図面 (/)

技術 光学ユニット及び光学装置

出願人 シチズン時計株式会社
発明者 横山正史松本健志栗原誠
出願日 2018年11月26日 (1年5ヶ月経過) 出願番号 2018-220193
公開日 2019年4月18日 (1年0ヶ月経過) 公開番号 2019-061257
状態 特許登録済
技術分野 光学要素の取付・調整 レンズ鏡筒 顕微鏡、コンデンサー カメラの遮光
主要キーワード 出し入れ交換 アリミゾ Y座標 筐体開口 眼底検査装置 外部ケーブル 超解像度 光変調特性
関連する未来課題
重要な関連分野

この項目の情報は公開日時点(2019年4月18日)のものです。
また、この項目は機械的に抽出しているため、正しく解析できていない場合があります

図面 (8)

課題

光学系に光変調を可能とする光学ユニットの組み込みにあって、光学系の偏光方向と光学ユニットが有する光学素子カセットの光変調方向を合わせる調整に工数のかかる問題があった。

解決手段

光学ユニットは、所定の光学系に対して第1の方向に着脱可能な筐体と、前記光学系の偏光に対して光変調を行い、所定の変調方向を有し、前記変調方向が前記光学系の光軸に対して一義的な方向に保持されるように前記筐体に対して着脱可能に取り付けられた光学素子カセットと、を備える。

概要

背景

従来より、レーザ顕微鏡光ピックアップ装置レーザ加工機など、光を対象物照射することにより、その対象物の形状などの情報を検出したり、その対象物に何らかの変化を生じさせる光学装置が利用されている。このような光学系に、例えば、液晶素子からなる光学素子カセットを有する光学ユニットを組み込み、超解像度を可能にしたり、波面収差補正したりする光変調の技術が提案されている。

上記の、この特性を得るには、光学素子カセットの液晶素子の配向方向、すなわち、光学素子カセットの光変調方向と、光学系のレーザ光源直線偏光偏光方向を一致させることである。そのため、光学素子カセットの光変調方向の向きを光学系の光軸回りに回転可能な機構を有する光学ユニットが提案されている(例えば、特許文献1参照。)。

概要

光学系に光変調を可能とする光学ユニットの組み込みにあって、光学系の偏光方向と光学ユニットが有する光学素子カセットの光変調方向を合わせる調整に工数のかかる問題があった。光学ユニットは、所定の光学系に対して第1の方向に着脱可能な筐体と、前記光学系の偏光に対して光変調を行い、所定の変調方向を有し、前記変調方向が前記光学系の光軸に対して一義的な方向に保持されるように前記筐体に対して着脱可能に取り付けられた光学素子カセットと、を備える。

目的

本発明は、光変調方向の調整が容易な光学ユニット及び光学装置を提供する

効果

実績

技術文献被引用数
0件
牽制数
0件

この技術が所属する分野

ライセンス契約や譲渡などの可能性がある特許掲載中! 開放特許随時追加・更新中 詳しくはこちら

請求項1

所定の光学系に対して第一の方向に着脱可能な筐体と、前記光学系の偏光に対して光変調を行い、所定の変調方向を有し、前記変調方向が前記光学系の光軸に対して一義的な方向に保持されるように前記筐体に対して着脱可能に取り付けられた光学素子カセットと、を備えることを特徴とする光学ユニット

請求項2

前記光学素子カセットは、前記筐体に対して第二の方向に着脱可能であることを特徴とする請求項1に記載の光学ユニット。

請求項3

前記光学素子カセットの前記変調方向は、前記第二の方向に平行又は垂直であることを特徴とする請求項2に記載の光学ユニット。

請求項4

請求項1から3のいずれか1項に記載の光学ユニットと、前記光学系と、を備え、前記光学系の偏光方向と前記光学素子カセットの前記変調方向とが一致することを特徴とする光学装置

技術分野

0001

本発明は光学ユニット及び光学ユニットを備える顕微鏡等の光学装置に関する。

背景技術

0002

従来より、レーザ顕微鏡光ピックアップ装置レーザ加工機など、光を対象物照射することにより、その対象物の形状などの情報を検出したり、その対象物に何らかの変化を生じさせる光学装置が利用されている。このような光学系に、例えば、液晶素子からなる光学素子カセットを有する光学ユニットを組み込み、超解像度を可能にしたり、波面収差補正したりする光変調の技術が提案されている。

0003

上記の、この特性を得るには、光学素子カセットの液晶素子の配向方向、すなわち、光学素子カセットの光変調方向と、光学系のレーザ光源直線偏光偏光方向を一致させることである。そのため、光学素子カセットの光変調方向の向きを光学系の光軸回りに回転可能な機構を有する光学ユニットが提案されている(例えば、特許文献1参照。)。

先行技術

0004

国際公開第2012/124634号(第9−11頁、図2−3)

発明が解決しようとする課題

0005

しかしながら、特許文献1に示した従来技術において、光学系に光学ユニットを最初に組み込む場合や、光学ユニットを別の光学系に組み込む場合など、レーザ光源の偏光方向と光学素子カセットの光変調方向を合わせる調整を、その都度、光学ユニットを回転して合わせねばならず、工数のかかる問題があった。

0006

本発明は、光変調方向の調整が容易な光学ユニット及び光学装置を提供することを目的とする。

課題を解決するための手段

0007

本発明の光学ユニットは、所定の光学系に対して第一の方向に着脱可能な筐体と、光学系の偏光に対して光変調を行い、所定の変調方向を有し、変調方向が光学系の光軸に対して一義的な方向に保持されるように筐体に対して着脱可能に取り付けられた光学素子カセットと、を備えることを特徴とする。

0008

また、本発明の光学装置は、光学ユニットと、光学系と、を備え、光学系の偏光方向と光学素子カセットの変調方向とが一致することを特徴とする。

発明の効果

0009

本発明によれば、光変調方向の調整が容易な光学ユニット及び光学装置を提供できる。

図面の簡単な説明

0010

本発明の光学ユニットの実施例が組み込まれた光学系を説明するための斜視図である。
本発明の光学ユニットの実施例と光学系を説明するための分解斜視図である。
本発明の光学ユニットの実施例を説明するための分解斜視図である。
本発明の光学ユニットの実施例の製造工程を説明するためのプロセスフロー図である。
本発明の光学ユニットの実施例の製造工程を説明するための斜視図である。
本発明の光学ユニットの実施例の製造工程で光学素子カセットの光変調方向を説明するための平面図である。
本発明の光学ユニットの実施例の製造工程で光学素子カセットを組み込む工程を説明するための斜視図である。

実施例

0011

本発明の光学ユニットに内蔵される光学素子カセットは、光学系本体に対し所定の方向に着脱可能であり、光変調方向が異なる光学素子カセットを複数種類準備し、光学系のレーザ光の偏光方向に対し、光変調方向が一致する光学素子カセットをその中から選択して、光学ユニットに組み込む点が特徴的な部分である。

0012

以下、図面を用いて光学ユニットを詳述し、そして、光学系に組み込む光学ユニットの製造方法を詳述する。
図1から図3を用いて光学系に組み込む光学ユニットの実施例を説明する。次に、図4から図7を用いて光学系に組み込む光学ユニットの製造方法を説明する。

0013

[光学ユニットの構成の説明:図1図3
まず、図1図3を用いて光学ユニットの構成を説明する。
図1は、本発明の実施形態に係る光学ユニットが対物レンズを有する光学系内に組み込まれた光学系の部分的な斜視図である。図2は、光学ユニットと光学系の構成を説明するための分解斜視図であり、図3は、光学ユニットの構成を説明するための分解斜視図である。なお、各図において同一の構成部材には同一の番号を付して、重複する説明は省略する。

0014

図1図2は、光学系本体と対物レンズとの間に光学ユニットが装着された光学系100を説明するための斜視図である。ここで光学系本体2は、光源レンズなどの光学素子が組み込まれた光学系であって、一般に複雑な大型の構成であるが、この図にあっては、簡易的に模式的に示してある。

0015

図1図2に示すように、光学ユニット1は、上蓋20と下蓋40からなる筐体4と、前蓋開口部61を有する前蓋60と、そして、アリガタ24及び連結部材25からなる着脱機構23で形成されている。光学ユニット1は、その着脱機構23と光学系本体2に形成されたアリミゾ26により所定の方向、例えば、矢印A方向から挿入して位置決めをすることによって、光学ユニット1の着脱が容易で正確な配置が可能となっている。そして、対物レンズ3が下方の矢印B方向から下蓋40に形成された後述する雌ネジ部に対物レンズ3の雄ネジ部311が螺合して取り付けられる構成となっている。
なお、光学ユニット1への対物レンズ3の取付けを先にして、次に、光学系本体2へ光学ユニット1を装着する順序であっても良い。

0016

そして、このアリミゾ26を有する光学系本体2からなる光学系100について、種々の製品を検討した結果、光学系100のレーザ光の直線偏光の偏光方向は、その光学系100で予め決められた方向、すなわち、アリミゾ方向と平行、又は、直交する方向で形成されていることが明らかとなった。

0017

次に、図3を用いて、光学ユニット1の全体構成を詳細に説明する。
ここで、三次元のXYZ軸は、Z軸方向が光学ユニット1にレーザ光が透過する光軸80方向であり、この光軸に垂直な方向のY軸方向が光学素子カセット30を光学ユニット1から出し入れ交換する方向で、X軸方向がこのY軸に直交する方向である。

0018

図3に示すように、上蓋20は、矩形の板状の上面にZ軸方向に突出した円筒部21と同心円の上蓋開口部211が形成され、そして、上蓋20の上部に連結部材25を固着するための複数の接続部201及び上蓋20の下部に下蓋40を固着するための複数の接続部202が形成されている。上蓋開口部211は、光軸80と同軸であって、レーザ光が透過する光路を形成している。そして、上蓋20の上部に光学系本体2と着脱可能とする着脱機構23を形成するアリガタ24と連結部材25が形成されている。

0019

連結部材25は、円筒形状であって、その中空部である連結部材開口部252は、上蓋20の円筒部21との嵌合によって位置決めされ、光軸80を通る光路を形成し、複数の接続部251と上蓋20の接続部201によって、例えば、ネジ止めや、一方に凸部を他方に凹部を形成して圧入する接続方法などで固着される。なお、連結部材25の形状は、円筒形状に限らず角柱形状でもよく、レーザ光が透過可能な中空部が形成されておれば良い。

0020

着脱機構23を構成するアリガタ24は、光学系本体2に形成されたアリミゾ26に嵌合する形状であって、レーザ光が透過する貫通孔242と複数の接続部241が形成されている。そして、光学系本体2との着脱方向と、光学ユニット1の筐体4への光学素子カセット30の着脱方向は光軸に垂直で、Y軸方向と一致するように、連結部材25の接続部251とアリガタ24の接続部241でネジ止めされる。なお、本発明の光学ユニットの実施例にあっては光学系本体2との着脱方向と光学素子カセット30の着脱方向が一致する方向、Y軸方向で説明しているが、光学素子カセット30の着脱方向が直交するX軸方向にあっても良い。

0021

光学素子カセット30は、光変調素子31と光変調素子ホルダ32とコネクタ33から構成される。
光変調素子31は、例えば、駆動信号によって入射光を光変調する液晶素子を使用することができる。光変調素子31は、コネクタ33を介して外部から駆動信号を得るために、FPCといったケーブルでコネクタ33と電気的に接続しておくのが好ましい。また、光変調素子31は所望の光変調にあわせて単数または複数枚重ねて使用してもよい。光変調素子ホルダ32は、光変調素子31を保持し、光変調素子31の光変調領域に対応する部分に開口を有している。

0022

そして、光学素子カセット30は、光変調方向が矢印C(Y軸方向)で示す光変調素子31で形成されているが、例えば、矢印CのY軸方向と直交するX軸方向が光変調方向となる光変調素子31といった少なくとも2種類の光学素子カセット30を準備することが好ましい。

0023

コネクタ33は、光変調素子ホルダ32の一端に固定され、外部ケーブル70と接続して図示しない制御装置からの駆動信号を受け取る。これによって光変調素子31の波面収差補正超解像といった光変調を電気的にコントロールすることが可能となっている。

0024

下蓋40は、コの字形状側壁である左側壁42、右側壁43、奥側壁44、そして、底部41で光学素子カセット30を内蔵可能とする凹部が形成され、開放端側の前蓋取付部45にコの字形状の開口部が光学素子カセット30を出し入れ自由とする入り口を形成している。この入り口が上蓋20と形成する筐体4の筐体開口部を形成する。そして、右側壁43に形成されたネジ部材52は、光学素子カセット30を左側壁42と奥側壁44に設けられた凸部に当接して固定し、光軸中心の位置決めするものである。なお、上述の凸部の代わりにそれぞれ所定の弾性力をもつばねなどの弾性部材を設け、光学素子カセットを押し込みすぎた場合に戻すようにしてもよい。

0025

底部41から下方に形成された円筒形状の下蓋開口部46は、雌ネジ部411が内側に形成され、その中心軸は、上蓋20を貫通する光軸80と同軸であって、対物レンズ3が螺合可能に形成されている。なお、上述した下蓋開口部46は下方に突出した角柱形状に中空部を有するものであってもよい。

0026

ここで、下蓋40と対物レンズ3を螺合で取り付けるときに、対物レンズ3の雄ネジ部が光学素子カセット30に干渉しないように、雌ネジ部411の長さを対物レンズの雄ネジ部よりも長くするか、または底部41と下蓋開口部46の間に仕切りを設けておいてもよい。

0027

また、下蓋40は、複数の接続部401が上蓋20の接続部202と結合する位置に対応し、複数の接続部402が前蓋61の接続部601と結合する位置に対応するようにそれぞれ形成されている。これらの接続部401、202、402、601との接続方法は、前述したと同様にネジ止め等の方法であり、上蓋20が下蓋40に固着されることで光学素子カセット30を内蔵可能な筐体4が形成される。

0028

前蓋60は、光学素子カセット30を筐体4に挿入し内蔵した後、上述した前蓋取付部45の複数の接続部402と前蓋60の接続部601のネジ止めにより筐体4に固着され、光学素子カセット30を固定する。

0029

これにより、上蓋20と下蓋40で形成した筐体4と着脱機構23からなる光学ユニット1は、上部にはアリミゾ26とアリガタ24による嵌合結合、下部には雌ネジ部411と雄ネジ部311の螺合によって、図1に示したように光学系本体2と対物レンズ3の間に配置され組み込まれる。そして、光学系のレーザ光の直線偏光の光は、光軸80に沿って形成された開口部及び貫通孔によって、内蔵された光学素子カセット30の光変調素子31の光変調方向と一致して透過可能に形成されている。

0030

そして、外部ケーブル70が前蓋60の前蓋開口部61を挿通して光学素子カセット30のコネクタ33に接続されて光学素子カセット30を電気的に制御することが可能となる。
これによって光学ユニット1による波面収差補正や超解像といった光変調を電気的にコントロールすることが可能となる。

0031

上述の説明において、着脱機構はアリミゾ26に嵌合するアリガタ24として説明を行ったが、この構成に限定されることはなく、光学系本体2に対して一方向に着脱が可能であるならば、種々の構成をとることができる。たとえば、光学系本体2がアリガタを有するのであれば、着脱機構にアリミゾを形成すればよく、また磁石チャックなどによって取り付ける機構を有していても良い。また、光学系本体2が螺合によって着脱する機構しか備えていない場合には、光学系本体2と螺合することによって、着脱機構との着脱が可能となる中間部材を設けても良い。

0032

また、上述の説明において、筐体4は上蓋20と下蓋40からなるとして説明したが、これに限定することはなく、光学素子カセット30を保持できる構成であればよい。たとえば、上述の連結部材25に光学素子カセット30が保持できるような開口部を設けてもよい。この場合、着脱機構がアリガタ26であり、連結部材25を筐体4とみなすことが
できる。

0033

また、光学素子カセット30はY方向に着脱するとして説明したが、方向はこれに限定されず、光軸に対して光学素子カセット30が一義的な方向に保持できればよい。たとえば、上述のようにX軸方向であってもよいし、Z軸方向であってもよい。さらに、筐体4が光軸に対して一義的な方向に取り付け、取り外しができるようにしてもよい。

0034

[光学ユニットの製造方法の説明:図4図7
ここで、本発明に係る光学ユニットの製造方法について、図4図7を用いて説明する。
図4は、光学ユニットの製造方法を説明するプロセスフロー図である。図5から図7は、その製造方法を説明する図である。すなわち、図5は、光学ユニットが光学系に取付けられる工程を説明するための斜視図である。図6は、光変調方向の異なる光学素子カセットを説明するための平面図で、XY座標は、光学素子カセットの光学ユニットへの挿入方向をY軸方向、その直交方向をX軸方向としている。図7は、光学ユニットに光学素子カセットを装着する工程を説明するための斜視図である。

0035

図4に示すように、光学ユニットの製造方法の製造工程は、主に3段階であって、少なくとも2方向以上の光変調方向のそれぞれ異なる複数の光学素子カセットを準備する光学素子カセット準備工程(ステップST01)、光学系の偏光方向を見定めて少なくとも2方向準備した光学素子カセットの内、一方を選択する光学素子カセット選択工程(ステップST02)、そして、選択した光学素子カセットを筐体に取り付ける光学素子カセット取付工程(ステップST03)で構成されている。
またステップST03の後に、必要に応じて、外部ケーブルを光学素子カセットのコネクタに接続し光変調が可能かを確認する光変調検査工程(ステップST04)を追加してもよい。以下の説明ではステップST01〜ST03に加えてST04を行う例として順に説明を行う。なお、各図において同一の構成部材には同一の番号を付して、重複する説明は省略する。

0036

また、光学ユニット1は、ステップST01の前からステップST03の後までの間の任意のタイミングで光学系本体2及び対物レンズ3に組み込めばよいが、説明を容易にするために組み込んだ状態で各ステップを行う例として説明をする。
図5に示すように、光学ユニット1は光学系本体2と対物レンズ3の間に所定の方向で光学系に組み込まれる。しかし、後述のステップST03の工程で光学素子カセット30を装着するため、前蓋60は取り外されており、筐体4の筐体開口部47と、前蓋取付部45が露出した状態にある。

0037

[光学素子カセット準備工程の説明:図4図6
はじめに、図4に示す光学素子カセット準備工程(ステップST01)を説明する。
この工程では、光変調方向が異なる光変調素子を光変調の種類に応じて少なくとも2方向ずつ準備する。例えば、図6(a)、(b)の平面図で示す光学素子カセット30は、図3で説明したように、光変調素子31と光変調素子ホルダ32とコネクタ33で形成されている。両者の異なる点は、光変調素子31の光変調方向であって、第一方向である図6(a)の光変調素子31aの光変調方向は、Y軸方向の矢印C方向であり、第二方向である図6(b)の光学変調素子31bの光変調方向は、X軸方向の矢印D方向である。前述のように必ずしもアリミゾの方向と同一方向及び直交方向の組み合わせにする必要はなく、所定の方向に対する光変調素子と、その所定の方向から任意の角度に回転した方向の光変調素子とをそれぞれ複数ずつ用意すればよいが、通常、光学系のレーザ光の偏光方向は、アリミゾ26の方向に対し平行又は直交が多い。従って、光学素子カセット30の光変調方向も主として上記XY軸の2方向を少なくとも準備することが望ましい。

0038

[光学素子カセット選択工程の説明:図4図6
次に、図4に示す光学素子カセット選択工程(ステップST02)を説明する。
この工程では、ステップST01で準備した光学素子カセット30の中から、使用する光学素子カセット30を選択する。選択の仕方については、光学系本体2の偏光方向が既知である場合は、ステップST01で準備された複数の光学素子カセット30から、偏光方向と光変調方向とが一致又は方向が近い光変調素子を選択する。もし既知でない場合には、ステップST01で準備された複数の光学素子カセット30から任意の一つを選択する。例えば、図6(a)に示す、光変調方向がC方向の光学素子カセット30を選択する。

0039

[光学素子カセット取付工程の説明:図4図7
次に、図4に示す光学素子カセット取付工程(ステップST03)を説明する。
この工程では、ステップST02で選択された光学素子カセット30を筐体4に取り付ける。図7に示すように、ステップST02で選択された光変調方向が矢印C方向の光学素子カセット30aは、光学ユニット1の筐体4の筐体開口部47に矢印E方向から挿入される。この矢印E方向は、光学系本体2と光学ユニット1との着脱方向(図2の矢印A方向)が同じ方向となっている。

0040

そして、筐体4に光学素子カセット30を内蔵したあと、ネジ部材52でクランプし、前蓋60で蓋をして筐体4内に固定配置する。なお、前蓋60の接続部601と下蓋40の接続部401は、上述したと同様ネジ止め等の方法で固着する。内蔵された光学素子カセット30の電気的な接続は、光学素子カセット30のコネクタ33に、前蓋60の前蓋開口部61から外部ケーブルを挿通することで可能となる。

0041

[光変調検査工程の説明:図4図1
次に、図4に示す光変調検査工程(ステップST04)を説明する。
この工程では、ステップST02で選択された光学素子カセット30が適切であるかどうかを判断する。ここで、光学系の偏光方向が既知であり、選択された光学素子カセット30の光変調方向とが一致していることが明らかである場合には、この工程を省略して製造工程を終了する。以下では光学系の偏光方向が既知でない場合を例として説明する。

0042

図1に示すように、光学素子カセット30が取付けられた光学ユニット1は、外部ケーブル70で電気的に接続して、光変調の制御が可能か否かを検査することが可能となる。
光変調の制御が可能であれば、光学系のレーザ光の偏光方向と光学ユニット1の光変調方向が一致していることを示すため、OKと判定して製造工程を終了する。もし、光変調が起きない、又は充分な光変調の効果が生じなければ、光学ユニット1の光変調方向が不一致であるからNGと判定して、ステップST02に戻り、光変調方向がD方向の光学素子カセット30を選択して、組み込み直すこととなる。

0043

すなわち、ステップST04の光変調検査工程からフィードバックして、ステップST02の光学素子カセット選択工程から光学素子カセット取付工程(ステップST03)、光変調検査工程(ステップST04)と製造工程を繰り返すことで、容易に偏光方向を一致させることが可能となる。そして、以上の製造工程によって光学系に光学ユニットを組み込む製造工程が完成する。
なお、他の種類の光変調を行う光変調素子に交換する場合は、上述の工程によってレーザ光の偏光方向が既知となっているため、交換前の光変調素子の光変調方向と同一の光変調方向をもつ光変調素子を選択すればよく、ステップST04の工程は省略することができる。

0044

以上のような製造工程によって、本発明の光学ユニット1は、異なる光変調方向の光学素子カセット30を準備し、その中から光変調方向を選択して光学ユニット1に組み込むだけで、容易に確実に光学系の偏光方向に光変調方向を合わせることが可能で、波面収差を補正したり、超解像を可能にする特性を光学系に付与することが可能となる。

0045

更に、光学ユニットを別の光学系に組み込む場合などにあっても、少なくとも、2方向の光変調方向を有する光学ユニット1を準備して、選択して、組み込むことで、容易に確実に光学系の偏光方向に光学素子カセット30の光変調方向を合わせることが可能となり、光変調特性を有する光学系を形成することが可能である。また、本実施形態では、X軸方向とY軸方向の2方向の光変調方向の光学ユニットを準備したが、組み込む光学系本体の偏光方向が、X軸方向やY軸方向ではなく、例えばX軸方向に対して何度か傾いているなど、あらかじめ光変調方向が分かっている場合には、先の2方向とは異なる光変調方向を持つ光変調素子を作成し、用意しておけばよい。

0046

上記で説明した光学ユニットの製造方法は、所定の光学系に対して所定の方向に着脱可能な筐体と、光学系の偏光に対して光変調を行う光学素子カセットと、を備える光学ユニットの製造方法であって、光変調を行うときの光変調方向が互いに異なる複数の光学素子カセットを準備する光学素子カセット準備工程と、光学系の偏光方向に応じた光変調方向を有する光学素子カセットを選択する光学素子カセット選択工程と、光学素子カセット選択工程で選択された光学素子カセットを筐体に取り付ける光学素子カセット取付工程と、を有する。

0047

このような製造方法を用いれば、光学系の光の偏光方向と光変調方向の一致する光学素子カセットを選択して取り付けるから、容易に確実に光変調による超高解像度や波面収差補正等を可能とする光学ユニットを製造することができる。

0048

また、光学素子カセット準備工程において、光学素子カセットの光変調方向について、光学系の光軸に対して垂直な第3の方向のものと、光軸及び第3の方向に対してそれぞれ垂直な第4の方向のものとを用意してもよい。

0049

このような製造方法を用いれば、光学装置の偏光方向が不明であっても、この2つの方向の光変調方向を用意して、どちらか適したほうを選ぶことで、容易に確実に偏光方向と光変調方向を合わせることが可能で、光学系に光変調を可能とする光学ユニットを製造することができる。

0050

また、光学素子カセット取付工程において、光学素子カセットを筐体に取り付ける方向は第一方向であってもよい。

0051

このような製造方法を用いれば、より容易に確実に偏光方向と光変調方向を合わせることが可能で、光学系に光変調を可能とする光学ユニットを製造することができる。

0052

上記で説明した光学ユニットの製造方法によれば、光学系の光の偏光方向と光学素子カセットの光変調方向を容易に確実に一致することが可能であるから、光変調による超高解像度や波面収差補正等が可能である。そして、その光変調の特性を変更する場合や別の光学系に組み込む場合も、光学素子カセットの光変調方向を選択して取り付けることで、容易に確実に光変調を可能とする光学ユニットが提供可能である。

0053

以上、本発明の好ましい実施形態の光学装置として、光軸調整の厳しい顕微鏡用の光学装置で説明してきたが、その他、光ピックアップ眼底検査装置OCT)、プロジェクタ等の光学系を有する光学装置に応用可能である。

0054

なお、本発明は、上述した光学装置の実施例に限定されることはなく、それらの全てを行う必要もなく、特許請求の範囲の各請求項に記載した内容の範囲で種々に変更や省略をすることが出来ることは言うまでもない。

0055

1光学ユニット
2光学系本体
3対物レンズ
4筐体
20上蓋
21円筒部
23着脱機構
24アリガタ
25連結部材
26アリミゾ
30光学素子カセット
31光変調素子
32 光変調素子ホルダ
33コネクタ
40 下蓋
41 底部
42左側壁
43右側壁
44 奥側壁
45 前蓋取付部
46 下蓋開口部
47筐体開口部
52ネジ部材
60 前蓋
61 前蓋開口部
70外部ケーブル
80光軸
100 光学系
201、202、241、251、401、402、601 接続部
211 上蓋開口部
242貫通孔
252 連結部材開口部
311雄ネジ部
411雌ネジ部

ページトップへ

この技術を出願した法人

この技術を発明した人物

ページトップへ

関連する挑戦したい社会課題

関連する公募課題

該当するデータがありません

ページトップへ

おススメ サービス

おススメ astavisionコンテンツ

新着 最近 公開された関連が強い技術

  • 日本板硝子株式会社の「 光学フィルタ、カメラモジュール、及び情報端末」が 公開されました。( 2020/02/13)

    【課題】所望の光学性能を簡素な構成で発揮できる光学フィルタを提供する。【解決手段】光学フィルタ(1a)は、光吸収層(10)を備え、0°の入射角度で波長300nm〜1200nmの光を入射させたときに、下... 詳細

  • 日本板硝子株式会社の「 光学フィルタ」が 公開されました。( 2020/02/13)

    【課題】UV‐IR吸収剤を含む光学フィルタであって、撮像装置に組み込んで高画質の画像を得ることができる、光学フィルタを提供する。【解決手段】光学フィルタ(1a)は、UV‐IR吸収層(10)を備え、5%... 詳細

  • キヤノン株式会社の「 撮像システム、撮像装置、撮像装置の制御方法およびプログラム」が 公開されました。( 2020/02/13)

    【課題】撮影モードの切り替えに起因する撮影画像の品質の低下を抑制する撮像システム、撮像装置および撮像装置の制御方法を提供する。【解決手段】撮像システムは、撮像素子部を有する撮像装置と、撮像装置が撮像す... 詳細

この 技術と関連性が強い人物

関連性が強い人物一覧

この 技術と関連する社会課題

関連する挑戦したい社会課題一覧

この 技術と関連する公募課題

該当するデータがありません

astavision 新着記事

サイト情報について

本サービスは、国が公開している情報(公開特許公報、特許整理標準化データ等)を元に構成されています。出典元のデータには一部間違いやノイズがあり、情報の正確さについては保証致しかねます。また一時的に、各データの収録範囲や更新周期によって、一部の情報が正しく表示されないことがございます。当サイトの情報を元にした諸問題、不利益等について当方は何ら責任を負いかねることを予めご承知おきのほど宜しくお願い申し上げます。

主たる情報の出典

特許情報…特許整理標準化データ(XML編)、公開特許公報、特許公報、審決公報、Patent Map Guidance System データ