図面 (/)

技術 渦電流探傷装置

出願人 日立造船株式会社日本電測機株式会社
発明者 荒井浩成秦彰宏山田隆明東弘
出願日 2017年9月27日 (3年3ヶ月経過) 出願番号 2017-185534
公開日 2019年4月18日 (1年8ヶ月経過) 公開番号 2019-060724
状態 特許登録済
技術分野 磁気的手段による材料の調査、分析
主要キーワード 金属製筒 サマコバ磁石 側面溶接 端部被覆 フェライト系合金 磁界形成用 磁気飽和状態 空気排出路
関連する未来課題
重要な関連分野

この項目の情報は公開日時点(2019年4月18日)のものです。
また、この項目は機械的に抽出しているため、正しく解析できていない場合があります

図面 (8)

課題

渦電流傷装置による検査の対象となる検査対象物磁界をかける磁界形成用磁石について、高い磁力耐熱性とを両立する。

解決手段

検査対象物30へ磁界をかける磁界形成用磁石60を第1の磁石60aと第2の磁石60bとで構成し、第1の磁石60aは高い磁力を有するものとし、第1の磁石60aの近方端部62(検査対象物30側の端部)に、第1の磁石60aよりも耐熱性が高い第2の磁石60bを取り付ける。

概要

背景

従来、導電性材料からなる構造物表面(被検体検査対象物)に傷(欠陥)が生じているかどうかを検査するための探傷装置として、特許文献1に記載されているような渦電流探傷装置が用いられることがある。この装置によれば、検査対象物に渦電流を発生させ、その渦電流の強度および流れの形の変化を検出することで、検査対象物に傷が生じているかどうかを調べることができる。また傷がある場合にはその傷の位置、形状、深さを調べることもできる。

検査対象物の表面に透磁率が別々になっている複数の領域がある場合(透磁率が不均一の場合)、例えば検査対象物が非磁性体の材料をベースとし、一部に溶接が施されたものである場合、その表面は基本的には非磁性体であるが、溶接個所付近不規則磁界を有する磁性体となっている。このように表面に磁性体の領域と非磁性体の領域が混在して現われているような場合には、これらの領域をまたいで探傷装置による検査を行うと、領域間透磁率変化が原因となって検査結果ノイズが現れる。このノイズの問題への対策として、磁気飽和を利用する手法がある。この手法では、検査対象物に強力な均一磁界をかけることで、検査領域に生じている不規則な磁界を打ち消し、検査対象物を磁気飽和状態、すなわち磁性体と非磁性体との間で透磁率にほとんど差がなくなる状態とする。この磁気飽和状態であれば、検査対象物の表面の透磁率が不均一であることに起因するノイズが大幅に低減される。このため検査対象物表面に不均一な磁界を有する磁性体を含む領域があっても傷の検知が可能となる。

このような磁気飽和状態を形成するために磁石を用いることができる。ところで磁石には、温度を上昇させた場合、磁力は低下(減磁)し、その磁石に固有キュリー温度で完全に消磁されるという性質がある。また磁石は、ある程度の高温に達すると、その後冷却しても低下した磁力は元に戻らない非可逆性減磁特性を示す。先に述べた磁気飽和状態を形成するためには強力な磁石が必要となるため、強力な磁力を有するネオジム磁石を用いることが考えられる。しかし、このネオジム磁石の中で温度耐性が高く、150度の高温で用いることが出来るとされているものであっても、そのキュリー温度は摂氏300度程度である。そして標準的なネオジム磁石では、一旦80度以上になると、その後冷却しても元の磁力には回復しない。

概要

渦電流探傷装置による検査の対象となる検査対象物へ磁界をかける磁界形成用磁石について、高い磁力と耐熱性とを両立する。検査対象物30へ磁界をかける磁界形成用磁石60を第1の磁石60aと第2の磁石60bとで構成し、第1の磁石60aは高い磁力を有するものとし、第1の磁石60aの近方端部62(検査対象物30側の端部)に、第1の磁石60aよりも耐熱性が高い第2の磁石60bを取り付ける。

目的

本発明においては、高い磁力と耐熱性とを両立した磁界形成用磁石を備えた渦電流探傷装置を提供する

効果

実績

技術文献被引用数
0件
牽制数
0件

この技術が所属する分野

ライセンス契約や譲渡などの可能性がある特許掲載中! 開放特許随時追加・更新中 詳しくはこちら

請求項1

検査対象物渦電流を発生させ、前記渦電流の変化を検出することにより前記検査対象物の表面の状態を検査する渦電流探傷装置において、前記渦電流の変化を検出するための検出部と、前記検出部の外側に配置され、前記検査対象物に磁界をかける磁界形成用磁石とを備え、前記磁界形成用磁石が、第1の磁石と、前記第1の磁石の前記検査対象物側の端部に取り付けられた第2の磁石とを含み、前記第2の磁石のキュリー温度が、前記第1の磁石よりも高いことを特徴とする渦電流探傷装置。

請求項2

前記第1の磁石が、ネオジム磁石からなり、前記第2の磁石が、サマリウムコバルト磁石からなることを特徴とする請求項1に記載の渦電流探傷装置。

請求項3

前記第1の磁石の、前記検査対象物から遠方となる端部に、強磁性体からなる端部被覆板が取り付けられていることを特徴とする請求項1または請求項2に記載の渦電流探傷装置。

請求項4

前記第2の磁石が、摂氏200度以上の温度となる前記検査対象物の表面に向けられることを特徴とする請求項1ないし請求項3のいずれか1項に記載の渦電流探傷装置。

請求項5

前記検査対象物が、使用済み核燃料封入される金属製のキャニスタであり、前記キャニスタがオーステナイト系ステンレス鋼を材料として製造されたものであり、前記キャニスタにはオーステナイト系ステンレス鋼同士の溶接が行われた溶接部があり、前記溶接部に渦電流を発生させて前記キャニスタの外表面における傷の有無を検査することを特徴とする請求項1ないし請求項4のいずれか1項に記載の渦電流探傷装置。

技術分野

0001

本発明は、渦電流傷装置、特に磁気飽和法を用いた渦電流探傷装置に関するものである。

背景技術

0002

従来、導電性材料からなる構造物表面(被検体検査対象物)に傷(欠陥)が生じているかどうかを検査するための探傷装置として、特許文献1に記載されているような渦電流探傷装置が用いられることがある。この装置によれば、検査対象物に渦電流を発生させ、その渦電流の強度および流れの形の変化を検出することで、検査対象物に傷が生じているかどうかを調べることができる。また傷がある場合にはその傷の位置、形状、深さを調べることもできる。

0003

検査対象物の表面に透磁率が別々になっている複数の領域がある場合(透磁率が不均一の場合)、例えば検査対象物が非磁性体の材料をベースとし、一部に溶接が施されたものである場合、その表面は基本的には非磁性体であるが、溶接個所付近不規則磁界を有する磁性体となっている。このように表面に磁性体の領域と非磁性体の領域が混在して現われているような場合には、これらの領域をまたいで探傷装置による検査を行うと、領域間透磁率変化が原因となって検査結果ノイズが現れる。このノイズの問題への対策として、磁気飽和を利用する手法がある。この手法では、検査対象物に強力な均一磁界をかけることで、検査領域に生じている不規則な磁界を打ち消し、検査対象物を磁気飽和状態、すなわち磁性体と非磁性体との間で透磁率にほとんど差がなくなる状態とする。この磁気飽和状態であれば、検査対象物の表面の透磁率が不均一であることに起因するノイズが大幅に低減される。このため検査対象物表面に不均一な磁界を有する磁性体を含む領域があっても傷の検知が可能となる。

0004

このような磁気飽和状態を形成するために磁石を用いることができる。ところで磁石には、温度を上昇させた場合、磁力は低下(減磁)し、その磁石に固有キュリー温度で完全に消磁されるという性質がある。また磁石は、ある程度の高温に達すると、その後冷却しても低下した磁力は元に戻らない非可逆性減磁特性を示す。先に述べた磁気飽和状態を形成するためには強力な磁石が必要となるため、強力な磁力を有するネオジム磁石を用いることが考えられる。しかし、このネオジム磁石の中で温度耐性が高く、150度の高温で用いることが出来るとされているものであっても、そのキュリー温度は摂氏300度程度である。そして標準的なネオジム磁石では、一旦80度以上になると、その後冷却しても元の磁力には回復しない。

先行技術

0005

特許第4885068号公報

発明が解決しようとする課題

0006

ここで、検査対象物が焼却設備排気ダクトであったり、使用済み核燃料封入されたキャニスタ金属製筒型容器)であったりすると、検査対象物の表面は非常に高温となる。例えば検査対象物の表面が摂氏200度になっていると、前述のネオジム磁石は検査対象物に近づくと磁力が低下してしまい、検査対象物を磁気飽和させることができなくなる。検査対象物30へ確実に磁界をかけるためには磁石を検査対象物へできるだけ近づけることが好ましく、可能であれば検査対象物へ磁石を接触させるべきであるが、ネオジム磁石は高温の検査対象物へ接近させたり接触させたりすることができない。

0007

一方、耐熱性の高い磁石は磁力が低い。例えばサマリウムコバルト磁石サマコバ磁石)はキュリー温度が摂氏700〜800度程度であり、実用上も摂氏350度程度までの高温下で有効に利用できる。ところがこのサマリウムコバルト磁石の磁力はネオジム磁石ほど強くないため、十分に検査対象物を磁気飽和させることができない。

0008

そこで本発明においては、高い磁力と耐熱性とを両立した磁界形成用磁石を備えた渦電流探傷装置を提供することを目的とする。

課題を解決するための手段

0009

本発明の一形態に係る渦電流探傷装置は、検査対象物に渦電流を発生させ、前記渦電流の変化を検出することにより前記検査対象物の表面の状態を検査する渦電流探傷装置において、前記渦電流の変化を検出するための検出部と、前記検出部の外側に配置され、前記検査対象物に磁界をかける磁界形成用磁石とを備え、前記磁界形成用磁石が、第1の磁石と、前記第1の磁石の前記検査対象物側の端部に取り付けられた第2の磁石とを含み、前記第2の磁石のキュリー温度が、前記第1の磁石よりも高いことを特徴とする。

0010

また好ましくは前記第1の磁石が、ネオジム磁石からなり、前記第2の磁石が、サマリウムコバルト磁石からなるものであるとよい。

0011

また好ましくは、前記第1の磁石の、前記検査対象物から遠方となる端部に、強磁性体からなる端部被覆板が取り付けられているとよい。

0012

また好ましくは、前記第2の磁石が、摂氏200度以上の温度となる前記検査対象物の表面に向けられるとよい。
さらに好ましくは、前記検査対象物が、使用済み核燃料が封入される金属製のキャニスタであり、前記キャニスタがオーステナイト系ステンレス鋼を材料として製造されたものであり、前記キャニスタにはオーステナイト系ステンレス鋼同士の溶接が行われた溶接部があり、渦電流探傷装置は前記溶接部に渦電流を発生させて前記キャニスタの外表面における傷の有無を検査するものであるとよい。

発明の効果

0013

本発明に係る渦電流探傷装置によれば、高い磁力と耐熱性とを両立した磁界形成用磁石を備えた渦電流探傷装置を提供することができる。

図面の簡単な説明

0014

本発明の実施形態の一例において渦電流探傷装置による検査の対象となるキャニスタを示す図。
検査プローブの構造の一例を模式的に示す図。
ノイズが含まれる検出信号とノイズが除去された検出信号を示す図。
磁界形成用磁石の構造を示す図。
磁界形成用磁石に端部被覆板が取り付けられた様子を示す図。
検出信号にノイズが含まれている場合を示すグラフ
検出信号からノイズが除去された場合を示すグラフ。

実施例

0015

図1に、本発明の実施形態の一例において渦電流探傷装置によって傷の検査(探傷)が行われる対象(検査対象物)となるキャニスタ20を示す。このキャニスタ20は金属製の筒型容器であり、その内部には使用済み核燃料が封入される。キャニスタ20は図1に示すようにコンクリート製の大型容器コンクリートキャスク10)内に入れられた状態で、都市部から離れた地域、典型的には沿岸部に保管される。

0016

コンクリートキャスク10の下方には径方向に貫通する空気導入路14が設けられており、上方には径方向に貫通する空気排出路15が設けられている。外部空気が空気導入路14から取り入れられ、空気排出路15から排出される過程で、外部空気がキャニスタ20の側面に触れることにより、封入された使用済み核燃料の崩壊熱によって加熱されるキャニスタ20の冷却が行われる。

0017

ここで、コンクリートキャスク10が沿岸部で保管されている場合、沿岸部の空気には海塩が含まれているため、外部空気に触れるキャニスタ20の表面には塩化物によって錆や腐食が生じるおそれがある。そして、錆や腐食の生じた箇所に引張応力がかかっていると、その箇所に応力腐食割れ(SCC:Stress Corrosion Cracking)が生じることがある。そこで、キャニスタ20は定期的にコンクリートキャスク10から抜き出され、その表面にSCCが生じていないかどうかの検査(探傷)が行われる。

0018

キャニスタ20は図1に示すように、底付き円筒形状の本体と、その上部開口を閉ざす蓋22とで構成されている。キャニスタ20の本体と蓋22とは、溶接によって固着されており、図1に示すように、その溶接の跡が蓋溶接部26として残る。またキャニスタ20の本体側面は、長方形状金属板円筒状に湾曲させ、その金属板の両端同士を溶接することで形成される。この溶接の跡も、図1に示すように側面溶接部24として残る。こうした側面溶接部24や蓋溶接部26には引張応力がかかり易いため、これらの箇所にSCCが発生する可能性が高い。そのため、特にこれら側面溶接部24や蓋溶接部26において探傷を行うことが重要である。

0019

図2に、渦電流探傷装置40を用いた探傷の様子を概略的に示す。渦電流探傷装置40は検出プローブ50を備えている。この検出プローブ50からは交番磁界が発生するようになっており、交番磁界が検査対象物30(ここではキャニスタ20の側壁、蓋、底面など)の表面に接近すると、検査対象物30の外表面を構成する金属(キャニスタ20の場合は一般的にオーステナイト系ステンレス鋼)に渦電流が発生する。この渦電流から発生する磁束は検出プローブ50によって検知され、検知された磁束密度の大きさや波形を基にして検査対象物30表面の状態が判定される。

0020

図2に、渦電流探傷装置40の構造の一例を模式的に示す。渦電流探傷装置40は、検査プローブ50と制御器42を備えている。検査プローブ50は検査対象物30表面に発生する渦電流の変化を検出するための検出部54を有する。また制御器42は、検査プローブ50から受信した検出信号を処理する機能を備えている。

0021

ここでは、検出部54の下端面は検査対象物30の表面と向かい合うように配置されており、この下端面が、検査対象物30に発生する渦電流から生じる磁束を受ける検査プローブ50の検出面55となる。

0022

ここで、検査対象物30の表面がどのように交番磁界に対して反応するかは、検査対象物30の材料自体が持つ性質によって異なる。検査範囲内において材料の性質が均一であれば他の部分に比べて交番磁界に対する反応が異なる部分を探すことで探傷を行うことができるが、材料の性質、特に透磁率が位置によって異なっていると、傷32がなくとも位置によって交番磁界に対する反応が異なることとなり、検査に影響を及ぼすノイズが発生するため、探傷が困難となる。したがってこのようなノイズは可能な限り除去されることが望ましい。

0023

図2では、検査対象物30の表面の一部に、周りと異なる透磁率を持つ異種材料からなる異種材料部35が現れているものとしている。例えば検査対象物30が図1に示すキャニスタ20である場合、側面溶接部24や蓋溶接部26(溶接部)に異種材料が現れることがある。具体的には、キャニスタ20がオーステナイト系ステンレス鋼で構成されている場合、溶接部にはフェライト系の合金が現れる可能性がある。すなわち、溶接の過程でオーステナイト系ステンレス鋼が融解した際、その成分である鉄(Fe),クロム(Cr),ニッケル(Ni),モリブデン(Mo),そして炭素(C)などの原子配列が乱されるため、溶接の完了後、表面にはオーステナイト系ステンレス鋼と異なる原子配列を持つ合金が現れることになり、場合によってはフェライト系合金が現れることもある。このように検査対象物30表面の透磁率が不均一な場合において、検出信号にノイズが現れる様子と、磁界形成用磁石60を用いることによりノイズが除去される様子を、図3に示している。

0024

フェライト系合金が存在する位置では磁界の向きに乱れが生じるため、表面に傷32がなくともフェライト系合金が存在する位置では検査プローブ50が検出する検出信号に変化が現れてしまう。このため、フェライト系合金が表面に現われる溶接部においては、検出信号の変化が傷32に起因するものなのか、フェライト系合金に起因するものなのかを判別することが困難である。具体的には図2に示すように、検査対象物30の表面にフェライト系合金が現れて異種材料部35が形成されている場合、検査プローブ50から発せられる交番磁界の磁束が異種材料部35の位置で乱されることとなり、この位置の上方を検査プローブ50が通過した際、検出信号にノイズが生じる(図3のグラフZ1)。そのため、異種材料部35内に傷32があっても、傷32に起因する検出信号の変化を発見することが困難である。

0025

ここで、図2仮想線で示すように、磁界形成用磁石60を検査プローブ50の外側に配置しておくと、この磁界形成用磁石60から発せられる磁界を受けた検査対象物30と異種材料部35の透磁率が変化する。磁界形成用磁石60の磁界の強さが適切に設定されていれば、検査対象物30と異種材料部35の透磁率がほぼ等しくなる。そのため、検査プローブ50から発せられる交番磁界に対する反応が異種材料部35とそれ以外とでほぼ等しくなるため、検出信号が強くなるのは傷32の位置のみとなる(図3のグラフZ2)。

0026

このように、磁界形成用磁石60によって強力な磁界を検査対象物30へかけることにより、図3のグラフZ2のようにフェライト系合金に起因する検出信号の変化(ノイズ)を有意に除去することができる。しかしながら、検査対象物30が図1に示すような使用済み核燃料が封入されるキャニスタ20である場合は、キャニスタ20表面は非常に高温、典型的には摂氏200度以上となるため、磁界形成用磁石60はその高温に耐えられるものでなくてはならない。しかし前述の通り、一般的に磁力の強い磁石は耐熱性が低く、耐熱性の高い磁石は磁力が低い。

0027

そこで本実施形態においては、図4に示すように、磁界形成用磁石60を第1の磁石60aと、第2の磁石60bとで構成する。第1の磁石60aは第2の磁石60bに比べ磁力の強いものとし、第2の磁石60bは第1の磁石60aに比べ耐熱性の高いものとする。具体例としては、第1の磁石60aをネオジム磁石とし、第2の磁石60bをサマリウムコバルト磁石とする。

0028

ここで耐熱性というのは、加熱された磁石がその後冷却されても不可逆に磁力が低下したままとなってしまう加熱時の温度上限の高さであり、一般的にキュリー温度が高い物質ほどこの耐熱性も高い。

0029

第2の磁石60bは、第1の磁石60aの磁極が現れる端部に取り付けられる。この第2の磁石60bが取り付けられる端部は図4に示す通り、第1の磁石60aの、検査対象物30に向けられる近方端部62(検査対象物30側の端部)である。第2の磁石60bは第1の磁石60aの磁極に取り付けられるため、第1の磁石60aと第2の磁石60bとはお互いに磁力によって固定される。

0030

このように2つの磁石を直列に接続した場合、磁界形成用磁石60全体としての磁力は2つの磁石の単純な合計にはならない。本実施形態のように第1の磁石60aと第2の磁石60bとの磁力が異なる場合、全体としては第1の磁石60aと第2の磁石60bとの中間程度の磁力となる。具体例として、第1の磁石60aがネオジム磁石で、それ単体では磁極の表面磁束密度が500mTであるとする。そして第2の磁石60bがサマリウムコバルト磁石で、それ単体では表面磁束密度が300mTであるとする。この場合、磁界形成用磁石60全体としての磁極(図4では第2の磁石60bの下端)の表面磁束密度はおよそ450mTとなる。このように、磁界形成用磁石60全体としての磁力は第2の磁石60b単体の磁力よりも強くなる。

0031

そして、第2の磁石60bが第1の磁石60aの近方端部62に取り付けられているため、検査対象物30が高温であっても、その熱を直接受けるのは耐熱性の高い第2の磁石60bであり、第1の磁石60aの耐熱性が低くとも磁界形成用磁石60全体としての磁界発生能力が低下してしまうことはない。具体的には検査対象物30が図1に示すキャニスタ20で、その表面温度が摂氏200度程度になっていたとしても、第2の磁石60bが実用上は摂氏350度まで耐えられるサマリウムコバルト磁石であれば、キャニスタ20の熱によって第2の磁石60bの磁力が低下してしまうことがない。そしてキャニスタ20表面の熱が第1の磁石60a(例えばネオジム磁石)にまで伝わらなければ、磁界形成用磁石60全体の磁力が低下してしまうことはない。

0032

なお、第1の磁石60aが図5に示すような棒状の磁石である場合には、第1の磁石60aの端部に端部被覆板70が取り付けられてもよい。端部被覆板70は、第1の磁石60aの、近方端部62とは別の端部、すなわち検査対象物30から離れた位置の遠方端部64(検査対象物から遠方となる端部)を覆うようにして取付けられる。このようにすることで、遠方端部64の側から出ていく磁束が少なくなり、近方端部62表面における磁束密度が大きくなる。

0033

図4のような、第1の磁石60aと第2の磁石60bとが組み合わされた磁界形成用磁石60が用いられることにより十分にノイズが除去されることを図6図7を用いて説明する。図6図7のグラフは、図1に示すキャニスタ20の溶接部(側面溶接部24や蓋溶接部26)で探傷を行う場合の検出信号を示している。正確にはキャニスタ20の材質として用いられるオーステナイト系ステンレス鋼に溶接を施した試験片の表面を検査してどのような検出信号が得られるかを調べた。具体的にはSUS316の試験片同士をTIG溶接して、その溶接部に対して検査を行った。なお、ここでは表面に傷がない場合に得られる検出信号を示している。

0034

図6図7のどちらも、検査対象物の条件は同じである。図6のグラフZ3は磁界形成用磁石60がサマリウムコバルト磁石のみで構成されている場合に得られる検出信号を示している。グラフZ3では、試験片表面に傷がないにも関わらず、グラフZ3には起伏が多くみられ、溶接部に現われる異種金属(フェライト系合金など)の影響によって検出信号にノイズが混入していることがわかる。そして、そのノイズをサマリウムコバルト磁石単体では十分に除去できていない。

0035

図7のグラフZ4は、図4に示すような、第1の磁石60a(ネオジム磁石)と第2の磁石60b(サマリウムコバルト磁石)とが組み合わされた磁界形成用磁石60が用いられた場合に得られる検出信号を示している。図7のグラフZ4は図6のグラフZ3と比べて明らかに起伏がなくなっており、ネオジム磁石とサマリウムコバルト磁石との組み合わせによってノイズが十分に除去されていることがわかる。

0036

このように、本実施形態においては磁界形成用磁石60を高温の検査対象物30に近づけても磁界形成用磁石60を熱によって損傷してしまうことがなく、その上で十分にノイズを除去することができる。これにより、オーステナイト系ステンレス鋼を材料とする使用済み核燃料用キャニスタの溶接部外表面における傷の有無の検査を良好に行うことができる。

0037

なお本実施形態においては、特に図1に示すキャニスタ20、特にオーステナイト系ステンレス鋼を材料として製造されたものを検査対象物30としているが、検査対象物30はこれに限るものではなく、渦電流探傷装置40は表面に渦電流が発生する物質全般の探傷のために用いることができる。

0038

また渦電流探傷装置40の検出部54は検査対象物30表面に発生する渦電流の変化を検出できるものであればよく、具体的な形態は様々なものが利用可能である。例えば大きな励磁コイルで一様な渦電流を発生させ、その下方に配置され励磁コイルと中心軸が直交する小さな検出コイルで渦電流の変化を検出するものとしてもよい。また一つの励磁コイルを挟むように二つの検出コイルを配置して、二つの検出コイルに流れる電流の差を検出信号として得る形態であったり、インピーダンスの変化に着目することにより励磁コイルと検出コイルの役割を一つのコイルで兼用できる形態であったりしてもよい。

0039

なお本実施形態においては、第2の磁石60bは磁力によって第1の磁石60aに対して固定されるので、第1の磁石60aと第2の磁石60bとを固定するために他の部材を用いる必要はない。しかし、外部からの衝撃を受けた場合にも第1の磁石60aと第2の磁石60bとがズレないようにする必要があるならば、第1の磁石60aと第2の磁石60bとの間に金属の接着に適した接着剤(2液型エポキシ系接着剤など)が塗布されていてもよい。また、第2の磁石60bから第1の磁石60aにまでわたるネジ穴が設けられていて、そのネジ穴にボルトがねじ込まれることで第1の磁石60aと第2の磁石60bとが強固に連結されていてもよい。また第1の磁石60aと第2の磁石60bとがズレないようにするためには、第1の磁石60aと第2の磁石60bとの両者を覆うカバーが磁界形成用磁石60全体に被せられていてもよい。

0040

10コンクリートキャスク
20キャニスタ
30検査対象物
40渦電流探傷装置
50検査プローブ
60磁界形成用磁石
62 近方端部
64遠方端部
70端部被覆板

ページトップへ

この技術を出願した法人

この技術を発明した人物

ページトップへ

関連する挑戦したい社会課題

関連する公募課題

ページトップへ

技術視点だけで見ていませんか?

この技術の活用可能性がある分野

分野別動向を把握したい方- 事業化視点で見る -

ページトップへ

おススメ サービス

おススメ astavisionコンテンツ

新着 最近 公開された関連が強い技術

この 技術と関連性が強い人物

関連性が強い人物一覧

この 技術と関連する社会課題

関連する挑戦したい社会課題一覧

この 技術と関連する公募課題

関連する公募課題一覧

astavision 新着記事

サイト情報について

本サービスは、国が公開している情報(公開特許公報、特許整理標準化データ等)を元に構成されています。出典元のデータには一部間違いやノイズがあり、情報の正確さについては保証致しかねます。また一時的に、各データの収録範囲や更新周期によって、一部の情報が正しく表示されないことがございます。当サイトの情報を元にした諸問題、不利益等について当方は何ら責任を負いかねることを予めご承知おきのほど宜しくお願い申し上げます。

主たる情報の出典

特許情報…特許整理標準化データ(XML編)、公開特許公報、特許公報、審決公報、Patent Map Guidance System データ