示装置の画素回路を説明する図。
本発明の表示装置の画素回路を説明する図。
本発明の表示装置の画素回路を説明する図。
本発明の表示装置の画素回路を説明する図。
本発明の表示装置の画素回路を説明する図。
本発明の表示装置の画素回路を説明する図。
本発明の表示装置の画素回路を説明する図。
本発明の表示装置の画素回路を説明する図。
本発明の表示装置の画素回路を説明する図。
本発明の表示装置の画素回路を説明する図。
本発明を説明する図。
本発明を説明する図。
本発明を説明する図。
本発明を説明する図。
本発明を説明する図。
本発明を説明する図。
本発明を説明する図。
本発明を説明する図。
本発明を説明する図。
本発明を説明する図。
本発明を説明する図。
本発明を説明する図。
本発明を説明する図。
本発明を説明する図。
本発明を説明する図。
本発明を説明する図。
本発明を説明する図。
本発明を説明する図。
本発明を説明する図。
本発明を説明する図。
本発明を説明する図。
本発明を説明する図。
本発明を説明する図。
本発明を説明する図。
本発明を説明する図。
本発明を説明する図。
本発明を説明する図。
本発明を説明する図。
本発明を説明する図。
本発明を説明する図。
本発明を説明する図。
本発明を説明する図。
本発明を説明する図。
本発明を説明する図。
本発明を説明する図。
本発明を説明する図。
本発明を説明する図。
本発明を説明する図。
本発明を説明する図。
本発明を説明する図。
本発明を説明する図。
本発明を説明する図。
本発明を説明する図。
本発明を説明する図。
本発明を説明する図。
本発明を説明する図。
本発明を説明する図。
本発明を説明する図。
本発明を説明する図。
本発明を説明する図。
本発明を説明する図。
本発明を説明する図。
本発明を説明する図。
本発明を説明する図。
本発明を説明する図。
本発明を説明する図。
本発明を説明する図。
本発明を説明する図。
本発明を説明する図。
本発明を説明する図。
本発明を説明する図。
本発明を説明する図。
本発明を説明する図。
本発明を説明する図。
本発明を説明する図。
本発明を説明する図。
本発明を説明する図。
本発明を説明する図。
本発明を説明する図。
本発明を説明する図。
本発明を説明する図。
本発明を説明する図。
本発明を説明する図。
本発明を説明する図。
本発明を説明する図。
本発明を説明する図。
本発明を説明する図。
本発明を説明する図。
本発明を説明する図。
本発明を説明する図。
本発明を説明する図。
本発明を説明する図。
本発明を説明する図。
本発明を説明する図。
本発明を説明する図。
本発明を説明する図。
本発明を説明する図。
本発明を説明する図。
本発明を説明する図。
本発明を説明する図。

0079

(実施の形態1)
本実施の形態では、本発明の液晶表示装置が有する画素回路の構成及び画素回路の動作
について、図面を参照して説明する。本発明の液晶表示装置の画素回路は、一画素に複数
の液晶素子を有し、これらの液晶素子の各々に印加される電圧を異ならせる構成を有して
いる。具体的には、液晶素子に接続された容量素子若しくは抵抗素子の一方、又は双方を
設けて液晶素子に印加される電圧を異ならせる。

0080

ただし、表示素子は液晶素子に限定されず、様々な表示素子(例えば、発光素子(EL
素子(有機物及び無機物を含むEL素子、有機EL素子、無機EL素子)、電子放出素子
)、電気泳動素子等)を用いることができる。

0081

本実施の形態を適用できる液晶の動作モードとしては様々なものがある。例えば、TN
(Twisted Nematic)モード、IPS(In−Plane−Switch
ing)モード、FFS(Fringe Field Switching)モード、M
VA(Multi−domain Vertical Alignment)モード、P
VA(Patterned Vertical Alignment)、CPA(Con
tinuous Pinwheel Alignment)モード、ASM(Axial
ly Symmetric aligned Micro−cell)モード、OCB(
Optical Compensated Birefringence)モード、FL
C(Ferroelectric Liquid Crystal)モード、AFLC(
AntiFerroelectric Liquid Crystal)等がある。ただ
し、これに限定されない。なお、CPAモードを適用した液晶はASV(Advance
d Super View)液晶と呼ばれることがある。

0082

図1(A)は、本発明の液晶表示装置が有する一画素の構成の一例を示す。画素100
は第1のスイッチ101と、第2のスイッチ102と、第1の液晶素子103と、第2の
液晶素子104と、第3の液晶素子105と、第1の容量素子106と、第2の容量素子
107と、を有する。

0083

第1の配線108と、第1の液晶素子103の第1の電極及び第1の容量素子106の
第1の電極とは第1のスイッチ101を介して接続されている。第2の配線109と第2
の液晶素子104の第1の電極及び第2の容量素子107の第1の電極は第2のスイッチ
102を介して接続されている。第1の容量素子106の第2の電極は第2の容量素子1
07の第2の電極及び第3の液晶素子105の第1の電極に接続されている。

0084

第1の液晶素子103、第2の液晶素子104及び第3の液晶素子105の第2の電極
は、共通電極111に接続されている。

0085

第1の配線108及び第2の配線109は、信号線として機能する。従って、第1の配
線108及び第2の配線109には、通常、画像信号が供給される。ただし、これに限定
されない。画像によらず、一定の信号が供給されていてもよい。

0086

第1のスイッチ101及び第2のスイッチ102は、スイッチとして機能するものであ
れば特に限定されない。例えばトランジスタを用いることができる。以下、第1のスイッ
チ101及び第2のスイッチ102としてトランジスタを用いる場合について説明する(
図1(B)を参照)。トランジスタを用いる場合には、その極性はPチャネル型でもよい
し、Nチャネル型でもよい。例えば、Nチャネル型トランジスタはゲート・ソース間電圧
(Vgs)がしきい値電圧(Vth)を上回ったとき、ソース・ドレイン間が導通状態
なるものとする。なお、トランジスタのドレイン・ソース間電圧はVdsと記す。

0087

図1(B)はスイッチとしてNチャネル型トランジスタを用いた場合、図1(C)はス
イッチとしてPチャネル型トランジスタを用いた場合を示す。図1(B)及び(C)にお
いて、第1のスイッチ101N(又は第1のスイッチ101P)及び第2のスイッチ10
2N(又は第2のスイッチ102P)のゲートは第3の配線110に接続されている。第
3の配線110は、走査線として機能する。

0088

なお、図49に示すように走査線を2本有していても良い。図49に示す回路は図8
示す回路において信号線を2本設けたものと同様である。

0089

なお、スイッチとしてPチャネル型トランジスタを用いた場合は図1にのみ示している
が、これに限定されない。他の図においても、トランジスタの少なくとも1つをPチャネ
ル型トランジスタに置き換えることができる。

0090

なお、スイッチはトランジスタに限定されない。スイッチとしてダイオード等様々な素
子を用いることができる。

0091

第1の配線108及び第2の配線109には、ビデオ信号が入力されている。第3の配
線110には走査信号が入力されている。走査信号はHレベル又はLレベルのデジタル
圧信号である。第1のスイッチ101がNチャネル型トランジスタの場合、走査信号のH
レベルは第1のスイッチ101及び第2のスイッチ102をオンできる電位であり、走査
信号のLレベルは第1のスイッチ101及び第2のスイッチ102をオフできる電位であ
る。あるいは、第1のスイッチ101及び第2のスイッチ102がPチャネル型トランジ
スタの場合、走査信号のHレベルは第1のスイッチ101及び第2のスイッチ102をオ
フできる電位であり、走査信号のLレベルは第1のスイッチ101及び第2のスイッチ1
02をオンできる電位である。なお、ビデオ信号はアナログ電圧である。ただし、これに
限定されず、ビデオ信号はデジタルの電圧でもよい。または、ビデオ信号は電流でもよい
。そして、このビデオ信号の電流は、アナログでもデジタルでもよい。ビデオ信号は、走
査信号のHレベルよりも低く、走査信号のLレベルよりも高い電位であることが望ましい

0092

画素100の動作について、第1のスイッチ101及び第2のスイッチ102がオンし
ている場合と、第1のスイッチ101及び第2のスイッチ102がオフしている場合とに
分けて説明する。

0093

第1のスイッチ101がオンしている場合には、第1の配線108と、第1の液晶素子
103の第1の電極(画素電極)及び第1の容量素子106の第1の電極とが電気的に接
続される。第2のスイッチ102がオンしている場合には、第2の配線109と、第2の
液晶素子104の第1の電極(画素電極)及び第2の容量素子107の第1の電極とが電
気的に接続される。従って、ビデオ信号は、第1の配線108から第1の液晶素子103
の第1の電極(画素電極)及び第1の容量素子106の第1の電極に入力される。または
、ビデオ信号は第2の配線109から第2の液晶素子104の第1の電極(画素電極)及
び第2の容量素子107の第1の電極に入力される。従って、第1の液晶素子103に入
力される信号の電位V103は第1の配線108から入力される電位に概ね等しく、第2
の液晶素子104に入力される信号の電位V104は第2の配線109から入力される電
位に概ね等しい。また、第3の液晶素子105の第1の電極の電位V105は第1の容量
素子106と第2の容量素子107とによって、分圧された値となる。ここで、第1の容
量素子106の容量値をC106、第2の容量素子107の容量値をC107とする。す
ると、V105=ΔV×C107/(C106+C107)+V103となる。ここで、
ΔV=V104—V103である。ただし、各容量素子に、初期電荷が無い場合である。
ここで、C106とC107とが同じ大きさである場合、V105は、V103とV10
4の和の半分になる。ここで共通電極の電位を0とすると、第1の液晶素子に印加される
電圧はV103、第2の液晶素子に印加される電圧はV104、第3の液晶素子に印加さ
れる電圧はV105=(V103+V104)/2と表される。第1の配線108から入
力される信号と第2の配線109から入力される信号の電位を異ならせると、各々の液晶
素子に印加される電圧を異ならせることができ、各々の配向状態を異ならせることができ
る。そのため、第1の配線108から入力される信号と第2の配線109から入力される
信号は異なる電位とすることが好ましい。

0094

このように、電位の異なる2つの信号を供給し、容量素子を用いることによって、画素
内部で電圧を分割し、2つの信号の中間の電圧(第3の電圧)を作り出すことができる。
そして、第3の電圧を第3の液晶素子105に印加することによって、液晶を容易に制御
することができる。更に、第3の電圧は、第1の液晶素子103に印加される電圧と、第
2の液晶素子104に印加される電圧との間の電圧である。そのため、どのような階調を
表示する場合であっても、適切な階調を表示することができる。また、画像信号の極性が
正極(共通電極よりも画像信号の方が高い場合)の場合でも、負極(共通電極よりも画像
信号の方が低い場合)の場合でも、適切な階調を表示することができる。

0095

更に、走査線、信号線及びトランジスタ等の増加を抑えて、第3の電圧を作り出して第
3の液晶素子105を制御することができる。これにより開口率を高くすることができ、
消費電力を低減することができる。また、画素のレイアウトも余裕をもって配置すること
ができるため、製造工程にて発生した粉塵等によって起こりうるショート等の不良を低減
する事ができ、歩留まりが向上する。その結果、製造コストを低減することができる。ま
た、第3の液晶素子を制御するための信号線として機能する配線を新たに設けることなく
第3の液晶素子105を制御できるため、ガラス基板と、外付けの駆動回路との接続点数
が増加しない。その結果、高い信頼性を保つことができる。

0096

なお、第1の容量素子106と第2の容量素子107とは、容量値は概ね等しいことが
望ましい。二つの容量素子の容量値が概ね等しいことによって、分圧された電位は、二つ
の容量素子に供給される電位の中間値となる。もし、容量値に差があれば、どちらかの電
位に偏ってしまい、均等に液晶素子を制御することができない。したがって、第1の容量
素子106の容量値と第2の容量素子107の容量値は概ね等しいことが望ましい。ただ
し、これに限定されない。

0097

第1のスイッチ101がオフしている場合には、第1の配線108と、第1の液晶素子
103の第1の電極(画素電極)及び第1の容量素子106の第1の電極とが電気的に遮
断される。第2のスイッチ102がオフしている場合には、第2の配線109と、第2の
液晶素子104の第1の電極(画素電極)及び第2の容量素子107の第1の電極とが電
気的に遮断される。従って、第1の液晶素子103の第1の電極、第1の容量素子106
の第1の電極、第2の液晶素子104の第1の電極及び第2の容量素子107の第1の電
極は浮遊状態となる。そして、第3の液晶素子105は、第1の液晶素子103とは、第
1の容量素子106を介して接続されている。しかし、電荷保存則のため、第3の液晶素
子105に保存された電荷は、第1の液晶素子103の方に漏れることはない。同様に、
第3の液晶素子105は、第2の液晶素子104とは、第2の容量素子107を介して接
続されている。しかし、電荷保存則のため、第3の液晶素子105に保存された電荷は、
第2の液晶素子104の方に漏れることはない。従って、第1乃至第3の液晶素子は、直
前に入力された信号の電位が保持されることになる。

0098

なお、第1の液晶素子103、第2の液晶素子104及び第3の液晶素子105はビデ
オ信号に応じた透過率となる。

0099

以上説明したように、各々の液晶素子に異なる配向状態を有せしめることで、視野角を
広くすることができる。

0100

なお、各液晶素子は、複数に分割されていてもよい。例えば、第3の液晶素子105が
第3の液晶素子105aと第4の液晶素子105bの2つに分割されている場合を図11
に示す。同様に、第1の液晶素子103及び第2の液晶素子104についても、複数個に
分割されていてもよい。なお、図1以外の図についても同様である。

0101

なお、図1及び図11において、第1のスイッチ101と第2のスイッチ102がトラ
ンジスタである場合、これらのゲートは、第3の配線110に接続されている。しかし、
これに限定されない。第1のスイッチ101のゲートと、第2のトランジスタのゲートと
は、別々の配線に接続されていてもよい(図49を参照)。これらは図1及び図11以外
の図についても同様である。

0102

なお、図1及び図11において、第1のスイッチ101と、第2のスイッチ102とは
、異なる信号線に接続されているが、これに限定されない。図8又は図17に示すように
、第1のスイッチ101と、第2のスイッチ102とは、同じ配線に接続されていても良
い。これらは図1及び図11以外の図についても同様である。

0103

なお、液晶素子は電圧保持特性を示すがその保持率は100%ではない。そのため、図
1及び図11において、各液晶素子に、保持容量となる容量素子(以下、単に保持容量と
いう。)を配置することで電圧を保持してもよい。保持容量は全ての液晶素子に対して配
置してもよいし、一部の液晶素子のみに配置してもよい。保持容量は、各画素電極と、こ
れに接続される容量線として機能する配線との間に配置する。各保持容量は、異なる容量
線に接続されていてもよいし、同一の容量線に接続されていてもよい。または、一部の保
持容量が同一の容量線に接続され、その他の保持容量が異なる容量線に接続されていても
よい。また、容量線は、別の画素と共用してもよい。例えば、1つ前の行の画素と、1つ
後の行の画素とで、共用することができる。異なる画素間で容量線を共用することで配線
数を減らすことができ、開口率を向上させることができる。また、容量線は、走査線と共
用してもよい。容量線を走査線と共用すると配線数を減らすことができ、開口率を向上さ
せることができる。容量線を走査線と共用する場合には、隣接する行の画素(1つ前の行
の画素)の走査線を用いることが望ましい。なぜなら、i−1番目の行(1つ前の行)は
i番目の行の画素を選択しているとき、既に信号の選択が終了しているためである。な
お、液晶が、IPS又はFFS等の場合、共通電極は、トランジスタが形成されている基
板に配置されている。したがって、容量線は共通電極と共用してもよい。容量線を共通電
極と共用すると、配線数を減らすことができ、開口率を向上させることができる。なお、
保持容量は、図11における液晶素子と同様、複数に分割されていてもよい。これらは図
1及び図11以外の図についても同様である。

0104

次に、上述した図1の画素100を有する表示装置について図31を参照して説明する

0105

表示装置は、信号線駆動回路1911、走査線駆動回路1912及び画素部1913を
有する。画素部1913には、信号線駆動回路1911から列方向に伸張して配置された
第1の配線S1_1〜Sm_1、第2の配線S1_2〜Sm_2及び走査線駆動回路19
12から行方向に伸張して配置された第3の配線G1〜Gn、並びにマトリクス状に配置
された画素1914を有する。第1及び第2の配線は信号線として機能する。第3の配線
は走査線として機能する。そして、各画素1914は、第1の配線Sj_1(信号線S1
_1〜Sm_1のうちいずれか一)、第2の配線Sj_2(信号線S1_2〜Sm_2の
うちいずれか一)及び第3の配線Gi(走査線G1〜Gnのうちいずれか一)と接続され
ている。

0106

なお、第1の配線Sj_1、第2の配線Sj_2、第3の配線Giは、それぞれ図1
おける第1の配線108、第2の配線109、第3の配線110に相当する。

0107

走査線駆動回路1912から出力される信号により、動作させる画素の行を選択すると
、同じ行に属するそれぞれの画素が同時に選択される。選択された行の画素に信号線駆動
回路1911から出力されたビデオ信号を書き込む。このとき、それぞれの画素の輝度デ
ータに応じた電位が第1の配線S1_1〜Sm_1及び第2の配線S1_2〜Sm_2に
供給される。

0108

例えばi行目データ書き込み期間を終えるとi+1行目に属する画素へ信号の書き込
みを行う。そして、i行目においてデータ書き込み期間を終えた画素は、信号に応じた透
過率となる。

0109

なお、信号線駆動回路1911または走査線駆動回路1912は、複数個配置されてい
てもよい。例えば、第1の配線Sj_1(信号線S1_1〜Sm_1のうちいずれか一)
は、第1の信号線駆動回路で駆動し、第2の配線Sj_2(信号線S1_2〜Sm_2の
うちいずれか一)は、第2の信号線駆動回路で駆動してもよい。その場合、画素部191
3を挟んで、上下に、第1の信号線駆動回路および第2の信号線駆動回路を配置してもよ
い。例えば、基板の主表面上の一辺側に第1の信号線駆動回路を配置し、対向する他の一
辺側に第2の信号線駆動回路を配置し、2つの信号線駆動回路で挟まれた領域に画素部1
913を配置してもよい。

0110

なお、液晶材料劣化やちらつき(フリッカ)等の表示ムラを抑制するために、一定期
間毎に液晶容量における共通電極の電位(コモン電位)に対して画素電極に印加される電
圧の極性を反転させて駆動させる反転駆動を用いることが好ましい。本明細書において、
共通電極より画素電極の電位の方が高い場合には正極性の電圧が、画素電極より対向電極
の電位の方が高い場合には負極性の電圧が液晶容量に印加されたと表記する。また、液晶
容量に正極性の電圧が印加される際に信号線より入力される画像信号を正極性の信号とし
、負極性の電圧が印加される際に信号線より入力される画像信号を負極性の信号として表
記する。なお、反転駆動の例としては、フレーム反転駆動をはじめ、ソースライン反転駆
動、ゲートライン反転駆動ドット反転駆動等が挙げられる。

0111

フレーム反転駆動とは、1フレーム期間毎に液晶容量に印加される電圧の極性を反転さ
せる駆動方法である。なお、1フレーム期間とは、1画素分の画像を表示する期間に相当
し、その期間には特に限定はないが、画像をみる人がちらつき(フリッカ)を感じないよ
うに少なくとも1/60秒以下とすることが好ましい。

0112

また、ソースライン反転駆動とは、同一の信号線に接続された画素に属する液晶容量に
印加される電圧の極性を、隣接する信号線に接続された画素に属する液晶容量に対し反転
させ、さらに各画素に対しフレーム反転を行う駆動方法である。一方、ゲートライン反転
駆動とは、走査線として機能する同一の配線に接続された画素に属する液晶容量に印加さ
れる電圧の極性を、隣接する走査線に接続された画素に属する液晶容量に対し反転させ、
さらに各画素に対しフレーム反転を行う駆動方法である。

0113

また、ドット反転駆動とは、隣接する画素間で液晶容量に印加される電圧の極性を反転
させる駆動方法であり、ソースライン反転駆動とゲートライン反転駆動を組み合わせた駆
動方法である。

0114

ところで、上記のフレーム反転駆動、ソースライン反転駆動、ゲートライン反転駆動、
ドット反転駆動等を採用した場合、信号線に書き込まれる画像信号に必要となる電位の幅
は、反転駆動を行わない場合に比べて2倍となる。そのため、これを解消するためにフレ
ーム反転駆動やゲートライン反転駆動の場合、さらに対向電極の電位を反転させるコモン
反転駆動を採用することもある。

0115

コモン反転駆動とは液晶容量に印加される極性の反転と同期して共通電極の電位を変化
させる駆動方法であり、コモン反転駆動を行うことによって信号線に書き込まれる画像信
号に必要となる電位の幅を低減させることができる。

0116

また、一画素に上述した画素構成を複数有していても良い。例えば、一画素が複数のサ
ブ画素を有し、これら複数のサブ画素を用いて一つの画素の階調を表現するようにすると
よい。異なるサブ画素に接続されている信号線はサブ画素間共有して用いられていても
よい。なお、サブ画素に接続される容量線の各々に異なる電位を供給することで、それぞ
れのサブ画素に属する液晶容量に異なる電圧を印加することもできる。このようにして、
それぞれのサブ画素における液晶の配向の違いを利用して、さらに視野角を向上させるこ
とも可能となる。

0117

なお、図1では、保持容量を明記していないが、上述のように保持容量を配置すること
が望ましい。保持容量を配置することにより、液晶素子の漏れ電流の影響を低減すること
ができ、電位を保持しやすくすることができる。また、フィードスルー等のようなスイッ
チングノイズの影響を低減することもできる。そこで、保持容量を図示する場合の一例と
して、図1の回路に保持容量を配置した場合を図16に示す。

0118

図16において、画素400は、第1のスイッチ401と、第2のスイッチ402と、
第1の液晶素子403と、第2の液晶素子404と、第3の液晶素子405と、第1の容
量素子406と、第2の容量素子407と、第3の容量素子408と、第4の容量素子4
09と、第5の容量素子417と、を有する。

0119

第1の配線410は、第1のスイッチ401を介して第1の液晶素子403の第1の電
極、第1の容量素子406の第1の電極及び第2の容量素子407の第1の電極に接続さ
れている。第2の配線411は、第2のスイッチ402を介して第2の液晶素子404の
第1の電極、第3の容量素子408の第1の電極及び第4の容量素子409の第1の電極
に接続されている。第1の容量素子406の第2の電極と第3の容量素子408の第2の
電極は第3の液晶素子405の第1の電極と第5の容量素子417の第1の電極に接続さ
れている。第2の容量素子407の第2の電極は第4の配線413に接続され、第4の容
量素子409の第2の電極は第5の配線414に接続されている。第5の容量素子417
の第2の電極は第6の配線415に接続されている。

0120

第1の液晶素子403、第2の液晶素子404及び第3の液晶素子405の第2の電極
は、共通電極416に接続されている。

0121

第1の配線410及び第2の配線411は、信号線として機能する。したがって、第1
の配線410及び第2の配線411には、通常、画像信号が供給される。ただし、これに
限定されない。画像によらず、一定の信号が供給されていてもよい。第3の配線412は
走査線として機能する。第4の配線413、第5の配線414及び第6の配線415は容
量線として機能する。

0122

第1のスイッチ401及び第2のスイッチ402はスイッチとして機能するものであれ
ば特に限定されない。例えば、トランジスタを用いることができる。以下、第1のスイッ
チ401及び第2のスイッチ402としてトランジスタを用いる場合について説明する。
トランジスタを用いる場合には、その極性はPチャネル型でもよいし、Nチャネル型でも
よい。

0123

図16(B)はスイッチとしてNチャネル型トランジスタを用いた場合を示す。図16
(B)において、第1のスイッチ401N及び第2のスイッチ402Nのゲートは第3の
配線412に接続されている。第3の配線760は、走査線として機能する。

0124

なお、図16のように、全ての液晶素子に保持容量を配置してもよいが、これに限定さ
れない。例えば、図7に示すように、一部の液晶素子にのみ、保持容量を配置してもよい
。なお、各保持容量は、それぞれ異なる容量線に接続されていてもよいし、同一の容量線
に接続されていてもよいし、一部が同一で、一部が異なる容量線に接続されていてもよい
。また、容量線は、別の画素と共用してもよい。例えば、1つ前の行の画素と、1つ後の
行の画素とで、共用することができる。異なる画素間で容量線を共用すると配線数を減ら
すことができ、開口率を向上させることができる。または、容量線は、走査線と共用して
もよい。容量線を走査線と共用すると配線数を減らすことができ、開口率を向上させるこ
とができる。容量線を走査線と共用する場合には、隣接する画素(1つ前の行の画素)の
走査線を用いることが望ましい。なぜなら、i−1番目の行(1つ前の行)は、i番目の
行の画素を選択しているとき、既に信号の選択が終了しているためである。なお、液晶が
、IPS、FFS等の場合、共通電極は、トランジスタが形成されている基板に配置され
ている。したがって、容量線は、共通電極と共用してもよい。容量線を共通電極と共用す
ると、配線数を減らすことができ、開口率を向上させることができる。

0125

なお、容量線には、一定の電位が供給されていることが望ましい。ただし、これに限定
されない。例えば、図7において、1フレーム期間中に、各容量線、つまり、第4の配線
413及び第5の配線414に、周期的に複数回変化する信号を供給してもよい。そして
、各容量線、つまり、第4の配線413及び第5の配線414には、互いに反転した信号
を加えても良い。その結果、第1の液晶素子404及び第2の液晶素子403等に加えら
れる実効電圧を変えることができる。

0126

なお、図16では容量線として機能する配線を2本有するが、これに限定されない。容
量線は一本にまとめることができる。更には、共通電極と容量線は共用することができる
。共通電極と容量線は、どちらも等しい電位に保たれている必要がある以外には、特に限
定されないからである。容量線を一本にまとめ、共通電極と容量線を共用した場合の図を
図50に示す。図50図16と同様の効果を有する。

0127

以上説明したように、各々の液晶素子に異なる配向状態を有せしめることで、視野角を
広くすることができる。

0128

なお、以上の説明にもちいた図1等の他の図において、第1のスイッチ又は第2のスイ
ッチとして用いるトランジスタは、各々、異なる信号線に接続されているが、これに限定
されない。これらは同一の信号線に接続されていてもよい。例えば、図1では2本設けた
信号線を1本とし、複数の走査線を設けた場合の例を図8に示す。または、図8における
走査線を一本にまとめた場合の例を図17に示す。

0129

なお、図8及び図17において、上記した図7及び図16のように、異なる液晶素子に
保持容量を配置することも可能である。そこで、一例として、第1及び第2の液晶素子に
図7と同様に保持容量を配置した場合の例を、図18及び図19に示す。

0130

したがって、図1及び図7で述べた内容は、図8図16図17及び図18にも適用
することができる。

0131

図8において、画素450は、第1のスイッチ451と、第2のスイッチ452と、第
1の液晶素子453と、第2の液晶素子454と、第3の液晶素子455と、第1の容量
素子456と、第2の容量素子457と、を有する。

0132

第1の配線458と、第1の液晶素子453の第1の電極及び第1の容量素子456の
第1の電極とは、第1のスイッチ451を介して接続されている。また、第1の配線45
8と、第2の液晶素子454の第1の電極及び第2の容量素子457の第1の電極とは、
第2のスイッチ452を介して接続されている。第1の容量素子456の第2の電極と第
2の容量素子457の第2の電極は第3の液晶素子455の第1の電極に接続されている

0133

なお、スイッチとしてはトランジスタを用いることができる。第1のスイッチ451N
のゲートは第2の配線459に接続されている。第2のスイッチ452Nのゲートは第3
の配線460に接続されている。

0134

第1の液晶素子453、第2の液晶素子454及び第3の液晶素子455の第2の電極
は、共通電極461に接続されている。

0135

第1の配線458は、信号線として機能する。したがって、第1の配線458には、通
常、画像信号が供給される。ただし、これに限定されない。画像によらず、一定の信号が
供給されていてもよい。第2の配線459及び第3の配線460は走査線として機能する

0136

まず、図8及び図18の動作について考える。最初に、第3の配線460にアクティブ
な信号が供給され、第2のスイッチ452がオンする。ここでアクティブな信号とは、第
2のスイッチ452をオンさせることのできる信号をいう。第2のスイッチ452がオン
すると、第2の液晶素子454の第1の電極(画素電極)及び第2の容量素子457の第
1の電極に、第1の配線458からビデオ信号が供給される。

0137

次に、第2のスイッチ452がオフし、第2の配線459にアクティブな信号が供給さ
れ、第1のスイッチ451がオンする。ここでアクティブな信号とは、第2のスイッチ4
52をオンさせることのできる信号をいう。すると、第1の液晶素子453の第1の電極
(画素電極)及び第1の容量素子456の第1の電極に、第1の配線458からビデオ
号が供給される。このときに供給されるビデオ信号は、第2のスイッチ452がオンした
ときとは、異なる電位であることが望ましい。電位が異なることにより、各液晶素子に異
なる電圧を供給することができ、視野角を向上させることができる。

0138

なお、第1のスイッチ451がオンしているとき、第3の液晶素子455は、第1の容
量素子456を介して、第1の液晶素子453の画素電極と容量結合している。したがっ
て、第3の液晶素子455の画素電極の電位は、第1のスイッチ451がオンしていると
きに第1の配線458から供給される電圧に応じて、変化する。

0139

同様に、第1のスイッチ451がオンしているとき、第2の液晶素子454は、第1の
容量素子456及び第2の容量素子457を介して、第1の液晶素子453の画素電極と
容量結合している。したがって、第2の液晶素子454の画素電極の電位は、第1のスイ
ッチ451がオンしているときに第1の配線458から供給される電圧に応じて変化する

0140

次に、第1のスイッチ451がオフし、各液晶素子の電位が保持される。
このように動作させることによって、各液晶素子に印加される電圧が異なるようにするこ
とができる。その結果、視野角を広くすることができる。ただし、駆動方法は、これに限
定されない。各トランジスタをオン・オフするタイミングや信号線の電位等、様々な方法
で駆動させることができる。

0141

なお、図18において、各容量線には、一定の電位が供給されていることが望ましい。
ただし、これに限定されない。例えば、1フレーム期間中に、各容量線、つまり、第1の
容量線および第2の容量線に、周期的に複数回変化する信号を供給してもよい。そして、
各容量線、つまり、第1の容量線および第2の容量線には、互いに反転した信号を加えて
も良い。その結果、第1の液晶素子453及び第2の液晶素子454等に加えられる実効
電圧を変えることができる。このように動作させることによって、各液晶素子の電位が異
なるようにすることができる。その結果、視野角を広くすることができる。

0142

次に、図17および図19の動作について考える。

0143

第2の配線459にアクティブな信号が供給され、第1のスイッチ451および第2の
スイッチ452がオンする。すると、第1の液晶素子453の第1の電極(画素電極)、
第1の容量素子456の第1の電極、第2の液晶素子454の第1の電極(画素電極)及
び第2の容量素子457の第1の電極に、第1の配線458からビデオ信号が供給される

0144

このとき、第1のスイッチ451と第2のスイッチ452にトランジスタを用いるとオ
抵抗が生ずる。第1のスイッチ451のオン抵抗は、第2のスイッチ452のオン抵抗
よりも、高いことが望ましい。トランジスタのオン抵抗が高いとは、チャネル長Lに対す
チャネル幅の比(W/L)が小さいことを意味している。このように、トランジスタの
オン抵抗を高くすることによって、各液晶素子の画素電極の電位は、各容量素子や各保持
容量等の漏れ電流等のバランスによって、決定されることとなる。そして、各液晶素子に
異なる電圧を印加することができ、視野角を向上させることができる。ただし、これに限
定されず、第1のスイッチ451と第2のスイッチ452とは、概ね等しいオン抵抗であ
ることも可能である。

0145

次に、第1のスイッチ451及び第2のスイッチ452がオフし、各液晶素子に印加さ
れた電圧が保持される。

0146

このように動作させることによって、各液晶素子に印加される電圧を異ならせることが
できる。その結果、視野角を広くすることができる。ただし、駆動方法は、これに限定さ
れない。各トランジスタをオン・オフするタイミングや信号線の電位等、様々な方法で駆
動させることができる。

0147

なお、図19において、各容量線には、一定の電位が供給されていることが望ましい。
ただし、これに限定されない。例えば、1フレーム期間中に、各容量線、つまり、第1の
容量線463および第2の容量線465、周期的に複数回変化する信号を供給してもよい
。そして、各容量線、つまり、第1の容量線463および第2の容量線465には、互い
に反転した信号を加えても良い。その結果、第1の液晶素子453及び第2の液晶素子4
54等に加えられる実効電圧を変えることができる。このように動作させることによって
、各液晶素子の電位を異ならせることができる。その結果、視野角を広くすることができ
る。

0148

以上説明したように、各々の液晶素子に異なる配向状態を有せしめることで、視野角を
広くすることができる。

0149

図2は、本発明の液晶表示装置が有する画素回路の構成について、図1とは異なる構成
の一例を示す。画素150は第1のスイッチ151と、第2のスイッチ152と、第1の
液晶素子153と、第2の液晶素子154と、第3の液晶素子155と、第1の容量素子
156と、第2の容量素子157と、第3の容量素子161と、を有する。

0150

第1の配線158は第1の液晶素子153の第1の電極及び第1の容量素子156の第
1の電極に、第1のスイッチ151を介して接続されている。第2の配線159は第2の
液晶素子154の第1の電極及び第2の容量素子157の第1の電極に、第2のスイッチ
152を介して接続されている。第1の容量素子156の第2の電極は第2の容量素子1
57の第2の電極及び第3の容量素子161の第1の電極に接続され、第3の容量素子1
61の第2の電極は第3の液晶素子155の第1の電極に接続されている。

0151

第1の液晶素子153、第2の液晶素子154及び第3の液晶素子155の第2の電極
は、共通電極に接続されている。

0152

第1の配線158及び第2の配線159は、信号線として機能する。従って、第1の配
線158及び第2の配線159には、通常、画像信号が供給される。ただし、これに限定
されない。画像によらず一定の信号が供給されていてもよい。第3の配線160は走査線
として機能する。

0153

第1のスイッチ151及び第2のスイッチ152はスイッチとして機能するものであれ
ば特に限定されない。例えば、トランジスタを用いることができる。以下、第1のスイッ
チ151及び第2のスイッチ152としてトランジスタを用いる場合について説明する。
トランジスタを用いる場合には、その極性はPチャネル型でもよいし、Nチャネル型でも
よい。

0154

図2(B)はスイッチとしてNチャネル型トランジスタを用いた場合を示す。図2(B
)において、第1のスイッチ151N及び第2のスイッチ152Nのゲートは第3の配線
110に接続されている。第3の配線160は、走査線として機能する。

0155

なお、図2においても図1と同様、図49に示すように走査線を2本有していても良い

なお、スイッチとしてPチャネル型トランジスタを用いることもできる。

0156

第1の配線158及び第2の配線159には、ビデオ信号が入力されている。第3の配
線160には走査信号が入力されている。走査信号はHレベル又はLレベルのデジタル電
圧信号である。第1のスイッチ151及び第2のスイッチ152がNチャネル型トランジ
スタの場合、走査信号のHレベルは第1のスイッチ151及び第2のスイッチ152をオ
ンできる電位であり、走査信号のLレベルは第1のスイッチ151及び第2のスイッチ1
52をオフできる電位である。あるいは、第1のスイッチ151及び第2のスイッチ15
2がPチャネル型トランジスタの場合、走査信号のHレベルは第1のスイッチ151及び
第2のスイッチ152をオフできる電位であり、走査信号のLレベルは第1のスイッチ1
51及び第2のスイッチ152をオンできる電位である。なお、ビデオ信号はアナログ電
圧である。ただし、これに限定されず、ビデオ信号はデジタルの電圧でもよい。または、
ビデオ信号は電流でもよい。そして、このビデオ信号の電流は、アナログでもデジタルで
もよい。ビデオ信号は、走査信号のHレベルよりも低く、走査信号のLレベルよりも高い
電位である。

0157

図2における画素150の動作について、第1のスイッチ151及び第2のスイッチ1
52がオンしている場合と、第1のスイッチ151及び第2のスイッチ152がオフして
いる場合とに分けて説明する。

0158

第1のスイッチ151がオンしている場合には、第1の配線158と、第1の液晶素子
153の第1の電極(画素電極)及び第1の容量素子156の第1の電極とが電気的に接
続される。第2のスイッチ152がオンしている場合には、第2の配線159と、第2の
液晶素子154の第1の電極(画素電極)及び第2の容量素子157の第1の電極とが電
気的に接続される。従って、ビデオ信号は、第1の配線158から第1の液晶素子153
の第1の電極(画素電極)及び第1の容量素子156の第1の電極に入力され、第2の配
線159から第2の液晶素子154の第1の電極(画素電極)及び第2の容量素子157
の第1の電極に入力される。従って、第1の液晶素子153に入力される信号の電位V1
53は第1の配線158から入力される電位に概ね等しく、第2の液晶素子154に入力
される信号の電位V154は第2の配線159から入力される電位に概ね等しい。また、
第3の容量素子161の第1の電極の電位V161は図1における第3の液晶素子105
の第1の電極の電位V105と同様であり、C106とC107とが同じ大きさである場
合、第3の容量素子161の第1の電極の電位V161は、V153とV154の和の半
分と概ね等しい。なお、第3の液晶素子155の第1の電極の電位はV155とおく。こ
こで共通電極の電位を0とすると、第3の液晶素子155に印加される電圧はV155と
なる。V155は、第3の容量素子161と、第3の液晶素子155とで、分圧された値
となる。このように、容量素子を用いることによって、さらに、異なった電圧を液晶素子
に供給することができる。このように、各々の液晶素子に印加される電圧を異ならせるこ
とができ、各々の配向状態を異ならせることができる。

0159

このように、電位の異なる2つの信号を供給し、容量素子を用いることによって、画素
内部で電圧を分割し、第3の電圧を作り出すことができる。そして、第3の電圧を第3の
液晶素子105に印加することによって、液晶を容易に制御することができる。更に、第
3の電圧は、第1の液晶素子103に供給される電圧と、第2の液晶素子104に供給さ
れる電圧との間の電圧である。そのため、どのような階調を表示する場合であっても、適
切な階調を表示することができる。また、画像信号の極性が正極(共通電極よりも画像信
号の方が高い場合)の場合でも、負極(共通電極よりも画像信号の方が低い場合)の場合
でも、適切な階調を表示することができる。

0160

さらに、走査線、信号線及びトランジスタ等の増加を抑えて、第3の電圧を作り出して
第3の液晶素子155を制御することができる。これにより、開口率を高くすることがで
き、消費電力を低減することができる。また、画素のレイアウトも余裕をもって配置する
ことができるため、製造工程にて発生した粉塵等によってショートする等の不良を低減す
る事ができ、歩留まりが向上する。その結果、製造コストを低減することができる。また
、信号線を新たに設けることなく第3の液晶素子155を制御できるため、ガラス基板と
、外付けの駆動回路との接続点数は増加しない。その結果、高い信頼性を保つことができ
る。

0161

第1のスイッチ151がオフしている場合には、第1の配線158と、第1の液晶素子
153の第1の電極(画素電極)及び第1の容量素子156の第1の電極とが電気的に遮
断される。第2のスイッチ152がオフしている場合には、第2の配線159と、第2の
液晶素子154の第1の電極(画素電極)及び第2の容量素子157の第1の電極とが電
気的に遮断される。従って、第1の液晶素子153の第1の電極、第1の容量素子156
の第1の電極、第2の液晶素子154の第1の電極及び第2の容量素子157の第1の電
極は浮遊状態となる。そして、第3の液晶素子155は、第1の液晶素子153とは第1
の容量素子156及び第3の容量素子161を介して接続されている。しかし、電荷保存
則のため、第3の液晶素子105に保存された電荷は、第1の液晶素子153に漏れるこ
とはない。第1の液晶素子153とは第2の容量素子157を介して接続されている。し
かし、電荷保存則のため、第3の液晶素子155に保存された電荷は、第2の液晶素子1
54の方に漏れることはない。したがって、第1乃至第3の液晶素子は、直前に入力され
た信号の電位が保持されることになる。

0162

なお、第1の液晶素子153、第2の液晶素子154及び第3の液晶素子155はビデ
オ信号に応じた透過率となる。

0163

つまり、図2は、図1と比較すると、図1の第3の液晶素子105の部分を、図2の第
3の容量素子161と第3の液晶素子155とが直列接続されたものに、置き換えた場合
に相当する。したがって、図1で述べた内容は、図2にも適用することができる。例えば
図15に示すように、第3の容量素子161と第3の液晶素子155とが直列接続され
たものは、複数に分割されていてもよい。または、図12に示すように、容量素子を省い
て、液晶素子のみを複数に分割してもよい。

0164

なお、図2では、図1の第3の液晶素子105の部分を、第3の容量素子161と第3
の液晶素子155とが直列接続されたもので置き換えたが、これに限定されない。別の液
晶素子に置き換えても良い。例えば、第1の液晶素子153を容量素子と液晶素子とが直
列接続されたものに置き換えた場合を図13に示す。この場合も、図12と同様、図14
に示すように、複数に分割されていてもよい。

0165

図2は、図1における第3の液晶素子105の部分を、図2の第3の容量素子161と
第3の液晶素子155とが直列接続されたものに、置き換えたものであるため、図1と同
様の変形が可能である。つまり、図7に示すように各液晶素子の一部に保持容量を追加し
てもよいし、図16に示すように液晶素子の全てに保持容量を追加しても良い。また、図
8又は図18に示すように走査線を2本にして信号線を1本にまとめてもよいし、図17
又は図19に示すように走査線と信号線の双方を1本にまとめてもよい。

0166

以上説明したように、各々の液晶素子に異なる配向状態を有せしめることで、視野角を
広くすることができる。

0167

図3は、本発明の液晶表示装置が有する画素回路の構成について、他とは異なる構成の
一例を示す。画素200は、第1のスイッチ201と、第2のスイッチ202と、トラン
ジスタ203と、第1の液晶素子204と、第2の液晶素子205と、第3の液晶素子2
06と、第1の容量素子207と、第2の容量素子208と、を有する。

0168

第1の配線209は、第1の液晶素子204の第1の電極及び第1の容量素子207の
第1の電極に第1のスイッチ201を介して接続されている。第2の配線210は、第2
の液晶素子205の第1の電極及び第2の容量素子208の第1の電極に第2のスイッチ
202を介して接続されている。また、第2の配線210は第3の液晶素子206の第1
の電極にトランジスタ203を介して接続されている。第1のスイッチ201、第2のス
イッチ202及びトランジスタ203のゲートは第3の配線211に接続されている。第
1の容量素子207の第2の電極は第2の容量素子208の第2の電極及び第3の液晶素
子206の第1の電極に接続されている。

0169

なお、トランジスタ203は、第1のスイッチ201と第2のスイッチ202よりもオ
ン抵抗が高いスイッチとして動作する。つまり、抵抗素子が直列に接続されたスイッチと
同様に扱うことができる。しかし、これに限定されない。トランジスタ203のオン抵抗
は第1のスイッチ201及び第2のスイッチ202よりもオン抵抗が低くてもよい。

0170

なお、図3ではトランジスタ203をNチャネル型としているが、これに限定されない
。つまり、トランジスタ203はPチャネル型トランジスタであってもよい。

0171

第1の液晶素子204、第2の液晶素子205及び第3の液晶素子206の第2の電極
は、共通電極に接続されている。

0172

第1の配線209及び第2の配線210は、信号線として機能する。従って、第1の配
線209及び第2の配線210には、通常、画像信号が供給される。ただし、これに限定
されない。画像によらず、一定の信号が供給されていてもよい。第3の配線211は走査
線として機能する。

0173

第1のスイッチ201及び第2のスイッチ202はスイッチとして機能するものであれ
ば特に限定されない。例えばトランジスタを用いることができる。以下、第1のスイッチ
101及び第2のスイッチ102としてトランジスタを用いる場合について説明するトラ
ンジスタを用いる場合には、その極性はPチャネル型でもよいし、Nチャネル型でもよい

0174

図3(B)はスイッチとしてNチャネル型トランジスタを用いた場合を示す。図2(B
)において、第1のスイッチ201N及び第2のスイッチ202Nのゲートは第3の配線
110に接続されている。第3の配線211Aは、走査線として機能する。

0175

なお、図2においても図1と同様、図49に示すように走査線を2本有していても良い

なお、スイッチとしてPチャネル型トランジスタを用いることもできる。

0176

なお、スイッチはトランジスタに限定されない。スイッチとしてダイオード等様々な素
子を用いることができる。

0177

第1の配線209及び第2の配線210には、ビデオ信号が入力されている。第3の配
線211には走査信号が入力されている。走査信号はHレベル又はLレベルのデジタル電
圧信号である。第1及び第2のスイッチ、並びにトランジスタ203がNチャネル型の場
合、走査信号のHレベルは第1乃至第3のトランジスタをオンできる電位であり、走査信
号のLレベルは第1及び第2のスイッチ、並びにトランジスタ203をオフできる電位で
ある。あるいは第1及び第2のスイッチ、並びにトランジスタ203がPチャネル型の場
合、走査信号のHレベルは第1及び第2のスイッチ、並びにトランジスタ203をオフで
きる電位であり、走査信号のLレベルは第1及び第2のスイッチ、並びにトランジスタ2
03をオンできる電位である。なお、ビデオ信号はアナログ電圧である。ただし、これに
限定されず、ビデオ信号はデジタルの電圧でもよい。または、ビデオ信号は電流でもよい
。そして、このビデオ信号の電流は、アナログでもデジタルでもよい。ビデオ信号は、走
査信号のHレベルよりも低く、走査信号のLレベルよりも高い電位である。

0178

つまり、図3は、図1と比較すると、図1の第3の液晶素子206の画素電極と、第2
の配線210とを接続しているトランジスタ203が追加されたものであると言える。図
1の場合、第1の容量素子207と第2の容量素子208とが接続されている点に、何か
のノイズや漏れ電流が入ってしまった場合、そこに電荷がたまってしまう。その結果、液
晶素子に加える電圧が影響を受けてしまい、画質が低下する可能性がある。しかしながら
図3のように、トランジスタ203を追加することにより、たまった電荷を引き抜くこ
とができる。その結果、焼き付き等の画質不良を低減することができる。

0179

なお、上記のように、トランジスタ203のオン抵抗は、第1のスイッチ201または
第2のスイッチ202のオン抵抗よりも高いことが望ましい。トランジスタのオン抵抗が
高いとは、チャネル幅Wとチャネル長Lとの比(W/L)が小さいことを意味している。
このように、トランジスタのオン抵抗を高くすることによって、第1の容量素子207と
第2の容量素子208とが接続されている点の電位は、各容量素子や各保持容量等の漏れ
電流等のバランスによって、決定されることとなる。ただし、これに限定されず、第1乃
至第3のトランジスタを同程度のサイズで形成し、第3のトランジスタ203と直列に抵
抗素子が接続されていても良い。

0180

したがって、図1及び図2等で述べた内容は、図3にも適用することができる。例えば
図3図2を適用した場合を図4に示す。

0181

なお、図3及び図4等において、第1のスイッチ201N(又は第1のスイッチ251
N)、第2のスイッチ202N(又は第2のスイッチ252N)及びトランジスタ203
(トランジスタ253)は、第3の配線211(又は第3の配線262)により制御され
ているが、これに限定されない。これらが異なる配線に接続され、別々に制御されていて
もよい。または、一部が別の配線に接続されていてもよい。

0182

なお、図3ではトランジスタ203は第2の配線210に接続されているが、第1の配
線209に接続されていても良い。第3のトランジスタ203が第1の配線209に接続
されている場合でも、同様である。図3と同様に、図4ではトランジスタ253が第2の
配線261に接続されているが、第1の配線260に接続されていても良い。

0183

または、トランジスタを接続するための別の配線を設けてもよい。その場合を図5に示
す。図5(B)では、走査線は2本配置され、第1のスイッチ301N及び第2のスイッ
チ302Nを制御する走査線と、トランジスタ303を制御する走査線を異なる配線とし
ているが、これに限定されない。第1のスイッチ301N、第2のスイッチ302N及び
トランジスタ303は同一の走査線に接続されていてもよい。したがって、図1等の他の
図で述べた内容は、図5にも適用することができる。例えば、図2図5に適用した場合
図6に示す。

0184

なお、図5においてトランジスタ303がオンになるのは、第1のスイッチ301又は
第2のスイッチ302が、オフになっているときが望ましいが、これに限定されない。第
1のスイッチ301又は第2のスイッチ302が、オンになっているとき、又は、オンに
なっているときの一部の期間(前半が望ましい)に、トランジスタ303がオンになって
いてもよい。

0185

なお、第5の配線313の電位は、共通電極と概ね等しい電位にすることが望ましいが
、これに限定されない。第1の配線309又は第2の配線310の電位と概ね等しい電位
にすることも可能である。

0186

なお、第5の配線313は、別の配線と共用することが可能である。例えば、容量線、
走査線等と共用する事ができる。なお、共用する配線は、別の画素の配線でもよい。これ
らにより、開口率を向上させることができる。なお、図1等の他の図で述べた内容は、図
5にも適用することができる。つまり、トランジスタの少なくとも1つをPチャネル型に
してもよいし、液晶素子を複数に分割しても良い。

0187

なお、図6では、トランジスタ353は、第3の容量素子359に接続されているが、
これに限定されない。第3の容量素子359と第3の液晶素子356との接点と、第5の
配線364との間に、トランジスタ353が接続されていてもよい。なお、図1等の他の
図で述べた内容は、図6にも適用することができる。

0188

なお、上記の第1乃至第3の液晶素子は、ビデオ信号に応じた透過率となる。

0189

以上説明したように、各々の液晶素子に異なる配向状態を有せしめることで、視野角を
広くすることができる。

0190

なお、これまでは、信号線の間にスイッチを介して接続された容量素子が2個の場合に
ついて述べてきたが、これに限定されない。更に多くの容量素子を配置することが可能で
ある。容量素子を追加することによって、液晶素子に印可する電圧を更に異ならせること
ができる。そして、その各々の電圧を、各々の液晶素子に印加することにより、印加され
る電圧の異なった液晶素子を多く配置することができる。その結果、視野角を広くするこ
とができる。

0191

そこで、図1に対して、容量素子及び液晶素子を更に追加して配置した場合の例を図9
に示す。または、図3に対して、容量素子及び液晶素子を更に追加して配置した場合の例
図20に示す。液晶素子は更に追加しても良い。そして、第1の液晶素子503は第3
の液晶素子505に同様に接続されていても良い。同様に、他の図に示した回路において
も、容量素子及び液晶素子を追加することが可能である。なお、他の図の説明で述べた内
容は、図9及び図20にも適用することができる。

0192

図9において、画素500は、第1のスイッチ501と、第2のスイッチ502と、第
1の液晶素子503と、第2の液晶素子504と、第3の液晶素子505と、第4の液晶
素子506と、第1の容量素子507と、第2の容量素子508と、第3の容量素子50
9と、第1の配線510と、第2の配線511と、第3の配線512と、を有する。

0193

第1の配線510は第1の液晶素子503の第1の電極及び第1の容量素子507の第
1の電極に第1のスイッチ501を介して接続されている。第2の配線511は第2の液
晶素子504の第1の電極及び第3の容量素子509の第1の電極に第2のスイッチ50
2を介して接続されている。第1の容量素子507の第2の電極は第2の容量素子508
の第1の電極及び第3の液晶素子505の第1の電極に接続されている。第2の容量素子
508の第2の電極は第3の容量素子509の第2の電極及び第4の液晶素子506の第
1の電極に接続されている。

0194

第1の液晶素子503、第2の液晶素子504、第3の液晶素子505及び第4の液晶
素子506の第2の電極は、共通電極に接続されている。

0195

第1の配線510及び第2の配線511は、信号線として機能する。したがって、第1
の配線510及び第2の配線511には、通常、画像信号が供給される。ただし、これに
限定されない。画像によらず、一定の信号が供給されていてもよい。第3の配線512は
走査線として機能する。

0196

第1のスイッチ501及び第2のスイッチ502はスイッチとして機能するものであれ
ば特に限定されない。例えばトランジスタを用いる場合には、その極性はPチャネル型で
もよいし、Nチャネル型でもよい。

0197

図9(B)はスイッチとしてNチャネル型トランジスタを用いた場合を示す。図9(B
)において、第1のスイッチ501N及び第2のスイッチ502Nのゲートは第3の配線
512に接続されている。第3の配線512は、走査線として機能する。

0198

なお、図9においても図1と同様、図49に示すように走査線を2本有していても良い

なお、スイッチとしてPチャネル型トランジスタを用いることもできる。

0199

なお、スイッチはトランジスタに限定されない。スイッチとしてダイオード等様々な素
子を用いることができる。

0200

更には、図11等に示すように液晶素子を複数に分割しても良い。

0201

なお、第1の液晶素子503、第2の液晶素子504、第3の液晶素子505及び第4
の液晶素子506はビデオ信号に応じた透過率となる。

0202

以上説明したように、一画素あたりの液晶素子を4つとすることも可能であるし、一画
素あたりの液晶素子を更に増やすことも可能である。一画素あたりの液晶素子の数を増や
すことで様々な配向状態を有せしめることができ、より広い視野角を有する液晶表示装置
を提供することができる。

0203

なお、図9図20では、容量素子を追加することで液晶素子を追加する場合について
述べた。ただし、これに限定されない。トランジスタ、信号線等を増やすことによって、
一画素内に配置される液晶素子を増やすことができる。そこで、一例として、図1の回路
に対して、トランジスタと信号線とを増やすことによって液晶素子を追加して配置した場
合を、図10に示す。ただし、この構成に限定されない。図10では、走査線は追加する
ことなく信号線を追加しているが、信号線を追加することなく走査線を追加することも可
能である。図21には、信号線を追加することなく容量素子584を追加し、信号線と第
4の液晶素子557との間に配置することで、信号線から供給される電位を分圧した場合
を示す。図22には、信号線を追加することなく容量素子を追加し、信号線と第1の液晶
素子554との間に容量素子572を追加し、信号線と第1の液晶素子554との間に配
置することで、信号線から供給される電位を分圧した場合を示す。図21及び図22に示
す構成とすることで、信号線を追加することなく、4つの液晶素子に異なる電圧を印加す
ることができる。

0204

なお、図21及び図22では、第4の液晶素子557は第1の配線560に接続されて
いるが、第4の液晶素子557は第2の配線561に接続されていても良い。

0205

なお、図1の場合と同様に、他の図に示した回路においても、液晶素子を追加して配置
することが可能である。なお、他の図の説明で述べた内容は、図10にも適用することが
できる。つまり、トランジスタをPチャネル型としてもよいし、液晶素子を複数に分割し
ても良い。

0206

図10において、画素550は、第1のスイッチ551と、第2のスイッチ552と、
第3のスイッチ553と、第1の液晶素子554と、第2の液晶素子555と、第3の液
晶素子556と、第4の液晶素子557と、第1の容量素子558と、第2の容量素子5
59と、を有する。

0207

第1の配線560は第1の液晶素子554の第1の電極及び第1の容量素子558の第
1の電極に第1のスイッチ551を介して接続されている。第2の配線561は第2の液
晶素子555の第1の電極及び第2の容量素子559の第1の電極に接続されている。第
3の配線562は第4の液晶素子557の第1の電極に第3のスイッチ553を介して接
続されている。第1の容量素子558の第2の電極は第2の容量素子559の第2の電極
及び第3の液晶素子556の第1の電極の一方に接続されている。

0208

図10(B)はスイッチとしてNチャネル型トランジスタを用いた場合を示す。図10
(B)において、第1のスイッチ551N及び第2のスイッチ552Nのゲートは第4の
配線563に接続されている。第4の配線563は、走査線として機能する。

0209

なお、図10においても図1と同様、図49に示すように走査線を2本有していても良
い。
なお、スイッチとしてPチャネル型トランジスタを用いることもできる。

0210

なお、スイッチはトランジスタに限定されない。スイッチとしてダイオード等様々な素
子を用いることができる。

0211

更には、図11等に示すように液晶素子を更に複数に分割しても良い。

0212

第1の液晶素子503、第2の液晶素子504、第3の液晶素子505及び第4の液晶
素子506の第2の電極は、共通電極に接続されている。

0213

第1の配線560、第2の配線561及び第3の配線562は、信号線として機能する
。したがって、第1の配線560、第2の配線561及び第3の配線562には、通常、
画像信号が供給される。ただし、これに限定されない。画像によらず、一定の信号が供給
されていてもよい。第4の配線563は走査線として機能する。

0214

なお、液晶素子と、信号線として機能する配線との間に容量素子を設けても良い。図2
1に示すように容量素子566を設けることで液晶素子に印加される電圧を異ならせるこ
とができる。従って、図10における第1の配線560と、第3の配線562とを一本に
まとめることができる。

0215

なお、容量素子を追加して配置する位置は第4の液晶素子と信号線の間に限定される物
ではなく、図22に示すように、他の液晶素子と信号線との間に容量素子(例えば、容量
素子565)を設けても良い。この場合にも、複数の信号線を一本にまとめることができ
る。

0216

以上説明したように、一画素あたりの液晶素子を4つとすることも可能であるし、一画
素あたりの液晶素子を更に増やすことも可能である。一画素あたりの液晶素子の数を増や
すことで様々な配向状態を有せしめることができ、より広い視野角を有する液晶表示装置
を提供することができる。

0217

本発明を適用した液晶表示装置の画素の上面図の一例を図32に示す。また、図33
図32の回路図を示す。なお、図32図33は対応する部分には同じ符号を用いてい
る。

0218

図32に示す画素1000は、走査線及び容量線となる配線を構成する第1の導電層(
第3の配線1013のハッチパターンで示す。)上に第1の絶縁膜(図示しない)が設け
られ、第1の絶縁膜上に半導体膜が設けられ、半導体膜上に第2の導電層(第1の配線1
011のハッチパターンで示す。)が設けられ、第2の導電層上に第2の絶縁膜(図示し
ない)が設けられ、第2の絶縁膜上に第3の導電層(第1の液晶素子1003のハッチ
ターンで示す。)が設けられている。

0219

図33において、画素1000は、第1のスイッチ1001と、第2のスイッチ100
2と、第1の液晶素子1003と、第2の液晶素子1004と、第3の液晶素子1005
と、第4の液晶素子1006と、第1の容量素子1007と、第2の容量素子1008と
、第3の容量素子1009と、第4の容量素子1010と、第5の容量素子1016と、
第6の容量素子1017と、を有する。

0220

第1の配線1011は、第4の液晶素子1006、第1の容量素子1007の第1の電
極及び第2の容量素子1008の第1の電極に第1のトランジスタ1001を介して接続
されている。第2の配線1012は、第1の液晶素子1003、第4の容量素子1010
の第1の電極及び第3の容量素子1009の第1の電極に第2のトランジスタ1002を
介して接続されている。第2の容量素子1008の第2の電極は、第3の容量素子100
9の第2の電極、第5の容量素子1016の第1の電極、第2の液晶素子1004の第1
の電極、第6の容量素子1017の第1の電極及び第3の液晶素子1005の第1の電極
に接続されている。第1の容量素子1007の第2の電極及び第6の容量素子1017の
第2の電極は第5の配線1015に接続されている。第5の容量素子1016の第2の電
極及び第4の容量素子1010の第2の電極は第4の配線1014に接続されている。

0221

なお、図33は、図11(B)のすべての液晶素子の各々に保持容量を設けたものであ
る。つまり、図11図16を組み合わせたものであると言える。従って、図33は、図
1と同様の構成を適用できる。即ち、容量線として機能する配線は図50に示すように共
通電極と共用してもよいし、スイッチはトランジスタに置き換えることが可能であり、ト
ランジスタにはNチャネル型を用いてもよいし、Pチャネル型を用いてもよい。

0222

なお、スイッチはトランジスタに限定されない。スイッチとしてダイオード等様々な素
子を用いることができる。

0223

第1の配線1011及び第2の配線1012は、信号線として機能する。従って、第1
の配線1011及び第2の配線1012には、通常、画像信号が供給される。ただし、こ
れに限定されない。画像によらず、一定の信号が供給されていても良い。第3の配線10
13は走査線として機能する。第4の配線1014及び第5の配線1015は、容量線と
して機能する。

0224

図32に示した上面図のような画素を設けることで、各々の液晶素子に様々な配向状態
を有せしめることができ、より広い視野角を有する液晶表示装置を提供することができる

0225

なお、本実施の形態では、一画素に設けられる全てのトランジスタの導電型が同一の場
合についてのみ説明したが、本発明はこれに限定されない。つまり、一画素内に設けられ
るトランジスタは、異なる導電型を有していてもよい。

0226

更には、本実施の形態におけるトランジスタの種類も特に限定されず、様々なものを用
いることができる。そのため、結晶性半導体膜を用いた薄膜トランジスタ(TFT)、非
晶質シリコンや多結晶シリコンに代表される非単結晶半導体膜を用いた薄膜トランジスタ
、半導体基板やSOI基板を用いて形成されるトランジスタ、MOS型トランジスタ、接
合型トランジスタ、バイポーラトランジスタ、ZnOやa−InGaZnO等の化合物半
導体を用いたトランジスタ、有機半導体やカーボンナノチューブを用いたトランジスタ、
その他のトランジスタを適用することができる。ただし、オフ電流が少ないトランジスタ
を用いることが望ましい。オフ電流が少ないトランジスタとしては、LDD領域が設けら
れた薄膜トランジスタ又はマルチゲート構造を有する薄膜トランジスタ等がある。また、
Nチャネル型とPチャネル型の両方を用いて、CMOS型のスイッチにしてもよい。

0227

なお、本実施の形態において、様々な図を用いて述べてきたが、各々の図で述べた内容
の一部又は全部は、別の図で述べた内容の一部又は全部に対して、適用し、組み合わせ、
又は置き換えること等を自由に行うことができる。さらに、これまでに述べた図において
、各々の部分に関して別の部分を組み合わせることにより、更に多くの構成が考えられ、
本実施の形態の記載はこれを妨げるものではない。

0228

同様に、本実施の形態の各々の図において述べた内容の一部又は全部は、別の実施の形
態の図において述べた内容の一部又は全部に対して、適用し、組み合わせ、又は置き換え
ること等を自由に行うことができる。更に、本実施の形態の図において、各々の部分に関
して、別の実施の形態の部分を組み合わせることにより、さらに多くの図を構成が考えら
れ、本実施の形態の記載はこれを妨げるものではない。

0229

なお、本実施の形態は、他の実施の形態で述べた内容の一部又は全部について、具体化し
た場合、多少の変形を加えた場合、一部に変更を加えた場合、改良した場合、詳細に記載
した場合、応用した場合、関連がある場合についての一例を示している。従って、他の実
施の形態で述べた内容は、本実施の形態へ適用し、組み合わせ、又は置き換えること等を
自由に行うことができる。

0230

(実施の形態2)
実施の形態1では、容量素子を用いて電圧を分割することで新たな電圧を作り、液晶素
子に供給していた。ただし、新たな電圧を作るための素子は、容量素子に限定されない。
電圧を分割する素子、電流を電圧に変換する素子、非線形素子、抵抗成分を有する素子、
容量成分を有する素子、インダクタ、ダイオード、トランジスタ、抵抗素子、スイッチ等
の様々な素子を用いることができる。また。これらを直列又は並列に接続して組み合わせ
ることで所望の回路を実現することができる。このような素子を、分圧素子と呼ぶことと
する。

0231

図1の容量素子を分圧素子とし、一般化した場合を図23に示す。したがって、実施の
形態1で述べた内容は、図23にも適用することができる

0232

図23(A)は、本発明の液晶表示装置が有する画素回路の構成についての一例を示す
。画素600は、第1のスイッチ601と、第2のスイッチ602と、第1の液晶素子6
03と、第2の液晶素子604と、第3の液晶素子605と、第1の分圧素子606と、
第2の分圧素子607と、を有する。

0233

第1の配線608は第1の液晶素子603の第1の電極及び第1の分圧素子606の一
端に第1のスイッチ601を介して接続されている。第2の配線609は第2の液晶素子
604の第1の電極及び第2の分圧素子607の一端に第2のスイッチを介して接続され
ている。第1の分圧素子606と第2の分圧素子607は直列に接続され、第3の液晶素
子605の第1の電極は第1の分圧素子606と第2の分圧素子607の間に接続されて
いる。

0234

第1の液晶素子603、第2の液晶素子604及び第3の液晶素子605の第2の電極
は、共通電極に接続されている。

0235

図23(B)はスイッチとしてNチャネル型トランジスタを用いた場合を示す。図23
(B)において、第1のスイッチ601N及び第2のスイッチ602Nのゲートは第3の
配線610に接続されている。第3の配線760は、走査線として機能する。

0236

なお、図26においても図1等と同様、図49に示すように走査線を2本有していても
良いし、スイッチとしてPチャネル型トランジスタを用いることもでき、更には、図11
等に示すように液晶素子を更に複数に分割しても良い。

0237

なお、スイッチはトランジスタに限定されない。スイッチとしてダイオード等様々な素
子を用いることができる。

0238

第1の配線608及び第2の配線609は、信号線として機能する。従って、第1の配
線608及び第2の配線609には、通常、画像信号が供給される。ただし、これに限定
されない。画像によらず、一定の信号が供給されていても良い。第3の配線610は走査
線として機能する。

0239

なお、第1の液晶素子603、第2の液晶素子604及び第3の液晶素子605はビデ
オ信号に応じた透過率となる。

0240

以上説明したように、各々の液晶素子に異なる配向状態を有せしめることで、視野角を
広くすることができる。

0241

なお、第1の分圧素子606及び第2の分圧素子607としては、容量素子だけでなく
、様々な素子を用いることができる。例えば、電圧を分割する素子、電流を電圧に変換す
る素子、非線形素子、抵抗成分を有する素子、容量成分を有する素子、インダクタ、ダイ
オード、トランジスタ、抵抗素子、スイッチ等を分圧素子として用いることができる。図
30は分圧素子の例を図示している。

0242

まず、図30(J)及び(K)に示すように、Nチャネル型トランジスタ及びPチャネ
ル型トランジスタを用いることができる。

0243

図30(A)は、ダイオード接続されたNチャネル型トランジスタである。図30(B
)は、図30(A)の接続される向きを逆にしたものである。図30(C)は、図30
A)と図30(B)に示す素子を並列に接続している。図30(D)及び図30(E)は
図30(A)及び図30(B)のNチャネル型トランジスタをPチャネル型トランジスタ
に置き換えたものである。Pチャネル型トランジスタを図30(C)と同様に、並列に接
続しても良い。または、図30(F)に示すように、Pチャネル型トランジスタとNチャ
ネル型トランジスタを並列に接続しても良い。

0244

図30(G)及び(L)は、抵抗素子と容量素子が直列又は並列に接続された分圧素子
である。

0245

図30(H)及び(I)では、抵抗素子と、Pチャネル型トランジスタ又はNチャネル
型トランジスタとを直列に接続している。

0246

なお、図30(H)、(I)、(J)及び(K)に示されるトランジスタのゲートが接
続される配線は特に限定されない。走査線、容量線又は信号線に接続すればよい。また、
当該画素に隣接する行の走査線等に接続されていても良い。ゲートの電位を制御すること
により、分圧素子の抵抗値を制御することができる。

0247

図30(M)及び(N)はダイオードを示す。ダイオードには様々な種類があるが、分
圧素子として用いることの出来るダイオードは特に限定されない。例えば、PN型、PI
N型、ショットキー型、MIM型、MIS型等のダイオードを用いることができる。更に
は、図30(O)に示すように、2つのダイオードを逆向きに並列に接続しても良い。

0248

更には、図30(P)に示すインダクタ素子を用いても良いし、図30(Q)に示すよ
うに抵抗素子を用いても良い。抵抗素子としては、図30(R)に示すように抵抗値が可
変のものを用いてもよい。

0249

したがって、実施の形態1で述べた構成において、容量素子を、図30に示す分圧素子
に置き換えて、新たな回路を構成することができる。したがって、実施の形態1で述べた
内容は、図23および、容量素子を分圧素子で置き換えて構成した回路にも適用すること
ができる。

0250

図23に示す分圧素子606及び分圧素子607を、図30に示す様々な素子に置き換
えて構成した回路図を図36乃至図48に示す。従って、図36乃至図48は、図1と同
様の構成を適用できる。即ち、図7に示すように、一部又は全部の液晶素子の第1の電極
が容量線に接続されていてもよい。容量線は図50に示すように共通電極と共用してもよ
い。スイッチはトランジスタに置き換えることが可能であり、トランジスタにはNチャネ
ル型を用いてもよいし、Pチャネル型を用いてもよい。トランジスタを用いる場合には各
トランジスタのゲートは同一の走査線に接続されていても良いし、異なる走査線に接続さ
れていてもよい。また、図11に示すように、液晶素子を複数に分割しても良い。信号線
は複数有しても良いし、図8に示すように一本にまとめてもよい。更には、図2及び図1
2等に示すように、適当な位置に分圧素子を適宜配置しても良い。

0251

なお、スイッチはトランジスタに限定されない。スイッチとしてダイオード等様々な素
子を用いることができる。

0252

なお、分圧素子の抵抗値は一定でなくともよく、時間又は画素により抵抗値が異なるよ
うに設定しても良い。抵抗値を変化させるには分圧素子がトランジスタを有しているとよ
い。トランジスタを用いる場合には、該トランジスタにおいて、時間により又は画素によ
りゲートの電位を変化させればよい。

0253

なお、液晶素子の間に分圧素子を接続する場合、信号線と液晶素子との接続がオフにな
ったとき、各液晶素子間で電荷が漏れてしまう場合がある。電荷の漏れを防止するために
は、分圧素子とスイッチとを直列接続させ、それを各液晶素子間に接続すればよい。その
場合の例を図24に示す。なお、分圧素子とスイッチとの接続は逆にしてもよい。

0254

なお、液晶素子間に、分圧素子と、スイッチとを1つずつ配置しているが、これに限定
されない。複数個配置してもよい。なお、実施の形態1および図23で述べた内容は、図
24にも適用することができる。

0255

画素650は、第1のスイッチ651と、第2のスイッチ652と、第1の液晶素子6
53と、第2の液晶素子654と、第3の液晶素子655と、第1の分圧素子656と、
第2の分圧素子657と、第3のスイッチ658と、第4のスイッチ659と、を有する

0256

第1の配線660は第1の液晶素子653の第1の電極及び第3のスイッチ658の一
端に、第1のスイッチ651を介して接続されている。第2の配線661は第2の液晶素
子654の第1の電極及び第4のスイッチ659の一端に接続されている。第3のスイッ
チ658と第4のスイッチ659は直列に接続され、第3のスイッチ658と第4のスイ
ッチ659の間には直列に接続された第1の分圧素子656と第2の分圧素子657が設
けられ、第3の液晶素子655の第1の電極は第1の分圧素子656と第2の分圧素子6
57の間に接続されている。

0257

第1の液晶素子653、第2の液晶素子654及び第3の液晶素子655の第2の電極
は、共通電極に接続されている。

0258

第1の配線660及び第2の配線661は、信号線として機能する。従って、第1の配
線660及び第2の配線661には、通常、画像信号が供給される。ただし、これに限定
されない。画像によらず、一定の信号が供給されていても良い。第3の配線662は走査
線として機能する。

0259

第1のスイッチ651及び第2のスイッチ652はスイッチとして機能するものであれ
ば、特に限定されない。例えば、トランジスタを用いることができる。以下、第1のスイ
ッチ651及び第2のスイッチ652としてトランジスタを用いる場合には、その極性は
Pチャネル型でもよいし、Nチャネル型でもよい。

0260

第3のスイッチ658及び第4のスイッチ659はスイッチとして機能するものであれ
ば特に限定されない。例えば、トランジスタを用いることができる。第3のスイッチ65
8及び第4のスイッチ659に用いるトランジスタの極性はPチャネル型でもよいし、N
チャネル型でもよい。

0261

図24(B)はスイッチとしてNチャネル型トランジスタを用いた場合を示す。図24
(B)において、第1のスイッチ651N及び第2のスイッチ652Nのゲートは第3の
配線662に接続されている。第3の配線662は、走査線として機能する。

0262

なお、図24においても図1等と同様、図49に示すように走査線を2本有していても
良いし、スイッチとしてPチャネル型トランジスタを用いることもでき、更には、図11
等に示すように液晶素子を更に複数に分割しても良い。

0263

なお、スイッチはトランジスタに限定されない。スイッチとしてダイオード等様々な素
子を用いることができる。

0264

なお、第1の液晶素子653、第2の液晶素子654及び第3の液晶素子655はビデ
オ信号に応じた透過率となる。

0265

以上説明したように、各々の液晶素子に異なる配向状態を有せしめることで、視野角を
広くすることができる。

0266

次に、図23および図24に、図30の分圧素子を適用した場合の具体例を示す。まず
図30(J)を用いる場合について図25を参照して説明する。ゲートは、走査線に接
続される。図23および図24は、図1における第1の容量素子106及び第2の容量素
子107をトランジスタに置き換えたものに相当する。したがって、実施の形態1、図2
3及び図24にて述べた内容は、図25にも適用することができる。

0267

画素700は、第1のスイッチ701と、第2のスイッチ702と、第1の液晶素子7
03と、第2の液晶素子704と、第3の液晶素子705と、第1のトランジスタ706
と、第2のトランジスタ707と、を有する。

0268

第1の配線708は第1の液晶素子703の第1の電極及び第1のトランジスタ706
のソース又はドレインの一方に第1のスイッチ701を介して接続されている。第2の配
線709は第2の液晶素子704の第1の電極及び第2のトランジスタ707のソース又
はドレインの一方に第2のスイッチ702を介して接続されている。第1のトランジスタ
706のソース又はドレインの他方及び第2のトランジスタ707のソース又はドレイン
の他方は第3の液晶素子705の第1の電極に接続されている。第1及び第2のトランジ
スタは第3の配線710に接続されている。

0269

第1の液晶素子703、第2の液晶素子704及び第3の液晶素子705の第2の電極
は、共通電極に接続されている。

0270

第1の配線708及び第2の配線709は、信号線として機能する。従って、第1の配
線708及び第2の配線709には、通常、画像信号が供給される。ただし、これに限定
されない。画像によらず、一定の信号が供給されていても良い。第3の配線710は走査
線として機能する。

0271

第1のスイッチ701及び第2のスイッチ702はスイッチとして機能するものであれ
ば特に限定されない。例えばトランジスタを用いることができる。以下、第1のスイッチ
701及び第2のスイッチ702としてトランジスタを用いる場合について説明する。ト
ランジスタを用いる場合には、その極性はPチャネル型でもよいし、Nチャネル型でもよ
い。

0272

図25(B)はスイッチとしてNチャネル型トランジスタを用いた場合を示す。図25
(B)において、第1のスイッチ701N及び第2のスイッチ702Nのゲートは第3の
配線710に接続されている。第3の配線710は、走査線として機能する。

0273

なお、図25においても図1等と同様、図49に示すように走査線を2本有していても
良いし、スイッチとしてPチャネル型トランジスタを用いることもでき、更には、図11
等に示すように液晶素子を更に複数に分割しても良い。

0274

第1のトランジスタ706及び第2のトランジスタ707は分圧素子として機能すれば
よく、第1のトランジスタ706及び第2のトランジスタ707の極性はPチャネル型で
もよいし、Nチャネル型でもよい。

0275

次に、画素700の動作について述べる。まず、第3の配線710により選択されて、
第1のスイッチ701および第2のスイッチ702がオンになる。すると、第1の配線7
08および第2の配線709から、ビデオ信号が供給される。第1及び第2のスイッチと
同時に、第1のトランジスタ706および第2のトランジスタ707もオンになる。した
がって、第1の配線708と第2の配線709とが、トランジスタを介して接続されるこ
ととなる。そして、トランジスタには抵抗成分(オン抵抗)があるため、各トランジスタ
で分圧されることとなる。このとき、第1のトランジスタ706および第2のトランジス
タ707のオン抵抗が高い場合には、電圧の多くが、それらのトランジスタに加わること
となる。

0276

したがって、第1の液晶素子703の画素電極には、第1の配線708の電位とほぼ等
しい電位が加わる。より正確には、第1の配線708の電位から、第1のスイッチ701
電圧降下した分の電位が第1の液晶素子703の画素電極に加わる。同様に、第2の液
晶素子704の画素電極には、第2の配線709の電位とほぼ等しい電位が加わる。より
正確には、第2の配線709の電位から、第2のスイッチ702で電圧降下した分の電位
が第2の液晶素子704の画素電極に加わる。

ページトップへ

この技術を出願した法人

この技術を発明した人物

ページトップへ

関連する挑戦したい社会課題

関連する公募課題

ページトップへ

技術視点だけで見ていませんか?

この技術の活用可能性がある分野

分野別動向を把握したい方- 事業化視点で見る -

(分野番号表示ON)※整理標準化データをもとに当社作成

ページトップへ

おススメ サービス

おススメ astavisionコンテンツ

新着 最近 公開された関連が強い技術

  • 武漢華星光電技術有限公司の「 GOA回路及び液晶表示パネル」が 公開されました。( 2019/09/12)

    【課題・解決手段】本発明は、ローレベル信号を出力するためのローレベル信号源と、第1のハイレベル信号を出力するための第1のハイレベル信号源と、第2のハイレベル信号を出力するための第2のハイレベル信号源と... 詳細

  • 株式会社JVCケンウッドの「 電子機器、反射制御方法、および反射制御プログラム」が 公開されました。( 2019/09/12)

    【課題】画質を落とすことなく表示部からの光の反射を抑制すること。【解決手段】電子機器100Aは、筐体と、筐体に設けられ、画像を表示する表示部110と、表示部110を、筐体に対してチルト動作させる駆動部... 詳細

  • キヤノン株式会社の「 投影装置」が 公開されました。( 2019/09/12)

    【課題】内部状態の推定精度を向上させる。【解決手段】投影装置1は、時刻を示す時刻情報を発生するRTC14と、1つの動作モードでの動作が開始した時の時刻情報が示す時刻から、1つの動作モードでの動作が終了... 詳細

この 技術と関連性が強い人物

関連性が強い人物一覧

この 技術と関連する社会課題

関連する挑戦したい社会課題一覧

この 技術と関連する公募課題

関連する公募課題一覧

astavision 新着記事

サイト情報について

本サービスは、国が公開している情報(公開特許公報、特許整理標準化データ等)を元に構成されています。出典元のデータには一部間違いやノイズがあり、情報の正確さについては保証致しかねます。また一時的に、各データの収録範囲や更新周期によって、一部の情報が正しく表示されないことがございます。当サイトの情報を元にした諸問題、不利益等について当方は何ら責任を負いかねることを予めご承知おきのほど宜しくお願い申し上げます。

主たる情報の出典

特許情報…特許整理標準化データ(XML編)、公開特許公報、特許公報、審決公報、Patent Map Guidance System データ