図面 (/)

技術 海洋資源採鉱装置および海洋資源の採鉱方法、並びに、海洋資源揚鉱装置および海洋資源の揚鉱方法

出願人 国立大学法人東京大学古河機械金属株式会社
発明者 藤田豊久ドドビバジョルジ中村謙太郎林元和智
出願日 2017年10月20日 (4年3ヶ月経過) 出願番号 2017-203943
公開日 2019年5月23日 (2年8ヶ月経過) 公開番号 2019-078019
状態 特許登録済
技術分野 さく岩、採鉱及び採鉱機械とその方法
主要キーワード 採掘装置 連結用ロッド 水中機器 残存圧力 各分岐管路 雌ねじ状 フロントキャップ フィード長
関連する未来課題
重要な関連分野

この項目の情報は公開日時点(2019年5月23日)のものです。
また、この項目は機械的に抽出しているため、正しく解析できていない場合があります

図面 (16)

課題

採鉱効率を向上させ得る海洋資源採鉱装置および海洋資源の採鉱方法、並びに、海洋資源揚鉱装置および海洋資源の揚鉱方法を提供する。

解決手段

この海洋資源揚鉱装置100は、圧送されたリーチング浸出溶液Lsを駆動流体Mとして駆動するビット90と、このビット90またはその近傍に形成された吐出口からリーチング用浸出溶液Lsを外部に吐出するノズルと、を有するダウンホールモータ2を備え、リーチング掘進によりレアアースからレアアースを選鉱しつつ採鉱できる。そのため、採鉱効率を向上させることができる。

概要

背景

2012年、海洋資源として、島の排他経済水域深海で極めて高濃度レアアースを含む(以下、「レアアース泥」という)が発見された。ここで、海底石油人工採油技術や深海のレアアース泥の回収技術としては、高揚多段スラリーポンプを複数ヵ所で直列に連結して回収するポンプリフト方式や、上の空気圧縮機から各水深層の数か所に高圧空気注入するエアリフト方式が考えられている。ポンプリフト方式としては、例えば、特許文献1(ターボ形)や特許文献2(斜流インペラ)が開示されている。

概要

採鉱効率を向上させ得る海洋資源採鉱装置および海洋資源の採鉱方法、並びに、海洋資源揚鉱装置および海洋資源の揚鉱方法を提供する。この海洋資源揚鉱装置100は、圧送されたリーチング浸出溶液Lsを駆動流体Mとして駆動するビット90と、このビット90またはその近傍に形成された吐出口からリーチング用浸出溶液Lsを外部に吐出するノズルと、を有するダウンホールモータ2を備え、リーチング掘進によりレアアース泥からレアアースを選鉱しつつ採鉱できる。そのため、採鉱効率を向上させることができる。

目的

本発明は、このような問題点に着目してなされたものであって、採鉱効率を向上させ得る海洋資源採鉱装置および海洋資源の採鉱方法、並びに、海洋資源揚鉱装置および海洋資源の揚鉱方法を提供する

効果

実績

技術文献被引用数
0件
牽制数
0件

この技術が所属する分野

ライセンス契約や譲渡などの可能性がある特許掲載中! 開放特許随時追加・更新中 詳しくはこちら

請求項1

圧送されたリーチング浸出溶液駆動流体として駆動する掘削部と、該掘削部またはその近傍に形成された吐出口から前記リーチング用浸出溶液を外部に吐出する吐出部と、を有するダウンホールモータを備えることを特徴とする海洋資源採鉱装置。

請求項2

前記リーチング用浸出溶液は、硫酸アンモニウム水溶液希硫酸、または希塩酸を含む請求項1に記載の海洋資源採鉱装置。

請求項3

前記ダウンホールモータは、前記駆動流体が導入されるハウジングと、該ハウジングの内部に固定されたステータと、該ステータの内部に配置されて前記駆動流体が導入されることによりねじポンプ原理で回転するロータと、ユニバーサルジョイントおよび連結ロッドを介して前記ロータの下端に連結されるとともに前記ハウジング内に軸受で支承されて前記ロータの回転に伴い回転するシャフトと、前記シャフトの先端に前記ハウジングの端部から張り出すように延設される前記掘削部と、前記シャフトの内部に設けられて前記駆動流体をシャフト上部の開口から導入するとともにシャフト下部の開口から前記掘削部に形成され前記吐出口を構成するノズル導出するように形成された駆動流体流路と、を有する請求項1または2に記載の海洋資源採鉱装置。

請求項4

前記ダウンホールモータは、前記駆動流体が導入されるハウジングと、前記ハウジング内に自身基端が回転自在に支承された第一シャフトと、前記第一シャフトの先端側に軸方向に沿って延設されて雄ねじ状外周面を有するインナロータ部と、前記インナロータ部に外挿され且つ前記ハウジング内に回転自在に支承された第二シャフトと、前記第二シャフトの内周面雌ねじ状に設けられて前記インナロータ部との協働によって画成されたキャビティに前記駆動流体が導入されることによりねじポンプの原理で前記第一シャフトおよび前記第二シャフト相互を所定比率で回転させる流体モータ機構を構成するアウタロータ部と、前記第二シャフトの先端に前記ハウジングの端部から張り出すように延設される前記掘削部と、前記第一シャフトの内部に設けられて前記駆動流体を第一シャフトの上部の開口から導入し第一シャフトの下部の開口からアウタロータ部の上部に導出するとともに前記第二シャフト下部の開口から前記掘削部に形成され前記吐出口を構成するノズルに導出するように形成された駆動流体流路と、を備える請求項1または2に記載の海洋資源採鉱装置。

請求項5

請求項1〜4のいずれか一項に記載の海洋資源採鉱装置を用い、前記リーチング用浸出溶液で前記ダウンホールモータを駆動して海中のレアアース鉱床のレアアース採掘しつつ、その採掘時に吐出されたリーチング用浸出溶液に前記レアアース泥中のレアアースを採掘坑内浸出させることを特徴とする海洋資源の採鉱方法

請求項6

ライザー管と、該ライザー管内に設けられて圧送されたリーチング用浸出溶液を駆動流体として供給する駆動流体供給管と、該駆動流体供給管の先端に装備された請求項1〜4のいずれか一項に記載の海洋資源採鉱装置と、を備えることを特徴とする海洋資源揚鉱装置

請求項7

前記ライザー管の下部開口部を囲繞するとともに、前記ライザー管の配置時に海底打ち込まれて採掘坑口シールする円筒形アンカーを更に備える請求項6に記載の海洋資源揚鉱装置。

請求項8

前記ライザー管に揚鉱用の圧縮空気注入するエアリフト手段を更に備える請求項7に記載の海洋資源揚鉱装置。

請求項9

前記採掘坑の坑口を封止するパッカーと、前記ライザー管に揚鉱用の圧縮空気を注入するエアリフト手段と、を更に備える請求項6に記載の海洋資源揚鉱装置。

請求項10

前記パッカーは、前記ライザー管の下部に装着されて該下部の開口部を囲繞するように設けられた可撓性の集鉱スカートと、該集鉱スカートの下縁に設けられた複数のアンカーと、を有する請求項9に記載の海洋資源揚鉱装置。

請求項11

請求項6または7に記載の海洋資源揚鉱装置を用い、上からレアアース鉱床まで前記ライザー管を降ろす配置工程と、前記ライザー管の配置後に、前記駆動流体供給管からリーチング用浸出溶液を駆動流体として供給するとともに前記駆動流体供給管自体の給進により前記ダウンホールモータをレアアース泥堆積層中で掘進させつつ前記ダウンホールモータから噴射されるリーチング用浸出溶液でレアアース泥中のレアアースを浸出させる採掘・選鉱工程と、前記リーチング用浸出溶液中にレアアースが浸出したレアアース選鉱溶液を、前記リーチング用浸出溶液供給時の残存圧力により前記ライザー管で揚鉱する揚鉱工程と、を含むことを特徴とする海洋資源の揚鉱方法。

請求項12

請求項8に記載の海洋資源揚鉱装置を用い、船上からレアアース鉱床まで前記ライザー管を降ろす配置工程と、前記ライザー管の配置後に、前記駆動流体供給管からリーチング用浸出溶液を駆動流体として供給するとともに前記駆動流体供給管自体の給進により前記ダウンホールモータをレアアース泥堆積層中で掘進させつつ前記ダウンホールモータから噴射されるリーチング用浸出溶液でレアアース泥中のレアアースを浸出させる採掘・選鉱工程と、前記リーチング用浸出溶液中にレアアースが浸出したレアアース選鉱溶液を、前記リーチング用浸出溶液供給時の残存圧力と、前記エアリフト手段により前記ライザー管に注入された圧縮空気によるエアリフトの浮上力と、により前記ライザー管で揚鉱する揚鉱工程と、を含むことを特徴とする海洋資源の揚鉱方法。

請求項13

請求項9に記載の海洋資源揚鉱装置を用い、船上からレアアース鉱床まで前記ライザー管を降ろす配置工程と、前記ライザー管の配置後に、前記駆動流体供給管からリーチング用浸出溶液を駆動流体として供給するとともに前記駆動流体供給管自体の給進により前記ダウンホールモータをレアアース泥堆積層中で掘進させつつ前記ダウンホールモータから噴射されるリーチング用浸出溶液でレアアース泥中のレアアースを浸出させる採掘・選鉱工程と、前記リーチング用浸出溶液中にレアアースが浸出したレアアース選鉱溶液を、前記坑口に設けたパッカー内に貯鉱する貯鉱工程と、前記パッカー内に貯鉱された前記レアアース選鉱溶液を、前記エアリフトの浮上力により前記ライザー管で揚鉱する揚鉱工程と、を含むことを特徴とする海洋資源の揚鉱方法。

請求項14

請求項10に記載の海洋資源揚鉱装置を用い、船上からレアアース鉱床まで前記ライザー管を降ろす配置工程と、前記ライザー管の配置後に、前記駆動流体供給管からリーチング用浸出溶液を駆動流体として供給するとともに前記駆動流体供給管自体の給進により前記ダウンホールモータをレアアース泥堆積層中で掘進させつつ前記ダウンホールモータから噴射されるリーチング用浸出溶液でレアアース泥中のレアアースを浸出させる採掘・選鉱工程と、前記リーチング用浸出溶液中にレアアースが浸出したレアアース選鉱溶液を、前記坑口に設けたパッカー内に貯鉱する貯鉱工程と、前記パッカー内に貯鉱された前記レアアース選鉱溶液を、前記エアリフトの浮上力により前記ライザー管で揚鉱する揚鉱工程と、を含み、前記配置工程では、前記ライザー管下部の開口部を海底面から離隔した位置に保持するとともに、前記アンカーを海底面下に沈めて前記集鉱スカートの垂下姿勢を保持することにより前記ライザー管の下部と海底面との間に密封空間を設け、前記貯鉱工程では、前記レアアース選鉱溶液を前記密封空間内に一旦貯留し、前記揚鉱工程では、前記密封空間内に貯留されたレアアース選鉱溶液を前記エアリフトの浮上力により回収することを特徴とする海洋資源の揚鉱方法。

請求項15

前記採掘・選鉱工程は、前記ダウンホールモータの掘進方向として、レアアース鉱床に対し、採掘坑の入り口からレアアース泥堆積層に至るまでは竪穴を掘削し、レアアース泥堆積層に到達後はレアアース泥堆積層の延在方向に沿って横穴を掘削して前記採掘坑を掘進する請求項11〜14のいずれか一項に記載の海洋資源の揚鉱方法。

技術分野

0001

本発明は、海洋資源採鉱する技術に係り、特に、深海に存在するレアアースを採鉱する上で好適な海洋資源の採鉱および揚鉱技術に関する。

背景技術

0002

2012年、海洋資源として、島の排他経済水域の深海で極めて高濃度なレアアースを含む泥(以下、「レアアース泥」という)が発見された。ここで、海底石油人工採油技術や深海のレアアース泥の回収技術としては、高揚多段スラリーポンプを複数ヵ所で直列に連結して回収するポンプリフト方式や、上の空気圧縮機から各水深層の数か所に高圧空気注入するエアリフト方式が考えられている。ポンプリフト方式としては、例えば、特許文献1(ターボ形)や特許文献2(斜流インペラ)が開示されている。

先行技術

0003

特許第5490582号公報
特開昭51−72902号公報

発明が解決しようとする課題

0004

しかし、従来のポンプリフト方式は、装置の構造が複雑であり、軽量化が困難なことから、安定した運転を確保する上で課題が多く、水中機器信頼性、特に、高圧水深下での水中モータ軸シール耐久性と信頼性に問題がある。また、深海からのレアアース泥の揚泥には、水深分の揚程を圧送するための多大なエネルギーが必要となる。

0005

また、エアリフト方式は、水中機器が極めて少ないことから、ポンプリフト方式に比べて信頼性および耐久性に優れるものの、従来のエアリフト方式はエネルギー効率が悪く、ポンプリフト方式以上のさらに多大なエネルギーを要するという問題がある。そのため、集鉱効率を向上させる上で検討すべき課題が残されている。
そこで、本発明は、このような問題点に着目してなされたものであって、採鉱効率を向上させ得る海洋資源採鉱装置および海洋資源の採鉱方法、並びに、海洋資源揚鉱装置および海洋資源の揚鉱方法を提供することを課題とする。

課題を解決するための手段

0006

ここで、海洋資源としてのレアアース泥に含まれるレアアースの品位はppmオーダーである。そのため、揚鉱前に海底でリーチングを行い、不要な脈石を予め取り除くことができれば、揚泥にかかるコストを大幅に減らし、採鉱効率を向上させることができる。
すなわち、上記課題を解決するために、本発明の一態様に係る海洋資源採鉱装置は、圧送されたリーチング用浸出溶液駆動流体として駆動する掘削部と、該掘削部またはその近傍に形成された吐出口から前記リーチング用浸出溶液を外部に吐出する吐出部と、を有するダウンホールモータを備えることを特徴とする。

0007

また、本発明の一態様に係る海洋資源の採鉱方法は、本発明の一態様に係る海洋資源採鉱装置を用い、前記リーチング用浸出溶液で前記ダウンホールモータを駆動して海中のレアアース鉱床のレアアース泥を採掘しつつ、その採掘時に吐出されたリーチング用浸出溶液に前記レアアース泥中のレアアースを採掘坑内浸出させることを特徴とする。
また、本発明の一態様に係る海洋資源海洋資源揚鉱装置は、ライザー管と、該ライザー管内に設けられて圧送されたリーチング用浸出溶液を駆動流体として供給する駆動流体供給管と、該駆動流体供給管の先端に装備された本発明の一態様に係る海洋資源採掘装置と、を備えることを特徴とする。

0008

また、本発明の他の一態様に係る海洋資源の採鉱方法は、本発明の一態様に係る海洋資源海洋資源揚鉱装置を用い、船上からレアアース鉱床まで前記ライザー管を降ろす配置工程と、前記ライザー管の配置後に、前記駆動流体供給管からリーチング用浸出溶液を駆動流体として供給するとともに前記駆動流体供給管自体の給進により前記ダウンホールモータをレアアース泥堆積層中で掘進させつつ前記ダウンホールモータから噴射されるリーチング用浸出溶液でレアアース泥中のレアアースを浸出させる採掘・選鉱工程と、前記リーチング用浸出溶液中にレアアースが浸出したレアアース選鉱溶液を、前記リーチング用浸出溶液供給時の残存圧力により前記ライザー管で揚鉱する揚鉱工程と、を含むことを特徴とする。

0009

また、本発明の更に他の一態様に係る海洋資源の採鉱方法は、本発明の一態様に係る海洋資源海洋資源揚鉱装置を用い、船上からレアアース鉱床まで前記ライザー管を降ろす配置工程と、前記ライザー管の配置後に、前記駆動流体供給管からリーチング用浸出溶液を駆動流体として供給するとともに前記駆動流体供給管自体の給進により前記ダウンホールモータをレアアース泥堆積層中で掘進させつつ前記ダウンホールモータから噴射されるリーチング用浸出溶液でレアアース泥中のレアアースを浸出させる採掘・選鉱工程と、前記リーチング用浸出溶液中にレアアースが浸出したレアアース選鉱溶液を、前記リーチング用浸出溶液供給時の残存圧力と、前記ライザー管に注入された圧縮空気によるエアリフトの浮上力と、により前記ライザー管で揚鉱する揚鉱工程と、を含むことを特徴とする。

0010

また、本発明の更に他の一態様に係る海洋資源の採鉱方法は、本発明の一態様に係る海洋資源海洋資源揚鉱装置を用い、船上からレアアース鉱床まで前記ライザー管を降ろす配置工程と、前記ライザー管の配置後に、前記駆動流体供給管からリーチング用浸出溶液を駆動流体として供給するとともに前記駆動流体供給管自体の給進により前記ダウンホールモータをレアアース泥堆積層中で掘進させつつ前記ダウンホールモータから噴射されるリーチング用浸出溶液でレアアース泥中のレアアースを浸出させる採掘・選鉱工程と、前記リーチング用浸出溶液中にレアアースが浸出したレアアース選鉱溶液を、前記坑口に設けたパッカー内に貯鉱する貯鉱工程と、前記パッカー内に貯鉱された前記レアアース選鉱溶液を、エアリフトの浮上力により前記ライザー管で揚鉱する揚鉱工程と、を含むことを特徴とする。

0011

また、本発明の更に他の一態様に係る海洋資源の採鉱方法は、船上からレアアース鉱床まで前記ライザー管を降ろす配置工程と、前記ライザー管の配置後に、前記駆動流体供給管からリーチング用浸出溶液を駆動流体として供給するとともに前記駆動流体供給管自体の給進により前記ダウンホールモータをレアアース泥堆積層中で掘進させつつ前記ダウンホールモータから噴射されるリーチング用浸出溶液でレアアース泥中のレアアースを浸出させる採掘・選鉱工程と、前記リーチング用浸出溶液中にレアアースが浸出したレアアース選鉱溶液を、前記坑口に設けたパッカー内に貯鉱する貯鉱工程と、前記パッカー内に貯鉱された前記レアアース選鉱溶液を、エアリフトの浮上力により前記ライザー管で揚鉱する揚鉱工程と、を含み、前記配置工程では、前記ライザー管下部の開口部を海底面から離隔した位置に保持するとともに、アンカーを海底面下に沈めて集鉱スカート垂下姿勢を保持することにより前記ライザー管の下部と海底面との間に密封空間を設け、前記貯鉱工程では、前記レアアース選鉱溶液を前記密封空間内に一旦貯留し、前記揚鉱工程では、前記密封空間内に貯留されたレアアース選鉱溶液をエアリフトの浮上力により回収することを特徴とする。

0012

ここで、前記リーチング用浸出溶液は、硫酸アンモニウム水溶液希硫酸、または希塩酸含むことが好ましい。特に、硫酸アンモニウム水溶液は、一般的にリーチングで使用される硫酸塩酸と異なり、肥料にも使用されており、環境に対する安全性が高いといえる。そして、硫酸アンモニウム水溶液であれば、レアアース泥中の、ランタン(La)、セリウム(Ce)、プラセオジム(Pr)、ネオジム(Nd)、サマリウム(Sm)、ガドリニウム(Gd)、ジスプロシウム(Dy)などのレアアースを溶出可能である。

0013

本発明の一態様に係る海洋資源採鉱装置および海洋資源の採鉱方法、並びに、海洋資源揚鉱装置および海洋資源の揚鉱方法によれば、リーチング用浸出溶液をダウンホールモータの駆動流体として利用してレアアース泥堆積層中で掘進しつつ、ダウンホールモータの掘削部から噴射されるリーチング用浸出溶液中にレアアースを浸出させたレアアース選鉱溶液を海中で生成できる(以下、「リーチング掘進」ともいう)。
そのため、このレアアース選鉱溶液を洋上に回収すれば、レアアースの採掘量をより稼ぐことができる。よって、本発明の一態様に係る海洋資源採鉱装置および海洋資源の採鉱方法、並びに、海洋資源揚鉱装置および海洋資源の揚鉱方法によれば、採鉱効率を向上させることができる。

0014

ここで、本発明のいずれか一の態様に係る海洋資源の採鉱方法において、前記採掘・選鉱工程は、前記ダウンホールモータの掘進方向として、レアアース鉱床に対し、採掘入り口からレアアース泥堆積層に至るまでは竪穴を掘削し、レアアース泥堆積層に到達後はレアアース泥堆積層の延在方向に沿って横穴を掘削して前記採掘坑を掘進することは好ましい。このような構成であれば、レアアース泥堆積層中をレアアース泥堆積層の延在方向に沿って水平方向に掘削することで、レアアース鉱床を垂直方向に掘削する場合と比較して、レアアースの採掘量をより稼ぐことができる。

発明の効果

0015

上述のように、本発明によれば、リーチング掘進により海洋資源を選鉱しつつ採鉱できるため、採鉱効率を向上させることができる。

図面の簡単な説明

0016

本発明に係る採掘装置を備える海洋資源揚鉱装置を用いた海洋資源の揚鉱方法の第一実施形態の説明図であり、同図では、海洋資源揚鉱システム全体として、海上に停泊する揚鉱母船から揚鉱装置を海中に沈めている配置工程の途中の状態を示している。
本発明に係る採掘装置の第一実施形態であるダウンホールモータの説明図であり、同図では、採掘装置をその軸線に沿った断面で示している。
リーチング用浸出溶液の第一実施形態である、硫酸アンモニウム水溶液の重量濃度に対する各種レアアースの浸出率を示すグラフである。
リーチング用浸出溶液の第一実施形態である、硫酸アンモニウム水溶液への各種レアアースの浸出時間と浸出率との関係を示すグラフである。
本発明に係る海洋資源の揚鉱方法の第一実施形態の説明図であり、同図は、ダウンホールモータの掘進方向を縦から横方向に変えて掘進する採掘・選鉱工程を示している。
本発明に係る海洋資源の揚鉱方法の第一実施形態の説明図であり、同図は、採掘・選鉱工程において、採掘坑の坑口を封止するパッカーの密封空間内にレアアース選鉱溶液を所定の貯留時間だけ貯留する状態を示している。
本発明に係る海洋資源の揚鉱方法の第一実施形態の説明図であり、同図は、採掘・選鉱工程において、パッカーの密封空間内にレアアース選鉱溶液を貯留しつつレアアース泥堆積層の延在方向に沿って横穴を掘削して採掘坑を掘進する状態を示している。
本発明に係る海洋資源の揚鉱方法の第一実施形態の説明図であり、同図は、パッカーの密封空間内にレアアース選鉱溶液を所定の貯留時間だけ貯留後に、パッカーの密封空間内に貯鉱しているレアアース選鉱溶液を、ライザー管に圧縮空気を注入してエアリフトにより回収する揚鉱工程を示している。
本発明に係る海洋資源の揚鉱方法の第一実施形態の説明図であり、同図は、揚鉱装置を海底面上に引き上げるとともに揚鉱母船を所定距離だけ移動して他の採掘坑を掘進するための移動工程を示している。
本発明に係る海洋資源の揚鉱方法の第一実施形態の説明図であり、同図は、他の採掘坑を掘進して、ダウンホールモータの掘進方向を縦から横方向に変えて掘進する採掘・選鉱工程を繰り返す状態を示している。
リーチング用浸出溶液の他の実施形態である、0.2mol/Lの希薄な硫酸によるレアアース泥の浸出試験の結果を示すグラフである。
リーチング用浸出溶液の他の実施形態である、0.5mol/Lの希薄な塩酸によるレアアース泥の浸出試験の結果示すグラフである。
本発明に係る採掘装置を備える海洋資源揚鉱装置を用いた海洋資源の揚鉱方法の第二実施形態の説明図であり、同図では、ダウンホールモータの掘進方向を縦から横方向に変えて掘進しつつ、リーチング用浸出溶液中にレアアースが浸出したレアアース選鉱溶液を、リーチング用浸出溶液を供給時の残存圧力によりライザー管で揚鉱する状態を示している。
本発明に係る採掘装置を備える海洋資源揚鉱装置を用いた海洋資源の揚鉱方法の第三実施形態の説明図であり、同図では、ダウンホールモータの掘進方向を縦から横方向に変えて掘進しつつ、リーチング用浸出溶液中にレアアースが浸出したレアアース選鉱溶液を、リーチング用浸出溶液を供給時の残存圧力と、エアリフト手段によりライザー管に注入された圧縮空気によるエアリフトの浮上力と、によりライザー管で揚鉱する状態を示している。
本発明に係る採掘装置の他の実施形態であるダウンホールモータの説明図であり、同図では、採掘装置をその軸線に沿った断面で示している。

実施例

0017

以下、本発明の各実施形態について、図面を適宜参照しつつ説明する。各実施形態は、深海に存在するレアアース泥等の海洋資源の揚鉱技術として、従来のポンプリフト方式やエアリフト方式に替わる、海洋資源採鉱装置および海洋資源の採鉱方法、並びに、海洋資源揚鉱装置および海洋資源の揚鉱方法を含む海洋資源揚鉱システムの例である。
なお、図面は模式的なものである。そのため、厚みと平面寸法との関係、比率等は現実のものとは異なることに留意すべきであり、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれている。また、以下に示す各実施形態は、本発明の技術的思想を具体化するための装置や方法を例示するものであって、本発明の技術的思想は、構成部品材質、形状、構造、配置等を下記の実施形態に特定するものではない。

0018

[第一実施形態]
まず、本発明の第一実施形態について説明する。
図1に示すように、第一実施形態の海洋資源揚鉱システムは、目的とする海域の海上Cに停泊される採鉱母船1と、海洋資源揚鉱装置100(以下、単に「揚鉱装置」ともいう)と、を備える。本実施形態の採鉱母船1には、リーチング用浸出溶液を用いる選鉱水溶液循環式採鉱システムが装備される。

0019

同図に示すように、採鉱母船1の上部中央には、揚鉱装置100を垂下するためのデリック機構が装備された採鉱やぐら14が立設されている。採鉱やぐら14の船内下方には、以下不図示の、ライザ昇降装置と、ライザテンショナと、が装備されている。また、採鉱母船1の船底部には、複数基のスラスタ適所に装備されている。
ライザ昇降装置は、ライザー管101および駆動流体供給管23の昇降動作およびその制御を行う装置を含んで構成される。ライザテンショナは、風速波高潮流時々刻々変化する海況下にて、ライザー管101および駆動流体供給管23の昇降位置補正制御が可能な複数の可動アームを含んで構成される。また、複数基のスラスタは、自動船位保持システムDPS)によって採鉱母船1を定点保持可能に自動制御され、時々刻々変化する海況下にて採鉱母船1を定点保持可能に構成されている。

0020

海洋資源揚鉱装置100は、深海にレアアース泥が存在する海域で、ライザー管101の軸線を上下方向として海中に配備され、海上Cに停泊する採鉱母船1まで海水が満たされた状態で海底Bまで延設される。第一実施形態の海洋資源揚鉱装置100は、ライザー管101と、ライザー管101内に略同軸に支持された長尺中空円筒状の駆動流体供給管23と、駆動流体供給管23の先端に連接されたダウンホールモータ2と、ライザー管101の下端に設けられたパッカー103と、を備える。

0021

本実施形態では、ライザー管101に沿って圧縮空気供給管102が配管され、洋上の採鉱母船1からパッカー103内に圧縮空気を注入可能になっている。本実施形態の圧縮空気供給管102は、複数の分岐管路102a,102b,102cを有する。各分岐管路102a,102b,102cは、ライザー管101の途中部分の適所にそれぞれ離隔した位置に接続されている。これにより、各分岐管路102a,102b,102cからライザー管101の途中部分にも圧縮空気が供給され、揚鉱を補助して安定した揚鉱が可能になっている。

0022

パッカー103は、ライザー管101の下部に装着されて該下部の開口部を囲繞するように円錐状に設けられた可撓性の集鉱スカート104と、集鉱スカート104の下縁に沿って円環状に設けられた下部フレーム105と、下部フレーム105の周方向に離隔して適所に設けられた複数のアンカー106と、を有する。

0023

パッカー103内には、駆動流体供給管23の先端に、掘削部となるビット90が装着されたダウンホールモータ2が略同軸に配置される。パッカー103は、下部フレーム105の内側が下方に開口している。この開口部分が、後述するレアアース選鉱溶液Maの吸込口になっている。パッカー103の集鉱スカート104上部中央は、ライザー管101に連通している。なお、本実施形態の駆動流体供給管23は、管路に沿って電力線および信号線一体形成されたアンビリカブルケーブルを構成しており、ダウンホールモータ2に駆動流体を供給する他、必要な電力の供給および信号の授受が可能になっている。

0024

ライザー管101は、その上端部が、海上に停泊する採鉱母船1の揚鉱設備に接続され、レアアース選鉱溶液Maを海上まで揚鉱する選鉱溶液回収部を構成する。ライザー管101は、長尺な中空円筒状の管路であり、複数のライザー単管が略同軸に連接されて構成される。
各ライザー単管は、設置深度等に応じて、鋼管や、炭素繊維強化プラスチック等の複合強化プラスチック管を適宜用いて構成される。また、ライザー管101の途中部分には、渦励起振動等の不意の挙動を抑制するフェアリングが装着される。パッカー103とライザー管101の下端との接合部には、ライザー管101の緊急離脱機構を有する不図示の噴出防止装置が設けられる。

0025

本実施形態の海洋資源揚鉱装置100は、船上から駆動流体供給管23を通してレアアース泥床ODの採掘坑底まで送られるリーチング用浸出溶液Lsを駆動流体Mとしてダウンホールモータ2を駆動する。そして、ダウンホールモータ2の先端部のビット90から駆動流体Mを噴射してレアアース泥床OD中のレアアース泥Drを採鉱するとともに、その採鉱と同時に海底Bでリーチング用浸出溶液Lsにより選鉱可能になっている。

0026

本実施形態のダウンホールモータ2は、図2に示すように、流体モータ機構を構成する流体モータ部130が、ステータ120が固定型であってユニバーサルジョイント185を使用して回転駆動力を伝達するように構成されている。
詳しくは、ダウンホールモータ2は、同図に示すように、駆動流体供給管23の下端に位置する流体モータ部130と、流体モータ部130の下部に設けられた動力伝達部180と、動力伝達部180の下部に設けられた駆動軸支持部160とを有する。

0027

流体モータ部130には、円筒状のハウジング131内に、螺旋状の内周面を有するステータ120が固定されている。ステータ120内には、螺旋状の外周面を有するロータ110が回転自在に支持され、ロータ110とステータ120との間に複数のキャビティKが画成される。また、ハウジング131の上部には、駆動流体Mを導入するための上記駆動流体供給管23の先端が接続される。

0028

駆動軸支持部160には、円筒状のハウジング170内に、スラスト荷重およびラジアル荷重を受ける軸受150を介してシャフトである駆動軸140が回転自在に支持されている。駆動軸140の先端は、ビット装着部140sとされている。ビット装着部140sは、ハウジング170の下方に張り出している。ビット装着部140sの外周面には、掘削用のビット90を接続可能な雄ねじが形成されている。

0029

また、駆動軸140の上部には、動力伝達部180のハウジング181内に連通する複数の連通口141が形成されている。複数の連通口141は、駆動軸140の軸方向に沿って形成された連通路142を介してビット90の先端に吐出口91mが開口するように形成された吐出部であるノズル91に駆動流体流路として連通している。
そして、ロータ110の下端と駆動軸140の上端とは、動力伝達部180のハウジング181内にそれぞれ張り出しており、ロータ110の下端と駆動軸140の上端相互は、ユニバーサルジョイント185を介してハウジング181内で回転駆動力を伝達可能に接続されている。

0030

このダウンホールモータ2によれば、駆動流体供給管23から流体モータ部130のキャビティKに高圧の駆動流体Mとしてリーチング用浸出溶液Lsを導入することで、流体モータ部130が、一軸偏心ねじポンプ作動原理逆作動により、回転部であるロータ110に回転力を与え、ロータ110の下端を出力軸とし、ロータ110の回転を、上下の継手部182、184および連結ロッド183を有するユニバーサルジョイント185を介して駆動軸140に伝達可能になっている。

0031

ここで、このダウンホールモータ2には、ハウジング181自体が所定の傾倒角度の範囲で屈曲が可能な屈曲機構190が、連結ロッド183の部分に内蔵されている。なお、この種の屈曲機構190としては、例えば、特許第3730570号公報や特許第5364104号公報に開示される周知の構造を採用することができる。

0032

本実施形態のダウンホールモータ2には、同図に示すように、屈曲機構190が連結ロッド183の部分に設けられている。この屈曲機構190には、不図示の姿勢検出センサが設けられており、アンビリカブルケーブルである駆動流体供給管23に設けられた電力・駆動信号供給ケーブルを介して、海上に停泊する採鉱母船1のオペレータが、ダウンホールモータ2の随時の姿勢監視可能になっている。
本実施形態の屈曲機構190は、屈曲部での屈曲が可能な屈曲構造194と、ハウジング181の屈曲方向を制御するために、ハウジング181内で複数の連通口141それぞれの領域に区分する複数の圧力室191と、これら複数の圧力室191それぞれへの駆動流体Mを導入する流路を開閉可能に配置された複数の開閉弁192と、各開閉弁192に対応して各圧力室191に配置された傾倒アクチュエータ193と、を備える。

0033

複数の開閉弁192は、アンビリカブルケーブルである駆動流体供給管23に設けられた電力・駆動信号供給ケーブルから伝えられた駆動信号に応じて開閉駆動される。これにより、この屈曲機構190は、複数の開閉弁192の開閉に応じて対応する圧力室191が開閉されると、当該圧力室191に設けられた傾倒用アクチュエータ193の駆動により、屈曲構造194部分でのハウジング181内の周方向での圧力室191相互に意図的な圧力不均衡を生じさせ、これにより、下の継手部184の位置から先の駆動軸支持部160が、下の継手部184を中心として、所期の方向に傾倒作動するようになっている。

0034

[第一実施形態における動作および作用効果
次に、第一実施形態の海洋資源揚鉱装置100の動作並びにこれを用いた海洋資源の揚鉱方法、並びに、その作用効果について説明する。ここで、本実施形態では、海底のレアアース泥床ODにて、レアアース泥Drの堆積層Dが露出しておらず、深海の非レアアース泥堆積層DNの下部に分布するレアアース泥堆積層Dからレアアース泥Drを選鉱回収するものである。

0035

詳しくは、レアアース泥Drを選鉱回収する際は、まず、図1に示すように、採鉱母船1を目的とする海域の海上に停泊し、自動船位保持システムによって採鉱母船1を定点保持する。次いで、上述した海洋資源揚鉱装置100を採鉱やぐら14から海中に降ろし、海中のレアアース泥床ODの所期の位置に海洋資源揚鉱装置100を配置する。ライザー管101、駆動流体供給管23およびダウンホールモータ2の各配管内には、海底に配備される当初は海水Wが満たされる。

0036

所期の位置において、同図に示すように、ライザー管101のパッカー103をレアアース泥床ODに対向させる。次いで、複数のアンカー106を海底面下の所定深度まで自重または他の打設装置により打ち込み、下部フレーム105を海底面に隙間なく当接させて集鉱スカート104内に密閉空間を画成する。このとき、ダウンホールモータ2は、ビット90がパッカー103の下端から張り出しているので、ビット90をレアアース泥床ODに押し当てる位置に配備する。

0037

本実施形態では、駆動流体供給管23の基端部は、駆動流体導入部として採鉱母船1に装備された、不図示の駆動流体供給ポンプを介してリーチング用浸出溶液貯留槽に接続される。ライザー管101の上端部は、採鉱母船1に装備された揚鉱設備に接続される。そして、採鉱母船1から、海洋資源揚鉱装置100に対し、駆動流体供給管23から駆動流体Mとして高圧のリーチング用浸出溶液Lsを圧送する。

0038

ここで、本実施形態では、駆動流体Mとして、硫酸アンモニウム水溶液を用いてリーチング用浸出溶液Lsを作り、このリーチング用浸出溶液Lsを駆動流体供給管23からダウンホールモータ2に駆動流体Mとして供給する。
特に、硫酸アンモニウム水溶液は、一般的にリーチングで使用される硫酸や塩酸と異なり、肥料にも使用されており、環境に対する安全性が高いといえる。そして、硫酸アンモニウム水溶液であれば、図3に示すように、低濃度でも比較的高い浸出率でレアアース泥中の、ランタン(La)、プラセオジム(Pr)、ネオジム(Nd)、サマリウム(Sm)、ガドリニウム(Gd)、ジスプロシウム(Dy)などのレアアースを溶出可能である。
また、図4に示すように、比較的短時間でも比較的高い浸出率でレアアース泥中の、ランタン(La)、プラセオジム(Pr)、ネオジム(Nd)、サマリウム(Sm)、ガドリニウム(Gd)、ジスプロシウム(Dy)などのレアアースを溶出可能である。

0039

上記のように配置された海洋資源揚鉱装置100において、採鉱作業時には、ダウンホールモータ2には、高圧の駆動流体Mが、上記駆動流体供給管23の駆動流体供給路13から導入され、ハウジング131の上部に供給される(図2の符号M1)。このダウンホールモータ2によれば、駆動流体供給管23から流体モータ部130のキャビティKに高圧の駆動流体Mを導入することで、流体モータ部130は、一軸偏心ねじポンプの作動原理の逆作動により、駆動流体Mの導入圧が回転駆動力に変換される。

0040

これにより、回転部であるロータ110に回転力を与え、流体モータ部130は、ロータ110の下端を出力軸とし、ロータ110の回転がユニバーサルジョイント185を介して駆動軸140に伝達され、駆動軸140の先端に設けられたビット90が共に回転する。また、駆動流体供給路13からハウジング181に導入された駆動流体Mは、複数の連通口141から連通路142を介して、ビット90先端のノズル91から装置外に噴射される。

0041

ここで、このダウンホールモータ2には、上述のように、ハウジング181自体が所定の傾倒角度の範囲で屈曲が可能な屈曲機構190が、連結ロッド183の部分に設けられており、採鉱母船1から、アンビリカブルケーブルである駆動流体供給管23に設けられた電力・駆動信号供給ケーブルを介して、傾倒用アクチュエータ193を駆動することにより、駆動軸支持部160が、下の継手部184を中心として、所期の方向に傾倒作動させることができる。

0042

そのため、ダウンホールモータ2は、図5に示すように、ダウンホールモータ2の掘進方向として、レアアース泥床ODに対し、所定の掘削深度まで、つまり、採掘坑Eの入り口Fからレアアース泥堆積層Dに至るまでの非レアアース泥堆積層DNでは竪穴を掘削し、所定の掘削深度まで掘削後、つまりレアアース泥堆積層Dに到達後はレアアース泥堆積層Dの延在方向に沿って横穴を掘削して採掘坑Eを掘進することができる。

0043

これにより、この海洋資源揚鉱装置100は、ビット90の回転による掘削力と、ビット90のノズル91から噴射されるリーチング用浸出溶液Lsの流体力とによってレアアース泥床ODのレアアース泥Drを解泥しつつレアアースを選鉱できる。そして、ビット90の回転力とリーチング用浸出溶液供給時の残存圧力とによる流れに導かれ、解泥されたレアアース泥Drおよびその周囲のリーチング用浸出溶液Lsがパッカー103内に送り込まれる。

0044

以降、図6に拡大図示するように、駆動流体供給管23を張り出させたフィード長に応じた水平方向へのフィード動作Uにより、所定の掘削深度での採鉱および選鉱を継続し、駆動軸140先端に装着されたビット90によってレアアース泥床ODのレアアース泥堆積層Dに沿って効率良く採鉱しつつ選鉱することができる。

0045

本実施形態では、海上の採鉱母船1から駆動流体供給管23を所定速度でフィードさせることで、駆動流体供給管23と共にダウンホールモータ2を一体で水平方向に掘進させながらレアアース泥床ODからレアアース泥Drを連続的に採鉱しつつ選鉱することができる。なお、同図白抜き矢印は、屈曲機構190による傾倒作動で、ダウンホールモータ2の掘進方向を縦方向から横方向に変えているイメージを示している。

0046

特に、この海洋資源揚鉱装置100によれば、流体モータ部130を経た駆動流体Mは、駆動流体流路としてのハウジング181内を通り、連通口141から連通路142を順に介してビットに形成された吐出部であるノズル91から噴射される。そして、その流体力によってビット90による掘削力との協働により効率良くレアアース泥Drを解泥することができる。これにより、この海洋資源揚鉱装置100は、駆動流体Mとしてリーチング用浸出溶液Lsを駆動流体供給管23からダウンホールモータ2に供給することにより、海底のレアアース泥堆積層Dのレアアース泥Drを解泥しつつ選鉱できる。

0047

さらに、この海洋資源揚鉱装置100は、リーチング用浸出溶液供給時の残存圧力により、解泥されたレアアース泥Drを周囲のリーチング用浸出溶液Lsとともにパッカー103内に送り込み、海中で液液分離されたレアアース選鉱溶液Maを採掘坑E内およびパッカー103内にて効率良く生成できる。

0048

また、パッカー103内に導入されたレアアース泥Drとリーチング用浸出溶液Lsは、パッカー103内で相互に混合される。そして、パッカー103に導かれたレアアース泥Drは、レアアース泥Drがリーチング用浸出溶液Lsにより永く接触することにより、リーチング用浸出溶液Lsにレアアース泥Dr中のレアアースが一層効率良く浸出される。これにより、海中で液液分離されたレアアース選鉱溶液Maとしてレアアース泥Dr中のレアアースが効率良く選鉱される。海洋資源揚鉱装置100が引き続き駆動されると、パッカー103内のレアアース選鉱溶液Maは、次第にパッカー103上部のライザー管101まで満たされていく。

0049

特に、本実施形態によれば、ライザー管101に揚鉱用の圧縮空気を注入するエアリフト手段としての圧縮空気供給管102と、採掘坑Eの坑口Fを封止するパッカー103と、を備え、パッカー103は、ライザー管101の下部に装着されて該下部の開口部を囲繞するように設けられた可撓性の集鉱スカート104と、該集鉱スカート104の下縁に設けられた複数のアンカー106と、を有するので、パッカー103が形成する密閉空間に、レアアースの溶解したレアアース選鉱溶液Maと溶解進行中のレアアース泥およびリーチング用浸出溶液Lsが貯留される。

0050

この密閉空間において、上記図3ないし図4に示すような、各種レアアースの浸出時間と浸出率のデータから推察されるレアアースが十分に溶解する所定時間の貯留後、レアアースが十分に浸出したレアアース選鉱溶液Maを、ライザー管101に圧縮空気供給管102から圧縮空気を注入してエアリフトで揚鉱できる。そのため、パッカー103の密閉空間にて一定の浸出時間を確保することにより、レアアース泥Dr中のレアアースを選択的に且つ十分に浸出したレアアース選鉱溶液Maを揚鉱できる。よって、より高効率にレアアースを揚鉱する上で好適である。

0051

その後、図7に示すように、図1に示した圧縮空気供給管102から圧縮空気をパッカー103内に注入する。同図に符号Aを付す矢印は、圧縮空気供給管102から圧縮空気をパッカー103内に注入しているイメージを示している。これにより、注入された圧縮空気Aとレアアース選鉱溶液Maとがパッカー103内にて撹拌混合され、図8に示すように、パッカー103内に貯鉱されたレアアース選鉱溶液Maを、エアリフトの浮上力によりライザー管101内に浮上させる。

0052

ライザー管101は、海上の採鉱母船1まで延設されているため、本実施形態の海洋資源揚鉱装置100によれば、レアアース選鉱溶液Maを、リーチング用浸出溶液供給時の残存圧力と、ライザー管101に注入された圧縮空気によるエアリフトの浮上力とにより、ライザー管101から洋上の採鉱母船1の回収設備に回収できる。

0053

特に、本実施形態では、圧縮空気供給管102は、複数の分岐管路102a,102b,102cを有し、各分岐管路102a,102b,102cがライザー管101の途中部分の適所に接続されているので、ライザー管101の途中部分にも圧縮空気を供給することができる。これにより、ライザー管101が長い場合でも、揚鉱を補助して安定した揚鉱を行うことができる。
そして、上述した一連の海洋資源揚鉱工程の終了後、図9に示すように、ダウンホールモータ2とパッカー103を深海の海底面上に引き上げ、揚鉱スケジュールに従い、採鉱母船1を所定距離移動してレアアース泥床ODの他の位置にて上述した一連の海洋資源揚鉱工程を繰り返す。

0054

このように、第一実施形態の海洋資源揚鉱装置100によれば、海底設備としては、駆動流体供給管23を内蔵するとともに圧縮空気供給管102を付設したライザー管101を用い、このライザー管101の下部に配置したパッカー103内に、一台のダウンホールモータ2を設けるだけで、リーチング用浸出溶液Lsによる流体モータ機構を構成する流体モータ部130の駆動により、ビット90の回転による掘削力とリーチング用浸出溶液Lsの噴射による流体力とでレアアース泥Drを解泥しつつ、レアアース泥Drとリーチング用浸出溶液Lsとを混合し、レアアース選鉱溶液Maを生成することができる。

0055

そして、順次に生成されたレアアース選鉱溶液Maをパッカー103からライザー管101へと移動させてレアアース選鉱溶液Maを安定させつつ、リーチング用浸出溶液供給時の残存圧力により、海底から船上まで延設したライザー管101にてレアアース選鉱溶液Maを揚鉱できる。そして、リーチング用浸出溶液供給時の残存圧力よりライザー管の下部に設けられたパッカー103からライザー管101内にレアアース選鉱溶液Maを導入することができる。

0056

ここで、レアアース泥Drに含まれるレアアースの品位はppmオーダーである。そのため、揚鉱前に海底でリーチングを行い、不要な脈石を予め取り除くことができれば、揚泥にかかるコストを大幅に減らすことができる。すなわち、第一実施形態の海洋資源揚鉱装置100によれば、安定した運転性能を確保するとともに、採鉱効率を向上させることができる。

0057

また、特許文献1に記載されるようなターボ形のポンプの場合、機器はかなり複雑な形状のため、深海(例えば水深6000m)の高圧下では、局部的形状や各部の肉厚に強度的に十分な考慮が必要となる。これに対し、本実施形態の海洋資源揚鉱装置100であれば、ライザー管101およびダウンホールモータ2が円筒形状のシンプルな形状のため、深海の高圧下での強度的対応に優位な形状である。よって、安定した運転性能を確保する上で好適である。また、本実施形態のダウンホールモータ2は、採鉱時に、駆動流体供給管23を回転させないので、駆動流体供給管23の強度や摩擦にも有利である。

0058

さらに、特許文献1に記載されるようなターボ形のポンプの場合、機器はかなり大型かつ複雑な形状のため、複数のポンプの、各号機相互の接続に大きな横幅を必要とする。これに対し、本実施形態の海洋資源揚鉱装置100であれば、ライザー管101およびダウンホールモータ2が円筒形状のため、シンプルな配管接続が可能である。

0059

また、従来のポンプリフト方式やエアリフト方式では、深海の非レアアース泥堆積層の下部に分布するレアアース泥堆積層からレアアース泥を船上まで揚泥する場合、レアアース泥堆積層上部に堆積している非レアアース泥も船上まで揚鉱するか、クローラドリル等で非レアアース泥堆積層を掘削排除した後に、レアアース泥を船上まで揚鉱する必要があった。これに対し、本実施形態によれば、クローラドリル等の設備も不要であり、深海の非レアアース泥堆積層DNの下部に分布するレアアース泥堆積層Dから効率的なレアアースDrの選鉱回収が可能となる。

0060

なお、本発明に係る海洋資源揚鉱装置およびこれを用いた海洋資源の揚鉱方法は、上記実施形態に限定されるものではなく、本発明の趣旨を逸脱しなければ種々の変形が可能である。
例えば、上記第一実施形態では、リーチング用浸出溶液Lsとして、硫酸アンモニウム水溶液を用いた例で説明したが、本発明に適用できるリーチング用浸出溶液Lsは、硫酸アンモニウム水溶液に限定されず、例えば、希硫酸、または希塩酸を含むものであってもよい。

0061

図11に、0.5mol/Lの希薄な塩酸によるレアアース泥の浸出試験の結果示すように、希硫酸をリーチング用浸出溶液Lsとして用いても、リーチング掘進によりレアアース泥Drからレアアースを選鉱しつつ採鉱できる。そのため、採鉱効率を向上させることができる。また、図12に、0.5mol/Lの希薄な塩酸によるレアアース泥の浸出試験の結果示すように、希塩酸をリーチング用浸出溶液Lsとして用いても、リーチング掘進によりレアアース泥Drからレアアースを選鉱しつつ採鉱できる。そのため、採鉱効率を向上させることができる。

0062

また、例えば上記第一実施形態では、レアアース選鉱溶液Maを洋上まで揚鉱する手段として、リーチング用浸出溶液供給時の残存圧力と、ライザー管101に注入された圧縮空気によるエアリフトの浮上力とを併用して、レアアース選鉱溶液Maを浮上させる例を示したが、これに限定されない。例えば、リーチング用浸出溶液供給時の残存圧力のみによって揚鉱してもよいし、また、ライザー管101に注入された圧縮空気によるエアリフトの浮上力のみによって揚鉱してもよい。

0063

[第二実施形態]
具体例として、本発明の第二実施形態について説明する。
図13に示すように、第二実施形態では、上記第一実施形態に示したエアリフト手段である圧縮空気供給管102を設けておらず、また、パッカー103に替えて、採掘坑Eの坑口Fをシールする円筒形アンカー108を備える点が相違する。
円筒形アンカー108は、ライザー管101の下部開口部を囲繞するとともに、ライザー管101の配置時に海底Bでレアアース泥床ODに打ち込まれて、採掘坑Eの坑口Fをシール可能に構成されている。他の構成は上記第一実施形態と同様である。

0064

この第二実施形態の構成によれば、海底設備としては、駆動流体供給管23を内蔵したライザー管101の下部に配置した円筒形アンカー108内に一台のダウンホールモータ2を設けるだけで、リーチング用浸出溶液Lsによる流体モータ部130の駆動により、ビット90の回転による掘削力とリーチング用浸出溶液Lsの噴射による流体力とでレアアース泥Drを解泥しつつ、レアアース泥Drとリーチング用浸出溶液Lsとを混合し、レアアース選鉱溶液Maを生成できる。

0065

そして、駆動流体供給管23を所定速度でフィードさせることで、リーチング掘進によりレアアース泥Drからレアアースを選鉱しつつ採鉱できる。そのため、採鉱効率を向上させることができる。そして、深度に応じて、エアリフトを用いることなく、リーチング用浸出溶液供給時の残存圧力によりライザー管101で揚鉱可能である。

0066

[第三実施形態]
また、他の具体例として、本発明の第三実施形態について説明する。
図14に示すように、第三実施形態では、上記第一実施形態に対し、パッカー103に替えて、採掘坑Eの坑口Fをシールする円筒形アンカー108を備える点が相違する。他の構成は上記第一実施形態と同様である。

0067

この第三実施形態の構成によれば、海底設備としては、駆動流体供給管23を内蔵するとともに圧縮空気供給管102を付設したライザー管101を用い、このライザー管101の下部に配置した円筒形アンカー108内に、一台のダウンホールモータ2を設けるだけで、リーチング用浸出溶液Lsによる流体モータ部130の駆動により、ビット90の回転による掘削力とリーチング用浸出溶液Lsの噴射による流体力とでレアアース泥Drを解泥しつつ、レアアース泥Drとリーチング用浸出溶液Lsとを混合し、レアアース選鉱溶液Maを生成できる。

0068

そして、駆動流体供給管23を所定速度でフィードさせることで、リーチング掘進によりレアアース泥Drからレアアースを選鉱しつつ採鉱できる。そのため、採鉱効率を向上させることができる。そして、リーチング用浸出溶液供給時の残存圧力と、圧縮空気供給管102からライザー管101に注入された圧縮空気によるエアリフトの浮上力と、によりライザー管101で揚鉱可能である。

0069

[ダウンホールモータの他の実施形態]
また、例えば上記第一実施形態では、ダウンホールモータ2は、ねじポンプを流体モータ機構に使用し、その出力を、ユニバーサルジョイントを介して出力軸に出力し、これにより、省スペース化を実現し、流体モータ機構での駆動力を効率良く伝達する構成例を示したが、これに限らず、流体モータ機構での出力を、ユニバーサルジョイントを介することなく出力軸に出力する構成としてもよい。

0070

以下、具体的な他の実施形態を説明する。なお、当該他の実施形態では、ダウンホールモータを駆動する流体モータ機構が上記第一実施形態(ないし第二、第三実施形態)とは相違するが、その他の構成は上記第一実施形態(ないし第二、第三実施形態)と同様なので、以下、相違点について説明し、上記第一実施形態(ないし第二、第三実施形態)と同様または対応する構成については同一の符号を付すとともに、その説明を適宜省略する。

0071

当該他の実施形態のダウンホールモータ2は、図15に示すように、中空円筒状のハウジング10を備える。本実施形態では、駆動流体供給管23の先端部分は、ダウンホールモータ2のハウジング10の上部を構成している。そのため、以下、駆動流体供給管23の先端部分を「上部ハウジング11」と呼称する。
このダウンホールモータ2は、自身基端部が上部ハウジング11先端(つまり、駆動流体供給管23の先端部分)に接続されている。ビット90の位置は、パッカー103の下端から張り出している。これにより、ダウンホールモータ2は、上部ハウジング11の駆動流体供給路13に高圧のリーチング用浸出溶液Lsが駆動流体Mとして供給されると、ビット90でレアアース泥床ODを掘削しつつ、レアアース泥床ODから掘削したレアアース泥Drをリーチング用浸出溶液Lsとともにパッカー103内に導くようになっている。

0072

詳しくは、ハウジング10は、上部ハウジング11と、上部ハウジング11の下端に同軸に装着された中空円筒状の下部ハウジング12とを有する。ダウンホールモータ2は、使用時には、ハウジング10の軸線を上下方向として海中に配備される。ハウジング10は、内部が軸方向に沿って貫通しており、上端部および下端部にそれぞれ開口を有している。ハウジング10の上部開口に連通する駆動流体流路が、駆動流体Mをダウンホールモータ2に導入する駆動流体供給路13になっている。

0073

この例では、駆動流体Mとして高圧のリーチング用浸出溶液Lsが駆動流体供給路13に導入される。駆動流体供給路13が内部に形成された駆動流体供給管23は、その上端部が、不図示の駆動流体供給ポンプを介して採鉱母船1のリーチング用浸出溶液貯留槽に接続され、駆動流体供給部を構成している。

0074

上部ハウジング11の下端には、インロー凸部11tが設けられ、下部ハウジング12の上端には、インロー凹部12dが設けられている。インロー凸部11tとインロー凹部12dとは、インロー嵌合され、その状態で相互が連結されている。そして、上部ハウジング11には、第一シャフト20が回転自在に支持され、下部ハウジング12には、第二シャフト30が回転自在に支持されている。

0075

上部ハウジング11は、軸方向での下部の位置に、第一シャフト支持部51が設けられている。第一シャフト支持部51は、複数の軸受51jと、複数の軸受51jを上下の軸方向から自身の鍔部で挟持するようにそれぞれ装着される第一のブシュ41および第二のブシュ42と、第一のブシュ41の内周面と第一シャフト20の基端部21の外周面との間に介装された第一のシール61と、第二のブシュ42の内周面と第一シャフト20の基端部21の外周面との間に介装された第二のシール62と、下部開口に装着される円環状の支軸キャップ82と、を有する。

0076

第一シャフト支持部51は、上記インロー嵌合による連結時に、上部ハウジング11内の凹の段部に装着された複数の軸受51jおよびその両側の二つのブシュ41、42が、上部ハウジング11の下部開口部に装着された支軸部キャップ82によって軸方向に挟圧されることにより、装着状態が保持される。

0077

その装着状態において、第一シャフト支持部51は、上部ハウジング11の軸線に対して所定の偏心距離Eだけ偏心した位置に第一シャフト20の基端部21を支持するように複数の軸受51jが軸線方向に沿って配置され、複数の軸受51jを介して第一シャフト20の基端部21を回転自在に支持する。第一シャフト支持部51の複数の軸受51jの両側は、第一のシール61および第二のシール62により、第一シャフト20の基端部21の外周面と上部ハウジング11の内周面との間がシールされる。

0078

下部ハウジング12には、軸方向の上下に離隔して、二つの第二シャフト支持部52、53が設けられている。上部側を支持する第二シャフト支持部52は、複数の軸受52jと、複数の軸受52jを軸方向の上方から自身鍔部で挟持するように装着される第三のブシュ43と、第三のブシュ44の内周面と第二シャフト30の外周面との間に介装された第三のシール63と、を有して構成されている。

0079

また、下部側を支持する第二シャフト支持部53は、複数の軸受53jと、複数の軸受53jを軸方向の下方から自身鍔部で挟持するように装着される第四のブシュ44と、第四のブシュ44の内周面と第二シャフト30の外周面との間に介装された第四のシール64と、円環状のフロントキャップ81と、を有して構成されている。

0080

第二シャフト30の外周面には、軸方向の中央部に、凸の段部31mが形成されており、上下の軸受52j、53jの凸の段部31m側の側面が、凸の段部31mの側面に当接するように装着されるとともに、下部ハウジング12の下部開口部に装着されたフロントキャップ81の装着によって軸方向に挟圧されることにより、装着状態が保持される。なお、フロントキャップ81は、図示しない複数の埋め込みボルトにより下方から固定される。

0081

その装着状態において、上下の第二シャフト支持部52、53は、下部ハウジング12の軸線に対して同軸となる位置に第二シャフト30の外周面を支持するように、複数の軸受52j、53jが軸線方向に沿って配置され、複数の軸受52j、53jを介して第二シャフト30の外周面を回転自在に支持する。
また、第二シャフト支持部52、53の複数の軸受52j、53jの上下の側は、第三のシール63および第四のシール64により、第二シャフト30の外周面と下部ハウジング12の内周面との間がシールされる。なお、本実施形態では、各シャフト20、30を支持する複数の軸受51j、52j、53jに、スラスト荷重およびラジアル荷重を受ける深溝玉軸受を使用しているが、これに限定されず、種々の軸受を用いることができる。

0082

ここで、このダウンホールモータ2は、上述した下部ハウジング12内に、流体モータ機構を構成する駆動機構部70が設けられている。
詳しくは、第一シャフト20は、上記基端部21と、基端部21の先端側に形成されたインナロータ部22とを一体に有して構成されている。基端部21の上面には、上述した駆動流体供給路13に連通して、基端部21の軸方向に沿って駆動流体導入路25が形成されている。基端部21の駆動流体導入路25は、基端部21とインナロータ部22との境となる位置まで延設されている。

0083

そして、基端部21とインナロータ部22との境となる位置には、複数の駆動流体導出口24が、駆動流体導入路25の先端部と下部ハウジング12の内部とを連通するように径方向に形成されている。つまり、第一シャフト20には、駆動流体供給路13側から順に連通形成された、第一の駆動流体導入路23、第二の駆動流体導入路25および駆動流体導出口24によって、自身基端側の第一の駆動流体導入路23から導入された駆動流体Mを自身先端側の駆動流体導出口24から吐出可能な駆動流体流路が設けられている。

0084

さらに、インナロータ部22は、第一シャフト20の基端部21の先端から軸方向に沿って同軸に下方に向けて垂下された状態で延設され、その延設された部分に、雄ねじ状の外周面を有している。一方、第二シャフト30は、金属製で中空円筒状をなす外筒31と、外筒31内に配置されたゴム製のアウタロータ部32とを一体にして構成され、アウタロータ部32は、雌ねじ状の内周面を有している。

0085

駆動機構部70は、内周面に(N+1)条雌ねじを有するアウタロータ部32と、外周面にN条雄ねじを有するインナロータ部22とを備える。そして、アウタロータ部32の回転軸線CL2に対し、インナロータ部22の回転軸線CL1は、相互の軸心が所定の偏心距離Eだけ離れた平行な2軸となるように配置され、インナロータ部22とともにアウタロータ部32が、N/(N+1)の回転角度連れ回り駆動可能に構成されている。但し、Nは1以上の自然数である。

0086

この例では、駆動機構部70は、インナロータ部22の螺旋部22rが、左巻き2条雄ねじになっており、アウタロータ部32の螺旋部32rの形状が、120度間隔頂点を有する横断面が3角リング形状の左巻き3条雌ねじになっている。そしてインナロータ部22外周面の螺旋部22rがアウタロータ部32の螺旋部32rに内装され、相互の隙間には、駆動に応じて独立した密閉空間とされるキャビティKが軸方向の複数個所に画成されている。

0087

第二シャフト30の先端には、掘削用のビット90が装着される。本実施形態では、第二シャフト30の外筒31の先端は、フロントキャップ81よりも下部ハウジング12の下方に張り出してビット装着部33とされている。ビット装着部33の外周面には、ビット90を接続可能な雄ねじが形成され、ビット90は、自身基端部が第二シャフト42先端のビット装着部33に接続される。なお、ビット90の下面には、駆動流体Mを吐出する吐出部であるノズル91が、中央部から放射状に複数に分岐して開口しており、複数のキャビティKを経た高圧の駆動流体Mをノズル91から噴射可能になっている。

0088

これにより、このダウンホールモータ2は、インナロータ部22とアウタロータ部32とが、インナロータ部22の回転軸線CL1とアウタロータ部32の回転軸線CL2とを並列に且つ所定の偏心距離Eだけ離してそれぞれ回転自在に支承される。そして、このダウンホールモータ2を駆動するときは、インナロータ部22と一体の第一シャフト内部に連通形成された駆動流体流路を介して駆動機構部70の上部の位置31uに駆動流体Mを導入し、インナロータ部22とアウタロータ部32とで画成されるキャビティKに高圧の駆動流体Mを流し込む

0089

高圧の駆動流体Mは、インナロータ部22とアウタロータ部32との対向空間に画成された複数のキャビティKに順次に導入される。駆動機構部70は、キャビティKに作用する駆動流体Mの導入圧により、インナロータ部22とアウタロータ部32とが所定比率で連れ回りを開始する。
これにより、このダウンホールモータ2は、ねじポンプの原理(逆作動)でインナロータ部22とアウタロータ部32とが所定比率で回転され、アウタロータ部32と一体の第二シャフト30を駆動軸として回転駆動し、その外筒31を延設してなるビット装着部33に装着されたビット90を回転しつつ、ビット90の回転による掘削力と、ビット90のノズル91から噴射されるリーチング用浸出溶液Lsの流体力とによってレアアース泥床ODの泥質堆積層を解泥可能になっている。

0090

つまり、駆動機構部70において、駆動流体Mの導入圧が第二シャフト30の回転駆動力に変換される。駆動機構部70で第二シャフト30が回転駆動すると、第二シャフト30の先端に設けられたビット90が共に回転する。駆動流体供給路13から導入された駆動流体Mは、駆動機構部70の下部の位置31sを経て(図15の符号M2)、ビット90先端のノズル91から装置外に噴射される(図15の符号M3)。

0091

これにより、当該他の実施形態のダウンホールモータ2を備える海洋資源揚鉱装置100であっても、第一実施形態(ないし第二、第三実施形態)同様に、ビット90の回転による掘削力と、ビット90のノズル91から噴射されるリーチング用浸出溶液Lsの流体力とによってレアアース泥床ODのレアアース泥Drを解泥できる。これにより、ビット90の回転力とリーチング用浸出溶液供給時の残存圧力とによる流れに導かれ、解泥されたレアアース泥Drおよびその周囲のリーチング用浸出溶液Lsがパッカー103内に送り込まれる。

0092

以降、所定の掘削深度まで掘削後、第一実施形態(ないし第二、第三実施形態)同様に、駆動流体供給管の張り出し長さに応じた水平方向へのフィード動作により、所定の掘削深度での採鉱を継続できる。そして、海上の採鉱母船1から駆動流体供給管23を所定速度でフィードさせることで、第一実施形態同様に、駆動流体供給管23と共にダウンホールモータ2を一体で水平方向に掘進させながらレアアース泥床ODからレアアース泥Drを連続的に採鉱することができる。

0093

そして、当該他の実施形態のダウンホールモータ2によれば、上記第一実施形態に対して、高圧の駆動流体で作り出されたロータの回転力を、ユニバーサルジョイントを介してシャフトに伝達していた構成と比べて、アウタロータ部32の回転駆動にユニバーサルジョイントが不要なので、駆動機構部70の全長を短くしてコンパクトに構成できる。

0094

また、当該他の実施形態のダウンホールモータ2によれば、アウタロータ部32の回転駆動にユニバーサルジョイントが不要なので、ユニバーサルジョイントやその連結用ロッドも不要なことから、これらの強度に依存するという問題も解消される。また、インナロータ部22の回転よりも減速されたアウタロータ部32の回転力をビット90に直接伝達できる。そのため、第一シャフト20のトルクよりも大きな回転トルクを、第二シャフト30の先端に設けられたビット90に効率良く伝達可能なので、より高トルクに対応できる。

0095

さらに、当該他の実施形態のダウンホールモータ2によれば、インナロータ部22の外径よりも大きなアウタロータ部32の外筒31を支承する大きな軸受52j、53jを有する第二シャフト支持部52、53によって、ビット90に加わる負荷を受けることができる。そのため、駆動機構部70の全長をコンパクトに構成しつつも、より信頼性の高い海洋資源揚鉱装置100を提供できる。
総括

0096

以上説明したように、上述した各実施形態によれば、リーチング用浸出溶液を駆動流体とするダウンホールモータを備える海洋資源揚鉱装置を用いることにより、リーチング用浸出溶液を駆動流体として流体モータ機構を駆動する動力のみで、ビットでの掘削およびビットのノズルからの駆動流体の噴射によりレアアース泥を解泥しつつ選鉱できる。さらに、効率良くリーチングする上で、レアアース泥とリーチング用浸出溶液との攪拌混合に必要なエネルギーをも流体モータ機構を駆動する動力のみで賄える。

0097

そして、レアアース泥に含まれるレアアースの品位はppmオーダーであるところ、上述した各実施形態によれば、リーチング用浸出溶液に海底の採掘坑内やパッカー内でレアアース泥を接触させて、レアアースが浸出したレアアース選鉱溶液をライザー管から回収するので、海底で選鉱を行い不要な脈石を取り除くことができる。そのため、レアアース泥自体を海底から船上にすべて揚泥して、そのあとで選鉱する揚鉱方法と比較して、採鉱効率を大幅に向上させ、レアアース回収にかかるコストを大幅に削減できるのである。

0098

1採鉱母船
2ダウンホールモータ
10ハウジング
11 上部ハウジング
12 下部ハウジング
13駆動流体供給路(駆動流体流路)
14採鉱やぐら
20 第一シャフト
21基端部
22インナロータ部
23駆動流体供給管(駆動流体流路)
24 駆動流体導出口(駆動流体流路)
25 駆動流体導入路(駆動流体流路)
30 第二シャフト
31外筒
32アウタロータ部
33ビット装着部
41 第一のブシュ
42 第二のブシュ
43 第三のブシュ
44 第四のブシュ
51 第一シャフト支持部
52 第二シャフト支持部
53 第二シャフト支持部
61 第一のシール
62 第二のシール
63 第三のシール
64 第四のシール
70駆動機構部(流体モータ機構)
81フロントキャップ
82支軸部キャップ
90 ビット(掘削部)
91ノズル(吐出部)
100海洋資源揚鉱装置
101ライザー管
102圧縮空気供給管(エアリフト手段)
103パッカー
104 集鉱スカート
105 下部フレーム
106アンカー
108円筒形アンカー
110ロータ
120ステータ
130 流体モータ部
131 ハウジング
140駆動軸(シャフト)
141 連通口
142連通路
160 駆動軸支持部
170 ハウジング
180動力伝達部
181 ハウジング
182継手部
183連結ロッド
184 継手部
185ユニバーサルジョイント
190屈曲機構
191圧力室
192開閉弁
193傾倒用アクチュエータ
194屈曲構造
A圧縮空気
B海底
C 海上
E採掘坑
F 採掘坑の坑口
CL1 第一シャフトの回転軸線
CL2 第二シャフトの回転軸線
E偏心距離
Kキャビティ
M 駆動流体
Lsリーチング用浸出溶液(駆動流体)
Maレアアース選鉱溶液(移送流体
D レアアース泥堆積層(泥質堆積層)
Dr (解泥された)レアアース泥(海洋資源)
DN 非レアアース泥堆積層(泥質堆積層)
ODレアアース泥床(海底鉱床
Uフィード動作
W 海水

ページトップへ

この技術を出願した法人

この技術を発明した人物

ページトップへ

関連する挑戦したい社会課題

関連する公募課題

該当するデータがありません

ページトップへ

技術視点だけで見ていませんか?

この技術の活用可能性がある分野

分野別動向を把握したい方- 事業化視点で見る -

ページトップへ

おススメ サービス

おススメ astavisionコンテンツ

新着 最近 公開された関連が強い技術

この 技術と関連性が強い人物

関連性が強い人物一覧

この 技術と関連する社会課題

関連する挑戦したい社会課題一覧

この 技術と関連する公募課題

該当するデータがありません

astavision 新着記事

サイト情報について

本サービスは、国が公開している情報(公開特許公報、特許整理標準化データ等)を元に構成されています。出典元のデータには一部間違いやノイズがあり、情報の正確さについては保証致しかねます。また一時的に、各データの収録範囲や更新周期によって、一部の情報が正しく表示されないことがございます。当サイトの情報を元にした諸問題、不利益等について当方は何ら責任を負いかねることを予めご承知おきのほど宜しくお願い申し上げます。

主たる情報の出典

特許情報…特許整理標準化データ(XML編)、公開特許公報、特許公報、審決公報、Patent Map Guidance System データ