図面 (/)

技術 物理量センサー、慣性計測装置、移動体測位装置、電子機器および移動体

出願人 セイコーエプソン株式会社
発明者 永田和幸菊池尊行金本啓
出願日 2017年10月17日 (1年10ヶ月経過) 出願番号 2017-201346
公開日 2019年5月16日 (3ヶ月経過) 公開番号 2019-074432
状態 未査定
技術分野 ジャイロスコープ 圧力センサ
主要キーワード 被装着装置 接続ばね 矢印先端 製造限界 被装着体 最小ギャップ 固定検出 ディープエッチング
関連する未来課題
重要な関連分野

この項目の情報は公開日時点(2019年5月16日)のものです。
また、この項目は機械的に抽出しているため、正しく解析できていない場合があります

図面 (18)

課題

可動検出電極固定検出電極とのギャップを小さくすることのできる物理量センサー慣性計測装置移動体測位装置電子機器および移動体を提供する。

解決手段

本発明の物理量センサーは、基板と、第1電極指を備える第1検出電極と、前記基板に対して前記第1検出電極を第1方向に変位可能に支持する第1ばねと、前記第1電極指と前記第1方向に間隔を隔てて配置されている第2電極指を備える第2検出電極と、前記第2検出電極を前記第1方向に変位可能に支持する第2ばねと、を備えている。

概要

背景

従来から、ジャイロセンサー角速度センサー)として、特許文献1に記載の構成が知られている。この特許文献1に記載のジャイロセンサーは、基体と、基体に固定された素子部と、を有している。また、素子部は、X軸方向に振動可能な枠状の振動部と、振動部の外側に設けられた可動駆動電極と、前記基体に固定され、前記可動駆動電極との間に静電引力を生じさせることで振動部をX軸方向に振動させる固定駆動電極と、振動部の内側に配置され、振動部に対してY軸方向に変位可能な可動部と、可動部に設けられた可動検出電極と、基体に固定され、可動検出電極との間に静電容量を形成している固定検出電極と、を有している。このようなジャイロセンサーでは、振動部をX軸方向に振動させた状態でZ軸まわりの角速度が加わると、コリオリ力によって変位部がY軸方向に変位し、可動検出電極と固定検出電極との間の静電容量が変化する。そのため、この静電容量の変化に基づいて、Z軸まわりの角速度を検出することができる。

概要

可動検出電極と固定検出電極とのギャップを小さくすることのできる物理量センサー慣性計測装置移動体測位装置電子機器および移動体を提供する。本発明の物理量センサーは、基板と、第1電極指を備える第1検出電極と、前記基板に対して前記第1検出電極を第1方向に変位可能に支持する第1ばねと、前記第1電極指と前記第1方向に間隔を隔てて配置されている第2電極指を備える第2検出電極と、前記第2検出電極を前記第1方向に変位可能に支持する第2ばねと、を備えている。

目的

本発明の目的は、可動検出電極と固定検出電極とのギャップを小さくすることのできる物理量センサー、慣性計測装置、移動体測位装置、電子機器および移動体を提供する

効果

実績

技術文献被引用数
0件
牽制数
0件

この技術が所属する分野

(分野番号表示ON)※整理標準化データをもとに当社作成

ライセンス契約や譲渡などの可能性がある特許掲載中! 開放特許随時追加・更新中 詳しくはこちら

請求項1

基板と、第1電極指を備える第1検出電極と、前記基板に対して前記第1検出電極を第1方向に変位可能に支持する第1ばねと、前記第1電極指と前記第1方向に間隔を隔てて配置されている第2電極指を備える第2検出電極と、前記第2検出電極を前記第1方向に変位可能に支持する第2ばねと、を備えていることを特徴とする物理量センサー

請求項2

前記第1検出電極と前記第2検出電極との間に電位差を与えることで前記第1電極指と前記第2電極指との間に静電引力が作用し、前記静電引力によって、前記第2電極指が前記第1電極指に接近するように前記第2検出電極が前記第1方向に変位し、前記第1電極指と前記第2電極指とのギャップが自然状態と比べて小さくなる請求項1に記載の物理量センサー。

請求項3

前記第2ばねと前記第1方向に並んで配置されている固定電極を有し、前記第2ばねと前記固定電極との間に電位差を与えることで前記第2ばねと前記固定電極との間に静電引力が作用し、前記静電引力によって、前記第2電極指が前記第1電極指に接近するように前記第2検出電極が前記第1方向に変位し、前記第1電極指と前記第2電極指とのギャップが自然状態と比べて小さくなる請求項1に記載の物理量センサー。

請求項4

前記第2ばねのばね定数は、前記第1ばねのばね定数よりも大きい請求項1ないし3のいずれか1項に記載の物理量センサー。

請求項5

前記第2検出電極の前記第1方向への変位を規制する規制部を有している請求項1ないし4のいずれか1項に記載の物理量センサー。

請求項6

前記第2ばねが前記規制部に当接することで、前記第2検出電極の前記第1方向への変位が規制される請求項5に記載の物理量センサー。

請求項7

前記第2ばねを介して前記第2検出電極と接続され、前記基板に固定されている固定部を有し、前記固定部が前記規制部を兼ねている請求項5または6に記載の物理量センサー。

請求項8

請求項1ないし7のいずれか1項に記載の物理量センサーと、前記物理量センサーの駆動を制御する制御回路と、を含むことを特徴とする慣性計測装置

請求項9

請求項8に記載の慣性計測装置と、測位用衛星から位置情報重畳された衛星信号を受信する受信部と、受信した前記衛星信号に基づいて、前記受信部の位置情報を取得する取得部と、前記慣性計測装置から出力された慣性データに基づいて、移動体姿勢演算する演算部と、算出された前記姿勢に基づいて前記位置情報を補正することにより、前記移動体の位置を算出する算出部と、を含むことを特徴とする移動体測位装置

請求項10

請求項1ないし7のいずれか1項に記載の物理量センサーと、制御回路と、補正回路と、を含むことを特徴とする電子機器

請求項11

請求項1ないし7のいずれか1項に記載の物理量センサーと、姿勢制御部と、を含むことを特徴とする移動体。

技術分野

0001

本発明は、物理量センサー慣性計測装置移動体測位装置電子機器および移動体に関するものである。

背景技術

0002

従来から、ジャイロセンサー角速度センサー)として、特許文献1に記載の構成が知られている。この特許文献1に記載のジャイロセンサーは、基体と、基体に固定された素子部と、を有している。また、素子部は、X軸方向に振動可能な枠状の振動部と、振動部の外側に設けられた可動駆動電極と、前記基体に固定され、前記可動駆動電極との間に静電引力を生じさせることで振動部をX軸方向に振動させる固定駆動電極と、振動部の内側に配置され、振動部に対してY軸方向に変位可能な可動部と、可動部に設けられた可動検出電極と、基体に固定され、可動検出電極との間に静電容量を形成している固定検出電極と、を有している。このようなジャイロセンサーでは、振動部をX軸方向に振動させた状態でZ軸まわりの角速度が加わると、コリオリ力によって変位部がY軸方向に変位し、可動検出電極と固定検出電極との間の静電容量が変化する。そのため、この静電容量の変化に基づいて、Z軸まわりの角速度を検出することができる。

先行技術

0003

特開2013−213728号公報

発明が解決しようとする課題

0004

ここで、Z軸まわりの角速度を精度よく検出するためには、可動検出電極と固定検出電極とのギャップを小さくし、これらの間の静電容量を大きくすることが有効である。しかしながら、シリコン基板ドライエッチングによりパターニングすることで素子部を形成する場合、ドライエッチングの装置側の制約によって可動検出電極と固定検出電極との最小ギャップが定められてしまい、可動検出電極と固定検出電極とをそれ以上近づけて配置することができない。したがって、特許文献1では、可動検出電極と固定検出電極とのギャップを小さくすることが困難である。

0005

本発明の目的は、可動検出電極と固定検出電極とのギャップを小さくすることのできる物理量センサー、慣性計測装置、移動体測位装置、電子機器および移動体を提供することにある。

課題を解決するための手段

0006

本発明は、上述の課題の少なくとも一部を解決するためになされたものであり、以下の発明として実現することが可能である。

0007

本発明の物理量センサーは、基板と、
第1電極指を備える第1検出電極と、
前記基板に対して前記第1検出電極を第1方向に変位可能に支持する第1ばねと、
前記第1電極指と前記第1方向に間隔を隔てて配置されている第2電極指を備える第2検出電極と、
前記第2検出電極を前記第1方向に変位可能に支持する第2ばねと、を備えていることを特徴とする。
このような構成では、第2検出電極を第1方向に変位させることで、第1電極指と第2電極指とのギャップを小さくすることができる。そのため、自然状態に対して、第1電極指と第2電極指とのギャップを小さくすることのできる物理量センサーが得られる。

0008

本発明の物理量センサーでは、前記第1検出電極と前記第2検出電極との間に電位差を与えることで前記第1電極指と前記第2電極指との間に静電引力が作用し、
前記静電引力によって、前記第2電極指が前記第1電極指に接近するように前記第2検出電極が前記第1方向に変位し、前記第1電極指と前記第2電極指とのギャップが自然状態と比べて小さくなることが好ましい。
これにより、比較的簡単に、第1電極指と第2電極指とのギャップを自然状態と比べて小さくすることができる。

0009

本発明の物理量センサーでは、前記第2ばねと前記第1方向に並んで配置されている固定電極を有し、
前記第2ばねと前記固定電極との間に電位差を与えることで前記第2ばねと前記固定電極との間に静電引力が作用し、
前記静電引力によって、前記第2電極指が前記第1電極指に接近するように前記第2検出電極が前記第1方向に変位し、前記第1電極指と前記第2電極指とのギャップが自然状態と比べて小さくなることが好ましい。
これにより、比較的簡単に、第1電極指と第2電極指とのギャップを自然状態と比べて小さくすることができる。

0010

本発明の物理量センサーでは、前記第2ばねのばね定数は、前記第1ばねのばね定数よりも大きいことが好ましい。
これにより、第2検出電極が振動し難くなるため、第2検出電極の不本意な変位を抑制することができる。

0011

本発明の物理量センサーでは、前記第2検出電極の前記第1方向への変位を規制する規制部を有していることが好ましい。
これにより、第2検出電極の過度な変位を抑制することができ、例えば、第2ばねの破損を抑制することができる。

0012

本発明の物理量センサーでは、前記第2ばねが前記規制部に当接することで、前記第2検出電極の前記第1方向への変位が規制されることが好ましい。
これにより、比較的簡単な構成で、第2検出電極の過度な変位を抑制することができる。

0013

本発明の物理量センサーでは、前記第2ばねを介して前記第2検出電極と接続され、前記基板に固定されている固定部を有し、
前記固定部が前記規制部を兼ねていることが好ましい。
これにより、装置構成が簡単なものとなる。

0014

本発明の慣性計測装置は、本発明の物理量センサーと、
前記物理量センサーの駆動を制御する制御回路と、を含むことを特徴とする。
これにより、本発明の物理量センサーの効果を享受でき、信頼性の高い慣性計測装置が得られる。

0015

本発明の移動体測位装置は、本発明の慣性計測装置と、
測位用衛星から位置情報重畳された衛星信号を受信する受信部と、
受信した前記衛星信号に基づいて、前記受信部の位置情報を取得する取得部と、
前記慣性計測装置から出力された慣性データに基づいて、移動体の姿勢演算する演算部と、
算出された前記姿勢に基づいて前記位置情報を補正することにより、前記移動体の位置を算出する算出部と、を含むことを特徴とする。
これにより、本発明の慣性計測装置の効果を享受でき、信頼性の高い移動体測位装置が得られる。

0016

本発明の電子機器は、本発明の物理量センサーと、
制御回路と、
補正回路と、を含むことを特徴とする。
これにより、本発明の物理量センサーの効果を享受でき、信頼性の高い電子機器が得られる。

0017

本発明の移動体は、本発明の物理量センサーと、
姿勢制御部と、を含むことを特徴とする。
これにより、本発明の物理量センサーの効果を享受でき、信頼性の高い移動体が得られる。

図面の簡単な説明

0018

本発明の第1実施形態に係る物理量センサーを示す平面図である。
図1中のA−A線断面図である。
図1の物理量センサーが有する素子部を示す平面図である。
素子部に印加する電圧を示す図である。
素子部の振動モードを説明するための模式図である。
自然状態の固定検出電極を示す拡大平面図である。
変位状態の固定検出電極を示す拡大平面図である。
本発明の第2実施形態に係る物理量センサーの素子部を示す平面図である。
図8に示す素子部の部分拡大平面図である。
本発明の第3実施形態に係る慣性計測装置の分解斜視図である。
図10に示す慣性計測装置が有する基板の斜視図である。
本発明の第4実施形態に係る移動体測位装置の全体システムを示すブロック図である。
図12に示す移動体測位装置の作用を示す図である。
本発明の第5実施形態に係る電子機器を示す斜視図である。
本発明の第6実施形態に係る電子機器を示す斜視図である。
本発明の第7実施形態に係る電子機器を示す斜視図である。
本発明の第8実施形態に係る移動体を示す斜視図である。

実施例

0019

以下、本発明の物理量センサー、慣性計測装置、移動体測位装置、電子機器および移動体を添付図面に示す実施形態に基づいて詳細に説明する。

0020

<第1実施形態>
まず、本発明の第1実施形態に係る物理量センサーについて説明する。

0021

図1は、本発明の第1実施形態に係る物理量センサーを示す平面図である。図2は、図1中のA−A線断面図である。図3は、図1の物理量センサーが有する素子部を示す平面図である。図4は、素子部に印加する電圧を示す図である。図5は、素子部の振動モードを説明するための模式図である。図6は、自然状態の固定検出電極を示す拡大平面図である。図7は、変位状態の固定検出電極を示す拡大平面図である。なお、各図には、互いに直交する3つの軸としてX軸、Y軸およびZ軸を図示している。また、以下では、説明の便宜上、X軸に平行な方向を「X軸方向」、Y軸に平行な方向を「Y軸方向」、Z軸に平行な方向を「Z軸方向」とも言う。また、各軸の矢印先端側を「プラス側」とも言い、反対側を「マイナス側」とも言う。また、Z軸方向プラス側を「上」とも言い、Z軸方向マイナス側を「下」とも言う。

0022

図1に示す物理量センサー1は、Z軸まわりの角速度ωzを検出することのできる角速度センサーである。物理量センサー1は、基板2と、蓋体3と、素子部4と、を有している。

0023

図1に示すように、基板2は、矩形の平面視形状を有する板状をなしている。また、基板2は、上面(素子部4側の主面)に開口する凹部21を有している。凹部21は、Z軸方向からの平面視で、素子部4と重なるように配置されており、素子部4と基板2との接触を防止(抑制)するための逃げ部として機能する。また、基板2は、凹部21の底面から突出する複数のマウント22(221、222、223、224、225)を有している。そして、これらマウント22の上面に素子部4が接合されている。これにより、基板2との接触が防止された状態で、基板2に素子部4が固定される。また、基板2は、上面に開放する溝部23、24、25、26、27、28を有している。

0024

基板2としては、例えば、ナトリウムイオン(Na+)、リチウムイオン(Li+)等の可動イオンアルカリ金属イオン、以下Na+で代表する)を含むガラス材料(例えば、テンパックガラス登録商標)、パイレックスガラス(登録商標)のような硼珪酸ガラス)で構成されたガラス基板を用いることができる。これにより、例えば、後述するように、基板2と素子部4とを陽極接合することができ、これらを強固に接合することができる。また、光透過性を有する基板2が得られるため、物理量センサー1の外側から、基板2を介して素子部4の状態を視認することができる。ただし、基板2の構成材料としては、特に限定されず、シリコン基板、セラミックス基板等を用いてもよい。

0025

図1に示すように、溝部23、24、25、26、27、28には、それぞれ、配線73、74、75、76、77、78が配置されている。配線73、74、75、76、77、78は、それぞれ、素子部4と電気的に接続されている。また、配線73、74、75、76、77、78の一端部は、それぞれ、蓋体3の外側に露出し、外部装置との電気的な接続を行う電極パッドPとして機能する。

0026

図1に示すように、蓋体3は、矩形の平面視形状を有する板状をなしている。また、図2に示すように、蓋体3は、下面に開放する凹部31を有している。蓋体3は、凹部31内に素子部4を収納するようにして、基板2の上面に接合されている。そして、蓋体3および基板2によって、その内側に、素子部4を収納する収納空間Sが形成されている。

0027

また、図2に示すように、蓋体3は、収納空間Sの内外を連通する連通孔32を有している。そのため、連通孔32を介して、収納空間Sを所望の雰囲気置換することができる。また、連通孔32内には封止部材33が配置され、封止部材33によって連通孔32が気密封止されている。なお、収納空間Sは、減圧状態、特に真空状態であることが好ましい。これにより、粘性抵抗が減り、素子部4を効率的に振動させることができる。

0028

このような蓋体3としては、例えば、シリコン基板を用いることができる。ただし、蓋体3としては、特に限定されず、例えば、ガラス基板やセラミックス基板を用いてもよい。また、基板2と蓋体3との接合方法としては、特に限定されず、基板2や蓋体3の材料によって適宜選択すればよいが、例えば、陽極接合、プラズマ照射によって活性化させた接合面同士を接合させる活性化接合ガラスフリット等の接合材による接合、基板2の上面および蓋体3の下面に成膜した金属膜同士を接合する拡散接合等が挙げられる。本実施形態では、ガラスフリット39(低融点ガラス)を介して基板2と蓋体3とが接合されている。

0029

素子部4は、収納空間Sに配置されており、マウント22の上面に接合されている。素子部4は、例えば、リン(P)、ボロン(B)等の不純物がドープされた導電性のシリコン基板をドライエッチング法シリコンディープエッチング)によってパターニングすることで形成することができる。以下、素子部4について詳細に説明する。なお、以下では、Z軸方向からの平面視で、素子部4の中心Oと交わり、Y軸方向に延びる直線を「仮想直線α」とも言う。

0030

図3に示すように、素子部4の形状は、仮想直線αに対して対称である。また、素子部4は、仮想直線αの両側に配置された駆動部41A、41Bを有している。駆動部41Aは、櫛歯状に配置された複数の電極指を備えた可動駆動電極411Aと、櫛歯状に配置された複数の電極指を備え可動駆動電極411Aの電極指と噛み合って配置された固定駆動電極412Aと、を有している。同様に、駆動部41Bは、櫛歯状に配置された複数の電極指を備えた可動駆動電極411Bと、櫛歯状に配置された複数の電極指を備え可動駆動電極411Bの電極指と噛み合って配置された固定駆動電極412Bと、を有している。

0031

また、固定駆動電極412Aは、可動駆動電極411Aよりも外側(仮想直線αから遠い側)に位置し、固定駆動電極412Bは、可動駆動電極411Bよりも外側(仮想直線αから遠い側)に位置している。また、固定駆動電極412A、412Bは、それぞれ、マウント221の上面に接合され、基板2に固定されている。また、可動駆動電極411A、411Bは、それぞれ、配線73と電気的に接続されており、固定駆動電極412A、412Bは、それぞれ、配線74と電気的に接続されている。

0032

また、素子部4は、駆動部41Aの周囲に配置された4つの固定部42Aと、駆動部41Bの周囲に配置された4つの固定部42Bと、を有している。各固定部42A、42Bは、マウント222の上面に接合され、基板2に固定されている。

0033

また、素子部4は、各固定部42Aと可動駆動電極411Aとを連結する4つの駆動ばね43Aと、各固定部42Bと可動駆動電極411Bとを連結する4つの駆動ばね43Bと、を有している。各駆動ばね43AがX軸方向に弾性変形することで可動駆動電極411AのX軸方向への変位が許容され、各駆動ばね43BがX軸方向に弾性変形することで可動駆動電極411BのX軸方向への変位が許容される。

0034

可動駆動電極411A、411BをX軸方向に振動させるには、例えば、配線73を介して図4に示す電圧V1を可動駆動電極411A、411Bに印加し、配線74を介して図4に示す電圧V2を固定駆動電極412A、412Bに印加する。なお、電圧V1は、GND基準(例えば、0.9V程度の電位)よりも大きい15V程度の定電圧であり、電圧V2は、GND基準を中心とした矩形波である。

0035

これにより、可動駆動電極411Aと固定駆動電極412Aとの間および可動駆動電極411Bと固定駆動電極412Bとの間にそれぞれ静電引力が発生し、可動駆動電極411Aが駆動ばね43Aを弾性変形させつつX軸方向に振動すると共に、可動駆動電極411Bが駆動ばね43Bを弾性変形させつつX軸方向に振動する。前述したように、駆動部41A、41Bは、仮想直線αに対して対称的に配置されているため、可動駆動電極411A、411Bは、互いに接近、離間を繰り返すようにX軸方向に逆相で振動する。そのため、可動駆動電極411A、411Bの振動がキャンセルされ、基板2への振動漏れを低減することができる。以下では、この振動モードを「駆動振動モード」とも言う。

0036

なお、駆動振動モードを励振することができれば、電圧V1、V2としては、特に限定されない。また、本実施形態の物理量センサー1では、静電引力によって駆動振動モードを励振させる静電駆動方式となっているが、励振させる方式は、特に限定されず、例えば、圧電駆動方式、磁場のローレンツ力を利用した電磁駆動方式等を適用することもできる。

0037

また、素子部4は、駆動部41A、41Bの間に配置された検出部44A、44Bを有している。検出部44Aは、櫛歯状に配置された複数の電極指4411Aを備えた可動検出電極441Aと、櫛歯状に配置された複数の電極指4421A、4431Aを備え可動検出電極441Aの電極指4411Aと噛み合って配置された固定検出電極442A、443Aと、を有している。固定検出電極442A、443Aは、Y軸方向に並んで配置され、可動検出電極441Aの中心に対してY軸方向プラス側に固定検出電極442Aが位置し、Y軸方向マイナス側に固定検出電極443Aが位置している。また、固定検出電極442A、443Aは、それぞれ、可動検出電極441AをX軸方向両側から挟み込むようにして一対配置されている。また、電極指4421Aは、対向する電極指4411Aに対してY軸方向マイナス側に位置し、電極指4431Aは、対向する電極指4411Aに対してY軸方向プラス側に位置している。

0038

同様に、検出部44Bは、櫛歯状に配置された複数の電極指4411Bを備えた可動検出電極441Bと、櫛歯状に配置された複数の電極指4421B、4431Bを備え可動検出電極441Bの電極指4411Bと噛み合って配置された固定検出電極442B、443Bと、を有している。固定検出電極442B、443Bは、Y軸方向に並んで配置され、可動検出電極441Bの中心に対してY軸方向プラス側に固定検出電極442Bが位置し、Y軸方向マイナス側に固定検出電極443Bが位置している。また、固定検出電極442B、443Bは、それぞれ、可動検出電極441BをX軸方向の両側から挟み込むようにして一対配置されている。また、電極指4421Bは、対向する電極指4411Bに対してY軸方向マイナス側に位置し、電極指4431Bは、対向する電極指4411Bに対してY軸方向プラス側に位置している。

0039

ここで、可動検出電極441A、441Bの「可動」とは、後述するように、駆動振動モードや検出振動モードにおいて振動することを意味し、固定検出電極442A、443A、422B、423Bの「固定」とは、駆動振動モードや検出振動モードにおいて実質的に振動しないことを意味している。

0040

可動検出電極441A、441Bは、それぞれ、配線73と電気的に接続され、固定検出電極442A、443Bは、それぞれ、配線75と電気的に接続され、固定検出電極443A、442Bは、それぞれ、配線76と電気的に接続されている。また、配線75、76は、それぞれ、QVアンプ電荷電圧変換回路)に接続される。物理量センサー1の駆動時には、可動検出電極441Aと固定検出電極442Aとの間および可動検出電極441Bと固定検出電極443Bとの間に静電容量Caが形成され、可動検出電極441Aと固定検出電極443Aとの間および可動検出電極441Bと固定検出電極442Bとの間に静電容量Cbが形成される。

0041

また、素子部4は、検出部44A、44Bの間に配置された2つの固定部451、452を有している。固定部451、452は、それぞれ、マウント224の上面に接合され、基板2に固定されている。固定部451、452は、Y軸方向に並び、間隔を空けて配置されている。なお、本実施形態では、固定部451、452を介して可動駆動電極411A、411Bや可動検出電極441A、441Bが配線73と電気的に接続されている。

0042

また、素子部4は、可動検出電極441Aと固定部42A、451、452とを接続する4つの検出ばね46Aと、可動検出電極441Bと固定部42B、451、452とを接続する4つの検出ばね46Bと、を有している。各検出ばね46AがX軸方向に弾性変形することで可動検出電極441AのX軸方向への変位が許容され、Y軸方向に弾性変形することで可動検出電極441AのY軸方向への変位が許容される。同様に、各検出ばね46BがX軸方向に弾性変形することで可動検出電極441BのX軸方向への変位が許容され、Y軸方向に弾性変形することで可動検出電極441BのY軸方向への変位が許容される。

0043

また、素子部4は、各固定検出電極442Aの近くに配置された2つの固定部444Aと、各固定検出電極443Aの近くに配置された2つの固定部445Aと、各固定検出電極442Bの近くに配置された2つの固定部444Bと、各固定検出電極443Bの近くに配置された2つの固定部445Bと、を有している。固定部444A、445A、444B、445Bは、それぞれ、マウント223の上面に接合され、基板2に固定されている。

0044

また、素子部4は、固定検出電極442Aと各固定部444Aとを接続する2つのばね446Aと、固定検出電極443Aと2つの固定部445Aとを接続する2つのばね447Aと、固定検出電極442Bと各固定部444Bとを接続する2つのばね446Bと、固定検出電極443Bと2つの固定部445Bとを接続する2つのばね447Bと、を有している。各ばね446AがY軸方向に弾性変形することで固定検出電極442AのY軸方向への変位が許容され、各ばね447AがY軸方向に弾性変形することで固定検出電極443AのY軸方向への変位が許容され、各ばね446BがY軸方向に弾性変形することで固定検出電極442BのY軸方向への変位が許容され、各ばね447BがY軸方向に弾性変形することで固定検出電極443BのY軸方向への変位が許容される。

0045

また、素子部4は、可動駆動電極411Aと可動検出電極441Aとの間に位置し、これらを接続する梁47Aと、可動駆動電極411Bと可動検出電極441Bとの間に位置し、これらを接続する梁47Bと、を有している。そのため、図5に示すように、駆動振動モードでは、可動駆動電極411A、可動検出電極441Aおよび梁47Aの集合体である可動体4Aと、可動駆動電極411B、可動検出電極441Bおよび梁47Bの集合体である可動体4Bと、がX軸方向に逆相で振動する。なお、梁47A、47Bは、X軸方向に突っ張ることで梁のように機能し、Y軸方向に弾性変形することで後述する検出振動モードの励振を阻害しないようになっている。

0046

このような駆動振動モードで駆動させている最中に物理量センサー1に角速度ωzが加わると、可動検出電極441A、441Bは、コリオリの力によって、図5中の矢印Aに示すように、検出ばね46A、46BをY軸方向に弾性変形させつつY軸方向に逆相で振動する(この振動を「検出振動モード」とも言う)。検出振動モードでは、可動検出電極441A、441BがY軸方向に振動するため、可動検出電極441Aと固定検出電極442A、443Aとのギャップおよび可動検出電極441Bと固定検出電極442B、443Bとのギャップがそれぞれ変化し、それに伴って静電容量Ca、Cbがそれぞれ変化する。そのため、静電容量Ca、Cbの変化に基づいて、角速度ωzを求めることができる。

0047

検出振動モードでは、静電容量Caが大きくなると静電容量Cbが小さくなり、反対に、静電容量Caが小さくなると静電容量Cbが大きくなる。そのため、配線75に接続されたQVアンプから出力される検出信号(静電容量Caの大きさに応じた信号)と、配線76に接続されたQVアンプから出力される検出信号(静電容量Cbの大きさに応じた信号)とを差動演算減算処理:Ca−Cb)することで、ノイズをキャンセルすることができ、より精度よく角速度ωzを検出することができる。

0048

また、図3に示すように、素子部4は、その中央部(検出部44A、44Bの間)に位置するフレーム48を有している。フレーム48は、「H」形状をなし、Y軸方向プラス側に位置する欠損部481(凹部)と、Y軸方向マイナス側に位置する欠損部482(凹部)と、を有している。そして、欠損部481の内外に亘って固定部451が配置されており、欠損部482の内外に亘って固定部452が配置されている。これにより、固定部451、452をY軸方向に長く形成することができ、その分、基板2との接合面積が増え、基板2と素子部4との接合強度が増す。

0049

また、素子部4は、固定部451とフレーム48との間に位置し、これらを接続するフレームばね488と、固定部452とフレーム48との間に位置し、これらを接続するフレームばね489と、を有している。

0050

また、素子部4は、フレーム48と可動検出電極441Aとの間に位置し、これらを接続する接続ばね40Aと、フレーム48と可動検出電極441Bとの間に位置し、これらを接続する接続ばね40Bと、を有している。接続ばね40Aは、検出ばね46Aと共に可動検出電極441Aを支持し、接続ばね40Bは、検出ばね46Bと共に可動検出電極441Bを支持している。そのため、可動検出電極441A、441Bを安定した姿勢で支持することができ、可動検出電極441A、441Bの不要振動(スプリアス)を低減することができる。

0051

なお、駆動振動モードでは、接続ばね40A、40Bが弾性変形することで可動体4A、4Bの振動が許容され、検出振動モードでは、接続ばね40A、40Bおよびフレームばね488、489が弾性変形すると共に、フレーム48が中心Oまわりに回動することで、可動検出電極441A、441BのY軸方向への振動が許容される。

0052

また、素子部4は、駆動振動モードでの可動体4A、4Bの振動状態を検出するためのモニター部49A、49Bを有している。モニター部49Aは、可動検出電極441Aに配置され、櫛歯状に配置された複数の電極指を備えた可動モニター電極491Aと、櫛歯状に配置された複数の電極指を備え可動モニター電極491Aの電極指と噛み合って配置された固定モニター電極492A、493Aと、を有している。固定モニター電極492Aは、可動モニター電極491Aに対してX軸方向プラス側に位置し、固定モニター電極493Aは、可動モニター電極491Aに対してX軸方向マイナス側に位置している。

0053

同様に、モニター部49Bは、可動検出電極441Bに配置され、櫛歯状に配置された複数の電極指を備えた可動モニター電極491Bと、櫛歯状に配置された複数の電極指を備え可動モニター電極491Bの電極指と噛み合って配置された固定モニター電極492B、493Bと、を有している。固定モニター電極492Bは、可動モニター電極491Bに対してX軸方向マイナス側に位置し、固定モニター電極493Bは、可動モニター電極491Bに対してX軸方向プラス側に位置している。

0054

これら固定モニター電極492A、493A、492B、493Bは、それぞれ、マウント225の上面に接合され、基板2に固定されている。また、可動モニター電極491A、491Bは、それぞれ、配線73と電気的に接続され、固定モニター電極492A、492Bは、それそれ、配線77と電気的に接続され、固定モニター電極493A、493Bは、それぞれ、配線78と電気的に接続されている。また、配線77、78は、それぞれ、QVアンプ(電荷電圧変換回路)に接続される。物理量センサー1の駆動時には、可動モニター電極491Aと固定モニター電極492Aとの間および可動モニター電極491Bと固定モニター電極492Bとの間に静電容量Ccが形成され、可動モニター電極491Aと固定モニター電極493Aとの間および可動モニター電極491Bと固定モニター電極493Bとの間に静電容量Cdが形成される。

0055

前述したように、駆動振動モードでは、可動検出電極441A、441BがX軸方向に振動するため、可動モニター電極491Aと固定モニター電極492A、493Aとのギャップおよび可動モニター電極491Bと固定モニター電極492B、493Bとのギャップがそれぞれ変化し、それに伴って静電容量Cc、Cdがそれぞれ変化する。そのため、静電容量Cc、Cdの変化に基づいて、可動体4A、4Bの振動状態(特にX軸方向への振幅)を検出することができる。

0056

駆動振動モードでは、静電容量Ccが大きくなると静電容量Cdが小さくなり、反対に、静電容量Ccが小さくなると静電容量Cdが大きくなる。そのため、配線77に接続されたQVアンプから得られる検出信号(静電容量Ccの大きさに応じた信号)と、配線78に接続されたQVアンプから得られる検出信号(静電容量Cdの大きさに応じた信号)とを差動演算(減算処理:Cc−Cd)することで、ノイズをキャンセルすることができ、より精度よく可動体4A、4Bの振動状態を検出することができる。

0057

なお、モニター部49A、49Bからの出力によって検出された可動体4A、4Bの振動状態(振幅)は、可動体4A、4Bに電圧V2を印加する駆動回路フィードバックされる。駆動回路は、可動体4A、4Bの振幅が目標値となるように、電圧V2の周波数Duty比を変更する。これにより、より確実に、可動体4A、4Bを所定の振幅で振動させることができ、角速度ωzの検出精度が向上する。

0058

以上、素子部4の構成について簡単に説明した。次に、物理量センサー1の特徴の1つである固定検出電極442A、443A、442B、443Bについて、さらに詳しく説明する。ただし、固定検出電極442A、443A、442B、443Bは、それぞれ同様の構成であるため、以下では、説明の便宜上、固定検出電極442Aについて代表して説明し、他の固定検出電極443A、442B、443Bについては、その説明を省略する。

0059

図6に示すように、固定検出電極442Aは、2つのばね446Aを介して2つの固定部444Aに固定されており、Y軸方向に変位可能となっている。そのため、物理量センサー1に電圧V1が印加されると、可動検出電極441Aと固定検出電極442Aとの間にこれらの電位差に起因する静電引力が生じ、この静電引力によって、図7に示すように、固定検出電極442Aが2つのばね446Aを弾性変形させつつY軸方向プラス側(固定検出電極442Aの電極指4421Aが可動検出電極441Aの電極指4411Aに接近する方向)に変位する。したがって、この変位状態では、電極指4411A、4421AのギャップGが、自然状態と比べて小さくなる。なお、自然状態とは、可動検出電極441Aと固定検出電極442Aとの間に静電引力が生じていない状態(素子部4に変形が生じていない状態)を言う。

0060

このように、ギャップGを自然状態よりも小さくすることで、可動検出電極441Aと固定検出電極442Aとの間に形成される静電容量が大きくなり、固定検出電極442Aから得られる検出信号の強度も上がる。そのため、より精度よく、角速度ωzを検出することができる。なお、ギャップGは、電圧V1の大きさ(可動検出電極441Aと固定検出電極442Aとの間に生じる静電引力の大きさ)を変更することで調整することができる。

0061

自然状態でのギャップGとしては、特に限定されず、製造時に用いるドライエッチング装置の性能によっても異なるが、例えば、1μm以上3μm以下程度であるのが好ましい。これにより、自然状態でのギャップGが十分に小さくなり、変位状態とすることでギャップGをそこからさらに小さくすることができる。そのため、可動検出電極441Aと固定検出電極442Aとの間に形成される静電容量がより大きくなる。

0062

変位状態でのギャップGとしては、特に限定されないが、例えば、0.1μm以上1μm未満程度であるのが好ましい。これにより、変位状態でのギャップGが十分に小さくなり、可動検出電極441Aと固定検出電極442Aとの間に形成される静電容量がより大きくなる。また、検出振動モードでの電極指4411A、4421Aの接触を抑制することができる。なお、ギャップGは、複数対ある電極指4411A、4421A間のそれぞれにおいてできるだけ等しいことが好ましい。

0063

また、素子部4の製造に用いるドライエッチング装置によって形成可能な電極指4411A、4421Aの最小ギャップをGminとしたとき、変位状態でのギャップGは、最小ギャップGminよりも小さいことが好ましい。これにより、変位状態のギャップGをドライエッチング装置の製造限界を超えて小さくすることができる。よって、物理量センサー1によれば、より精度よく、角速度ωzを検出することができる。

0064

ここで、ばね446Aのばね定数k1は、検出ばね46Aのばね定数k2よりも大きいことが好ましい。これにより、静電引力によって固定検出電極442Aが過度に変位してしまうことを抑制でき、変位状態において可動検出電極441Aの電極指と固定検出電極442Aの電極指とが接触してしまうことを抑制することができる。なお、ばね定数k1は、並列に配置された2つのばね446Aのばね定数の和で表され、ばね定数k2は、並列に配置された4つの検出ばね46Aのばね定数の和で表される。

0065

また、ばね446Aのばね定数k1は、静電引力によって固定検出電極442Aが変位できる限り、大きいことが好ましい。これにより、固定検出電極442Aが揺れ難くなる、すなわち加速度、角速度等が加わっても変位し難くなるため、変位状態でのギャップGが安定し、角速度ωzをより精度よく検出することができる。

0066

また、Y軸方向プラス側(固定検出電極442Aが変位する側)に位置するばね446Aは、固定部444AとY軸方向に対向する部分4461Aを有しており、自然状態において、部分4461Aと固定部444AとのギャップG1は、ギャップGよりも小さくなっている。すなわち、自然状態において、ギャップG1<Gの関係を満足している。これにより、ばね446Aが固定部444Aに当接することで、それ以上の固定検出電極442Aの変位が規制され、電極指4411A、4421Aの接触をより確実に抑制することができる。すなわち、固定部444Aは、電極指4411A、4421Aが接触しないように、固定検出電極442Aの変位を規制する規制部449A(ストッパー)として機能する。

0067

ここで、変位状態では、ばね446Aを固定部444Aに当接させてもよいし、当接させなくてもよい。また、ばね446Aを固定部444Aに当接させる場合、ばね446Aと固定部444Aとを溶融等によって固定してしまってもよい。これにより、固定検出電極442Aが基板2に固定されるため、固定検出電極442Aの不本意な変位を防止することができる。

0068

なお、本実施形態では、ばね446Aが固定部444Aに当接するようになっているが、これに限定されず、例えば、固定検出電極442Aが固定部444Aに当接するようになっていてもよい。

0069

また、本実施形態では、静電引力によって、固定検出電極442AだけがY軸方向プラス側(固定検出電極442Aの電極指4421Aが可動検出電極441Aの電極指4411Aに接近する方向)に変位するが、この静電力によって、さらに、可動検出電極441AがY軸方向マイナス側(可動検出電極441Aの電極指4411Aが固定検出電極442Aの電極指4421Aに接近する方向)に変位してもよい。すなわち、電極指4411A、4421Aが互いに接近するように、固定検出電極442Aと可動検出電極441Aとが共に変位してもよい。

0070

以上、本実施形態の物理量センサー1について説明した。このような物理量センサー1は、前述したように、基板2と、電極指4411A(第1電極指)を備える可動検出電極441A(第1検出電極)と、電極指4411B(第1電極指)を備える可動検出電極441B(第1検出電極)と、基板2に対して可動検出電極441AをY軸方向(第1方向)に変位可能に支持する検出ばね46A(第1ばね)と、基板2に対して可動検出電極441BをY軸方向(第1方向)に変位可能に支持する検出ばね46B(第1ばね)と、電極指4411AとY軸方向に間隔を隔てて配置されている電極指4421A(第2電極指)を備える固定検出電極442A(第2検出電極)と、電極指4411AとY軸方向に間隔を隔てて配置されている電極指4431A(第2電極指)を備える固定検出電極443A(第2検出電極)と、電極指4411BとY軸方向に間隔を隔てて配置されている電極指4421B(第2電極指)を備える固定検出電極442B(第2検出電極)と、電極指4411BとY軸方向に間隔を隔てて配置されている電極指4431B(第2電極指)を備える固定検出電極443B(第2検出電極)と、固定検出電極442AをY軸方向に変位可能に支持するばね446A(第2ばね)と、固定検出電極443AをY軸方向に変位可能に支持するばね447A(第2ばね)と、固定検出電極442BをY軸方向に変位可能に支持するばね446B(第2ばね)と、固定検出電極443BをY軸方向に変位可能に支持するばね447B(第2ばね)と、を備えている。

0071

そのため、ばね446Aを弾性変形させつつ固定検出電極442AがY軸方向に変位することで、電極指4411A、4421AのギャップGを自然状態よりも小さくすることができ、これらの間の静電容量をより大きくすることができる。同様に、ばね447Aを弾性変形させつつ固定検出電極443AがY軸方向に変位することで、電極指4411A、4431AのギャップGを自然状態よりも小さくすることができ、これらの間の静電容量をより大きくすることができる。同様に、ばね446Bを弾性変形させつつ固定検出電極442BがY軸方向に変位することで、電極指4411B、4421BのギャップGを自然状態よりも小さくすることができ、これらの間の静電容量をより大きくすることができる。同様に、ばね447Bを弾性変形させつつ固定検出電極443BがY軸方向に変位することで、電極指4411B、4431BのギャップGを自然状態よりも小さくすることができ、これらの間の静電容量をより大きくすることができる。また、製造後にギャップGを調整することができるため、加工バラつきに応じて、ギャップGを最適化することもできる。そのため、角速度ωzを精度よく検出することができる。

0072

また、前述したように、物理量センサー1では、可動検出電極441Aと固定検出電極442Aとの間に電位差を与えることで電極指4411Aと電極指4421Aとの間に静電引力が作用し、当該静電引力によって、電極指4421Aが電極指4411Aに接近するように固定検出電極442AがY軸方向に変位し、電極指4411Aと電極指4421AとのギャップGが自然状態と比べて小さくなる。これにより、比較的簡単に、電極指4411A、4421AのギャップGを自然状態と比べて小さくすることができる。固定検出電極443A、442B、443Bについても同様である。

0073

また、前述したように、ばね446Aのばね定数k1は、検出ばね46Aのばね定数k2よりも大きい。ばね447A、446B、447Bについても同様である。これにより、固定検出電極442A、443A、442B、443Bが振動し難くなり、固定検出電極442A、443A、442B、443Bの不本意な変位を抑制することができる。そのため、角速度ωz以外の物理量による静電容量Ca、Cbの変化が抑制され、より精度よく、角速度ωzを検出することができる。

0074

また、前述したように、物理量センサー1は、固定検出電極442AのY軸方向への変位を規制する規制部449Aと、固定検出電極443AのY軸方向への変位を規制する規制部448Aと、固定検出電極442BのY軸方向への変位を規制する規制部449Bと、固定検出電極443BのY軸方向への変位を規制する規制部448Bと、を有している。これにより、固定検出電極442A、443A、442B、443Bの過度な変位を抑制することができ、例えば、ばね446A、447A、446B、447Bの破損を抑制することができる。

0075

また、前述したように、物理量センサー1では、ばね446Aが規制部449Aに当接することで、固定検出電極442AのY軸方向への変位が規制され、ばね447Aが規制部448Aに当接することで、固定検出電極443AのY軸方向への変位が規制され、ばね446Bが規制部449Bに当接することで、固定検出電極442BのY軸方向への変位が規制され、ばね447Bが規制部448Bに当接することで、固定検出電極443BのY軸方向への変位が規制される。これにより、比較的簡単な構成で、固定検出電極442A、443A、442B、443Bの過度な変位を抑制することができる。

0076

また、前述したように、物理量センサー1は、ばね446Aを介して固定検出電極442Aと接続され、基板2に固定されている固定部444Aと、ばね447Aを介して固定検出電極443Aと接続され、基板2に固定されている固定部445Aと、ばね446Bを介して固定検出電極442Bと接続され、基板2に固定されている固定部444Bと、ばね447Bを介して固定検出電極443Bと接続され、基板2に固定されている固定部445Bと、を有している。そして、固定部444Aが規制部449Aを兼ね、固定部445Aが規制部448Aを兼ね、固定部444Bが規制部449Bを兼ね、固定部445Bが規制部448Bを兼ねている。これにより、素子部4の構成が簡単なものとなる。また、物理量センサー1の小型化を図ることができる。

0077

<第2実施形態>
次に、本発明の第2実施形態に係る物理量センサーについて説明する。

0078

図8は、本発明の第2実施形態に係る物理量センサーの素子部を示す平面図である。図9は、図8に示す素子部の部分拡大平面図である。

0079

本実施形態に係る物理量センサー1では、主に、素子部4の構成が異なること以外は、前述した第1実施形態に係る物理量センサー1と同様である。

0080

なお、以下の説明では、第2実施形態の物理量センサー1に関し、前述した第1実施形態との相違点を中心に説明し、同様の事項に関してはその説明を省略する。また、図8および図9では、それぞれ、前述した第1実施形態と同様の構成について、同一符号を付している。

0081

図8に示すように、素子部4は、ばね446AとY軸方向に並んで配置された固定電極51と、ばね447AとY軸方向に並んで配置された固定電極52と、ばね446BとY軸方向に並んで配置された固定電極53と、ばね447BとY軸方向に並んで配置された固定電極54と、を有している。固定電極51、52、53、54は、それぞれ、基板2に固定されている。

0082

このような構成では、図9に示すように、固定電極51に電圧(直流電圧)を印加することで、ばね446Aと固定電極51との間に静電引力が生じ、この静電引力によって固定検出電極442AがY軸方向に変位する。すなわち、ばね446Aと固定電極51との間に電位差を与えることで、ばね446Aと固定電極51との間に静電引力が作用し、当該静電引力によって、電極指4421Aが電極指4411Aに接近するように固定検出電極442AがY軸方向に変位し、電極指4411Aと電極指4421AとのギャップGが自然状態と比べて小さくなる。固定電極52、53、54についても、固定電極51と同様の機能を有する。

0083

例えば、前述した第1実施形態では、駆動電圧である電圧V1を利用して静電引力を発生させていたが、電圧V1にはある程度の制限があり、電圧V1の大きさをそれほど自由に変更することができない。これに対して、本実施形態では、静電引力を発生させるために電圧V1とは異なる電圧であって、固定検出電極442A、443A、442B、443BをY軸方向に変位させるため専用の電圧を用いているため、当該電圧の大きさを自由に変更することができる。そのため、ギャップGの調整範囲調整精度増し、より精度よく、角速度ωzを検出することができる。

0084

以上、第2実施形態の物理量センサー1について説明した。このような第2実施形態によっても、前述した第1実施形態と同様の効果を発揮することができる。

0085

<第3実施形態>
次に、本発明の第3実施形態に係る慣性計測装置について説明する。

0086

図10は、本発明の第3実施形態に係る慣性計測装置の分解斜視図である。図11は、図10に示す慣性計測装置が有する基板の斜視図である。

0087

図10に示す慣性計測装置2000(IMU:Inertial Measurement Unit)は、自動車や、ロボットなどの運動体被装着装置)の姿勢や、挙動慣性運動量)を検出する装置である。慣性計測装置2000は、3軸の加速度センサーと、3軸の角速度センサーと、を備えた、いわゆる6軸モーションセンサーとして機能する。

0088

慣性計測装置2000は、平面形状が略正方形直方体である。また、正方形対角線方向に位置する2ヶ所の頂点近傍に、固定部としてのネジ穴2110が形成されている。この2ヶ所のネジ穴2110に2本のネジを通して、自動車などの被装着体の被装着面に慣性計測装置2000を固定することができる。なお、部品選定設計変更により、例えば、スマートフォンや、デジタルカメラに搭載可能なサイズに小型化することも可能である。

0089

慣性計測装置2000は、アウターケース2100と、接合部材2200と、センサーモジュール2300と、を有し、アウターケース2100の内部に、接合部材2200を介在させて、センサーモジュール2300を挿入した構成となっている。また、センサーモジュール2300は、インナーケース2310と、基板2320と、を有している。

0090

アウターケース2100の外形は、慣性計測装置2000の全体形状と同様に、平面形状が略正方形の直方体であり、正方形の対角線方向に位置する2ヶ所の頂点近傍に、それぞれネジ穴2110が形成されている。また、アウターケース2100は、箱状であり、その内部にセンサーモジュール2300が収納されている。

0091

インナーケース2310は、基板2320を支持する部材であり、アウターケース2100の内部に収まる形状となっている。また、インナーケース2310には、基板2320との接触を防止するための凹部2311や後述するコネクター2330を露出させるための開口2312が形成されている。このようなインナーケース2310は、接合部材2200(例えば、接着剤含浸させたパッキン)を介してアウターケース2100に接合されている。また、インナーケース2310の下面には接着剤を介して基板2320が接合されている。

0092

図11に示すように、基板2320の上面には、コネクター2330、Z軸まわりの角速度を検出する角速度センサー2340z、X軸、Y軸およびZ軸の各軸方向の加速度を検出する加速度センサー2350などが実装されている。また、基板2320の側面には、X軸まわりの角速度を検出する角速度センサー2340xおよびY軸まわりの角速度を検出する角速度センサー2340yが実装されている。なお、角速度センサー2340z、2340x、2340yとしては、特に限定されず、例えば、コリオリの力を利用した振動ジャイロセンサーを用いることができる。特に、Z軸方向の角速度を検出するものとして、前述した実施形態のいずれかの構成を用いることができる。また、加速度センサー2350としては、特に限定されず、例えば、静電容量型の加速度センサーを用いることができる。

0093

また、基板2320の下面には、制御IC2360が実装されている。制御IC2360は、MCU(Micro Controller Unit)であり、不揮発性メモリーを含む記憶部や、A/Dコンバーターなどを内蔵しており、慣性計測装置2000の各部を制御する。記憶部には、加速度、および角速度を検出するための順序と内容を規定したプログラムや、検出データデジタル化してパケットデータに組込むプログラム、付随するデータなどが記憶されている。なお、基板2320には、その他にも複数の電子部品が実装されている。

0094

以上、慣性計測装置2000(慣性計測装置)について説明した。このような慣性計測装置2000は、物理量センサーとしての角速度センサー2340z、2340x、2340yおよび加速度センサー2350と、これら各センサー2340z、2340x、2340y、2350の駆動を制御する制御IC2360(制御回路)と、を含んでいる。これにより、本発明の物理量センサーの効果を享受でき、信頼性の高い慣性計測装置2000が得られる。

0095

<第4実施形態>
次に、本発明の第4実施形態に係る移動体測位装置について説明する。

0096

図12は、本発明の第4実施形態に係る移動体測位装置の全体システムを示すブロック図である。図13は、図12に示す移動体測位装置の作用を示す図である。

0097

図12に示す移動体測位装置3000は、移動体に装着して用い、当該移動体の測位を行うための装置である。移動体としては、特に限定されず、自転車、自動車(四輪自動車およびバイクを含む)、電車飛行機等のいずれでもよいが、本実施形態では四輪自動車として説明する。移動体測位装置3000は、慣性計測装置3100(IMU)と、演算処理部3200と、GPS受信部3300と、受信アンテナ3400と、位置情報取得部3500と、位置合成部3600と、処理部3700と、通信部3800と、表示部3900と、を有している。なお、慣性計測装置3100としては、例えば、前述した実施形態の慣性計測装置2000を用いることができる。

0098

また、慣性計測装置3100は、3軸の加速度センサー3110と、3軸の角速度センサー3120と、を有している。演算処理部3200は、加速度センサー3110からの加速度データおよび角速度センサー3120からの角速度データを受け、これらデータに対して慣性航法演算処理を行い、慣性航法測位データ(移動体の加速度および姿勢を含むデータ)を出力する。

0099

また、GPS受信部3300は、受信アンテナ3400を介してGPS衛星からの信号(GPS搬送波。位置情報が重畳された衛星信号)を受信する。また、位置情報取得部3500は、GPS受信部3300が受信した信号に基づいて、移動体測位装置3000(移動体)の位置(緯度経度、高度)、速度、方位を表すGPS測位データを出力する。このGPS測位データには、受信状態受信時刻等を示すステータスデータも含まれている。

0100

位置合成部3600は、演算処理部3200から出力された慣性航法測位データおよび位置情報取得部3500から出力されたGPS測位データに基づいて、移動体の位置、具体的には移動体が地面のどの位置を走行しているかを算出する。例えば、GPS測位データに含まれている移動体の位置が同じであっても、図13に示すように、地面の傾斜等の影響によって移動体の姿勢が異なっていれば、地面の異なる位置を移動体が走行していることになる。そのため、GPS測位データだけでは移動体の正確な位置を算出することができない。そこで、位置合成部3600は、慣性航法測位データ(特に、移動体の姿勢に関するデータ)を用いて、移動体が地面のどの位置を走行しているのかを算出する。なお、当該判定は、三角関数(鉛直方向に対する傾きθ)を用いた演算によって比較的簡単に行うことができる。

0101

位置合成部3600から出力された位置データは、処理部3700によって所定の処理が行われ、測位結果として、表示部3900に表示されるようになっている。また、位置データは、通信部3800によって外部装置に送信されるようになっていてもよい。

0102

以上、移動体測位装置3000について説明した。このような移動体測位装置3000は、前述したように、慣性計測装置3100と、測位用衛星から位置情報が重畳された衛星信号を受信するGPS受信部3300(受信部)と、受信した衛星信号に基づいて、GPS受信部3300の位置情報を取得する位置情報取得部3500(取得部)と、慣性計測装置3100から出力された慣性航法測位データ(慣性データ)に基づいて、移動体の姿勢を演算する演算処理部3200(演算部)と、算出された姿勢に基づいて位置情報を補正することにより、移動体の位置を算出する位置合成部3600(算出部)と、を含んでいる。これにより、本発明の慣性計測装置の効果を享受でき、信頼性の高い移動体測位装置3000が得られる。

0103

<第5実施形態>
次に、本発明の第5実施形態に係る電子機器について説明する。
図14は、本発明の第5実施形態に係る電子機器を示す斜視図である。

0104

図14に示すモバイル型(またはノート型)のパーソナルコンピューター1100は、本発明の電子機器を適用したものである。この図において、パーソナルコンピューター1100は、キーボード1102を備えた本体部1104と、表示部1108を備えた表示ユニット1106と、により構成され、表示ユニット1106は、本体部1104に対しヒンジ構造部を介して回動可能に支持されている。

0105

このようなパーソナルコンピューター1100には、物理量センサー1と、物理量センサー1の駆動を制御する制御回路1110と、物理量センサー1により検出された物理量を、例えば環境温度に基づいて補正する補正回路1120と、が内蔵されている。なお、物理量センサー1としては、特に限定されないが、例えば、前述した各実施形態のいずれのものも用いることができる。

0106

このようなパーソナルコンピューター1100(電子機器)は、物理量センサー1と、制御回路1110と、補正回路1120と、を有している。そのため、前述した物理量センサー1の効果を享受でき、高い信頼性を発揮することができる。

0107

<第6実施形態>
次に、本発明の第6実施形態に係る電子機器について説明する。
図15は、本発明の第6実施形態に係る電子機器を示す斜視図である。

0108

図15に示す携帯電話機1200(PHSも含む)は、本発明の電子機器を適用したものである。この図において、携帯電話機1200は、アンテナ(図示せず)、複数の操作ボタン1202、受話口1204および送話口1206を備え、操作ボタン1202と受話口1204との間には、表示部1208が配置されている。

0109

このような携帯電話機1200には、物理量センサー1と、物理量センサー1の駆動を制御する制御回路1210と、物理量センサー1により検出された物理量を、例えば環境温度に基づいて補正する補正回路1220と、が内蔵されている。なお、物理量センサー1としては、特に限定されないが、例えば、前述した各実施形態のいずれのものも用いることができる。

0110

このような携帯電話機1200(電子機器)は、物理量センサー1と、制御回路1210と、補正回路1220と、を有している。そのため、前述した物理量センサー1の効果を享受でき、高い信頼性を発揮することができる。

0111

<第7実施形態>
次に、本発明の第7実施形態に係る電子機器について説明する。
図16は、本発明の第7実施形態に係る電子機器を示す斜視図である。

0112

図16に示すデジタルスチールカメラ1300は、本発明の電子機器を適用したものである。この図において、ケース1302の背面には表示部1310が設けられ、CCDによる撮像信号に基づいて表示を行う構成になっており、表示部1310は、被写体を電子画像として表示するファインダーとして機能する。また、ケース1302の正面側(図中裏面側)には、光学レンズ撮像光学系)やCCDなどを含む受光ユニット1304が設けられている。そして、撮影者が表示部1310に表示された被写体像を確認し、シャッターボタン1306を押すと、その時点におけるCCDの撮像信号が、メモリー1308に転送・格納される。

0113

このようなデジタルスチールカメラ1300には、物理量センサー1と、物理量センサー1の駆動を制御する制御回路1320と、物理量センサー1により検出された物理量を、例えば環境温度に基づいて補正する補正回路1330と、が内蔵されている。なお、物理量センサー1としては、特に限定されないが、例えば、前述した各実施形態のいずれのものも用いることができる。

0114

このようなデジタルスチールカメラ1300(電子機器)は、物理量センサー1と、制御回路1320と、補正回路1330と、を有している。そのため、前述した物理量センサー1の効果を享受でき、高い信頼性を発揮することができる。

0116

<第8実施形態>
次に、本発明の第8実施形態に係る移動体について説明する。
図17は、本発明の第8実施形態に係る移動体を示す斜視図である。

0117

図17に示す自動車1500は、本発明の移動体を適用した自動車である。この図において、自動車1500には、物理量センサー1が内蔵されており、物理量センサー1によって車体1501の姿勢を検出することができる。物理量センサー1の検出信号は、車体姿勢制御装置1502(姿勢制御部)に供給され、車体姿勢制御装置1502は、その信号に基づいて車体1501の姿勢を検出し、検出結果に応じてサスペンション硬軟を制御したり、個々の車輪1503のブレーキを制御したりすることができる。ここで、物理量センサー1としては、例えば、前述した各実施形態と同様のものを用いることができる。

0118

このような自動車1500(移動体)は、物理量センサー1と、車体姿勢制御装置1502(姿勢制御部)と、を有している。そのため、前述した物理量センサー1の効果を享受でき、高い信頼性を発揮することができる。

0119

なお、物理量センサー1は、他にも、カーナビゲーションシステムカーエアコンアンチロックブレーキシステム(ABS)、エアバック、タイヤプレッシャーモニタリング・システム(TPMS:Tire Pressure Monitoring System)、エンジンコントロールハイブリッド自動車電気自動車電池モニター等の電子制御ユニット(ECU:electronic control unit)に広く適用できる。

0120

また、移動体としては、自動車1500に限定されず、例えば、飛行機、ロケット人工衛星、船舶、AGV無人搬送車)、二足歩行ロボットドローン等の無人飛行機等にも適用することができる。

0121

以上、本発明の物理量センサー、慣性計測装置、移動体測位装置、電子機器および移動体を図示の実施形態に基づいて説明したが、本発明はこれに限定されるものではなく、各部の構成は、同様の機能を有する任意の構成のものに置換することができる。また、本発明に他の任意の構成物が付加されていてもよい。また、前述した実施形態を適宜組み合わせてもよい。

0122

また、前述した実施形態では、物理量センサーとして角速度を検出するものについて説明したが、これに限定されず、例えば、加速度を検出するものであってもよい。また、加速度と角速度の両方を検出するものであってもよい。

0123

1…物理量センサー、2…基板、21…凹部、22、221、222、223、224、225…マウント、23、24、25、26、27、28…溝部、3…蓋体、31…凹部、32…連通孔、33…封止部材、39…ガラスフリット、4…素子部、4A、4B…可動体、40A、40B…接続ばね、41A、41B…駆動部、411A、411B…可動駆動電極、412A、412B…固定駆動電極、42A、42B…固定部、43A、43B…駆動ばね、44A、44B…検出部、441A、441B…可動検出電極、4411A、4411B…電極指、442A、442B…固定検出電極、4421A、4421B…電極指、443A、443B…固定検出電極、4431A、4431B…電極指、444A、444B、445A、445B…固定部、446A、446B、447A、447B…ばね、4461A…部分、448A、448B、449A、449B…規制部、451、452…固定部、46A、46B…検出ばね、47A、47B…梁、48…フレーム、481、482…欠損部、488、489…フレームばね、49A、49B…モニター部、491A、491B…可動モニター電極、492A、492B、493A、493B…固定モニター電極、51、52、53、54…固定電極、73、74、75、76、77、78…配線、1100…パーソナルコンピューター、1102…キーボード、1104…本体部、1106…表示ユニット、1108…表示部、1110…制御回路、1120…補正回路、1200…携帯電話機、1202…操作ボタン、1204…受話口、1206…送話口、1208…表示部、1210…制御回路、1220…補正回路、1300…デジタルスチールカメラ、1302…ケース、1304…受光ユニット、1306…シャッターボタン、1308…メモリー、1310…表示部、1320…制御回路、1330…補正回路、1500…自動車、1501…車体、1502…車体姿勢制御装置、1503…車輪、2000…慣性計測装置、2100…アウターケース、2110…ネジ穴、2200…接合部材、2300…センサーモジュール、2310…インナーケース、2311…凹部、2312…開口、2320…基板、2330…コネクター、2340x、2340y、2340z…角速度センサー、2350…加速度センサー、2360…制御IC、3000…移動体測位装置、3100…慣性計測装置、3110…加速度センサー、3120…角速度センサー、3200…演算処理部、3300…GPS受信部、3400…受信アンテナ、3500…位置情報取得部、3600…位置合成部、3700…処理部、3800…通信部、3900…表示部、A…矢印、G、G1…ギャップ、O…中心、P…電極パッド、S…収納空間、V1、V2…電圧、α…仮想直線、θ…傾き、ωz…角速度

ページトップへ

この技術を出願した法人

この技術を発明した人物

ページトップへ

関連する挑戦したい社会課題

関連する公募課題

ページトップへ

技術視点だけで見ていませんか?

この技術の活用可能性がある分野

分野別動向を把握したい方- 事業化視点で見る -

(分野番号表示ON)※整理標準化データをもとに当社作成

ページトップへ

おススメ サービス

おススメ astavisionコンテンツ

新着 最近 公開された関連が強い技術

  • 三菱電機株式会社の「 半導体圧力センサ」が 公開されました。( 2019/06/27)

    【課題】異なる圧力帯域においても、高精度に圧力を測定することができる機能安全性を備えた半導体圧力センサを得ること。【解決手段】複数の凹部が形成された第1の半導体基板と、第1の半導体基板に第1の酸化膜を... 詳細

  • 三菱電機株式会社の「 半導体圧力センサ」が 公開されました。( 2019/06/27)

    【課題】サイズを大きくすることなく、高い信頼性を維持して、高精度に圧力を測定することができる水素透過防止性能を備えた半導体圧力センサを得ること。【解決手段】凹部が形成された第1の半導体基板と、第1の半... 詳細

  • 日本特殊陶業株式会社の「 歪みセンサ」が 公開されました。( 2019/06/20)

    【課題・解決手段】350℃程度の高温の環境下で使用できる歪みセンサを提供する。歪みセンサは、金属部材からなるダイヤフラムの上に、シリコンを含む歪ゲージとしての半導体素子を、ガラスを介して接合した歪みセ... 詳細

この 技術と関連性が強い技術

関連性が強い 技術一覧

この 技術と関連性が強い人物

関連性が強い人物一覧

この 技術と関連する社会課題

関連する挑戦したい社会課題一覧

この 技術と関連する公募課題

関連する公募課題一覧

astavision 新着記事

サイト情報について

本サービスは、国が公開している情報(公開特許公報、特許整理標準化データ等)を元に構成されています。出典元のデータには一部間違いやノイズがあり、情報の正確さについては保証致しかねます。また一時的に、各データの収録範囲や更新周期によって、一部の情報が正しく表示されないことがございます。当サイトの情報を元にした諸問題、不利益等について当方は何ら責任を負いかねることを予めご承知おきのほど宜しくお願い申し上げます。

主たる情報の出典

特許情報…特許整理標準化データ(XML編)、公開特許公報、特許公報、審決公報、Patent Map Guidance System データ