図面 (/)

技術 担持触媒

出願人 株式会社フルヤ金属国立大学法人京都大学
発明者 草田康平北川宏池田泰之丸子智弘竹内正史
出願日 2018年11月20日 (1年7ヶ月経過) 出願番号 2018-217115
公開日 2019年3月7日 (1年3ヶ月経過) 公開番号 2019-034308
状態 未登録
技術分野 触媒 ナノ構造物
主要キーワード mL投入 熱媒循環式 Ru化合物 ブロックヒーター ボロシリケート ランタナ ポリエチレングリコールジメチルエーテル セリアジルコニア
関連する未来課題
重要な関連分野

この項目の情報は公開日時点(2019年3月7日)のものです。
また、この項目は機械的に抽出しているため、正しく解析できていない場合があります

図面 (5)

課題

本発明の目的は、触媒の性能を低下させる高分子保護材を用いず、触媒の効果を十分に発揮できる担持触媒を提供することである。

解決手段

概要

背景

従来、化学反応触媒又は燃料電池などでは、カーボン系担体ナノ粒子担持した不均一系触媒が用いられている。また、ボイラー又は排ガス浄化などでは、セラミックス系の担体にナノ粒子を担持した不均一系触媒が用いられている。不均一系触媒に用いるナノ粒子として(fcc)Ruナノ粒子が開示されている(例えば、特許文献1、又は非特許文献1を参照。)。非特許文献1では、(fcc)Ruナノ粒子を担体に担持して不均一系触媒として使用する場合、ポリビニルピロリドンなどの高分子保護材を用いてナノ粒子を合成・精製した後に、得られたナノ粒子を担体に担持している。

概要

本発明の目的は、触媒の性能を低下させる高分子保護材を用いず、触媒の効果を十分に発揮できる担持触媒を提供することである。本発明に係る担持触媒は、ナノ粒子としてRu粒子担持体に担持された担持触媒において、前記担持体は、アルミナシリカアルミナカルシアセリアセリアジルコニアランタナ、ランタナアルミナ、酸化スズ酸化タングステンアルミノシリケートアルミノホスフェートボロシリケートリンタングステン酸ヒドロキシアパタイトハイドロタルサイトペロブスカイトコージェライトムライトシリコンカーバイド活性炭カーボンブラックアセチレンブラックカーボンナノチューブ及びカーボンナノホーンの中から選ばれる1種以上であり、担持触媒の外表面に高分子保護材が存在しない。

目的

本発明の目的は、触媒の性能を低下させる高分子保護材を用いず、触媒の効果を十分に発揮できる担持触媒を提供する

効果

実績

技術文献被引用数
0件
牽制数
0件

この技術が所属する分野

ライセンス契約や譲渡などの可能性がある特許掲載中! 開放特許随時追加・更新中 詳しくはこちら

請求項1

請求項2

高分子保護材を含有しないことを特徴とする請求項1に記載の担持触媒。

請求項3

前記ナノ粒子と前記担持体との間に前記高分子保護材が介在しないことを特徴とする請求項1又は2に記載の担持触媒。

請求項4

前記担持体は、カーボン若しくはセラミックスのいずれか一方又は両方であることを特徴とする請求項1〜3のいずれか一つに記載の担持触媒。

請求項5

前記Ru粒子は、fcc構造を有していることを特徴とすることを特徴とする請求項1〜4のいずれか一つに記載の担持触媒。

技術分野

0001

本発明は、高分子保護材フリー担持触媒に関する。

背景技術

0002

従来、化学反応触媒又は燃料電池などでは、カーボン系担体ナノ粒子担持した不均一系触媒が用いられている。また、ボイラー又は排ガス浄化などでは、セラミックス系の担体にナノ粒子を担持した不均一系触媒が用いられている。不均一系触媒に用いるナノ粒子として(fcc)Ruナノ粒子が開示されている(例えば、特許文献1、又は非特許文献1を参照。)。非特許文献1では、(fcc)Ruナノ粒子を担体に担持して不均一系触媒として使用する場合、ポリビニルピロリドンなどの高分子保護材を用いてナノ粒子を合成・精製した後に、得られたナノ粒子を担体に担持している。

0003

WO2013/038674号公報

先行技術

0004

J.Am.Chem.Soc.,2013,135(15),pp5493−5496

発明が解決しようとする課題

0005

しかし、ナノ粒子の合成時に用いた高分子保護材が触媒中に残っていると、触媒の効果が十分に発揮されない場合がある。高分子保護材の除去を目的としてナノ粒子の精製を繰り返すと、精製回数が増加するにつれて得られるナノ粒子の収量が少なくなるという問題である。

0006

本発明の目的は、触媒の性能を低下させる高分子保護材を用いず、触媒の効果を十分に発揮できる担持触媒を提供することである。

課題を解決するための手段

0007

本発明に係る担持触媒は、ナノ粒子としてRu粒子担持体に担持された担持触媒において、前記担持体は、アルミナシリカアルミナカルシアセリアセリアジルコニアランタナ、ランタナアルミナ、酸化スズ酸化タングステンアルミノシリケートアルミノホスフェートボロシリケートリンタングステン酸ヒドロキシアパタイトハイドロタルサイトペロブスカイトコージェライトムライトシリコンカーバイド活性炭カーボンブラックアセチレンブラックカーボンナノチューブ及びカーボンナノホーンの中から選ばれる1種以上であり、前記担持触媒の外表面に高分子保護材が存在しないことを特徴とする。

0008

本発明に係る担持触媒は、高分子保護材を含有しないことが好ましい。触媒活性をより高めることができる。

0009

本発明に係る担持触媒では、前記ナノ粒子と前記担持体との間に前記高分子保護材が介在しないことが好ましい。触媒活性をより高めることができる。

0010

本発明に係る担持触媒では、前記担持体は、カーボン若しくはセラミックスのいずれか一方又は両方である形態を包含する。

0011

本発明に係る担持触媒では、前記Ru粒子は、fcc構造を有していることが好ましい。hcp構造を有するRu粒子を担持させた触媒と比較し、異なる触媒活性を得ることができる。

発明の効果

0012

本発明は、触媒の性能を低下させる高分子保護材を用いず、触媒の効果を十分に発揮できる担持触媒を提供することができる。

図面の簡単な説明

0013

実施例1AのTEM像である。
実施例2AのTEM像である。
実施例1AのXRDパターンである。
実施例2AのXRDパターンである。

0014

次に本発明について実施形態を示して詳細に説明するが本発明はこれらの記載に限定して解釈されない。本発明の効果を奏する限り、実施形態は種々の変形をしてもよい。

0015

本実施形態に係る担持触媒は、ナノ粒子としてRu粒子が担持体に担持された担持触媒において、担持触媒の外表面に高分子保護材が存在しない。高分子保護材が担持触媒の外表面に存在しないことで、触媒の作用を十分の発揮させることができる。高分子保護材は、例えば、ポリビニルピロリドン(PVP)である。本実施形態に係る担持触媒では、高分子保護材がナノ粒子の外表面に付着していないことが好ましく、高分子保護材がナノ粒子の外表面及び担持体の外表面に付着していないことがより好ましい。

0016

本実施形態に係る担持触媒では、ナノ粒子と担持体との間に高分子保護材が介在しないことが好ましい。

0017

本実施形態に係る担持触媒は、高分子保護材を含有しないことが好ましい。担持触媒が高分子保護材を含有するか否かは、例えば、X線回折パターン(XRDパターン)によって確認できる。例えば高分子保護材がPVPであるとき、室温でλ=CuKαの測定条件で測定したXRDパターンにおいて、10°付近にPVP由来パターンが確認されないことで、担持触媒が高分子保護材を含有しないことを確認することができる。

0018

本実施形態に係る担持触媒は、従来の担持触媒の製造方法のように予め合成したナノ粒子を担持体に担持させる方法ではなく、ナノ粒子の合成とナノ粒子の担持体への担持とを同時に行う方法で製造することが好ましい。ナノ粒子の合成とナノ粒子の担持体への担持とを同時に行うことで、従来の製造方法と比較して製造工程を少なくすることができる。本明細書において、ナノ粒子とは、平均粒子径が100nm以下の微細粒子をいう。ナノ粒子の平均粒子径は、透過型電子顕微鏡TEM)によって得られた粒子像から少なくとも100個以上の粒子の粒子径計測し、その平均を求めることによって算出した値である。TEMの観察倍率は、例えば、120000倍又は150000倍であることが好ましい。ナノ粒子の平均粒子径の下限は、特に限定されないが、1nm以上であることが好ましい。

0019

本実施形態に係る担持触媒の製造方法は、Ru粒子の合成原料となるRu化合物と、担持体と、炭素数が2以上の還元性をもつ有機溶媒と、を含有し、かつ、高分子保護材を含有しない混合物を加熱して、Ru粒子を合成するとともに、Ru粒子を担持体に担持させる工程1を有することが好ましい。

0020

次に、工程1で用いる各物質について説明する。

0021

(ナノ粒子の合成原料)
Ru粒子の合成原料となるRu化合物はRu有機化合物であることが好ましい。担持触媒をより効率的に得ることができる。Ru有機化合物は、ジケトナート又はアセテートを含有する化合物であることが好ましい。ジケトナートを含有するRu有機化合物は、例えば、トリス(アセチルアセナト)ルテニウム(III)(以降、Ru(acac)3という。)である。アセテートを含有するRu有機化合物は、例えば、酢酸ルテニウム(以降、酢酸Ruという。)である。このうち、Ru化合物はRu(acac)3又は酢酸Ruであることが好ましい。

0022

(担持体)
担持体は、カーボン若しくはセラミックスのいずれか一方又は両方である形態を包含する。セラミックスは、例えば、アルミナ、シリカ、シリカアルミナ、カルシア、マグネシアチタニア、セリア、ジルコニア、セリアジルコニア、ランタナ、ランタナアルミナ、酸化スズ、酸化タングステン、アルミノシリケート、アルミノホスフェート、ボロシリケート、リンタングステン酸、ヒドロキシアパタイト、ハイドロタルサイト、ペロブスカイト、コージェライト、ムライト又はシリコンカーバイドである。カーボンは、例えば、活性炭、カーボンブラック、アセチレンブラック、カーボンナノチューブ又はカーボンナノホーンである。本実施形態では、これらの担持体の中から1種だけを使用するか、又は2種以上を併用してもよい。2種以上を併用する場合は、セラミックスから2種以上を組合せて用いるか、カーボンから2種以上を組合せて用いるか、又はセラミックスから1種以上及びカーボンから1種以上を組合せて用いてもよい。より好ましくは、アルミナ、シリカ、チタニア、セリア、ジルコニア、活性炭及びカーボンブラックの中から選ばれる1種以上を用いる。

0023

(有機溶媒)
有機溶媒は、炭素数が2以上であり、還元性をもつ。有機溶媒の炭素数は、4以上であることがより好ましい。有機溶媒の炭素数の上限は、特に限定されないが、常温において液体であることがより好ましい。

0024

有機溶媒の沸点は100℃以上であることが好ましい。取り扱い性に優れる。また、担持触媒をより安全に得ることができる。有機溶媒の沸点は、160℃以上であることがより好ましい。有機溶媒の沸点の上限は、特に限定されないが、担持触媒から溶媒をより容易に除去できる点で、300℃以下であることが好ましく、290℃以下であることがより好ましい。

0025

有機溶媒は、多価アルコールブタノールイソブタノールエトキシエタノールジメチルホルムアミドキシレン、N−メチルピロリジノンジクロロベンゼントルエンプロピレングリコールモノメチルエーテルエチレングリコールモノメチルエーテルエチレングリコールモノメチルエーテルアセテートエチルラクテートジエチレングリコールジメチルエーテルジプロピレングリコールジメチルエーテルジエチレングリコールエチルメチルエーテルジエチレングリコールイソプロピルメチルエーテルジプロピレングリコールモノメチルエーテルジエチレングリコールジエチルエーテルジエチレングリコールモノメチルエーテルジエチレングリコールブチルメチルエーテルトリプロピレングリコールジメチルエーテルトリエチレングリコールジメチルエーテルジエチレングリコールモノブチルエーテルエチレングリコールモノフェニルエーテル、リエチレングリコールモノメチルエーテル、ジエチレングリコールジブチルエーテルトリエチレングリコールブチルメチルエーテル、ポリエチレングリコールジメチルエーテルテトラエチレングリコールジメチルエーテル及びポリエチレングリコールモノメチルエーテルの中から選ばれる1種以上であることが好ましい。担持触媒をより安全、かつ、より効率的に得ることができる。このうち、多価アルコールがより好ましい。

0026

多価アルコールは、エチレングリコール、ジエチレングリコール、トリエチレングリコール、プロピレングリコール及びブチレングリコールの中から選ばれる1種以上であることが好ましい。このうち、トリエチレングリコールがより好ましい。担持触媒をより安全、かつ、より効率的に得ることができる。

0027

次に、工程1について説明する。

0028

工程1では、まず、Ru化合物と、担持体と、有機溶媒と、を含有する混合物を作製する。混合物中のRu化合物の濃度は、125mM(mmol/l)以下であることが好ましく、100mM以下であることがより好ましい。また、Ru化合物と担持体との割合は、担持触媒中のRu粒子の担持量が所定の範囲となるように調整する。担持触媒中のRu粒子の担持量は、0.001〜60質量%であることが好ましい。ここで、担持量は、乾燥状態の担持触媒の質量に対するナノ粒子の質量の割合であり、例えば高周波誘導結合プラズマ発光分光分析原子吸光分光光度分析で測定することができる。

0029

混合物の作製にあたり、Ru化合物及び担持体を有機溶媒中に懸濁させた後、例えば超音波などの分散機を用いて分散させることが好ましい。本発明は、各物質の添加順は特に限定されない。

0030

次いで、混合物を加熱する。加熱方法は、特に限定されず、例えば、オイルバスマントルヒーターブロックヒーター若しくは熱媒循環式ジャケットなどの外部加熱方式、又はマイクロ波照射方式である。加熱温度は、100〜300℃であることが好ましく、180〜230℃であることがより好ましい。目的とする加熱温度に到達させるまでの昇温速度は、4℃/分以上であることが好ましく、6℃/分以上であることがより好ましい。昇温速度を所定の範囲とすることで、fcc構造を有するRu粒子を形成することができる。また、目的とする加熱温度で保持する時間は、使用する化合物の種類、混合物の液量又は加熱温度などに依存するが、例えば、10〜300分であることが好ましく、120〜240分であることがより好ましい。

0031

工程1では、Ru化合物が有機溶媒によって還元され、担持体の表面でRu粒子の核生成及び粒成長が起こる。そして、Ru粒子が担持体に担持された担持触媒が得られる。このRu粒子はfcc構造を有している。Ru粒子がfcc構造を有することで、hcp構造を有するRu粒子を担持させた触媒と比較し、異なる触媒活性を得ることができる。Ru粒子の結晶構造は、例えば、X線回折パターン(XRDパターン)によって確認できる。Ru粒子の平均粒子径は、30nm以下であることが好ましく、10nm以下であることがより好ましい。Ru粒子の平均粒子径の下限は、特に限定されないが、1nm以上であることが好ましい。

0032

工程1の後、担持触媒を溶媒から分離精製することが好ましい。担持触媒を分離精製する方法は、特に限定されないが、例えば、温度が下がった混合物をろ過し、洗浄・乾燥する方法である。

0033

以降、実施例を示しながら本発明についてさらに詳細に説明するが、本発明は実施例に限定して解釈されない。

0034

(実施例1A)
フラスコにトリエチレングリコール(以下、TEG)を125mL投入した。トリス(アセチルアセトナト)ルテニウム(III)(以下、Ru(acac)3)を1.9918g(5mmol)と活性炭(FAM−50、日本エンバイケミカルズ社製)を4.5031gとをとり前記TEG中に添加し、超音波で30min分散して混合液を作製した。混合液に高分子保護材は添加しなかった。この混合液を6℃/分の昇温速度で200℃まで加熱し、200℃で3hr加熱撹拌し、その後冷却した。冷却した混合液を減圧ろ過し、固体成分(濾物)をエタノールで十分に洗浄した後減圧乾燥を実施し、担持触媒を得た。

0035

(実施例2A)
フラスコにTEGを40mL投入した。Ru(acac)3を1.9920g(5mmol)と活性炭(FAM−50)を4.5022gとを秤とり前記TEG中に添加し、超音波で30min分散して混合液を作製した。混合液に高分子保護材は添加しなかった。この混合液を6℃/分の昇温速度で200℃まで加熱し、200℃で3hr加熱撹拌し、その後冷却した。冷却した混合液を減圧ろ過し、固体成分(濾物)をエタノールで十分に洗浄した後減圧乾燥を実施し、担持触媒を得た。

0036

(実施例3A)
フラスコにTEGを185mL投入した。Ru(acac)3を5.9056g(14.8mmol)とケッチェンブラック(EC300J、ライオン社製)とを4.5022g秤とり前記TEG中に添加し、超音波で30minの間分散して混合液を作製した。混合液に高分子保護材は添加しなかった。この混合液を6℃/分の昇温速度で200℃まで加熱し、200℃で3hr加熱撹拌し、その後冷却した。冷却した混合液を減圧ろ過し、固体成分(濾物)をエタノールで十分に洗浄した後減圧乾燥を実施し、担持触媒を得た。

0037

(実施例4A)
フラスコにTEGを125mL投入した。Ru(acac)3を0.9869g(2.5mmol)と活性炭(FAM−50)を4.7496gとを秤とり前記TEG中に添加し、超音波で30minの間分散して混合液を作製した。混合液に高分子保護材は添加しなかった。この混合液を6℃/分の昇温速度で200℃まで加熱し、200℃で3hr加熱撹拌し、その後冷却した。遠心分離を用いて冷却後の混合液から固体成分を沈降させ上澄みを除去し、固体成分をエタノールで十分に洗浄した後減圧乾燥を実施し、担持触媒を得た。

0038

(Ru粒子の平均粒子径)
実施例1A及び実施例2Aの担持触媒をTEMでそれぞれ倍率150000倍、200000倍で観察し、得られた粒子像から100個の粒子の粒子径を計測し、その平均を求め、Ru粒子の平均粒子径とした。図1に実施例1AのTEM像を、図2に実施例2AのTEM像を示す。実施例1Aの平均粒子径は3.34nm、実施例2Aの平均粒子径は3.14nmであった。また、図1及び図2から、凝集した粒子の存在は確認されなかった。

実施例

0039

結晶状態
実施例1A及び実施例2Aの担持触媒について、XRD測定を行った。XRD測定条件は、室温でλ=CuKαである。図3に実施例1AのXRDパターンを、図4に実施例2AのXRDパターンを示す。図3において、Ruのパターンは(fcc)Ruのパターンを示しており、Ru粒子がfcc構造を有することが確認できた。図4において、Ruのパターンは(fcc)Ruのパターン及び(hcp)Ruのパターンを含むことが示されていた。

ページトップへ

この技術を出願した法人

この技術を発明した人物

ページトップへ

関連する挑戦したい社会課題

関連する公募課題

ページトップへ

技術視点だけで見ていませんか?

この技術の活用可能性がある分野

分野別動向を把握したい方- 事業化視点で見る -

ページトップへ

おススメ サービス

おススメ astavisionコンテンツ

新着 最近 公開された関連が強い技術

  • 進展工業株式会社の「 光触媒反応装置」が 公開されました。( 2020/04/09)

    【課題】本発明は、従来にない非常に画期的な光触媒反応装置を提供することを目的とする。【解決手段】光触媒に紫外線を照射して光触媒反応を生じさせる光触媒反応装置であって、流体を通過させる流体通過空間Sを有... 詳細

  • 国立研究開発法人科学技術振興機構の「 構造物及びその製造方法」が 公開されました。( 2020/04/09)

    【課題】高い光触媒活性を有する構造物及びその製造方法の提供。【解決手段】第1の結晶構造を有する第1の金属化合物1と、第1の金属化合物1の表面に位置し、第1の結晶構造と異なる第2の結晶構造を有する第2の... 詳細

  • コスモ石油株式会社の「 流動接触分解触媒中の堆積金属濃度を制御する方法」が 公開されました。( 2020/04/09)

    【課題】流動接触分解反応において、随時、新触媒を投入し、使用後の触媒を抜出す触媒メークアップ処理により、流動接触分解触媒中の堆積金属濃度を制御するための方法の提供。【解決手段】反応経過時txに実施した... 詳細

この 技術と関連性が強い人物

関連性が強い人物一覧

この 技術と関連する社会課題

関連する挑戦したい社会課題一覧

この 技術と関連する公募課題

関連する公募課題一覧

astavision 新着記事

サイト情報について

本サービスは、国が公開している情報(公開特許公報、特許整理標準化データ等)を元に構成されています。出典元のデータには一部間違いやノイズがあり、情報の正確さについては保証致しかねます。また一時的に、各データの収録範囲や更新周期によって、一部の情報が正しく表示されないことがございます。当サイトの情報を元にした諸問題、不利益等について当方は何ら責任を負いかねることを予めご承知おきのほど宜しくお願い申し上げます。

主たる情報の出典

特許情報…特許整理標準化データ(XML編)、公開特許公報、特許公報、審決公報、Patent Map Guidance System データ