図面 (/)

技術 ソレノイドアクチュエータ及びソレノイドアクチュエータの製造方法

出願人 KYB株式会社株式会社タカコ
発明者 伊藤達夫小林隆櫻木研治砂金賢憲
出願日 2018年6月11日 (2年6ヶ月経過) 出願番号 2018-111096
公開日 2019年4月18日 (1年8ヶ月経過) 公開番号 2019-062180
状態 未査定
技術分野 往復動・振動型電動機 電磁石1(アマチュア有) 磁気駆動弁 コア、コイル、磁石の製造
主要キーワード ボルト取り付け用 低圧仕様 筒状組立体 所定冷却速度 高圧仕様 合金鋼材 バルブ通路 流体圧供給源
関連する未来課題
重要な関連分野

この項目の情報は公開日時点(2019年4月18日)のものです。
また、この項目は機械的に抽出しているため、正しく解析できていない場合があります

図面 (6)

課題

駆動対象機器に対するソレノイドアクチュエータの取り付け自由度を向上させる。

解決手段

ソレノイドアクチュエータ100は、コイル11に通電することで発生する磁力によってプランジャ17を軸方向に移動させ、プランジャ17の移動によって駆動対象機器110の駆動部3を駆動するソレノイドアクチュエータであって、プランジャ17を収容するステータ12と、ステータ12の外周側に配置されるコイル11を収容するヨーク10と、ステータ12に接続され駆動対象機器110のねじ孔2dに取り付けられる取付部20と、を備え、取付部20の外周は、ヨーク10の外周よりも内側に配置される。

概要

背景

特許文献1には、電磁石を構成するコイル電流を通すことにより磁場を発生させ、磁場によってアーマチャ往復動させる電磁アクチュエータが開示されている。電磁アクチュエータを収納するハウジングは、ボルト固定部材(20))により内燃機関本体に取り付けられる。

概要

駆動対象機器に対するソレノイドアクチュエータの取り付け自由度を向上させる。ソレノイドアクチュエータ100は、コイル11に通電することで発生する磁力によってプランジャ17を軸方向に移動させ、プランジャ17の移動によって駆動対象機器110の駆動部3を駆動するソレノイドアクチュエータであって、プランジャ17を収容するステータ12と、ステータ12の外周側に配置されるコイル11を収容するヨーク10と、ステータ12に接続され駆動対象機器110のねじ孔2dに取り付けられる取付部20と、を備え、取付部20の外周は、ヨーク10の外周よりも内側に配置される。

目的

本発明は、上記の問題点に鑑みてなされたものであり、駆動対象機器に対するソレノイドアクチュエータの取り付け自由度を向上させることを目的とする

効果

実績

技術文献被引用数
0件
牽制数
0件

この技術が所属する分野

(分野番号表示ON)※整理標準化データをもとに当社作成

ライセンス契約や譲渡などの可能性がある特許掲載中! 開放特許随時追加・更新中 詳しくはこちら

請求項1

コイル通電することで発生する磁力によってプランジャを軸方向に移動させ、前記プランジャの移動によって駆動対象機器の駆動部を駆動するソレノイドアクチュエータであって、前記プランジャを収容するステータと、前記ステータの外周側に配置される前記コイルを収容するヨークと、前記ステータに接続され前記駆動対象機器のねじ孔に取り付けられる取付部と、を備え、前記取付部の外周は、前記ヨークの外周よりも内側に配置されることを特徴とするソレノイドアクチュエータ。

請求項2

請求項1に記載のソレノイドアクチュエータにおいて、前記取付部は、主成分である鉄に少なくともクロムが添加されてなる鋼材により形成されることを特徴とするソレノイドアクチュエータ。

請求項3

請求項2に記載のソレノイドアクチュエータにおいて、前記鋼材は、ニッケルを0.4質量%以上含むことを特徴とするソレノイドアクチュエータ。

請求項4

請求項3に記載のソレノイドアクチュエータにおいて、前記鋼材は、ニッケルを1.6質量%以上、モリブデンを0.15質量%以上含むことを特徴とするソレノイドアクチュエータ。

請求項5

請求項1から請求項4までのいずれか一項に記載のソレノイドアクチュエータにおいて、前記取付部は、800℃以上の温度から室温まで冷却したときにロックウェル硬さが55HRC以上となる鋼材から形成されることを特徴とするソレノイドアクチュエータ。

請求項6

請求項1から請求項5までのいずれか一項に記載のソレノイドアクチュエータにおいて、前記取付部は、800℃以上の温度から室温まで冷却したときにロックウェル硬さの低下が10HRC以下となる機械的性質を有する材料から形成されることを特徴とするソレノイドアクチュエータ。

請求項7

請求項1から請求項6までのいずれか一項に記載のソレノイドアクチュエータにおいて、前記取付部は、前記ステータとは異なる材料であって、前記ステータの材料に比べて焼なまし軟化抵抗が高い材料から形成されることを特徴とするソレノイドアクチュエータ。

請求項8

請求項1から請求項6までのいずれか一項に記載のソレノイドアクチュエータにおいて、前記ステータは、前記取付部と一体に成形されてなる第1ステータコアと、前記第1ステータコアに接続された第2ステータコアと、を有することを特徴とするソレノイドアクチュエータ。

請求項9

請求項1から請求項8までのいずれか一項に記載のソレノイドアクチュエータを製造する方法であって、前記取付部の材料の強度が、予め定めた所定強度以上となるように、前記取付部の材料を熱処理する熱処理工程と、前記取付部及び前記ステータを溶接により接続することで筒状組立体を作製する溶接工程と、を含み、前記所定強度は、前記溶接工程での熱影響によって低下した前記取付部の材料の強度が、前記駆動対象機器に取り付けられる前記ソレノイドアクチュエータとして必要な強度以上となるように設定されることを特徴とするソレノイドアクチュエータの製造方法。

技術分野

0001

本発明は、ソレノイドアクチュエータ及びソレノイドアクチュエータの製造方法に関する。

背景技術

0002

特許文献1には、電磁石を構成するコイル電流を通すことにより磁場を発生させ、磁場によってアーマチャ往復動させる電磁アクチュエータが開示されている。電磁アクチュエータを収納するハウジングは、ボルト固定部材(20))により内燃機関本体に取り付けられる。

先行技術

0003

特開2001−230116号公報

発明が解決しようとする課題

0004

特許文献1に記載の電磁アクチュエータ装置では、ハウジング(8a)にボルトを取り付けるためのフランジ部が設けられている。フランジ部は、電磁アクチュエータ(4)の外周よりも径方向外方に突出するように設けられているので、電磁アクチュエータ(4)及びハウジング(8a)を含む電磁アクチュエータ装置の径方向寸法が大きくなってしまう。つまり、特許文献1に記載の電磁アクチュエータ装置は、その取り付け対象取り付けスペースの大きい駆動対象機器に限られてしまうため、取り付け自由度が低いという問題がある。

0005

本発明は、上記の問題点に鑑みてなされたものであり、駆動対象機器に対するソレノイドアクチュエータの取り付け自由度を向上させることを目的とする。

課題を解決するための手段

0006

第1の発明は、ソレノイドアクチュエータであって、プランジャを収容するステータと、ステータの外周側に配置されるコイルを収容するヨークと、ステータに接続され駆動対象機器のねじ孔に取り付けられる取付部と、を備え、取付部の外周は、ヨークの外周よりも内側に配置されることを特徴とする。

0007

第1の発明では、駆動対象機器に取り付けられる取付部の径方向寸法がヨークの径方向寸法よりも小さく抑えられる。

0008

第2の発明は、取付部が、主成分である鉄に少なくともクロムが添加されてなる鋼材により形成されることを特徴とする。

0009

第3の発明は、鋼材が、ニッケルを0.4質量%以上含むことを特徴とする。

0010

第4の発明は、鋼材が、ニッケルを1.6質量%以上、モリブデンを0.15質量%以上含むことを特徴とする。

0011

第5の発明は、取付部が、800℃以上の温度から室温まで冷却したときにロックウェル硬さが55HRC以上となる鋼材から形成されることを特徴とする。

0012

第6の発明は、取付部が、800℃以上の温度から室温まで冷却したときにロックウェル硬さの低下が10HRC以下となる機械的性質を有する材料から形成されることを特徴とする。

0013

第7の発明は、取付部が、ステータとは異なる材料であって、ステータの材料に比べて焼なまし軟化抵抗が高い材料から形成されることを特徴とする。

0014

第2〜第7の発明では、取付部の材料として、例えば焼入れ焼戻し処理を施した鋼材を選択した場合に、溶接等により取付部が高温に加熱された後、室温まで冷却することに起因して、取付部の硬度が低下することを抑制できる。このため、ソレノイドアクチュエータの駆動対象機器に対する取り付け強度の低下を防止できる。

0015

第8の発明は、ステータが、取付部と一体に成形されてなる第1ステータコアと、第1ステータコアに接続された第2ステータコアと、を有することを特徴とする。

0016

第8の発明では、取付部と第1ステータコアとが一体成形により単一部材とされるので、取付部と第1ステータコアとをそれぞれ別部材とする場合に比べて、部品点数を低減できる。

0017

第9の発明は、上記ソレノイドアクチュエータを製造する方法であって、取付部の材料の強度が、予め定めた所定強度以上となるように、取付部の材料を熱処理する熱処理工程と、取付部及びステータを溶接により接続することで筒状組立体を作製する溶接工程と、を含み、所定強度は、溶接工程での熱影響によって低下した取付部の材料の強度が、駆動対象機器に取り付けられるソレノイドアクチュエータとして必要な強度以上となるように設定されることを特徴とする。

0018

第9の発明では、取付部の材料として、廉価な材料を用いることができるので、ソレノイドアクチュエータのコストの低減を図ることができる。

発明の効果

0019

本発明によれば、駆動対象機器に対するソレノイドアクチュエータの取り付け自由度を向上することができる。

図面の簡単な説明

0020

ソレノイドバルブの断面図であり、コイルに通電された状態を示す。
ソレノイドアクチュエータの製造手順を示すフローチャートである。
NCM439の連続冷却変態曲線図である。
試験材料に対する熱影響について示すグラフである。
本実施形態の変形例4に係るソレノイドアクチュエータの断面図である。

実施例

0021

以下、図面を参照して、本発明の実施形態について説明する。

0022

ソレノイドアクチュエータは、コイルに通電することで発生する磁力によってプランジャを軸方向に移動させ、プランジャの移動によって駆動対象機器の駆動部を駆動する電磁アクチュエータである。以下の実施形態では、作動流体の流量を制御するソレノイドバルブに用いられるソレノイドアクチュエータについて説明する。

0023

図1を参照して、本発明の実施形態に係るソレノイドアクチュエータ100を備えたソレノイドバルブ1の全体構成について説明する。

0024

ソレノイドバルブ1は、ソレノイドアクチュエータ100と、ソレノイドアクチュエータ100により駆動部であるスプール3が駆動される駆動対象機器であるバルブ装置110と、を備える。ソレノイドバルブ1は、流体圧供給源(図示省略)から流体圧機器等(図示省略)に導かれる作動流体としての作動油の流量を制御する。作動流体は、作動油に限らず、他の非圧縮性流体または圧縮性流体であってもよい。

0025

バルブ装置110は、有底筒状バルブボディ2と、バルブボディ2内に移動自在に設けられる弁体としてのスプール3と、バルブボディ2内に設けられスプール3を付勢する付勢部材としてのコイルばね9と、を備える。

0026

バルブボディ2には、作動油が流れるバルブ通路としての流入通路2a及び流出通路2bが軸方向に並んで形成される。流入通路2aは、バルブボディ2の内部と連通し、図示しない配管等を介して流体圧供給源と連通する。流出通路2bは、バルブボディ2の内部と連通し、図示しない配管等を介して油圧機器等と連通する。

0027

スプール3は、バルブボディ2の内周面に沿って摺動する第1ランド部4及び第2ランド部5と、第1ランド部4及び第2ランド部5より小径に形成され第1ランド部4と第2ランド部5とを連結する小径部6と、ソレノイドアクチュエータ100のシャフト16と接触する先端部7と、を有する。

0028

第1ランド部4の端部には、コイルばね9の一部が収容されるばね収容凹部4aが形成される。第2ランド部5は、バルブボディ2の内周面に沿って摺動し流入通路2aの開度を調整する。

0029

小径部6は、第1ランド部4及び第2ランド部5よりも小径に形成されて、バルブボディ2の内周面との間に環状の流体室8を形成する。流体室8は、流入通路2a及び流出通路2bと連通し、流入通路2aを通過した作動油を流出通路2bへと導く。

0030

コイルばね9は、スプール3における第1ランド部4のばね収容凹部4aとバルブボディ2の底部2cとの間に圧縮状態介装される。コイルばね9は、ソレノイドアクチュエータ100のコイル11が通電されたときのプランジャ17の移動に抗するようにスプール3を付勢する。つまり、コイルばね9は、第2ランド部5が流入通路2aを開く方向(図1右方向)にスプール3を付勢する。

0031

バルブボディ2の開口端部には、後述するソレノイドアクチュエータ100の取付部20が取り付けられるねじ孔2dが設けられる。ねじ孔2dの内周面にはめねじが形成され、ソレノイドアクチュエータ100の取付部20に形成されたおねじ螺合する。

0032

ソレノイドアクチュエータ100は、バルブ装置110に取り付けられ、バルブ装置110のスプール3を軸方向に駆動する。

0033

ソレノイドアクチュエータ100は、円筒状のヨーク(ケース)10と、ステータ12の外周側に配置され電流が流れると磁力を発生するコイル11と、コイル11の内側に設けられコイル11の磁力によって励磁されるステータ12と、ステータ12を挿通し軸方向に沿って移動可能に設けられるシャフト(プッシュロッド)16と、シャフト16に固定されるプランジャ17と、ステータ12の端部に接続される取付部20と、を備える。

0034

ヨーク10は、軟鉄等の磁性材により形成され、有底円筒状の筒部10aと、筒部10aの開口を塞ぐ端板10bと、を有する。筒部10aの底部及び端板10bのそれぞれにはステータ12が挿通される貫通孔が設けられる。

0035

コイル11は、ヨーク10内に収容される。コイル11は、樹脂材(図示省略)によってモールドされる、あるいは、樹脂製のボビン(図示省略)に取り付けられる。コイル11は、端子(図示省略)を通じて供給される電流が流れることによって磁力を発生する。

0036

ステータ12は、コイル11の内側に設けられる。ステータ12は、円筒状の第1ステータコア13と、第1ステータコア13と所定の間隔を空けて配置される有底円筒状の第2ステータコア14と、第1ステータコア13と第2ステータコア14との間に設けられる円筒状の筒状体15と、プランジャ17の端面に対向して配置されるスペーサ18と、を有する。第1ステータコア13及び第2ステータコア14、スペーサ18は、炭素(C)の含有量が10質量%以下の鋼材や電磁軟鉄等の磁性材によって形成され、筒状体15は、ステンレス鋼銅合金等の非磁性材によって形成される。

0037

スペーサ18は、第1ステータコア13の内側に嵌入され、所定位置で固定される。スペーサ18は、円筒状部材であり、その内側にシャフト16が挿通される。シャフト16は、ステンレス鋼、銅合金等の非磁性材によって形成される。

0038

ステータ12の内面である第1ステータコア13の内面、筒状体15の内面、第2ステータコア14の内面及びスペーサ18の端面により、プランジャ17が収容されるプランジャ室19が形成される。スペーサ18の端面は、コイル11の磁力によってプランジャ17がステータ12に吸着される吸着面19aとなる。言い換えれば、プランジャ室19の第1ステータコア13側の端面が、吸着面19aとなる。

0039

シャフト16は、プランジャ17と共に軸方向に沿って移動自在に配置される。シャフト16の先端は、スプール3の先端部7と接触する。これにより、シャフト16の移動に伴いスプール3が移動する。

0040

プランジャ17は、軟鉄等の磁性材によって形成される。プランジャ17は、プランジャ室19に収容され、シャフト16に対して位置ずれが生じないように、かしめ等の方法によりシャフト16に固定される。プランジャ17は、コイル11の磁力によって、プランジャ室19における一方の端部である吸着面19aへ向かう吸着力が作用して、プランジャ室19内を移動する。

0041

次に、ソレノイドバルブ1の動作について説明する。

0042

コイル11に電流が流れない非通電状態においては、プランジャ17には吸着力が作用せず、スプール3は、コイルばね9の付勢力によって流入通路2aを開く方向(図1中右方向)に付勢される。このため、流入通路2aと流出通路2bとが流体室8を介して連通し、作動油の通過が許容される。

0043

コイル11に電流が流れると、例えば、ヨーク10→第2ステータコア14→プランジャ17→第1ステータコア13及びスペーサ18→ヨーク10の磁路が形成され、プランジャ17が吸着面19aに向かって吸引される。なお、非磁性材である筒状体15は、第2ステータコア14からプランジャ17を介して第1ステータコア13及びスペーサ18に磁束が導かれる磁路が形成されるように、磁束の流れを制限する制限部として機能する。また、筒状体15の一端面に当接する第1ステータコア13の端部、及び、筒状体15の他端面に当接する第2ステータコア14の端部は、それぞれ先細りテーパ形状とされている。これにより、磁路の大きさが制限され、コイル11に流れる電流の大きさと、プランジャ17の推力比例関係となる。

0044

このように、コイル11に電流が流れて磁力が発生すると、プランジャ17が励磁され、プランジャ17に吸着面19aへ向かう方向(図1中左方向)の吸着力が作用する。このような吸着力によって、プランジャ17は吸着面19aに向かって移動する。

0045

スプール3には、シャフト16を介して作用する吸着力によって、コイルばね9を圧縮する方向へ向かう力が作用する。このため、スプール3は、吸着力とコイルばね9による付勢力とが釣り合う位置まで移動する。コイル11に通電する電流の大きさが大きくなる程、プランジャ17と吸着面19aとの間の吸着力は大きくなる。このため、コイル11に通電する電流値が大きくなる程、スプール3はコイルばね9の付勢力に抗してコイルばね9を圧縮する方向へ移動する。

0046

コイル11に通電する電流値を大きくしてコイルばね9の付勢力に抗してスプール3を移動させると、第2ランド部5によって流入通路2aが徐々に閉じられ、流体室8に対する流入通路2aの開口面積が減少する。このため、流入通路2aを通じて流体室8へ導かれる作動油の流量が減少する。

0047

コイル11に通電する電流値をさらに大きくして吸着面19aへ向かうプランジャ17のストローク量を増大させると、図1に示されているように、第2ランド部5によって流入通路2aが完全に閉じられ、流入通路2aと流出通路2bとの連通が遮断される。

0048

このように、ソレノイドバルブ1は、コイル11に通電する電流値を制御して、スプール3を軸方向に移動させることにより、流入通路2aから流出通路2bへ導かれる作動油の流量を調整する。

0049

次に、取付部20の構成について詳しく説明する。

0050

取付部20は、円筒状部材であり、第1ステータコア13に溶接されることにより、第1ステータコア13に固定される。つまり、取付部20は、第1ステータコア13に機械的かつ熱的に接続されている。取付部20は、バルブボディ2のねじ孔2dのめねじに螺合されるおねじが外周に形成されたねじ部21と、バルブボディ2の端面に当接されるフランジ部23と、ねじ部21とフランジ部23との間でオイルシール(Oリング)30を保持するシール保持部22と、を有する。

0051

シール保持部22は、その外径がねじ部21の外径及びフランジ部23の外径よりも小さくなるように溝状に形成される。フランジ部23の外径は、ねじ部21の外径よりも大きく、ヨーク10の外径よりも小さい寸法に設定される。つまり、取付部20の外周は、ヨーク10の外周よりも内側に配置される。換言すれば、フランジ部23は、ヨーク10の外周面よりも径方向外方に突出していない。このため、ヨーク10の外周面よりも径方向外方に突出するボルト取り付け用のフランジ部を備えたソレノイドアクチュエータに比べて、径方向寸法を小さくできる。つまり、本実施形態によれば、ソレノイドアクチュエータ100の取付部20の径方向寸法の小型化が実現されているので、バルブ装置110に対する取り付けに必要なスペースを小さくできる。

0052

次に、ソレノイドアクチュエータ100の製造方法について説明する。

0053

図2に示すように、ソレノイドアクチュエータ100の製造方法は、熱処理工程S100と、準備工程S110と、溶接工程S120と、組付工程S130と、を備える。

0054

ソレノイドアクチュエータ100を高圧仕様のバルブ装置110に用いる場合、取付部20のねじ部21に高い取り付け強度が要求される。このため、取付部20の材料は、熱処理(焼入れ焼戻し処理)が施されていることが好ましい。熱処理工程S100では、取付部20の材料を加熱して所定の温度まで上昇させ、一定時間後に急冷する焼入れ処理を行う。その後、取付部20の材料を再度加熱して温度を所定の温度まで上昇させ、一定時間後に冷却を行う焼戻し処理を行う。

0055

準備工程S110では、図1に示す第1ステータコア13、第2ステータコア14、筒状体15及び上記熱処理工程S100により熱処理が施された取付部20を含むソレノイドアクチュエータ100の構成部材を準備する。

0056

溶接工程S120では、第1ステータコア13、筒状体15及び第2ステータコア14が、溶接により接続される。つまり、第1ステータコア13と第2ステータコア14とは、筒状体15を介して接続される。さらに、第1ステータコア13及び取付部20が、溶接により接続される。溶接方法には、レーザ溶接電子ビーム溶接TIG溶接、炉中ロウ付けトーチロウ付け等、種々の溶接方法が採用される。溶接に代えて、通電加熱接合拡散接合摩擦溶接摩擦圧接)等の固相接合法により、第1ステータコア13、筒状体15、第2ステータコア14及び取付部20を接合してもよい。

0057

溶接工程S120では、第1ステータコア13、筒状体15、第2ステータコア14及び取付部20が溶接されてなる筒状組立体40が作製される。略円筒状の第1ステータコア13、筒状体15、第2ステータコア14及び取付部20は、それぞれの中心軸が一致するように接続される。

0058

第1ステータコア13、筒状体15、第2ステータコア14及び取付部20は、溶接により熱的に接続されているため、それぞれの部位が溶接に伴う熱により、例えば800℃以上まで加温されることがある。加温された材料は、例えば、200℃/sec以上の平均冷却速度で室温(27℃程度)まで冷却される。

0059

組付工程S130では、コイル11が収容されたヨーク10に筒状組立体40を挿入し、軟鉄等の磁性材からなるナット41を第2ステータコア14の端部に形成されたおねじに取り付ける。ナット41と取付部20のフランジ部23とでヨーク10を挟むようにして、ヨーク10と筒状組立体40とを締結する。これにより、ソレノイドアクチュエータ100が完成する。

0060

なお、取付部20のねじ部21の外周のおねじ、及び、第2ステータコア14の端部の外周のおねじは、溶接工程S120の後に形成してもよいし、溶接工程S120の前に形成してもよい。

0061

次に、取付部20の材料について説明する。

0062

上述したように、ソレノイドアクチュエータ100が高圧仕様(例えば、耐圧5MPa以上)のバルブ装置110に用いられる場合、ねじ部21が破損することなく高い軸力を長期に亘って保持できるように、取付部20には高い取り付け強度が要求される。

0063

このため、取付部20の材料には、上述のとおり、熱処理工程S100により熱処理(焼入れ焼戻し処理)が施された高強度材料を用いる。この場合、取付部20の材料は、溶接工程S120における熱影響により、一旦、温度が所定温度(例えば800℃以上)まで上昇した後、所定の冷却速度(例えば200℃/sec以上)で冷却されることになる。このため、取付部20の材料の硬度が低下してしまう。したがって、溶接工程S120における加温、冷却に起因した硬度の低下を抑制するために、取付部20の材料には、焼なまし軟化抵抗(焼戻し軟化抵抗同義)の高い材料を選択することが好ましい。

0064

本実施形態では、取付部20の材料として、主成分である鉄(Fe)に少なくともクロム(Cr)が0.4質量%以上添加されてなる鋼材が選択される。取付部20の材料として選択される鋼材は、ステータ12の構成部材である第1ステータコア13、第2ステータコア14及びスペーサ18の材料(ステータ12を構成する磁性材)に比べて焼なまし軟化抵抗が高い。

0065

取付部20の材料として選択される鋼材としては、例えば、JIS規格Cr系鋼材(クロム鋼鋼材)、JIS規格SCM系鋼材材(クロムモリブデン鋼鋼材)、JIS規格SNCM系鋼材(ニッケルクロムモリブデン鋼鋼材)のいずれかを選択することが好ましい。これらの鋼材は、いずれもステータ12を構成する磁性材に比べて焼なまし軟化抵抗が高い材料である。焼なまし軟化抵抗が高いとは、所定の硬さX1の材料を高温雰囲気下で所定時間保持した後、所定冷却速度で室温(27℃程度)まで冷却したときの硬さX2との差ΔX(ΔX=X1−X2)が小さいことである。

0066

例えば、SNCM系鋼材は、SCM系鋼材及びSCr系鋼材に比べて、焼なまし軟化抵抗が高く、溶接工程S120における熱影響による硬度の低下が効果的に抑えられる。図3は、JIS規格SNCM439の連続冷却変態曲線図(CCT曲線図)である。連続冷却変態曲線図とは、連続冷却過程における合金変態過程について、各種冷却速度による相変態開始及び終了点縦軸に温度、横軸に時間を取って記入した図である。

0067

図3に示すように、ロックウェル硬さ(HRC)がH0のSNCM439の試験片を800℃以上の雰囲気下で10分間程度保持した後、平均冷却速度1℃/secで室温(27℃程度)まで冷却したときのロックウェル硬さ(HRC)はH2となる。この場合、ロックウェル硬さの低下は、3.5〜4HRC程度である。また、ロックウェル硬さ(HRC)がH0のSNCM439の試験片を800℃以上の雰囲気下で10分間程度保持した後、平均冷却速度0.4℃/secで室温(27℃程度)まで冷却したときのロックウェル硬さ(HRC)はH3となる。H2とH3との差(H2−H3)は、0.4HRC程度である。また、図中H3とH4の差(H3−H4)、及び図中H4とH5の差(H4−H5)は、それぞれ0.1HRC程度である。なお、ロックウェル硬さ(HRC)がH0のSNCM439の試験片を800℃以上の雰囲気下で10分間程度保持した後、平均冷却速度2.5℃/secで室温(27℃程度)まで冷却したときのロックウェル硬さ(HRC)はH1となる。H1とH2との差(H1−H2)は、1HRC程度である。

0068

このように、SNCM439は、800℃以上の温度から室温(27℃程度)まで、平均冷却速度200℃/h以上で冷却したときにロックウェル硬さの低下が10HRC以下となる機械的性質を有している。また、SNCM439は、800℃以上の温度から室温(27℃程度)まで、平均冷却速度0.4℃/sec以上で冷却したときにロックウェル硬さの低下が5HRC以下となる機械的性質を有している。

0069

SNCM系鋼材は、0.4質量%以上4.8質量%以下のクロム(Cr)に加え、ニッケル(Ni)を0.4質量%以上4.5質量%以下、モリブデン(Mo)を0.15質量%以上0.7質量%以下含んでおり、SCM系鋼材及びSCr系鋼材に比べて高い焼なまし軟化抵抗を有しているため、取付部20の材料として好適である。

0070

なお、SCM系鋼材は、0.9質量%以上1.5質量%以下のクロム(Cr)に加え、モリブデン(Mo)を0.15質量%以上0.45質量%以下含んでおり、SCr系鋼材に比べて高い焼なまし軟化抵抗を有している。また、SCr系鋼材は、クロム(Cr)を0.9質量%以上1.2質量%以下含んでおり、ステータ12を構成する磁性材に比べて高い焼なまし軟化抵抗を有する。

0071

このため、取付部20の材料には、SCr系鋼材、SCM系鋼材及びSNCM系鋼材等、クロム(Cr)を0.4質量%以上4.8質量%以下含有する種々の鋼材を採用することができる。

0072

特に、溶接工程S120における熱影響に起因するロックウェル硬さの低下が10HRC以下に抑えられ、溶接工程S120後のロックウェル硬さが55HRC以上となるSNCM439を採用することが好ましい。SNCM439は、炭素(C)が0.36質量%以上0.43質量%以下、ケイ素(Si)が0.15質量%以上0.35質量%以下、マンガン(Mn)が0.60質量%以上0.90質量%以下、リン(P)が0.030質量%以下、硫黄(S)が0.030質量%以下、クロム(Cr)が0.6質量%以上1.0質量%以下、ニッケル(Ni)が1.6質量%以上2.0質量%以下、モリブデン(Mo)が0.15質量%以上0.3質量%以下含有され、残部が鉄(Fe)及び不可避的不純物からなる。このように、SNCM439は、クロム(Cr)を0.6質量%以上、ニッケル(Ni)を1.6質量%以上、モリブデン(Mo)を0.15質量%以上含んでいるので、高い硬さと、高い焼なまし軟化抵抗と、を兼ね備えている。

0073

上述した実施形態によれば、次の作用効果を奏する。

0074

(1)取付部20の外周がヨーク10の外周よりも内側に配置されているため、駆動対象機器であるバルブ装置110に取り付けられる取付部20の径方向寸法が、ヨーク10の径方向寸法よりも小さく抑えられる。したがって、本実施形態によれば、取り付けスペースが大きいバルブ装置110だけでなく、取り付けスペースが小さいバルブ装置110にも使用することのできる取り付け自由度の高いソレノイドアクチュエータ100を提供することができる。

0075

(2)取付部20は、主成分である鉄(Fe)に少なくともクロム(Cr)が添加されてなる鋼材により形成される。このため、取付部20が製造過程等において高温に加熱され、その後、冷却される場合であっても硬度の低下が抑えられる。その結果、バルブ装置110にねじ込みにより取り付けられる取付部20の取り付け強度の低下を防止できる。したがって、本実施形態によれば、低圧負荷が作用する低圧仕様のバルブ装置110だけでなく、高圧負荷が作用する高圧仕様のバルブ装置110にも使用することのできるソレノイドアクチュエータ100を提供することができる。

0076

以上のとおり、本実施形態によれば、取り付け対象となる駆動対象機器の範囲が広い汎用性の高いソレノイドアクチュエータ100を提供することができる。

0077

次のような変形例も本発明の範囲内であり、変形例に示す構成と上述の実施形態で説明した構成を組み合わせたり、以下の異なる変形例で説明する構成同士を組み合わせたりすることも可能である。

0078

(変形例1)
取付部20の材料は、クロム(Cr)が添加された鋼材に限られない。焼なまし軟化抵抗は、モリブデン(Mo)、タングステン(W)、バナジウム(V)等の炭化物形成元素の添加により、高めることができる。したがって、主成分である鉄(Fe)に、モリブデン(Mo)、タングステン(W)、バナジウム(V)等の炭化物形成元素が添加された種々の鋼材を取付部20の材料に選択することができる。これらのクロム(Cr)を含有しない鋼材のうち、800℃以上の温度から室温(27℃程度)まで冷却したときにロックウェル硬さの低下が10HRC以下となる機械的性質を有する高軟化抵抗材料を選択することが好ましい。さらに、800℃以上の温度から室温(27℃程度)まで冷却したときにロックウェル硬さが55HRC以上となる鋼材を選択することが好ましい。

0079

(変形例2)
上記実施形態では、取付部20の材料として、炭素鋼材にクロム(Cr)等の合金元素を添加してなるSCr系鋼材、SCM系鋼材及びSNCM系鋼材等の合金鋼材を用いる例について説明したが、本発明はこれに限定されない。取付部20の材料には、合金元素(添加元素)が所定の下限(Cr:0.3質量%,Mo:0.08質量%,Ni:0.3質量%)に満たない炭素鋼材を用いてもよい。例えば、取付部20の材料として、炭素(C)が0.42質量%以上0.48質量%以下含有されているJIS S45C等の機械構造用炭素鋼SC材)を用いることができる。また、取付部20の材料として、JIS SB410,SB450M等のSB材を用いることもできる。SC材及びSB材等を取付部20の材料として用いる場合、溶接工程S120において、800℃以上の温度から室温(27℃程度)まで冷却したときにロックウェル硬さの低下が10HRC以下となるように、冷却速度を調整することが好ましい。また、800℃以上の温度から室温(27℃程度)まで冷却したときにロックウェル硬さが55HRC以上となるように、冷却速度を調整することが好ましい。

0080

(変形例3)
上記実施形態では、熱処理工程S100において、取付部20の材料を熱処理(焼入れ焼戻し処理)する例について説明した。しかしながら、熱処理条件によっては、取付部20の材料の強度が、溶接工程S120での再加熱及び冷却による熱影響により、バルブ装置110に取り付けられるソレノイドアクチュエータ100として必要な強度(必要強度)よりも低下してしまうおそれがある。

0081

そこで、本変形例では、溶接工程S120での熱影響によって取付部20の材料の強度が低下したとしても必要強度としての必要引張強さσ0が確保されるように熱処理工程S100を行う。なお、取付部20の材料を作製する熱処理工程S100に先立って、所定の実験を行う。この実験では、熱処理条件を変えて複数の試験材料Ma,Mb,Mc,Mdを作製し、各試験材料Ma,Mb,Mc,Mdを取付部20の材料として採用した場合における溶接工程S120での熱影響による強度低下特性を取得する。

0082

図4は、試験材料に対する熱影響について示すグラフである。図4において、縦軸は試験材料の引張強さσを表し、横軸は時間tを表している。時点t0は、溶接工程S120を開始した時点に相当し、時点t1は、溶接工程S120が終了し、取付部20の材料の温度が室温まで低下した時点に相当する。

0083

実験では、試験材料Ma,Mb,Mc,Mdによって取付部20を作製し、その取付部20とステータ12とを溶接により接続することで筒状組立体40を作製する溶接工程S120を行う。なお、実験では、実際に溶接工程S120を行うことに代えて、試験材料Ma,Mb,Mc,Mdに対して溶接工程S120と同等の熱量を与えてもよい。つまり、溶接工程S120と同等の環境下で実験ができる場合は、筒状組立体40を作製する必要はない。

0084

溶接が行われる前の引張強さσ(時点t0における引張強さσ)と、溶接が行われ試験材料の温度が室温まで低下した後の引張強さσ(時点t1における引張強さσ)と、を引張試験から求める。これにより、各試験材料Ma,Mb,Mc,Mdの強度の低下特性が得られる。

0085

次に、複数の試験材料Ma,Mb,Mc,Mdにおいて、時点t1の引張強さσが必要引張強さσ0以上であるものを選定する(選定工程)。さらに、選定された試験材料の中で、時点t0、または時点t1の引張強さσが最も低いものを基準材料として特定する(基準材料特定工程)。また、基準材料の時点t0の引張強さσを基準引張強さσsとして設定する(基準強度設定工程)。

0086

以下、試験材料Ma,Mb,Mc,Mdを用いた場合を例に説明する。試験材料Maは、熱処理(焼入れ焼戻し処理)により、時点t0の引張強さσがσa1(>σ0)とされている。この試験材料Maは、時点t0から時間の経過とともに引張強さσが低下し、時点t1での引張強さσがσa2となる。σa2は、取付部20の材料として必要な強度である必要引張強さσ0よりも小さい(σa2<σ0)。このため、試験材料Maは、取付部20の材料として不適である。

0087

試験材料Mbは、熱処理(焼入れ焼戻し処理)により、時点t0の引張強さσがσb1(>σa1)とされている。この試験材料Mbは、時点t0から時間の経過とともに引張強さσが低下し、時点t1での引張強さσがσb2となる。σb2は、取付部20の材料として必要な強度である必要引張強さσ0と等しい(σb2=σ0)。このため、試験材料Mbは、取付部20の材料として好適である。

0088

試験材料Mcは、熱処理(焼入れ焼戻し処理)により、時点t0の引張強さσがσc1(>σb1)とされ、試験材料Mdは、熱処理(焼入れ焼戻し処理)により、時点t0の引張強さσがσd1(>σc1)とされている。試験材料Mc,Mdは、それぞれ時点t1における引張強さσが必要引張強さσ0よりも大きい。このため、試験材料Mc,Mdは、取付部20の材料として好適である。

0089

したがって、選定工程では、試験材料Ma,Mb,Mc,Mdのうち、時点t1の引張強さσが必要引張強さσ0以上である試験材料Mb,Mc,Mdが、取付部20の材料として好適であるとして選定される。さらに、基準材料特定工程では、選定された試験材料Mb,Mc,Mdのうち、時点t0、または時点t1の引張強さσが最も低い試験材料Mbが、基準材料として特定される。そして、基準強度設定工程では、基準材料である試験材料Mbの時点t0の引張強さσb1が、基準引張強さσsとして設定される。なお、基準引張強さσsは、必要引張強さσ0と、基準材料に対する溶接の熱影響による強度低下量Δσ0(=σb1−σb2)との和で表すことができる(σs=σ0+Δσ0)。

0090

本変形例に係る熱処理工程S100では、取付部20の材料の強度が、予め定めた所定強度である基準引張強さσs以上となるように、取付部20の材料を熱処理する。換言すれば、熱処理工程S100では、取付部20の材料の強度が、必要引張強さσ0に、上記基準材料の強度低下量Δσ0を加算した強度以上となるように、取付部20の材料を熱処理する。

0091

本変形例では、上記熱処理工程S100における焼入れ焼戻し調質)によって、熱処理後の引張強さσが基準引張強さσs以上となるように、熱処理(焼入れ焼戻し処理)における熱処理条件(材料の加熱時間、加熱温度、冷却速度等)を調整する。熱処理工程S100が完了すると、次に、上記実施形態と同様、取付部20及びステータ12を溶接により接続することで筒状組立体40を作製する溶接工程S120を行う。

0092

従来の熱処理では、熱処理後の材料が、再加熱されることを想定していなかった。つまり、従来の熱処理は、熱処理後の材料が、そのまま製品に使用されることを想定して、残留応力の除去、硬さ及び靱性の調整のために焼戻し処理が行われていた。これに対して、本変形例では、溶接工程S120での再加熱、冷却が行われることを予め加味して、焼戻し処理の熱処理条件を設定する。つまり、本変形例では、溶接工程S120での再加熱、冷却を経て、必要引張強さσ0以上の引張強さσを有する取付部20が作製されるともいえる。

0093

以上のとおり、本変形例では、熱処理工程S100により、取付部20の材料の強度が、予め定めた基準引張強さσs以上となるように取付部20の材料に熱処理が施されている。基準引張強さσsは、溶接工程S120での熱影響によって低下した取付部20の材料の強度(引張強さσ)が、バルブ装置110に取り付けられるソレノイドアクチュエータ100として必要な強度(必要引張強さσ0)以上となるように設定される。このため、溶接工程S120により、取付部20の材料の強度が低下した場合であっても、必要な強度(必要引張強さσ0)を確実に確保することができる。

0094

また、このような変形例によれば、取付部20の材料として、SC材等、廉価な炭素鋼材を用いることができるので、ソレノイドアクチュエータ100のコストの低減を図ることができる。

0095

(変形例4)
上記実施形態では、取付部20が、ステータ12とは異なる材料で形成される別部材であり、ステータ12の第1ステータコア13の端部に溶接により取り付けられる例について説明したが、本発明はこれに限定されない。

0096

図5に示すように、取付部20Bは、ステータ12Bの第1ステータコア13Bと同じ材料により形成してもよい。本変形例に係るソレノイドアクチュエータ100Bの取付部20Bと第1ステータコア13Bとは、一体に成形されてなる単一部材60Bである。取付部20Bと第1ステータコア13Bとが一体成形により単一部材60Bとされるので、取付部20と第1ステータコア13とをそれぞれ別部材とする場合(上記実施形態)に比べて、部品点数を低減できる。

0097

取付部20Bは、第1ステータコア13Bに一体的に接続されているので、第1ステータコア13B、筒状体15、第2ステータコア14Bを溶接する際、溶接部から熱が伝わる等、溶接工程S120における熱影響により取付部20Bの温度が上昇する。このため、第1ステータコア13Bと取付部20Bとからなる単一部材60Bの材料には、上述したような焼なまし軟化抵抗の高い材料を選択することが好ましい。また、上記変形例3で説明したように、溶接工程S120における熱影響を加味して、単一部材60Bの材料の強度が、予め定めた基準引張強さσs以上となるように、単一部材60Bの材料を熱処理する熱処理工程S100を行ってもよい。これにより、単一部材60Bの材料として、SC材等、廉価な炭素鋼材を用いることができるので、ソレノイドアクチュエータ100のコストの低減を図ることができる。

0098

なお、第2ステータコア14Bは、単一部材60Bと同じ材料により形成してもよいし、単一部材60Bとは異なる材料により形成してもよい。第2ステータコア14Bを単一部材60Bとは異なる材料により形成する場合、第2ステータコア14Bの材料には、例えば、炭素(C)の含有量が10質量%以下の鋼材や電磁軟鉄等の磁性材を採用することができる。これらの材料は、加工性に優れるためソレノイドアクチュエータ100Bの製造コストの低減を図ることができる。また、プランジャ推力の向上を図ることもできる。

0099

(変形例5)
また、上記実施形態では、取付部20の材料がステータ12の材料に比べて焼なまし軟化抵抗が高い材料からなる例について説明したが、本発明はこれに限定されない。取付部20の焼なまし後の強度が確保できれば、取付部20の材料よりステータ12の材料の方を焼なまし軟化抵抗が高い材料としてもよい。ただし、ステータ12の材料を焼なまし軟化抵抗が高い材料とすると、例えば、電磁軟鉄と比べて磁性特性が悪くなる。このため、取付部20を焼なまし軟化抵抗の高い材料とし、ステータ12を炭素(C)の含有量が10質量%以下の鋼材や電磁軟鉄等の磁性材とする方が好ましい。つまり、取付部20は、ステータ12の材料に比べて焼なまし軟化抵抗が高い材料とする方が好ましい。

0100

(変形例6)
上記実施形態では、溶接工程S120において、取付部20が800℃以上の温度から平均冷却速度200℃/sec以上で室温(27℃程度)まで冷却される例について説明したが、本発明はこれに限定されない。溶接工程S120において、取付部20の温度が800℃以上まで上昇しない場合であっても、加温、冷却過程での硬度の低下を抑えることができる。平均冷却速度は、大きいほど硬度の低下を抑えることができる。

0101

(変形例7)
上記実施形態では、ソレノイドアクチュエータ100が駆動対象機器としてのバルブ装置110に取り付けられる例について説明したが、本発明はこれに限定されない。ソレノイドアクチュエータ100は、種々の駆動対象機器に取り付けて使用することができる。

0102

以下、本発明の実施形態の構成、作用、及び効果をまとめて説明する。

0103

ソレノイドアクチュエータ100,100Bは、コイル11に通電することで発生する磁力によってプランジャ17を軸方向に移動させ、プランジャ17の移動によってバルブ装置110のスプール3を駆動するソレノイドアクチュエータであって、プランジャ17を収容するステータ12,12Bと、ステータ12,12Bの外周側に配置されるコイル11を収容するヨーク10と、ステータ12,12Bに接続されバルブ装置110のねじ孔2dに取り付けられる取付部20,20Bと、を備え、取付部20,20Bの外周は、ヨーク10の外周よりも内側に配置される。

0104

この構成では、バルブ装置110に取り付けられる取付部20の径方向寸法がヨーク10の径方向寸法よりも小さく抑えられる。その結果、バルブ装置110に対するソレノイドアクチュエータ100,100Bの取り付け自由度を向上することができる。

0105

ソレノイドアクチュエータ100,100Bは、取付部20,20Bが、主成分である鉄に少なくともクロムが添加されてなる鋼材により形成される。

0106

ソレノイドアクチュエータ100,100Bは、鋼材が、ニッケルを0.4質量%以上含む。

0107

ソレノイドアクチュエータ100,100Bは、鋼材が、ニッケルを1.6質量%以上、モリブデンを0.15質量%以上含む。

0108

ソレノイドアクチュエータ100,100Bは、取付部20,20Bが、800℃以上の温度から室温まで冷却したときにロックウェル硬さが55HRC以上となる鋼材から形成される。

0109

ソレノイドアクチュエータ100,100Bは、取付部20,20Bが、800℃以上の温度から室温まで冷却したときにロックウェル硬さの低下が10HRC以下となる機械的性質を有する材料から形成される。

0110

ソレノイドアクチュエータ100は、取付部20が、ステータ12とは異なる材料であって、ステータ12の材料に比べて焼なまし軟化抵抗が高い材料から形成される。

0111

これらの構成では、取付部20,20Bの材料として、例えば焼入れ焼戻し処理を施した鋼材を選択した場合に、溶接等により取付部20,20Bが高温に加熱された後、室温まで冷却することに起因して、取付部20,20Bの硬度が低下することを抑制できる。このため、ソレノイドアクチュエータ100,100Bのバルブ装置110に対する取り付け強度の低下を防止できる。

0112

ソレノイドアクチュエータ100Bは、ステータ12Bが、取付部20Bと一体に成形されてなる第1ステータコア13Bと、第1ステータコア13Bに接続された第2ステータコア14Bと、を有する。

0113

この構成では、取付部20Bと第1ステータコア13Bとが一体成形により単一部材60Bとされるので、取付部20と第1ステータコア13とをそれぞれ別部材とする場合に比べて、部品点数を低減できる。

0114

ソレノイドアクチュエータ100,100Bの製造方法は、取付部20,20Bの材料の強度が、予め定めた所定強度(基準引張強さσs)以上となるように、取付部20の材料を熱処理する熱処理工程と、取付部20及びステータ13,13Bを溶接により接続することで筒状組立体40を作製する溶接工程S210と、を含み、所定強度は、溶接工程S120での熱影響によって低下した取付部20の材料の強度が、バルブ装置110に取り付けられるソレノイドアクチュエータ100として必要な強度(必要引張強さσ0)以上となるように設定される。

0115

この構成では、取付部20,20Bの材料として、廉価な材料を用いることができるので、ソレノイドアクチュエータ100,100Bのコストの低減を図ることができる。

0116

以上、本発明の実施形態について説明したが、上記実施形態は本発明の適用例の一部を示したに過ぎず、本発明の技術的範囲を上記実施形態の具体的構成に限定する趣旨ではない。

0117

2d・・・ねじ孔、3・・・スプール(駆動部)、10・・・ヨーク、11・・・コイル、12,12B・・・ステータ、13,13B・・・第1ステータコア、14,14B・・・第2ステータコア、17・・・プランジャ、20,20B・・・取付部、40・・・筒状組立体、100,100B・・・ソレノイドアクチュエータ、110・・・バルブ装置(駆動対象機器)
S100・・・熱処理工程、S120・・・溶接工程

ページトップへ

この技術を出願した法人

この技術を発明した人物

ページトップへ

関連する挑戦したい社会課題

関連する公募課題

該当するデータがありません

ページトップへ

技術視点だけで見ていませんか?

この技術の活用可能性がある分野

分野別動向を把握したい方- 事業化視点で見る -

(分野番号表示ON)※整理標準化データをもとに当社作成

ページトップへ

おススメ サービス

おススメ astavisionコンテンツ

新着 最近 公開された関連が強い技術

この 技術と関連性が強い人物

関連性が強い人物一覧

この 技術と関連する社会課題

関連する挑戦したい社会課題一覧

この 技術と関連する公募課題

該当するデータがありません

astavision 新着記事

サイト情報について

本サービスは、国が公開している情報(公開特許公報、特許整理標準化データ等)を元に構成されています。出典元のデータには一部間違いやノイズがあり、情報の正確さについては保証致しかねます。また一時的に、各データの収録範囲や更新周期によって、一部の情報が正しく表示されないことがございます。当サイトの情報を元にした諸問題、不利益等について当方は何ら責任を負いかねることを予めご承知おきのほど宜しくお願い申し上げます。

主たる情報の出典

特許情報…特許整理標準化データ(XML編)、公開特許公報、特許公報、審決公報、Patent Map Guidance System データ