図面 (/)

技術 地絡検出装置

出願人 矢崎総業株式会社
発明者 河村佳浩
出願日 2017年10月4日 (1年10ヶ月経過) 出願番号 2017-194009
公開日 2019年4月25日 (3ヶ月経過) 公開番号 2019-066402
状態 未査定
技術分野 短絡、断線、漏洩,誤接続の試験
主要キーワード 各計測期間 計測経路 接地構成 極側電源ライン 高電圧設備 並列合成抵抗 コンデンサ正極 検出用コンデンサ
関連する未来課題
重要な関連分野

この項目の情報は公開日時点(2019年4月25日)のものです。
また、この項目は機械的に抽出しているため、正しく解析できていない場合があります

図面 (8)

課題

大容量Yコンデンサに対応した地絡検出装置を提供する。

解決手段

コンデンサのフル充電電圧計測する制御部と、バッテリ正極側とコンデンサ正極側端とを接続する第1SWおよび第1抵抗と、バッテリ負極側とコンデンサ負極側端とを接続する第2SWおよび第2抵抗と、コンデンサ正極側端と接地とを接続する第3SWと、負極側端と接地とを接続する第4SWと、バッテリ正極側と接地とを接続する正極側終端抵抗と、負極側と接地とを接続する負極側終端抵抗とを備え、制御部は、第1第4SWがオン状態で計測したコンデンサの充電電圧Vpと、第2第3SWがオン状態で計測した充電電圧Vnとを比較し、電圧Vpの方が小さく、小ささの度合いが基準よりも大きい場合に、正極側絶縁抵抗が低下していると判定し、電圧Vnの方が小さく、小ささの度合いが基準よりも大きい場合に、負極側絶縁抵抗が低下していると判定する地絡検出装置。

概要

背景

駆動源としてエンジン電気モータとを備えるハイブリッド車や、電気自動車のような車両においては、車体上に搭載したバッテリ充電し、バッテリから供給される電気エネルギーを利用して推進力を発生する。一般に、バッテリ関連の電源回路は、200V以上の高電圧を扱う高電圧回路として構成されており、安全性確保ため、バッテリを含む高電圧回路は接地基準電位点となる車体から電気的に絶縁された非接地構成となっている。

非接地の高電圧バッテリを搭載した車両では、高電圧バッテリが設けられた系、具体的には、高電圧バッテリからモータに至るメイン電源系と車体との絶縁状態地絡)を監視するために地絡検出装置が備えられている。地絡検出装置は、フライングキャパシタと呼ばれるコンデンサを利用した方式が広く用いられている。

図7は、フライングキャパシタ方式の従来の地絡検出装置の回路例を示す図である。本図に示すように地絡検出装置400は、非接地の高電圧バッテリ300と接続し、高電圧バッテリ300が設けられた系の地絡を検出する装置である。ここで、高電圧バッテリ300の正極側と接地間の絶縁抵抗をRLpと表し、負極側と接地間の絶縁抵抗をRLnと表すものとする。

本図に示すように、地絡検出装置400は、フライングキャパシタとして動作する検出用コンデンサC1を備えている。また、計測経路切り換えるとともに、検出用コンデンサC1の充電および放電を制御するために、検出用コンデンサC1の周辺に4つのスイッチS1〜S4を備えている。さらに、検出用コンデンサC1の充電電圧に相当する計測用電圧サンプリングするためのスイッチSaを備えている。

地絡検出装置400では、絶縁抵抗RLpおよびRLnを把握するために、V0計測期間→Vc1n計測期間→V0計測期間→Vc1p計測期間を1サイクルとして計測動作を繰り返す。いずれの計測期間とも、計測対象の電圧で検出用コンデンサC1を充電してから、検出用コンデンサC1の充電電圧の計測を行なう。そして、次の計測のために検出用コンデンサC1の放電を行なう。

V0計測期間では、高電圧バッテリ300電圧に相当する電圧を計測する。このため、スイッチS1、S2をオンにし、スイッチS3、S4をオフにして、検出用コンデンサC1を充電する。すなわち、高電圧バッテリ300、抵抗R1、検出用コンデンサC1、抵抗R2が計測経路となる。

検出用コンデンサC1の充電電圧の計測時には、スイッチS1、S2をオフにし、スイッチS3、S4をオンにするとともに、スイッチSaをオンにして制御装置420でサンプリングを行なう。その後、次の計測のために検出用コンデンサC1の放電を行なう。検出用コンデンサC1の充電電圧の計測時、検出用コンデンサC1の放電時の動作は他の計測期間においても同様である。

Vc1n計測期間では、絶縁抵抗RLnの影響を反映した電圧を計測する。このため、スイッチS1、S4をオンにし、スイッチS2、S3をオフにして、検出用コンデンサC1を充電する。すなわち、高電圧バッテリ300、抵抗R1、検出用コンデンサC1、抵抗R4、接地、絶縁抵抗RLnが計測経路となる。

Vc1p計測期間では、絶縁抵抗RLpの影響を反映した電圧を計測する。このため、スイッチS2、S3をオンにし、スイッチS1、S4をオフにして、検出用コンデンサC1を充電する。すなわち、高電圧バッテリ300、絶縁抵抗RLp、接地、抵抗R5、検出用コンデンサC1、抵抗R2が計測経路となる。

これらの計測期間で得られたV0、Vc1n、Vc1pから算出される(Vc1p+Vc1n)/V0に基づいて、(RLp×RLn)/(RLp+RLn)を求めることができることが知られている。このため、地絡検出装置400内の制御装置420は、V0、Vc1n、Vc1pを測定することにより、絶縁抵抗RLp、RLnの合成抵抗を把握することができる。そして、絶縁抵抗RLp、RLnの合成抵抗が所定の判定基準ベル以下となった場合に、地絡が発生しているものとして判定し、警報を出力する。

なお、各計測期間において、検出用コンデンサC1をフル充電とすると、V0計測期間では高電圧バッテリ300の電圧値が得られ、Vc1n計測期間、Vc1p計測期間では、単に高電圧バッテリ300を絶縁抵抗RLp、RLnで分圧した値が得られてしまい、上述の式で絶縁抵抗を算出することができない。このため、例えば、検出用コンデンサC1が50%程度充電される程度の時間を各計測期間の充電時間とする。

概要

大容量Yコンデンサに対応した地絡検出装置を提供する。コンデンサのフル充電電圧を計測する制御部と、バッテリ正極側とコンデンサ正極側端とを接続する第1SWおよび第1抵抗と、バッテリ負極側とコンデンサ負極側端とを接続する第2SWおよび第2抵抗と、コンデンサ正極側端と接地とを接続する第3SWと、負極側端と接地とを接続する第4SWと、バッテリ正極側と接地とを接続する正極側終端抵抗と、負極側と接地とを接続する負極側終端抵抗とを備え、制御部は、第1第4SWがオン状態で計測したコンデンサの充電電圧Vpと、第2第3SWがオン状態で計測した充電電圧Vnとを比較し、電圧Vpの方が小さく、小ささの度合いが基準よりも大きい場合に、正極側絶縁抵抗が低下していると判定し、電圧Vnの方が小さく、小ささの度合いが基準よりも大きい場合に、負極側絶縁抵抗が低下していると判定する地絡検出装置。

目的

本発明は、大容量Yコンデンサに対応した地絡検出装置を提供する

効果

実績

技術文献被引用数
0件
牽制数
0件

この技術が所属する分野

ライセンス契約や譲渡などの可能性がある特許掲載中! 開放特許随時追加・更新中 詳しくはこちら

請求項1

高電圧バッテリと接続し、前記高電圧バッテリが設けられた系の絶縁抵抗低下を検出する地絡検出装置であって、フライングキャパシタとして動作する検出用コンデンサと、前記検出用コンデンサのフル充電電圧計測する制御部と、前記高電圧バッテリの正極側と前記検出用コンデンサの正極側端とを直列的に接続する第1スイッチおよび第1抵抗と、前記高電圧バッテリの負極側と前記検出用コンデンサの負極側端とを直列的に接続する第2スイッチおよび第2抵抗と、前記検出用コンデンサの正極側端と接地とを接続する第3スイッチと、前記検出用コンデンサの負極側端と接地とを接続する第4スイッチと、前記高電圧バッテリの正極側と接地とを接続する正極側終端抵抗と、前記高電圧バッテリの負極側と接地とを接続する負極側終端抵抗とを備え、前記制御部は、前記第1スイッチおよび前記第4スイッチがオン状態で計測した前記検出用コンデンサの充電電圧Vpと、前記第2スイッチおよび前記第3スイッチがオン状態で計測した前記検出用コンデンサの充電電圧Vnとを比較し、充電電圧Vpの方が小さく、小ささの度合いが所定の基準よりも大きい場合に、正極側絶縁抵抗が低下していると判定し、充電電圧Vnの方が小さく、小ささの度合いが所定の基準よりも大きい場合に、負極側絶縁抵抗が低下していると判定することを特徴とする地絡検出装置。

請求項2

前記制御部は、充電電圧Vp、充電電圧Vnの小さい方の小ささの度合いが所定の基準よりも大きくない場合に、前記第1スイッチ、前記第4スイッチおよび前記第2スイッチをオン状態として前記検出用コンデンサの充電電圧Vppを計測し、あるいは、前記第2スイッチ、前記第3スイッチおよび前記第1スイッチをオン状態として前記検出用コンデンサの充電電圧Vnnを計測し、前記充電電圧Vpから前記充電電圧Vppへの変化率が基準より小さい場合、あるいは、前記充電電圧Vnから前記充電電圧Vnnへの変化率が基準より小さい場合に、両極で絶縁抵抗が低下していると判定することを特徴とする請求項1に記載の地絡検出装置。

請求項3

前記制御部は、充電電圧Vp、充電電圧Vnの小さい方の小ささの度合いが所定の基準よりも大きくない場合に、充電電圧Vpの方が小さいときには、充電電圧Vppを計測し、充電電圧Vnの方が小さいときには、充電電圧Vnnを計測することを特徴とする請求項2に記載の地絡検出装置。

技術分野

0001

本発明は、フライングキャパシタを用いた地絡検出装置に関する。

背景技術

0002

駆動源としてエンジン電気モータとを備えるハイブリッド車や、電気自動車のような車両においては、車体上に搭載したバッテリ充電し、バッテリから供給される電気エネルギーを利用して推進力を発生する。一般に、バッテリ関連の電源回路は、200V以上の高電圧を扱う高電圧回路として構成されており、安全性確保ため、バッテリを含む高電圧回路は接地基準電位点となる車体から電気的に絶縁された非接地構成となっている。

0003

非接地の高電圧バッテリを搭載した車両では、高電圧バッテリが設けられた系、具体的には、高電圧バッテリからモータに至るメイン電源系と車体との絶縁状態地絡)を監視するために地絡検出装置が備えられている。地絡検出装置は、フライングキャパシタと呼ばれるコンデンサを利用した方式が広く用いられている。

0004

図7は、フライングキャパシタ方式の従来の地絡検出装置の回路例を示す図である。本図に示すように地絡検出装置400は、非接地の高電圧バッテリ300と接続し、高電圧バッテリ300が設けられた系の地絡を検出する装置である。ここで、高電圧バッテリ300の正極側と接地間の絶縁抵抗をRLpと表し、負極側と接地間の絶縁抵抗をRLnと表すものとする。

0005

本図に示すように、地絡検出装置400は、フライングキャパシタとして動作する検出用コンデンサC1を備えている。また、計測経路切り換えるとともに、検出用コンデンサC1の充電および放電を制御するために、検出用コンデンサC1の周辺に4つのスイッチS1〜S4を備えている。さらに、検出用コンデンサC1の充電電圧に相当する計測用電圧サンプリングするためのスイッチSaを備えている。

0006

地絡検出装置400では、絶縁抵抗RLpおよびRLnを把握するために、V0計測期間→Vc1n計測期間→V0計測期間→Vc1p計測期間を1サイクルとして計測動作を繰り返す。いずれの計測期間とも、計測対象の電圧で検出用コンデンサC1を充電してから、検出用コンデンサC1の充電電圧の計測を行なう。そして、次の計測のために検出用コンデンサC1の放電を行なう。

0007

V0計測期間では、高電圧バッテリ300電圧に相当する電圧を計測する。このため、スイッチS1、S2をオンにし、スイッチS3、S4をオフにして、検出用コンデンサC1を充電する。すなわち、高電圧バッテリ300、抵抗R1、検出用コンデンサC1、抵抗R2が計測経路となる。

0008

検出用コンデンサC1の充電電圧の計測時には、スイッチS1、S2をオフにし、スイッチS3、S4をオンにするとともに、スイッチSaをオンにして制御装置420でサンプリングを行なう。その後、次の計測のために検出用コンデンサC1の放電を行なう。検出用コンデンサC1の充電電圧の計測時、検出用コンデンサC1の放電時の動作は他の計測期間においても同様である。

0009

Vc1n計測期間では、絶縁抵抗RLnの影響を反映した電圧を計測する。このため、スイッチS1、S4をオンにし、スイッチS2、S3をオフにして、検出用コンデンサC1を充電する。すなわち、高電圧バッテリ300、抵抗R1、検出用コンデンサC1、抵抗R4、接地、絶縁抵抗RLnが計測経路となる。

0010

Vc1p計測期間では、絶縁抵抗RLpの影響を反映した電圧を計測する。このため、スイッチS2、S3をオンにし、スイッチS1、S4をオフにして、検出用コンデンサC1を充電する。すなわち、高電圧バッテリ300、絶縁抵抗RLp、接地、抵抗R5、検出用コンデンサC1、抵抗R2が計測経路となる。

0011

これらの計測期間で得られたV0、Vc1n、Vc1pから算出される(Vc1p+Vc1n)/V0に基づいて、(RLp×RLn)/(RLp+RLn)を求めることができることが知られている。このため、地絡検出装置400内の制御装置420は、V0、Vc1n、Vc1pを測定することにより、絶縁抵抗RLp、RLnの合成抵抗を把握することができる。そして、絶縁抵抗RLp、RLnの合成抵抗が所定の判定基準ベル以下となった場合に、地絡が発生しているものとして判定し、警報を出力する。

0012

なお、各計測期間において、検出用コンデンサC1をフル充電とすると、V0計測期間では高電圧バッテリ300の電圧値が得られ、Vc1n計測期間、Vc1p計測期間では、単に高電圧バッテリ300を絶縁抵抗RLp、RLnで分圧した値が得られてしまい、上述の式で絶縁抵抗を算出することができない。このため、例えば、検出用コンデンサC1が50%程度充電される程度の時間を各計測期間の充電時間とする。

先行技術

0013

特開2015−206784号公報

発明が解決しようとする課題

0014

一般に、高電圧バッテリ300の正極側電源ライン301と接地電極との間および負極側電源ライン302と接地電極との間には、電源の高周波ノイズを除去したり動作を安定化するために、それぞれYコンデンサラインバイパス・コンデンサ)と呼ばれるコンデンサCYp、CYnが接続される。特に、高電圧バッテリ300が充電設備をはじめとした高電圧設備と接続される場合等には、大容量のYコンデンサが接続される。

0015

大容量のYコンデンサが接続された場合、地絡検出装置400において各計測を行なうときに、Yコンデンサに蓄積された電荷が検出用コンデンサC1に移動する等により計測値に影響を与えてしまう。この影響を軽減するために検出用コンデンサC1の容量を大きくすると、その分充電速度が遅くなり、測定時間が長くなってしまう。

0016

そこで、本発明は、大容量Yコンデンサに対応した地絡検出装置を提供することを目的とする。

課題を解決するための手段

0017

上記課題を解決するため、本発明の地絡検出装置は、高電圧バッテリと接続し、前記高電圧バッテリが設けられた系の絶縁抵抗低下を検出する地絡検出装置であって、フライングキャパシタとして動作する検出用コンデンサと、前記検出用コンデンサのフル充電電圧を計測する制御部と、前記高電圧バッテリの正極側と前記検出用コンデンサの正極側端とを直列的に接続する第1スイッチおよび第1抵抗と、前記高電圧バッテリの負極側と前記検出用コンデンサの負極側端とを直列的に接続する第2スイッチおよび第2抵抗と、前記検出用コンデンサの正極側端と接地とを接続する第3スイッチと、前記検出用コンデンサの負極側端と接地とを接続する第4スイッチと、前記高電圧バッテリの正極側と接地とを接続する正極側終端抵抗と、前記高電圧バッテリの負極側と接地とを接続する負極側終端抵抗とを備え、前記制御部は、前記第1スイッチおよび前記第4スイッチがオン状態で計測した前記検出用コンデンサの充電電圧Vpと、前記第2スイッチおよび前記第3スイッチがオン状態で計測した前記検出用コンデンサの充電電圧Vnとを比較し、充電電圧Vpの方が小さく、小ささの度合いが所定の基準よりも大きい場合に、正極側絶縁抵抗が低下していると判定し、充電電圧Vnの方が小さく、小ささの度合いが所定の基準よりも大きい場合に、負極側絶縁抵抗が低下していると判定することを特徴とする。
ここで、前記制御部は、充電電圧Vp、充電電圧Vnの小さい方の小ささの度合いが所定の基準よりも大きくない場合に、前記第1スイッチ、前記第4スイッチおよび前記第2スイッチをオン状態として前記検出用コンデンサの充電電圧Vppを計測し、あるいは、前記第2スイッチ、前記第3スイッチおよび前記第1スイッチをオン状態として前記検出用コンデンサの充電電圧Vnnを計測し、前記充電電圧Vpから前記充電電圧Vppへの変化率が基準より小さい場合、あるいは、前記充電電圧Vnから前記充電電圧Vnnへの変化率が基準より小さい場合に、両極で絶縁抵抗が低下していると判定してもよい。
このとき、前記制御部は、充電電圧Vp、充電電圧Vnの小さい方の小ささの度合いが所定の基準よりも大きくない場合に、充電電圧Vpの方が小さいときには、充電電圧Vppを計測し、充電電圧Vnの方が小さいときには、充電電圧Vnnを計測するようにしてもよい。

発明の効果

0018

本発明によれば、大容量Yコンデンサに対応した地絡検出装置が提供される。

図面の簡単な説明

0019

本発明の実施形態に係る地絡検出装置の構成を示すブロック図である。
地絡検出装置の動作について説明するフローチャートである。
Vp測定について説明する図である。
Vn測定について説明する図である。
Vpp測定について説明する図である。
Vnn測定について説明する図である。
フライングキャパシタ方式の従来の地絡検出装置の回路例を示す図である。

実施例

0020

本発明の実施形態について、図面を参照して詳細に説明する。図1は、本発明の実施形態に係る地絡検出装置100の構成を示すブロック図である。本図に示すように地絡検出装置100は、高電圧バッテリ300と接続し、高電圧バッテリ300が設けられた系の地絡を検出するフライングキャパシタ方式の装置である。ここで、高電圧バッテリ300の正極側と接地間の絶縁抵抗をRLpと表し、負極側と接地間の絶縁抵抗をRLnと表すものとする。

0021

高電圧バッテリ300は、車両走行駆動用に用いられるバッテリである。高電圧バッテリ300は、リチウムイオン電池等のように充電可能なバッテリにより構成されており、図示しないバスバーを経由して放電し、インバータ等を介して接続された電気モータを駆動する。また、回生時や充電設備接続時には、バスバーを介して充電を行なう。

0022

一般に、高電圧バッテリ300の正極側電源ライン101と接地電極との間および負極側電源ライン102と接地電極との間には、電源の高周波ノイズを除去したり動作を安定化するために、それぞれYコンデンサ(ライン・バイパス・コンデンサ)と呼ばれるコンデンサCYp、CYnが接続される。

0023

本図に示すように、地絡検出装置100は、フライングキャパシタとして動作する検出用コンデンサC1と、制御装置120を備えている。検出用コンデンサC1は、正極側端が接続点Aと接続し、負極側端が接続点Bと接続している。

0024

また、地絡検出装置100は、計測経路を切り替えるとともに、検出用コンデンサC1の充電および放電を制御するために、検出用コンデンサC1の周辺に4つのスイッチS1〜S4を備えている。さらに、検出用コンデンサC1の充電電圧に相当する計測用の電圧をサンプリングするためのスイッチSaを備えている。スイッチSaは、サンプリング時のみオンにする。これらのスイッチは、光MOSFETのように絶縁型スイッチング素子で構成することができる。

0025

スイッチS1は、一端が正極側電源ライン101と接続し、他端がダイオードD1のアノード側と接続している。ダイオードD1のカソード側は抵抗R1と接続し、抵抗R1の他端は接続点Aと接続している。

0026

スイッチS2は、一端が負極側電源ライン102と接続し、他端が抵抗R2と接続している。抵抗R2の他端は接続点Bと接続している。

0027

スイッチS3は、一端が抵抗R3およびダイオードD3のアノード側と接続し、他端が抵抗R5とスイッチSaの一端と接続している。ダイオードD3のカソード側は接続点Aと接続し、抵抗R3の他端はダイオードD2のカソード側と接続し、ダイオードD2のアノード側は接続点Aと接続している。抵抗R5の他端は接地している。

0028

スイッチS4は、一端が接続点Bと接続し、他端が抵抗R4と接続している。抵抗R4の他端は接地している。スイッチSaの他端は、他端が接地されたコンデンサC2の一端および制御装置120のアナログ入力端子に接続している。

0029

制御装置120は、マイクロコンピュータ等で構成され、あらかじめ組み込まれたプログラムを実行することにより、地絡検出装置100に必要とされる各種制御を実行する。具体的には、スイッチS1〜S4を個別に制御して計測経路を切り替えるとともに、検出用コンデンサC1の充電および放電を制御する。

0030

また、制御装置120は、スイッチSaを制御して、検出用コンデンサC1の充電電圧に相当するアナログレベルをアナログ入力端子から入力し、このアナログレベルに基づいて高電圧バッテリ300が設けられた系の絶縁抵抗の低下を検出する。

0031

さらに、本実施形態では、正極側電源ライン101と接地との間に正極側終端抵抗Rispを接続し、負極側電源ライン102と接地との間に負極側終端抵抗Risnを接続している。正極側終端抵抗Rispと負極側終端抵抗Risnとは同じ抵抗値とし、地絡と判定される絶縁抵抗値よりも十分大きいものとする。

0032

また、本実施形態では、検出用コンデンサC1をフル充電の状態で計測を行なう。大容量のYコンデンサ(CYp、CYn)が接続される場合であっても検出用コンデンサC1は大容量とする必要はなく、計測のためのフル充電時間を短くすることができる。また、以下に説明するように、抵抗による高電圧バッテリ300の分圧値を計測するため、Yコンデンサの安定を待つ必要がない。

0033

次に、上記構成の地絡検出装置100の動作について図2のフローチャートを参照して説明する。上述のように、本実施形態では、検出用コンデンサC1をフル充電の状態で計測を行なう。このため、従来の絶縁抵抗算出とは異なる手法で地絡判定を行なう。

0034

まず、図3(a)に示すように、スイッチS1、スイッチS4をオン、スイッチS2、スイッチS3をオフにした状態で検出用コンデンサC1をフル充電して、このときの充電電圧Vpを計測する(S101)。

0035

ここで、充電電圧Vpは、図3(b)に示すように、高電圧バッテリ300の電圧Vbを抵抗Rpと抵抗Rnとで分圧したときに抵抗Rpに生じる電圧に相当する。なお、抵抗Rpは、正極側終端抵抗Rispと正極側絶縁抵抗RLpとの並列合成抵抗であり、抵抗Rnは、負極側終端抵抗Risnと負極側絶縁抵抗RLnとの並列合成抵抗である。

0036

次に、図4(a)に示すように、スイッチS1、スイッチS4をオフ、スイッチS2、スイッチS3をオンにした状態で検出用コンデンサC1をフル充電して、このときの充電電圧Vnを計測する(S102)。

0037

ここで、充電電圧Vnは、図4(b)に示すように、高電圧バッテリ300の電圧Vbを抵抗Rpと抵抗Rnとで分圧したときに抵抗Rnに生じる電圧に相当する。なお、充電電圧Vnの計測と充電電圧Vpの計測の順序は問わない。

0038

充電電圧Vpの方が充電電圧Vnより小さい場合(S103:Yes)は、その小ささの度合いが所定の基準より大きいとき、例えば、Vn/Vp>基準値Pのとき(S104:Yes)は、正極側絶縁抵抗RLpが低下していると判定する(S105)。

0039

これは、正極側終端抵抗Rispと負極側終端抵抗Risnとが同じ抵抗値であるため、充電電圧Vpが充電電圧Vnよりも小さいことは、正極側絶縁抵抗RLpが負極側絶縁抵抗RLnよりも小さいことを意味し、その度合いが大きいほど、正極側絶縁抵抗RLpが低下していると考えられるためである。

0040

同様に、充電電圧Vnが充電電圧Vpより小さい場合(S103:No)は、その小ささの度合いが所定の基準より大きいとき、例えば、Vp/Vn>基準値Pのとき(S110:Yes)は、負極側絶縁抵抗RLnが低下していると判定する(S111)。

0041

充電電圧Vpと充電電圧Vnとの差が相対的に小さい場合は、正極側絶縁抵抗RLp、負極側負極側絶縁抵抗RLnとも同程度に低下している可能性が少ないながらもある。そこで、充電電圧Vpが充電電圧Vnより小さい場合(S103:Yes)であって、充電電圧Vpと充電電圧Vnとの差が相対的に小さいとき、例えば、Vn/Vp≦基準値Pのとき(S104:No)は、図5(a)に示すように、スイッチS1、スイッチS4に加えてスイッチS2をオンにし、スイッチS3をオフにした状態で検出用コンデンサC1をフル充電して、このときの充電電圧Vppを計測する(S106)。

0042

ここで、充電電圧Vppは、図5(b)に示すように、高電圧バッテリ300の電圧Vbを、抵抗Rpと、抵抗Rnと抵抗R2との並列合成抵抗と、で分圧したときに、抵抗Rpに生じる電圧に相当する。抵抗R2は、地絡と判定される絶縁抵抗値よりも十分小さい抵抗値である。

0043

そして、充電電圧Vpと充電電圧Vppとがほぼ同じとみなせる場合、例えば、充電電圧Vpから充電電圧Vppへの変化率(Vp/Vpp)が基準値より小さい場合(S107:Yes)は、挿入された抵抗R2の影響が小さいときであるため、正極側絶縁抵抗RLp、負極側絶縁抵抗RLnとも低下していると判定する(S109)。

0044

一方、充電電圧Vpと充電電圧Vppとがほぼ同じとみなせない場合、例えば、充電電圧Vpから充電電圧Vppへの変化率が基準値より大きい場合(S107:No)は、挿入された抵抗R2の影響が大きいときであるため、正極側絶縁抵抗RLp、負極側絶縁抵抗RLnとも低下しておらず、正常である判定する(S108)。

0045

同様に、充電電圧Vnが充電電圧Vpより大きい場合(S103:No)であって、充電電圧Vpと充電電圧Vnとの差が相対的に小さいとき、例えば、Vp/Vn<基準値Pのとき(S110:No)は、図6(a)に示すように、スイッチS2、スイッチS3に加えてスイッチS1をオンにし、スイッチS4をオフにした状態で検出用コンデンサC1をフル充電して、このときの充電電圧Vnnを計測する(S112)。

0046

ここで、充電電圧Vnnは、図6(b)に示すように、高電圧バッテリ300の電圧Vbを、抵抗Rpと抵抗R1との並列合成抵抗と、抵抗Rnと、で分圧したときに、抵抗Rnに生じる電圧に相当する。抵抗R1は、地絡と判定される絶縁抵抗値よりも十分小さい抵抗値である。

0047

そして、充電電圧Vnと充電電圧Vnnとがほぼ同じとみなせる場合、例えば、充電電圧Vnから充電電圧Vnnへの変化率(Vn/Vnn)が基準値より小さい場合(S107:Yes)は、挿入された抵抗R1の影響が小さいときであるため、正極側絶縁抵抗RLp、負極側絶縁抵抗RLnとも低下していると判定する(S114)。

0048

一方、充電電圧Vnと充電電圧Vnnとがほぼ同じとみなせない場合、例えば、充電電圧Vnから充電電圧Vnnへの変化率が基準値より大きい場合(S113:No)は、挿入された抵抗R1の影響が大きいため、正極側絶縁抵抗RLp、負極側絶縁抵抗RLnとも低下しておらず、正常である判定する(S108)。

0049

なお、上述の例では、充電電圧Vpと充電電圧Vnとの差が相対的に小さい場合、充電電圧Vpの方が小さければ充電電圧Vppを計測し、充電電圧Vnの方が小さければ充電電圧Vnnを計測するようにしていた。これは、正極側絶縁抵抗RLp、負極側絶縁抵抗RLnのうち少しでも値の大きい方で抵抗R2あるいは抵抗R1を並列接続させたときの充電電圧変化率を判定するためである。しかしながら、充電電圧Vp、充電電圧Vnの大小関係にかかわらず、相対差が小さいときには、充電電圧Vppあるいは充電電圧Vnnのいずれか一方を計測して両極の絶縁低下あるいは正常を判定するようにしてもよい。

0050

100地絡検出装置
101 正極側電源ライン
102 負極側電源ライン
120制御装置
300高電圧バッテリ
C1検出用コンデンサ
CYpYコンデンサ
CYn Yコンデンサ
RLn 負極側絶縁抵抗
RLp 正極側絶縁抵抗
Risn 負極側終端抵抗
Risp 正極側終端抵抗

ページトップへ

この技術を出願した法人

この技術を発明した人物

ページトップへ

関連する挑戦したい社会課題

関連する公募課題

ページトップへ

技術視点だけで見ていませんか?

この技術の活用可能性がある分野

分野別動向を把握したい方- 事業化視点で見る -

ページトップへ

おススメ サービス

おススメ astavisionコンテンツ

新着 最近 公開された関連が強い技術

  • ボッシュ株式会社の「 制御装置」が 公開されました。( 2019/06/24)

    【課題・解決手段】バッテリの短絡及び負荷における断線を含む各異常を互いに区別して確実に検出できる制御装置を提案する。入力端子から入力された駆動電流のON/OFFを切り替えて出力端子から出力することによ... 詳細

  • 日立オートモティブシステムズ株式会社の「 誘導性負荷通電制御装置」が 公開されました。( 2019/06/24)

    【課題・解決手段】外部バッテリの電源供給経路と、誘導性負荷の還流電流経路が同一端子を使用している装置において、この端子がオープン故障した後でもマイクロコンピュータの動作を継続させる。車載制御装置113... 詳細

  • 株式会社小田原エンジニアリングの「 電線傷検出装置」が 公開されました。( 2019/06/20)

    【課題】コイルの被覆電線の傷を、小さい傷まで精度よく検出できるようにし、ボビン内の被覆電線の量や挿入するコイルの巻線量によって検出できる傷の大きさが変わることなく、検出した傷の大きさを計測あるいは判別... 詳細

この 技術と関連性が強い人物

関連性が強い人物一覧

この 技術と関連する社会課題

関連する挑戦したい社会課題一覧

この 技術と関連する公募課題

関連する公募課題一覧

astavision 新着記事

サイト情報について

本サービスは、国が公開している情報(公開特許公報、特許整理標準化データ等)を元に構成されています。出典元のデータには一部間違いやノイズがあり、情報の正確さについては保証致しかねます。また一時的に、各データの収録範囲や更新周期によって、一部の情報が正しく表示されないことがございます。当サイトの情報を元にした諸問題、不利益等について当方は何ら責任を負いかねることを予めご承知おきのほど宜しくお願い申し上げます。

主たる情報の出典

特許情報…特許整理標準化データ(XML編)、公開特許公報、特許公報、審決公報、Patent Map Guidance System データ