図面 (/)

技術 コンジュゲート化莢膜糖類抗原を含む免疫原性組成物、それを含むキットおよびこれらの使用

出願人 ファイザー・インク
発明者 ウェンディジョーワトソンルイパスカルホダルマルティン-モンタルボラウルエンリケイストゥリスラルフレネライネルト
出願日 2016年7月18日 (3年11ヶ月経過) 出願番号 2018-502252
公開日 2018年8月30日 (1年10ヶ月経過) 公開番号 2018-524380
状態 不明
技術分野
  • -
主要キーワード 抑制電 非吸着状態 包含率 スケジュール番号 重力送り 収集タンク 希釈容器 プロセス流れ図
関連する未来課題
重要な関連分野

この項目の情報は公開日時点(2018年8月30日)のものです。
また、この項目は機械的に抽出しているため、正しく解析できていない場合があります

図面 (17)

課題・解決手段

本発明は、コンジュゲートされたストレプトコッカスニューモニエ(Streptococcus pneumoniae)莢膜糖類抗原グリココンジュゲート)を含む新しい免疫原性組成物、前記免疫原性組成物を含むキットおよびこれらの使用に関する。本発明の免疫原性組成物は、典型的には、PREVNAR(登録商標)、SYNFLRIX(登録商標)および/またはPREVNAR13(登録商標)には見出されないストレプトコッカス・ニューモニエ(S.pneumoniae)血清型由来する少なくとも1つのグリココンジュゲートを含む。本発明はまた、前記新規免疫原性組成物を用いた、肺炎球菌感染に対するヒト対象、特に、幼児および高齢者ワクチン接種にも関する。

図1】

概要

背景

肺炎球菌により引き起こされる感染は、全世界における罹患および死亡の主な原因である。肺炎熱性菌血症および髄膜炎は、侵襲性肺炎球菌疾患の最も一般的な兆候であるが、一方、気道内での細菌拡散中耳感染副鼻腔炎または反復性気管支炎をもたらし得る。侵襲性疾患と比較して、非侵襲的兆候は通常、あまり重篤ではないが、さらにより一般的である。

欧州および米国においては、肺炎球菌性肺炎は、最も一般的な市中感染型細菌性肺炎であり、毎年、成人100,000人あたり約100人が罹患すると見積もられている。熱性菌血症および髄膜炎に関する対応する数字は、それぞれ、100000人あたり15〜19人および100,000人あたり1〜2人である。1つまたは複数のこれらの兆候に関するリスクは、幼児および高齢者、ならびに任意の年齢免疫力が低下した人々においてははるかにより高い。経済的に発展した地域においても、侵襲性肺炎球菌疾患は死亡率が高い;肺炎球菌性肺炎を有する成人については、死亡率は平均で10%〜20%であるが、高リスク群においては50%を超える可能性がある。肺炎は、世界中で肺炎球菌による死亡の圧倒的に最も一般的な原因である。

肺炎球菌疾患の原因菌であるストレプトコッカスニューモニエ(Streptococcus pneumoniae)(肺炎球菌)は、多糖莢膜により取り囲まれた、グラム陽性被包性球菌である。この莢膜の組成における差異により、約91種の莢膜型間の血清学的鑑別が可能になり、そのうちのいくつかは肺炎球菌疾患と関連することが多いが、他のものはそうであることは稀である。侵襲性肺炎球菌感染としては、肺炎、髄膜炎および熱性菌血症が挙げられる;特に、一般的な非侵襲的兆候は、中耳炎、副鼻腔炎および気管支炎である。

肺炎球菌コンジュゲートワクチン(PCV)は、ストレプトコッカス・ニューモニエ(S.pneumoniae)(肺炎球菌)により引き起こされる疾患に対して保護するために用いられる肺炎球菌ワクチンである。現在、世界市場入手可能な3つのPCVワクチンが存在する:PREVNAR(登録商標)(いくつかの国ではPREVENAR(登録商標))(7価ワクチン)、SYNFLRIX(登録商標)(10価ワクチン)およびPREVNAR13(登録商標)(いくつかの国ではPREVENAR13(登録商標))(13価ワクチン)。

必須の抗生物質に対する幅広微生物耐性が最近発生しており、免疫力が低下した人々の数が増加していることから、さらにより広い保護を示す肺炎球菌ワクチンの必要性が強調される。

特に、PREVNAR13(登録商標)には見出されない血清型があり、また非PREVNAR13(登録商標)血清型が出現する可能性があることから、肺炎球菌疾患をカバーする医学的必要性は未だ満たされておらず、対処が必要である。PREVNAR13(登録商標)における13を超える疾患を引き起こす特定の血清型は、地域、集団によって変化し、抗生物質耐性の獲得、肺炎球菌ワクチン導入および未知起源の長期的傾向のため、時間と共に変化し得る。ヒトおよび特に、2未満の子供においてさらなるストレプトコッカス・ニューモニエ(Streptococcus pneumoniae)に対する免疫応答誘導するために用いることができる免疫原性組成物が必要とされている。

概要

本発明は、コンジュゲートされたストレプトコッカス・ニューモニエ(Streptococcus pneumoniae)莢膜糖類抗原グリココンジュゲート)を含む新しい免疫原性組成物、前記免疫原性組成物を含むキットおよびこれらの使用に関する。本発明の免疫原性組成物は、典型的には、PREVNAR(登録商標)、SYNFLORIX(登録商標)および/またはPREVNAR13(登録商標)には見出されないストレプトコッカス・ニューモニエ(S.pneumoniae)血清型に由来する少なくとも1つのグリココンジュゲートを含む。本発明はまた、前記新規免疫原性組成物を用いた、肺炎球菌感染に対するヒト対象、特に、幼児および高齢者のワクチン接種にも関する。

目的

本発明の新規免疫原性組成物の目的は、PREVNAR13(登録商標)には見出されないストレプトコッカス・ニューモニエ(S.pneumoniae)血清型に対する適切な保護を提供する

効果

実績

技術文献被引用数
- 件
牽制数
- 件

この技術が所属する分野

(分野番号表示ON)※整理標準化データをもとに当社作成

該当するデータがありません

ライセンス契約や譲渡などの可能性がある特許掲載中! 開放特許随時追加・更新中 詳しくはこちら

請求項1

(a)ストレプトコッカスニューモニエ(S.pneumoniae)血清型15Bに由来するグリココンジュゲート、ストレプトコッカス・ニューモニエ(S.pneumoniae)血清型22Fに由来するグリココンジュゲート、ストレプトコッカス・ニューモニエ(S.pneumoniae)血清型33Fに由来するグリココンジュゲート、ストレプトコッカス・ニューモニエ(S.pneumoniae)血清型12Fに由来するグリココンジュゲート、ストレプトコッカス・ニューモニエ(S.pneumoniae)血清型10Aに由来するグリココンジュゲート、ストレプトコッカス・ニューモニエ(S.pneumoniae)血清型11Aに由来するグリココンジュゲートおよびストレプトコッカス・ニューモニエ(S.pneumoniae)血清型8に由来するグリココンジュゲートからなる群から選択される少なくとも1つのグリココンジュゲートを含む第1の免疫原性組成物であって、1、2、3、4、5、6または7価肺炎球菌コンジュゲート組成物である、第1の免疫原性組成物、ならびに(b)血清型1、3、4、5、6A、6B、7F、9V、14、18C、19A、19Fおよび23Fからなる群から選択されるストレプトコッカス・ニューモニエ(Streptococcuspneumoniae)血清型に由来する少なくとも1つのグリココンジュゲートを含む第2の免疫原性組成物を含む、第1および第2の免疫原性組成物の同時、同時的、随伴または逐次投与のためのキット

請求項2

前記第1の免疫原性組成物が、ストレプトコッカス・ニューモニエ(S.pneumoniae)血清型15Bに由来するグリココンジュゲート、ストレプトコッカス・ニューモニエ(S.pneumoniae)血清型22Fに由来するグリココンジュゲート、ストレプトコッカス・ニューモニエ(S.pneumoniae)血清型33Fに由来するグリココンジュゲート、ストレプトコッカス・ニューモニエ(S.pneumoniae)血清型12Fに由来するグリココンジュゲート、ストレプトコッカス・ニューモニエ(S.pneumoniae)血清型10Aに由来するグリココンジュゲート、ストレプトコッカス・ニューモニエ(S.pneumoniae)血清型11Aに由来するグリココンジュゲートおよびストレプトコッカス・ニューモニエ(S.pneumoniae)血清型8に由来するグリココンジュゲートを含み、前記組成物が、7価肺炎球菌コンジュゲート組成物である、請求項1に記載のキット。

請求項3

前記第1の免疫原性組成物の前記グリココンジュゲートがCRM197に個別にコンジュゲートされている、請求項1から2のいずれか一項に記載のキット。

請求項4

前記第1の免疫原性組成物が少なくとも1つのアジュバントをさらに含む、請求項1から3のいずれか一項に記載のキット。

請求項5

前記第2の免疫原性組成物が、ストレプトコッカス・ニューモニエ(S.pneumoniae)血清型4、6B、9V、14、18C、19Fおよび23Fに由来するグリココンジュゲートを含む、請求項1から4のいずれか一項に記載のキット。

請求項6

前記第2の免疫原性組成物が、ストレプトコッカス・ニューモニエ(S.pneumoniae)血清型1、4、5、6B、7F、9V、14、18C、19Fおよび23Fに由来するグリココンジュゲートを含む、請求項1から4のいずれか一項に記載のキット。

請求項7

前記第2の免疫原性組成物が、ストレプトコッカス・ニューモニエ(S.pneumoniae)血清型1、3、4、5、6A、6B、7F、9V、14、18C、19A、19Fおよび23Fに由来するグリココンジュゲートを含む、請求項1から4のいずれか一項に記載のキット。

請求項8

ストレプトコッカス・ニューモニエ(S.pneumoniae)血清型4、6B、9V、14、18C、19Fおよび23Fに由来する前記グリココンジュゲートが、CRM197にコンジュゲートされている、請求項5から7のいずれか一項に記載のキット。

請求項9

ストレプトコッカス・ニューモニエ(S.pneumoniae)血清型1、5および7Fに由来する前記グリココンジュゲートがCRM197にコンジュゲートされている、請求項6から7のいずれか一項に記載のキット。

請求項10

ストレプトコッカス・ニューモニエ(S.pneumoniae)血清型3、6Aおよび19Aに由来する前記グリココンジュゲートが、CRM197にコンジュゲートされている、請求項7に記載のキット。

請求項11

ストレプトコッカス・ニューモニエ(S.pneumoniae)血清型1、3、4、5、6A、6B、7F、9V、14、18C、19A、19Fおよび23Fに由来する前記グリココンジュゲートが、CRM197にコンジュゲートされている、請求項7に記載のキット。

請求項12

ストレプトコッカス・ニューモニエ(S.pneumoniae)血清型1、4、5、6B、7F、9V、14および23Fに由来する前記グリココンジュゲートが、PDに個別にコンジュゲートされている、請求項6から7のいずれか一項に記載のキット。

請求項13

ストレプトコッカス・ニューモニエ(S.pneumoniae)血清型18Cに由来する前記グリココンジュゲートが、TTにコンジュゲートされている、請求項6から7のいずれか一項に記載のキット。

請求項14

ストレプトコッカス・ニューモニエ(S.pneumoniae)血清型19Fに由来する前記グリココンジュゲートが、DTにコンジュゲートされている、請求項6から7のいずれか一項に記載のキット。

請求項15

ストレプトコッカス・ニューモニエ(S.pneumoniae)血清型1、4、5、6B、7F、9V、14および/または23Fに由来する前記グリココンジュゲートが、PDに個別にコンジュゲートされており、ストレプトコッカス・ニューモニエ(S.pneumoniae)血清型18Cに由来する前記グリココンジュゲートが、TTにコンジュゲートされており、ストレプトコッカス・ニューモニエ(S.pneumoniae)血清型19Fに由来する前記グリココンジュゲートが、DTにコンジュゲートされている、請求項6から7のいずれか一項に記載のキット。

請求項16

前記第2の免疫原性組成物が7、8、9、10、11、12、13、14または15価肺炎球菌コンジュゲート組成物である、請求項1から15のいずれか一項に記載のキット。

請求項17

前記第2の免疫原性組成物が、13価肺炎球菌コンジュゲート組成物であり、前記13価のコンジュゲートが、CRM197に個別にコンジュゲートされたストレプトコッカス・ニューモニエ(S.pneumoniae)血清型1、3、4、5、6A、6B、7F、9V、14、18C、19A、19Fおよび23Fに由来するグリココンジュゲートからなる、請求項1から16のいずれか一項に記載のキット。

請求項18

前記第2の免疫原性組成物が少なくとも1つのアジュバントをさらに含む、請求項1から17のいずれか一項に記載のキット。

請求項19

第1および第2の免疫原性組成物の同時投与のための請求項1から18のいずれか一項に記載のキット。

請求項20

第1および第2の免疫原性組成物の随伴投与の方法における使用のための請求項1から18のいずれか一項に記載のキット。

請求項21

第1および第2の免疫原性組成物の同時的投与の方法における使用のための請求項1から18のいずれか一項に記載のキット。

請求項22

前記同時、随伴または同時的投与のワクチン接種スケジュールが、複数回用量スケジュールである、請求項19から21のいずれか一項に記載のキット。

請求項23

前記複数回用量スケジュールが、1目における少なくとも1回の用量(例えば、1、2または3回の用量)、およびそれに続く、少なくとも1回の幼児用量からなる、請求項22に記載のキット。

請求項24

第1および第2の免疫原性組成物の逐次投与の方法における使用のための請求項1から18のいずれか一項に記載のキット。

請求項25

前記逐次投与のワクチン接種のスケジュールが、2、3、4、5、6、7または8回用量シリーズからなる、請求項24に記載のキット。

請求項26

ワクチン接種のスケジュールが、(a)第1の免疫原性組成物および(b)第1の免疫原性組成物の第2の免疫原性組成物との随伴投与または同時的投与の逐次投与からなる、請求項24から25のいずれか一項に記載のキット。

請求項27

ワクチン接種のスケジュールが、(a)第2の免疫原性組成物および(b)第1の免疫原性組成物の第2の免疫原性組成物との随伴投与または同時的投与の逐次投与からなる、請求項24から25のいずれか一項に記載のキット。

技術分野

0001

本発明は、コンジュゲート化莢膜糖類抗原グリココンジュゲート)を含む新しい免疫原性組成物、前記免疫原性組成物を含むキットおよびこれらの使用に関する。本発明の免疫原性組成物は、典型的には、糖類がストレプトコッカスニューモニエ(Streptococcus pneumoniae)の血清型由来するグリココンジュゲートを含む。本発明はまた、前記新規免疫原性組成物およびキットを用いた肺炎球菌感染に対する、ヒト対象、特に、幼児および高齢者ワクチン接種に関する。

背景技術

0002

肺炎球菌により引き起こされる感染は、全世界における罹患および死亡の主な原因である。肺炎熱性菌血症および髄膜炎は、侵襲性肺炎球菌疾患の最も一般的な兆候であるが、一方、気道内での細菌拡散中耳感染副鼻腔炎または反復性気管支炎をもたらし得る。侵襲性疾患と比較して、非侵襲的兆候は通常、あまり重篤ではないが、さらにより一般的である。

0003

欧州および米国においては、肺炎球菌性肺炎は、最も一般的な市中感染型細菌性肺炎であり、毎年、成人100,000人あたり約100人が罹患すると見積もられている。熱性菌血症および髄膜炎に関する対応する数字は、それぞれ、100000人あたり15〜19人および100,000人あたり1〜2人である。1つまたは複数のこれらの兆候に関するリスクは、幼児および高齢者、ならびに任意の年齢免疫力が低下した人々においてははるかにより高い。経済的に発展した地域においても、侵襲性肺炎球菌疾患は死亡率が高い;肺炎球菌性肺炎を有する成人については、死亡率は平均で10%〜20%であるが、高リスク群においては50%を超える可能性がある。肺炎は、世界中で肺炎球菌による死亡の圧倒的に最も一般的な原因である。

0004

肺炎球菌疾患の原因菌であるストレプトコッカス・ニューモニエ(Streptococcus pneumoniae)(肺炎球菌)は、多糖莢膜により取り囲まれた、グラム陽性被包性球菌である。この莢膜の組成における差異により、約91種の莢膜型間の血清学的鑑別が可能になり、そのうちのいくつかは肺炎球菌疾患と関連することが多いが、他のものはそうであることは稀である。侵襲性肺炎球菌感染としては、肺炎、髄膜炎および熱性菌血症が挙げられる;特に、一般的な非侵襲的兆候は、中耳炎、副鼻腔炎および気管支炎である。

0005

肺炎球菌コンジュゲートワクチン(PCV)は、ストレプトコッカス・ニューモニエ(S.pneumoniae)(肺炎球菌)により引き起こされる疾患に対して保護するために用いられる肺炎球菌ワクチンである。現在、世界市場入手可能な3つのPCVワクチンが存在する:PREVNAR(登録商標)(いくつかの国ではPREVENAR(登録商標))(7価ワクチン)、SYNFLRIX(登録商標)(10価ワクチン)およびPREVNAR13(登録商標)(いくつかの国ではPREVENAR13(登録商標))(13価ワクチン)。

0006

必須の抗生物質に対する幅広微生物耐性が最近発生しており、免疫力が低下した人々の数が増加していることから、さらにより広い保護を示す肺炎球菌ワクチンの必要性が強調される。

0007

特に、PREVNAR13(登録商標)には見出されない血清型があり、また非PREVNAR13(登録商標)血清型が出現する可能性があることから、肺炎球菌疾患をカバーする医学的必要性は未だ満たされておらず、対処が必要である。PREVNAR13(登録商標)における13を超える疾患を引き起こす特定の血清型は、地域、集団によって変化し、抗生物質耐性の獲得、肺炎球菌ワクチン導入および未知起源の長期的傾向のため、時間と共に変化し得る。ヒトおよび特に、2未満の子供においてさらなるストレプトコッカス・ニューモニエ(Streptococcus pneumoniae)に対する免疫応答誘導するために用いることができる免疫原性組成物が必要とされている。

発明が解決しようとする課題

0008

本発明の新規免疫原性組成物の目的は、PREVNAR13(登録商標)には見出されないストレプトコッカス・ニューモニエ(S.pneumoniae)血清型に対する適切な保護を提供することである。一態様において、本発明の免疫原性組成物の目的は、PREVNAR(登録商標)(7価ワクチン)、SYNFLORIX(登録商標)および/またはPREVNAR13(登録商標)によって現在包含される血清型に対する免疫応答を維持しながら、前記ワクチンには見出されないストレプトコッカス・ニューモニエ(S.pneumoniae)血清型に対する適切な保護を提供することである。

0009

抗原競合(または干渉)の現象により、多価ワクチンの開発が複雑になる。抗原干渉は、複数の抗原を投与すると、このような抗原が個別に投与される場合に観察される免疫応答と比べてある特定の抗原に対する応答が減少し得るという観察結果を指す。抗原の新しい組合せを作製する際のその発生は、予測不可能である。

0010

本発明の免疫原性組成物、キットおよび投与のスケジュールの目的は、PREVNAR13(登録商標)によって現在包含される血清型に対する免疫応答を維持し、免疫干渉のリスクを最小限にしながら、前記ワクチンには見出されないストレプトコッカス・ニューモニエ(S.pneumoniae)血清型に対する適切な保護を提供することである。

課題を解決するための手段

0011

これらおよび他の必要性を満たすために、本発明は、新規免疫原性組成物、それを含むキットおよびこれらの使用に関する。以下の節は、本発明のいくつかの態様および実施形態を記述するものである。

0012

本発明の一態様は、ストレプトコッカス・ニューモニエ(S.pneumoniae)血清型15Bに由来するグリココンジュゲート、ストレプトコッカス・ニューモニエ(S.pneumoniae)血清型22Fに由来するグリココンジュゲート、ストレプトコッカス・ニューモニエ(S.pneumoniae)血清型33Fに由来するグリココンジュゲート、ストレプトコッカス・ニューモニエ(S.pneumoniae)血清型12Fに由来するグリココンジュゲート、ストレプトコッカス・ニューモニエ(S.pneumoniae)血清型10Aに由来するグリココンジュゲート、ストレプトコッカス・ニューモニエ(S.pneumoniae)血清型11Aに由来するグリココンジュゲートおよびストレプトコッカス・ニューモニエ(S.pneumoniae)血清型8に由来するグリココンジュゲートからなる群から選択される少なくとも1つのグリココンジュゲートを含む免疫原性組成物であって、1、2、3、4、5、6または7価肺炎球菌コンジュゲート組成物である免疫原性組成物に関する。

0013

ある態様において、本発明は、(a)前記免疫原性組成物を含む第1の免疫原性組成物;ならびに(b)血清型1、3、4、5、6A、6B、7F、9V、14、18C、19A、19F、23F、22Fおよび33Fからなる群から選択されるストレプトコッカス・ニューモニエ(Streptococcus pneumoniae)血清型に由来する少なくとも1つのグリココンジュゲートを含む第2の免疫原性組成物を含むキットを提供する。

0014

別の態様において、本発明は、同時、同時的、随伴または逐次投与のための前記免疫原性組成物を提供する。

0015

本発明の一態様は、ワクチン接種スケジュールにおける使用のための前記免疫原性組成物を提供する。一実施形態においては、ワクチン接種スケジュールは、単回用量スケジュールである。別の実施形態においては、ワクチン接種スケジュールは、複数回用量スケジュールである。

0016

ある態様において、前記キットは、第1および第2の免疫原性組成物の同時、同時的、随伴または逐次投与のためである。

0017

本発明の別の態様は、医薬としての使用のための前記免疫原性組成物または前記キットを提供する。

0018

本発明の一態様では、前記免疫原性組成物または前記キットは、ワクチンとしての使用のためである。

0019

本発明の別の態様において、対象における細菌感染、疾患または状態を防止する、処置する、または改善するための方法における使用のための前記免疫原性組成物または前記キットを提供する。

0020

本発明の別の態様において、前記免疫原性組成物または前記キットは、対象における細菌感染、疾患または状態を防止するための方法における使用のためである。

0021

本発明の一態様は、全身経路または粘膜経路により前記免疫原性組成物を投与することにより、肺炎球菌感染に罹りやすいヒトを保護または処置するための方法における使用のための前記免疫原性組成物または前記キットを提供する。

図面の簡単な説明

0022

ストレプトコッカス・ニューモニエ(S.pneumoniae)血清型8(Pn−8)莢膜多糖の反復多糖構造を示す図である。
ストレプトコッカス・ニューモニエ(S.pneumoniae)血清型10A(Pn−10A)莢膜多糖の反復多糖構造を示す図である。
ストレプトコッカス・ニューモニエ(S.pneumoniae)血清型11A(Pn−11A)莢膜多糖の反復多糖構造を示す図である。
ストレプトコッカス・ニューモニエ(S.pneumoniae)血清型12F(Pn−12F)莢膜多糖の反復多糖構造を示す図である。
ストレプトコッカス・ニューモニエ(S.pneumoniae)血清型15B(Pn−15B)莢膜多糖の反復多糖構造を示す図である。
ストレプトコッカス・ニューモニエ(S.pneumoniae)血清型22F(Pn−22F)莢膜多糖の反復多糖構造を示す図である。
ストレプトコッカス・ニューモニエ(S.pneumoniae)血清型33F(Pn−33F)莢膜多糖の反復多糖構造を示す図である。
Pn−33Fグリココンジュゲートの調製において用いることができる活性化(A)およびコンジュゲーション(B)プロセスに関する代表的なプロセス流れ図を示す図である。
TEMPO/NC酸化反応におけるNCSの量の変化によるDOに対する効果を示す図である。
Pn−12Fグリココンジュゲートの安定性の評価を示す図である。
機能横断型OPA応答を示す図である。13価肺炎球菌コンジュゲートワクチン(US Study 6115A1−004;ClinicalTrials.gov Identifier:NCT00427895)をワクチン接種された成人からの59種の血清サブセットを、血清型9V、9A、9L、および9Nに対する機能的抗体の存在についてOPAにおいて評価した。OPA陽性力価(すなわち、1:8以上)を有する試料パーセントを、各群の上に示す。幾何平均力価(GMT)を、各群の下のx軸に列挙する。
66種の対応付けられた前/後血清の機能横断型OPA応答を示す図である。13価肺炎球菌コンジュゲートワクチン(試験6115A1−3005;ClinicalTrials.gov Identifier:NCT00546572)をワクチン接種された成人からの66種の対応付けられたワクチン接種前および接種後の血清パネルのサブセットを、血清型9V、9A、9L、および9Nに対する機能的抗体の存在についてOPAにおいて評価した。OPA陽性力価(すなわち、1:8以上)を有する試料のパーセントを、各群の上に示す。幾何平均力価(GMT)を、各群の下のx軸に列挙する。
肺炎球菌血清型9V(Pn9V)による免疫化の前および後の逆累積分布曲線(RCDC)を示す図である。13価肺炎球菌コンジュゲートワクチン(試験6115A1−3005;ClinicalTrials.gov Identifier:NCT00546572)をワクチン接種された、対応付けられたワクチン接種前および接種後の血清パネル(N=66)からの血清型9Vに対するOPA力価の逆累積分布曲線である。プロットは、OPA陽性力価(すなわち、1:8以上)を有する血清のパーセントを表す。
肺炎球菌血清型9A(Pn9A)による免疫化の前および後の逆累積分布曲線(RCDC)を示す図である。13価肺炎球菌コンジュゲートワクチン(試験6115A1−3005;ClinicalTrials.gov Identifier:NCT00546572)をワクチン接種された、対応付けられたワクチン接種前および接種後の血清パネル(N=66)からの血清型9Aに対するOPA力価の逆累積分布曲線である。プロットは、OPA陽性力価(すなわち、1:8以上)を有する血清のパーセントを表す。
肺炎球菌血清型9L(Pn9L)による免疫化の前および後の逆累積分布曲線(RCDC)を示す図である。13価肺炎球菌コンジュゲートワクチン(試験6115A1−3005;ClinicalTrials.gov Identifier:NCT00546572)をワクチン接種された、対応付けられたワクチン接種前および接種後の血清パネル(N=66)からの血清型9Lに対するOPA力価の逆累積分布曲線である。プロットは、OPA陽性力価(すなわち、1:8以上)を有する血清のパーセントを表す。
肺炎球菌血清型9N(Pn9N)による免疫化の前および後の逆累積分布曲線(RCDC)を示す図である。13価肺炎球菌コンジュゲートワクチン(試験6115A1−3005;ClinicalTrials.gov Identifier:NCT00546572)をワクチン接種された、対応付けられたワクチン接種前および接種後の血清パネル(N=66)からの血清型9Nに対するOPA力価の逆累積分布曲線である。プロットは、OPA陽性力価(すなわち、1:8以上)を有する血清のパーセントを表す。

0023

1.本発明のグリココンジュゲート
本発明の免疫原性組成物は、典型的には、糖類がストレプトコッカス・ニューモニエ(S.pneumoniae)の血清型に由来するコンジュゲート化莢膜糖類抗原(グリココンジュゲートとも呼ばれる)を含む。

0024

タンパク質担体が組成物中の2つ以上の糖類について同じである場合、糖類を、タンパク質担体の同じ分子(それにコンジュゲートされた2つ以上の異なる糖類を有する担体分子)にコンジュゲートさせることができる[例えば、WO2004/083251を参照されたい]。

0025

しかし、好ましい実施形態においては、糖類を、タンパク質担体の異なる分子(それにコンジュゲートされた1つの種類の糖類のみを有するタンパク質担体のそれぞれの分子)にそれぞれ個別にコンジュゲートさせる。前記実施形態においては、莢膜糖類は、担体タンパク質に個別にコンジュゲートされていると言われる。

0026

本発明の目的では、用語「グリココンジュゲート」は、担体タンパク質に共有的に連結された莢膜糖類を示す。一実施形態においては、莢膜糖類は、担体タンパク質に直接連結される。第2の実施形態においては、細菌糖類はスペーサーリンカーを介してタンパク質に連結される。

0027

1.1 本発明の担体タンパク質
本発明のグリココンジュゲートの成分は、糖類がコンジュゲートされている担体タンパク質である。用語「タンパク質担体」または「担体タンパク質」または「担体」は、本明細書では互換的に用いることができる。担体タンパク質は、標準的なコンジュゲーション手順に従うべきである。

0028

好ましい実施形態においては、グリココンジュゲートの担体タンパク質は、DT(ジフテリア毒素)、TT(破傷風毒素)またはTTの断片C、CRM197(ジフテリア毒素の非毒性的であるが、抗原的に同一であるバリアント)、他のDT変異体(CRM176、CRM228、CRM45(Uchidaら(1973)J.Biol.Chem.218:3838〜3844)、CRM9、CRM102、CRM103またはCRM107;NichollsおよびYoule、 Genetically Engineered Toxins、Frankel(編)、Maecel Dekker Inc.(1992)により記載された他の突然変異;Glu−148からAsp、GlnもしくはSerおよび/またはAla−158からGlyへの欠失または突然変異ならびに米国特許第4,709,017号および第4,950,740号に開示された他の突然変異;Lys516、Lys526、Phe530および/またはLys534のうちの少なくとも1つまたは複数の残基の突然変異ならびに米国特許第5,917,017号および第6,455,673号に開示された他の突然変異;または米国特許第5,843,711号に開示された断片、肺炎球菌ニューモリシン(ply)(Kuoら(1995)Infect lmmun 63:2706〜2713)、例えば、いくつかの様式で解毒されたply、例えば、dPLY−GMBS(WO2004/081515、WO2006/032499)またはdPLY−formol、PhtX、例えば、PhtA、PhtB、PhtD、PhtE(PhtA、PhtB、PhtDまたはPhtEの配列は、WO00/37105およびWO00/39299に開示されている)およびPhtタンパク質の融合物、例えば、PhtDE融合物、PhtBE融合物、Pht A−E(WO01/98334、WO03/054007、WO2009/000826)、通常、ナイセリアメニンギティディス(Neisseria meningitidis)血清群Bから抽出されるOMPC髄膜炎菌外膜タンパク質)(EP0372501)、PorB(ナイセリア・メニンギティディス(N.meningitidis)由来)、PD(ヘモフィルスインフルエンザ(Haemophilus influenzae)タンパク質D;例えば、EP0594610Bを参照されたい)、または免疫学的に機能的なその等価物合成ペプチド(EP0378881、EP0427347)、熱ショックタンパク質(WO93/17712、WO94/03208)、百日咳タンパク質(WO98/58668、EP0471177)、サイトカインリンホカイン増殖因子またはホルモン(WO91/01146)、様々な病原体由来抗原に由来する複数のヒトCD4+T細胞エピトープを含む人工タンパク質(Falugiら(2001)Eur J Immunol 31:3816−3824)、例えば、N19タンパク質(Baraldoiら(2004)Infect lmmun 72:4884−4887)、肺炎球菌表面タンパク質PspA(WO02/091998)、鉄取込みタンパク質(WO01/72337)、クロストリジウムディフィシレ(Clostridium difficile)の毒素AまたはB(WO00/61761)、トランスフェリン結合タンパク質、肺炎球菌接着タンパク質(PsaA)、組換えシュードモナスエルギノーサ(Pseudomonas aeruginosa)外毒素A(特に、その非毒性変異体グルタミン酸553に置換担持する外毒素Aなど)(Douglasら(1987)J.Bacteriol.169(11):4967−4971))からなる群において選択される。オブアルブミンキーホールリンペットヘモシアニン(KLH)、ウシ血清アルブミン(BSA)またはツベルクリン精製タンパク質誘導体PPD)などの他のタンパク質を、担体タンパク質として用いることもできる。他の好適な担体タンパク質としては、コレラトキソイド(例えば、WO2004/083251に記載される)、大腸菌(Escherichia coli)LT、大腸菌(E.coli)ST、およびシュードモナス・エルギノーサ(P.aeruginosa)に由来する外毒素Aなどの不活化細菌毒素が挙げられる。

0029

好ましい実施形態においては、グリココンジュゲートの担体タンパク質は、TT、DT、DT変異体(CRM197など)、ヘモフィルス・インフルエンザ(H.influenzae)タンパク質D、PhtX、PhtD、PhtDE融合物(特に、WO01/98334およびWO03/054007に記載のもの)、解毒されたニューモリシン、PorB、N19タンパク質、PspA、OMPC、クロストリジウム・ディフィシレ(C.difficile)の毒素AまたはBおよびPsaAからなる群から独立に選択される。

0030

1つの実施形態においては、本発明のグリココンジュゲートの担体タンパク質は、DT(ジフテリアトキソイド)である。別の実施形態においては、本発明のグリココンジュゲートの担体タンパク質は、TT(破傷風毒素)である。

0031

別の実施形態においては、本発明のグリココンジュゲートの担体タンパク質は、PD(ヘモフィルス・インフルエンザ(H.influenzae)タンパク質D;例えば、EP0594610Bを参照されたい)である。

0032

好ましい実施形態においては、本発明の莢膜糖類は、CRM197タンパク質にコンジュゲートされている。CRM197タンパク質は、非毒性形態のジフテリア毒素であるが、ジフテリア毒素とは免疫学的に区別がつかない。CRM197は、毒素原性コリファージベータ(Uchidaら(1971)Nature New Biology 233:8〜11)のニトロソグアニジン突然変異誘発により作出された非毒素原性ファージβ197tox−により感染したコリネバクテリウムジフテリア(Corynebacterium diphtheriae)により産生される。CRM197タンパク質は、ジフテリア毒素と同じ分子量を有するが、構造遺伝子中の単一塩基変化(グアニンからアデニンへの)によりそれとは異なる。この単一塩基変化は、成熟タンパク質中のアミノ酸置換(グルタミン酸からグリシンへの)を引き起こし、ジフテリア毒素の毒性を除去する。CRM197タンパク質は、糖類のための安全かつ有効なT細胞依存的担体である。CRM197およびその産生に関するさらなる詳細を、例えば、米国特許第5,614,382号に見出すことができる。

0033

1つの実施形態において、本発明の莢膜糖類は、CRM197タンパク質またはCRM197のA鎖にコンジュゲートされている(CN103495161を参照されたい)。1つの実施形態において、本発明の莢膜糖類は、遺伝子組換え体大腸菌(E.coli)による発現を介して得られたCRM197のA鎖にコンジュゲートされている(CN103495161を参照されたい)。1つの実施形態において、本発明の莢膜糖類は、全てCRM197にコンジュゲートされている。1つの実施形態において、本発明の莢膜糖類は、全てCRM197のA鎖にコンジュゲートされている。

0034

したがって、よくある実施形態において、本発明のグリココンジュゲートは、担体タンパク質としてCRM197を含み、ここで、莢膜多糖はCRM197に共有的に連結される。

0035

1.2 本発明の莢膜糖類
本明細書を通して、用語「糖類」は、多糖またはオリゴ糖類を含んでもよく、両方を含む。よくある実施形態において、糖類は多糖、特に、ストレプトコッカス・ニューモニエ(S.pneumoniae)莢膜多糖である。

0036

莢膜多糖は、当業者には公知の標準的な技術により調製される。

0037

本発明において、莢膜多糖を、例えば、ストレプトコッカス・ニューモニエ(S.pneumoniae)の血清型1、3、4、5、6A、6B、7F、8、9V、10A、11A、12F、14、15B、18C、19A、19F、22F、23Fおよび33Fから調製することができる。典型的には、莢膜多糖を、培地(例えば、ダイズ系培地)中でそれぞれのストレプトコッカス・ニューモニエ(S.pneumoniae)血清型を増殖させることにより生産した後、細菌培養物から調製する。本発明のグリココンジュゲートにおいて用いられるそれぞれの多糖を作製するために用いられるストレプトコッカス・ニューモニエ(S.pneumoniae)の細菌株を、確立された培養株保存機関または臨床標本から得ることができる。

0038

生物の集団(それぞれのストレプトコッカス・ニューモニエ(S.pneumoniae)血清型)を、種バイアルから種ボトルまでスケールアップし、生産規模発酵容量に達するまで増大する容量の1つまたは複数の種発酵器により継代することが多い。増殖サイクル終わりに、細胞を溶解した後、溶解物培養液を、下流の(精製)プロセスのために収穫する(例えば、WO2006/110381、WO2008/118752、ならびに米国特許出願公開第2006/0228380号、第2006/0228381号、第2008/0102498号、および第2008/0286838号を参照されたい)。

0039

個々の多糖を、典型的には、遠心分離、沈降、限外濾過、および/またはカラムクロマトグラフィーにより精製する(例えば、WO2006/110352およびWO2008/118752を参照されたい)。

0040

精製された多糖を、活性化(例えば、化学的に活性化)して、それらが反応(例えば、eTECスペーサーと)することができるようにした後、本明細書にさらに記載されるように、本発明のグリココンジュゲート中に組み込むことができる。

0041

ストレプトコッカス・ニューモニエ(S.pneumoniae)莢膜多糖は、最大8個の糖残基を含有してもよい反復オリゴ糖類単位を含む。

0042

1つの実施形態において、本発明の莢膜糖類は、1つのオリゴ糖類単位または反復オリゴ糖類単位の天然の長さの糖類鎖よりも短いものであってもよい。1つの実施形態において、本発明の莢膜糖類は、関連する血清型の1つの反復オリゴ糖類単位である。

0043

1つの実施形態において、本発明の莢膜糖類は、オリゴ糖類であってもよい。オリゴ糖類は、少数反復単位(典型的には、5〜15の反復単位)を有し、典型的には、合成的に、または多糖の加水分解により誘導される。

0044

しかし、好ましくは、本発明の、および本発明の免疫原性組成物中の莢膜糖類の全部は、多糖である。高分子量の莢膜多糖は、抗原表面上に存在するエピトープのため、ある特定の抗体免疫応答を誘導することができる。高分子量莢膜多糖の単離および精製は、好ましくは、本発明のコンジュゲート、組成物および方法における使用のために企図される。

0045

いくつかの実施形態においては、コンジュゲーション前に精製された多糖は、10kDa〜4,000kDaの分子量を有する。他のそのような実施形態においては、多糖は、50kDa〜4,000kDaの分子量を有する。さらなるそのような実施形態においては、多糖は、50kDa〜3,500kDa;50kDa〜3,000kDa;50kDa〜2,500kDa;50kDa〜2,000kDa;50kDa〜1,750kDa;50kDa〜1,500kDa;50kDa〜1,250kDa;50kDa〜1,000kDa;50kDa〜750kDa;50kDa〜500kDa;100kDa〜4,000kDa;100kDa〜3,500kDa;100kDa〜3,000kDa;100kDa〜2,500kDa;100kDa〜2,250kDa;100kDa〜2,000kDa;100kDa〜1,750kDa;100kDa〜1,500kDa;100kDa〜1,250kDa;100kDa〜1,000kDa;100kDa〜750kDa;100kDa〜500kDa;200kDa〜4,000kDa;200kDa〜3,500kDa;200kDa〜3,000kDa;200kDa〜2,500kDa;200kDa〜2,250kDa;200kDa〜2,000kDa;200kDa〜1,750kDa;200kDa〜1,500kDa;200kDa〜1,250kDa;200kDa〜1,000kDa;200kDa〜750kDa;または200kDa〜500kDaの分子量を有する。上記範囲のいずれかの中の任意の全整数が、本開示の実施形態として企図される。

0046

多糖は、通常の精製手順の間にサイズがわずかに減少するようになってもよい。さらに、本明細書に記載のように、多糖を、コンジュゲーションの前にサイジング技術にかけてもよい。機械的または化学的サイジングを用いることができる。化学的加水分解を、酢酸を用いて行うことができる。機械的サイジングを、高圧均一化剪断を用いて行うことができる。上記の分子量範囲は、コンジュゲーション前(例えば、活性化前)の精製された多糖を指す。

0047

好ましい実施形態においては、精製された多糖は、莢膜多糖が本明細書に上記された分子量範囲の1つの中にある分子量を有する、ストレプトコッカス・ニューモニエ(S.pneumoniae)の血清型1、3、4、5、6A、6B、7F、8、9V、10A、11A、12F、14、15B、18C、19A、19F、22F、23Fまたは33Fに由来する莢膜多糖である。

0048

本明細書で用いられる場合、多糖または担体タンパク質−多糖コンジュゲートの「分子量」という用語は、多角レーザー光散乱検出器(MALLS)と組み合わせたサイズ排除クロマトグラフィー(SEC)により算出される分子量を指す。

0049

いくつかの実施形態においては、本発明の血清型9V、18C、11A、15B、22Fおよび/または33Fに由来する肺炎球菌糖類は、O−アセチル化されている。いくつかの実施形態においては、本発明の血清型9V、11A、15B、22Fおよび/または33Fに由来する肺炎球菌糖類は、O−アセチル化されている。

0050

本明細書に記載の精製された多糖を化学的に活性化して、担体タンパク質と反応することができる糖類を作製する。これらの肺炎球菌コンジュゲートを、別々のプロセスによって調製し、以下に記載の単一用量製剤に製剤化する。

0051

1.2.1ストレプトコッカス・ニューモニエ(S.pneumoniae)血清型1、3、4、5、6A、6B、7F、9V、14、18C、19A、19Fおよび23Fに由来する肺炎球菌多糖
ストレプトコッカス・ニューモニエ(S.pneumoniae)血清型1、3、4、5、6A、6B、7F、9V、14、18C、19A、19Fおよび23Fに由来する莢膜糖類を、当業者には公知の標準的な技術により調製することができる(例えば、WO2006/110381を参照されたい)。莢膜多糖を、培地中でそれぞれのストレプトコッカス・ニューモニエ(S.pneumoniae)血清型を増殖させることにより生産することができる;増殖サイクルの終わりに、細胞を溶解した後、溶解物培養液を下流の(精製)プロセスのために収穫する。個々の多糖は、典型的には、遠心分離、沈降、限外濾過、および/またはカラムクロマトグラフィーにより精製される(例えば、WO2006/110352およびWO2008/118752を参照されたい)。精製された多糖を、本明細書にさらに記載されるようにさらにプロセシングして、本発明のグリココンジュゲートを調製することができる。

0052

いくつかの実施形態においては、コンジュゲーション前のストレプトコッカス・ニューモニエ(S.pneumoniae)血清型1、3、4、5、6A、6B、7F、9V、14、18C、19A、19Fおよび/または23Fに由来する精製された多糖は、10kDa〜4,000kDaの分子量を有する。他のそのような実施形態においては、多糖は、50kDa〜4,000kDa;50kDa〜3,000kDaまたは50kDa〜2,000kDaの分子量を有する。さらなるそのような実施形態においては、多糖は、50kDa〜3,500kDa;50kDa〜3,000kDa;50kDa〜2,500kDa;50kDa〜2,000kDa;50kDa〜1,750kDa;50kDa〜1,500kDa;50kDa〜1,250kDa;50kDa〜1,000kDa;50kDa〜750kDa;50kDa〜500kDa;100kDa〜4,000kDa;100kDa〜3,500kDa;100kDa〜3,000kDa;100kDa〜2,500kDa;100kDa〜2,000kDa;100kDa〜1,750kDa;100kDa〜1,500kDa;100kDa〜1,250kDa;100kDa〜1,000kDa;100kDa〜750kDa;100kDa〜500kDa;200kDa〜4,000kDa;200kDa〜3,500kDa;200kDa〜3,000kDa;200kDa〜2,500kDa;200kDa〜2,000kDa;200kDa〜1,750kDa;200kDa〜1,500kDa;200kDa〜1,250kDa;200kDa〜1,000kDa;200kDa〜750kDa;または200kDa〜500kDaの分子量を有する。上記範囲のいずれかの中の任意の全整数が、本開示の実施形態として企図される。

0053

多糖は、通常の精製手順の間にサイズがわずかに減少するようになってもよい。さらに、本明細書に記載のように、多糖を、コンジュゲーションの前にサイジング技術にかけてもよい。上記の分子量範囲は、最終的なサイジングステップの後、コンジュゲーションの前(例えば、活性化の前)の精製された多糖を指す。

0054

いくつかの実施形態においては、本発明の血清型9Vおよび/または18Cに由来する肺炎球菌糖類は、O−アセチル化されている。いくつかの実施形態においては、本発明の血清型9Vに由来する肺炎球菌糖類は、O−アセチル化されており、本発明の血清型18Cに由来する肺炎球菌糖類は、脱−O−アセチル化されている。

0055

1.2.2肺炎球菌多糖血清型8
血清型8の多糖反復単位は、1つのグルクロン酸(GlcpA)、2つのグルコピラノース(Glcp)および1つのガラクトピラノース(Galp)を有する直鎖状四糖類からなる(Jonesら(1957) The Journal of the American Chemical Society.79(11):2787〜2793)。4つ全ての単糖類は、図1に示されるように1,4−結合により連結される。

0056

血清型8の糖類を、当業者には公知の単離手順を用いて細菌から直接得ることができる(例えば、米国特許出願公開第2006/0228380号、第2006/0228381号、第2007/0184071号、第2007/0184072号、第2007/0231340号、および第2008/0102498号、ならびにWO2008/118752に開示された方法を参照されたい)。さらに、それらを、合成プロトコールを用いて生産することができる。

0057

血清型8のストレプトコッカス・ニューモニエ(S.pneumoniae)株を、確立された培養株保存機関(例えば、Streptococcal Reference Laboratory(Centers for Disease Control and Prevention、Atlanta、GA)など)または臨床標本から得ることができる。

0058

いくつかの実施形態においては、コンジュゲーション前のストレプトコッカス・ニューモニエ(S.pneumoniae)血清型8に由来する精製された多糖は、10kDa〜2,000kDaの分子量を有する。一実施形態においては、莢膜多糖は、50kDa〜1,000kDaの分子量を有する。別の実施形態においては、莢膜多糖は、70kDa〜900kDaの分子量を有する。別の実施形態においては、莢膜多糖は、100kDa〜800kDaの分子量を有する。

0059

さらなる実施形態においては、莢膜多糖は、100kDa〜600kDa;100kDa〜500kDa;100kDa〜400kDa;150kDa〜600kDa;150kDa〜500kDa;150kDa〜400kDa;200kDa〜600kDa;200kDa〜500kDa;200kDa〜400kDa;250kDa〜600;250kDa〜500kDa;250kDa〜400kDa;250kDa〜350kDa;300kDa〜600kDa;300kDa〜500kDa;300kDa〜400kDa;400kDa〜600kDa;500kDa〜600kDaの分子量;および同様の所望の分子量範囲を有する。上記範囲のいずれかの中の任意の全整数が、本開示の実施形態として企図される。

0060

多糖は、通常の精製手順の間にサイズがわずかに減少するようになってもよい。さらに、本明細書に記載のように、多糖を、コンジュゲーションの前にサイジング技術にかけてもよい。上記の分子量範囲は、最終的なサイジングステップの後、コンジュゲーションの前(例えば、活性化の前)の精製された多糖を指す。

0061

1.2.3肺炎球菌多糖血清型10A
血清型10Aの多糖反復単位は、2つのガラクトフラノース(Galf)、3つのガラクトピラノース(Galp)、1つのN−アセチルガラクトサミン(GalpNAc)およびホスホリビトール骨格を有する分枝状六糖類反復単位からなる(Jones,C.(2005)Carbohydrate Research 269(1):175〜181)。図2に示されるように、β−GalpNAc部分(β−3−Galpおよびβ−6−Galf)に2つの分枝単糖類が存在する。

0062

血清型10Aの糖類を、当業者には公知の単離手順を用いて細菌から直接得ることができる(例えば、米国特許出願公開第2006/0228380号、第2006/0228381号、第2007/0184071号、第2007/0184072号、第2007/0231340号、および第2008/0102498号、ならびにWO2008/118752に開示された方法を参照されたい)。さらに、それらを、合成プロトコールを用いて生産することができる。

0063

血清型10Aのストレプトコッカス・ニューモニエ(S.pneumoniae)株を、確立された培養株保存機関(例えば、Streptococcal Reference Laboratory(Centers for Disease Control and Prevention、Atlanta、GA)など)または臨床標本から得ることができる。

0064

いくつかの実施形態においては、コンジュゲーション前のストレプトコッカス・ニューモニエ(S.pneumoniae)血清型10Aに由来する精製された多糖は、10kDa〜2,000kDaの分子量を有する。一実施形態においては、莢膜多糖は、50kDa〜1,000kDaの分子量を有する。別の実施形態においては、莢膜多糖は、70kDa〜900kDaの分子量を有する。別の実施形態においては、莢膜多糖は、100kDa〜800kDaの分子量を有する。

0065

さらなる実施形態においては、莢膜多糖は、100kDa〜600kDa;100kDa〜500kDa;100kDa〜400kDa;150kDa〜600kDa;150kDa〜500kDa;150kDa〜400kDa;200kDa〜600kDa;200kDa〜500kDa;200kDa〜400kDa;250kDa〜600kDa;250kDa〜500kDa;250kDa〜400kDa;250kDa〜350kDa;300kDa〜600kDa;300kDa〜500kDa;300kDa〜400kDa;400kDa〜600kDa;500kDa〜600kDaの分子量;および同様の所望の分子量範囲を有する。上記範囲のいずれかの中の任意の全整数が、本開示の実施形態として企図される。

0066

多糖は、通常の精製手順の間にサイズがわずかに減少するようになってもよい。さらに、本明細書に記載のように、多糖を、コンジュゲーションの前にサイジング技術にかけてもよい。上記の分子量範囲は、最終的なサイジングステップの後、コンジュゲーションの前(例えば、活性化の前)の精製された多糖を指す。

0067

1.2.4肺炎球菌多糖血清型11A
血清型11Aの多糖反復単位は、図3に示されるように、直鎖状四糖類骨格(2つのガラクトピラノース(Galp)および2つのグルコピラノース(Glcp))およびペンダントホスホグリセロールからなる(Richardsら(1988)Adv.Exp.Med.Biol.228:595〜597)。多糖は、複数の位置でO−アセチル化されており、文献(Calixら(2011)J Bacteriol.193(19):5271〜5278)中の報告されたデータに基づくと、11A多糖中のO−アセチル化の総量は、多糖反復単位あたり約2.6個のO−アセチル基である。

0068

血清型11Aの糖類を、当業者には公知の単離手順を用いて細菌から直接得ることができる(例えば、米国特許出願公開第2006/0228380号、第2006/0228381号、第2007/0184071号、第2007/0184072号、第2007/0231340号、および第2008/0102498号、ならびにWO2008/118752に開示された方法を参照されたい)。さらに、それらを、合成プロトコールを用いて生産することができる。

0069

血清型11Aのストレプトコッカス・ニューモニエ(S.pneumoniae)株を、確立された培養株保存機関(例えば、Streptococcal Reference Laboratory(Centers for Disease Control and Prevention、Atlanta、GA)など)または臨床標本から得ることができる。

0070

ストレプトコッカス・ニューモニエ(S.pneumoniae)溶解物に由来する血清型11A多糖の精製により得られた単離された血清型11A莢膜多糖および場合により、精製された多糖のサイジングを、例えば、分子量(MW)および前記血清型11A莢膜多糖1mMあたりのアセテートのmMを含む、様々な属性により特徴付けることができる。

0071

いくつかの実施形態においては、コンジュゲーション前のストレプトコッカス・ニューモニエ(S.pneumoniae)血清型11Aに由来する精製された多糖は、10kDa〜2,000kDaの分子量を有する。一実施形態においては、莢膜多糖は、50kDa〜1,000kDaの分子量を有する。別の実施形態においては、莢膜多糖は、70kDa〜900kDaの分子量を有する。別の実施形態においては、莢膜多糖は、100kDa〜800kDaの分子量を有する。

0072

さらなる実施形態においては、莢膜多糖は、100kDa〜600kDa;100kDa〜500kDa;100kDa〜400kDa;100kDa〜300kDa;100kDa〜200kDa;150kDa〜600kDa;150kDa〜500kDa;150kDa〜400kDa;150kDa〜300kDa;150kDa〜200kDa;200kDa〜600kDa;200kDa〜500kDa;200kDa〜400kDa;250kDa〜600kDa;250kDa〜500kDa;250kDa〜400kDa;250kDa〜350kDa;300kDa〜600kDa;300kDa〜500kDa;300kDa〜400kDa;400kDa〜600kDa;500kDa〜600kDaの分子量;および同様の所望の分子量範囲を有する。上記範囲のいずれかの中の任意の全整数が、本開示の実施形態として企図される。

0073

多糖は、通常の精製手順の間にサイズがわずかに減少するようになってもよい。さらに、本明細書に記載のように、多糖を、コンジュゲーションの前にサイジング技術にかけてもよい。上記の分子量範囲は、最終的なサイジングステップの後、コンジュゲーションの前(例えば、活性化の前)の精製された多糖を指す。

0074

1つの実施形態においては、精製された血清型11A多糖のサイズを、高圧均一化により減少させる。高圧均一化は、十分に小さい寸法を有する流路を通してプロセス流ポンプすることにより高い剪断速度を達成する。剪断速度は、より大きい印加される均一化圧力を用いることにより増大し、ホモジェナイザーにより供給流再循環させることにより曝露時間を増大させることができる。

0075

高圧均一化プロセスは、O−アセチル基の存在などの、多糖の構造的特徴を保持しながら、精製された血清型11A多糖のサイズを減少させるのに特に好適である。

0076

精製された、単離された、もしくは活性化された血清型11A莢膜多糖中または血清型11A多糖−担体タンパク質コンジュゲート中のO−アセチルの存在は、前記多糖1mMあたりのアセテートのmM数として、または多糖反復単位あたりのO−アセチル基の数として表される。

0077

好ましい実施形態においては、ストレプトコッカス・ニューモニエ(S.pneumoniae)血清型11Aに由来する精製された多糖は、前記血清型11A莢膜多糖1μmolあたり、少なくとも0.2、0.4、0.6、0.8、1.0、1.2、1.4または1.6μmolのアセテートを有する。

0078

1.2.5肺炎球菌多糖血清型12F
血清型12Fの多糖反復単位は、図4に示されるように、2つの分枝:FucpNAcのC3で連結されたペンダントα−ガラクトピラノース(Galp)およびManpNAcAのC3で連結されたα−Glcp−(1→2)−α−Glcp二糖類分枝を有する、直鎖状三糖類骨格(1つのN−アセチルフコサミン(FucpNAc)、1つのN−アセチルガラクトサミン(GalpNAc)および1つのN−アセチルマヌロン酸(ManpNAcA))からなる(Leonteinら(1983)Carbohydrate Research 114(2):257〜266))。

0079

血清型12Fのストレプトコッカス・ニューモニエ(Streptococcus pneumoniae)株を、確立された培養株保存機関(例えば、Streptococcal Reference Laboratory(Centers for Disease Control and Prevention、Atlanta、GA)など)または臨床標本から得ることができる。

0080

ストレプトコッカス・ニューモニエ(S.pneumoniae)血清型12Fに由来する莢膜糖類は、当業者には公知の標準的な技術により調製される。典型的には、莢膜多糖を、培地(例えば、ダイズ系培地)中でそれぞれのストレプトコッカス・ニューモニエ(S.pneumoniae)血清型を増殖させることにより生産した後、多糖を細菌培養物から調製する。生物の集団(ストレプトコッカス・ニューモニエ(S.pneumoniae)血清型12F)を、種バイアルから種ボトルまでスケールアップし、生産規模の発酵容量に達するまで増大する容量の1つまたは複数の種発酵器により継代することが多い。増殖サイクルの終わりに、細胞を溶解した後、溶解物培養液を、下流の(精製)プロセスのために収穫する(例えば、WO2006/110381およびWO2008/118752、米国特許出願公開第2006/0228380号、第2006/0228381号、第2008/0102498号、および第2008/0286838号を参照されたい)。多糖を、典型的には、遠心分離、沈降、限外濾過、および/またはカラムクロマトグラフィーにより精製する(例えば、WO2006/110352およびWO2008/118752を参照されたい)。

0081

本明細書にさらに記載されるように、血清型12Fに由来する精製された多糖を、活性化(例えば、化学的に活性化)して、それらを反応することができるようにした後、本発明のグリココンジュゲート中に組み込むことができる。

0082

いくつかの実施形態においては、コンジュゲーション前のストレプトコッカス・ニューモニエ(S.pneumoniae)血清型12Fに由来する精製された多糖は、10kDa〜2,000kDaの分子量を有する。一実施形態においては、莢膜多糖は、50kDa〜1,000kDaの分子量を有する。別の実施形態においては、莢膜多糖は、50kDa〜300kDaの分子量を有する。別の実施形態においては、莢膜多糖は、70kDa〜300kDaの分子量を有する。さらなる実施形態においては、莢膜多糖は、90kDa〜250kDa;90kDa〜150kDa;90kDa〜120kDa;80kDa〜120kDa;70kDa〜100kDa;70kDa〜110kDa;70kDa〜120kDa;70kDa〜130kDa;70kDa〜140kDa;70kDa〜150kDa;70kDa〜160kDa;80kDa〜110kDa;80kDa〜120kDa;80kDa〜130kDa;80kDa〜140kDa;80kDa〜150kDa;80kDa〜160kDa;90kDa〜110kDa;90kDa〜120kDa;90kDa〜130kDa;90kDa〜140kDa;90kDa〜150kDa;90kDa〜160kDa;100kDa〜120kDa;100kDa〜130kDa;100kDa〜140kDa;100kDa〜150kDa;100kDa〜160kDaの分子量;および同様の所望の分子量範囲を有する。上記範囲のいずれかの中の任意の全整数が、本開示の実施形態として企図される。

0083

多糖は、通常の精製手順の間にサイズがわずかに減少するようになってもよい。さらに、本明細書に記載のように、多糖を、コンジュゲーションの前にサイジング技術にかけてもよい。上記の分子量範囲は、最終的なサイジングステップの後、コンジュゲーションの前(例えば、活性化の前)の精製された多糖を指す。

0084

1.2.6肺炎球菌多糖血清型15B
図5に示されるように、血清型15Bの多糖反復単位は、GlcpNAcのC4ヒドロキシル基に連結されたαGalp−βGalp二糖類を有する、分枝状三糖類骨格(1つのN−アセチルグルコサミン(GlcpNAc)、1つのガラクトピラノース(Galp)および1つのグルコピラノース(Glcp))からなる。ホスホグリセロールを、二糖類分枝中のβGalp残基のC3ヒドロキシル基に連結する(Jonesら(2005)Carbohydrate Research 340(3):403〜409)。血清型15Cに由来する莢膜多糖は、血清型15Bと同一の骨格構造を有するが、O−アセチル化を欠く

0085

血清型15B多糖を、当業者には公知の単離手順を用いて細菌から直接得ることができる(例えば、米国特許出願公開第2006/0228380号、第2006/0228381号、第2007/0184071号、第2007/0184072号、第2007/0231340号、および第2008/0102498号、ならびにWO2008/118752に開示された方法を参照されたい)。また、それらを、当業者には公知の合成プロトコールを用いて生産することができる。

0086

血清型15Bのストレプトコッカス・ニューモニエ(S.pneumoniae)株を、確立された培養株保存機関(例えば、American Type Culture Collection(ATCC、Manassas、VA USA)など(例えば、寄託株ATCC10354)もしくはStreptococcal Reference Laboratory(Centers for Disease Control and Prevention、Atlanta、GA USA))または臨床標本から得ることができる。

0087

細菌細胞を、培地、好ましくはダイズ系培地中で増殖させる。ストレプトコッカス・ニューモニエ(S.pneumoniae)血清型15B莢膜多糖を生産する細菌細胞の発酵後、細菌細胞を溶解して、細胞溶解物を得る。次いで、血清型15Bの多糖を、遠心分離、深層濾過、沈降、限外濾過、活性炭を用いる処理、透析濾過および/またはカラムクロマトグラフィーの使用を含む、当技術分野で公知の精製技術を用いて細胞溶解物から単離することができる(例えば、米国特許出願公開第2006/0228380号、第2006/0228381号、第2007/0184071号、第2007/0184072号、第2007/0231340号、および第2008/0102498号、ならびにWO2008/118752を参照されたい)。次いで、精製された血清型15Bの莢膜多糖を、免疫原性コンジュゲートの調製のために用いることができる。

0088

ストレプトコッカス・ニューモニエ(S.pneumoniae)溶解物からの血清型15B多糖の精製により得られる単離された血清型15B莢膜多糖および場合により、精製された多糖のサイジングを、例えば、分子量(MW)、前記血清型15B莢膜多糖1mMあたりのアセテートのmM、および前記血清型15B莢膜多糖1mMあたりのグリセロールのmMを含む、様々なパラメータにより特徴付けることができる。

0089

好ましくは、有利な濾過特徴および/または収率を有する15Bコンジュゲートを生成するために、標的分子量範囲への多糖のサイジングを、担体タンパク質へのコンジュゲーションの前に実施する。有利には、精製された血清型15B多糖のサイズを、例えば、O−アセチル基の存在などの多糖の構造の重要な特徴を保持しながら減少させる。好ましくは、精製された血清型15B多糖のサイズを、機械的均一化により減少させる。

0090

好ましい実施形態においては、精製された血清型15B多糖のサイズを、高圧均一化により減少させる。高圧均一化は、十分に小さい寸法を有する流路を通してプロセス流をポンプすることにより高い剪断速度を達成する。剪断速度は、より大きい印加される均一化圧力を用いることにより増大し、ホモジェナイザーにより供給流を再循環させることにより曝露時間を増大させることができる。

0091

高圧均一化プロセスは、O−アセチル基の存在などの、多糖の構造的特徴を保持しながら、精製された血清型15B多糖のサイズを減少させるのに特に好適である。

0092

好ましい実施形態においては、単離された血清型15B莢膜多糖は、5kDa〜500kDa、50kDa〜500kDa、50kDa〜450kDa、100kDa〜400kDa、および100kDa〜350kDaの分子量を有する。好ましい実施形態においては、単離された血清型15B莢膜多糖は、100kDa〜350kDaの分子量を有する。好ましい実施形態においては、単離された血清型15B莢膜多糖は、100kDa〜300kDaの分子量を有する。好ましい実施形態においては、単離された血清型15B莢膜多糖は、150kDa〜300kDaの分子量を有する。好ましい実施形態においては、単離された血清型15B莢膜多糖は、150kDa〜350kDaの分子量を有する。さらなる実施形態においては、莢膜多糖は、100kDa〜500kDa;100kDa〜400kDa;100kDa〜300kDa;100kDa〜200kDa;150kDa〜500kDa;150kDa〜400kDa;150kDa〜300kDa;150kDa〜200kDa;200kDa〜500kDa;200kDa〜400kDa;250kDa〜500kDa;250kDa〜400kDa;250kDa〜350kDa;300kDa〜500kDa;300kDa〜400kDaの分子量;および同様の所望の分子量範囲を有する。上記範囲のいずれかの中の任意の全整数が、本開示の実施形態として企図される。

0093

血清型15Bの多糖は、O−アセチル化されており、O−アセチル化の総量は、多糖反復単位あたり約0.8〜0.9個のO−アセチル基である。多糖のO−アセチル化の程度を、当技術分野で公知の任意の方法により、例えば、プロトンMR(例えば、Lemercinierら(1996)Carbohydrate Research 296:83〜96;Jonesら(2002)J.Pharmaceutical and Biomedical Analysis 30:1233〜1247;WO2005/033148およびWO00/56357を参照されたい)により決定することができる。別の一般的に用いられる方法は、Hestrin,S.(1949)J.Biol.Chem.180:249〜261に記載されている。好ましくは、O−アセチル基の存在は、イオンHPLC分析により決定される。

0094

精製された、単離された、もしくは活性化された血清型15B莢膜多糖中、または血清型15B多糖−担体タンパク質コンジュゲート中のO−アセチルの存在は、前記多糖1mMあたりのアセテートのmM数として、または多糖反復単位あたりのO−アセチル基の数として表される。

0095

好ましい実施形態においては、単離された血清型15B莢膜多糖は、前記血清型15B莢膜多糖1mMあたり少なくとも0.1、0.2、0.3、0.4、0.5、0.6、0.7または0.8mMのアセテートを含む。好ましい実施形態においては、単離された血清型15B莢膜多糖は、前記血清型15B莢膜多糖1mMあたり少なくとも0.5、0.6または0.7mMのアセテートを含む。好ましい実施形態においては、単離された血清型15B莢膜多糖は、前記血清型15B莢膜多糖1mMあたり少なくとも0.6mMのアセテートを含む。好ましい実施形態においては、単離された血清型15B莢膜多糖は、前記血清型15B莢膜多糖1mMあたり少なくとも0.7mMのアセテートを含む。

0096

グリセロールリン酸側鎖の存在は、多糖をフッ化水素酸(HF)で処理することによって遊離させた後にパルスアンペロメトリック検出(HPAEC−PAD)を用いた高速陰イオン交換クロマトグラフィーを使用してグリセロールを測定することにより決定される。精製された、単離された、もしくは活性化された血清型15B多糖における、または血清型15B多糖−担体タンパク質コンジュゲートにおけるグリセロールの存在は、血清型15B多糖1mMあたりのグリセロールのmM数として表される。

0097

好ましい実施形態においては、単離された血清型15B莢膜多糖は、前記血清型15B莢膜多糖1mMあたり少なくとも0.1、0.2、0.3、0.4、0.5、0.6、0.7または0.8mMのグリセロールを含む。好ましい実施形態においては、単離された血清型15B莢膜多糖は、前記血清型15B莢膜多糖1mMあたり少なくとも0.5、0.6または0.7mMのグリセロールを含む。好ましい実施形態においては、単離された血清型15B莢膜多糖は、前記血清型15B莢膜多糖1mMあたり少なくとも0.6mMのグリセロールを含む。好ましい実施形態においては、単離された血清型15B莢膜多糖は、前記血清型15B莢膜多糖1mMあたり少なくとも0.7mMのグリセロールを含む。

0098

好ましい実施形態においては、単離された血清型15B莢膜多糖は、100kDa〜350kDaの分子量を有し、前記血清型15B莢膜多糖1mMあたり少なくとも0.6mMのアセテートを含む。

0099

好ましい実施形態においては、単離された血清型15B莢膜多糖は、100kDa〜350kDaの分子量を有し、前記血清型15B莢膜多糖1mMあたり少なくとも0.6mMのグリセロールを含む。

0100

好ましい実施形態においては、単離された血清型15B莢膜多糖は、150kDa〜300kDaの分子量を有し、前記血清型15B莢膜多糖1mMあたり少なくとも0.6mMのアセテートを含む。

0101

好ましい実施形態においては、単離された血清型15B莢膜多糖は、150kDa〜300kDaの分子量を有し、前記血清型15B莢膜多糖1mMあたり少なくとも0.6mMのグリセロールを含む。

0102

好ましい実施形態においては、単離された血清型15B莢膜多糖は、150kDa〜350kDaの分子量を有し、前記血清型15B莢膜多糖1mMあたり少なくとも0.6mMのアセテートを含む。

0103

好ましい実施形態においては、単離された血清型15B莢膜多糖は、150kDa〜350kDaの分子量を有し、前記血清型15B莢膜多糖1mMあたり少なくとも0.6mMのグリセロールを含む。

0104

好ましい実施形態においては、単離された血清型15B莢膜多糖は、前記血清型15B莢膜多糖1mMあたり少なくとも0.6mMのアセテートおよび前記血清型15B莢膜多糖1mMあたり少なくとも0.6mMのグリセロールを含む。

0105

好ましい実施形態においては、単離された血清型15B莢膜多糖は、100kDa〜350kDaの分子量を有し、前記血清型15B莢膜多糖1mMあたり少なくとも0.6mMのアセテートおよび前記血清型15B莢膜多糖1mMあたり少なくとも0.6mMのグリセロールを含む。

0106

好ましい実施形態においては、単離された血清型15B莢膜多糖は、150kDa〜300kDaの分子量を有し、前記血清型15B莢膜多糖1mMあたり少なくとも0.6mMのアセテートおよび前記血清型15B莢膜多糖1mMあたり少なくとも0.6mMのグリセロールを含む。

0107

好ましい実施形態においては、単離された血清型15B莢膜多糖は、150kDa〜350kDaの分子量を有し、前記血清型15B莢膜多糖1mMあたり少なくとも0.6mMのアセテートおよび前記血清型15B莢膜多糖1mMあたり少なくとも0.6mMのグリセロールを含む。

0108

1.2.7肺炎球菌多糖血清型22F
図6に示されるように、血清型22Fの多糖反復単位は、βRhapのC3ヒドロキシル基に連結されたαGlcp分枝を有する分枝状五糖類骨格(1つのグルクロン酸(GlcpA)、1つのグルコピラノース(Glcp)、1つのガラクトフラノース(Galf)および2つのラムピラノース(Rhap))からなる(Richardsら(1989)、Canadian Journal of Chemistry 67(6):1038〜1050)。多糖反復単位中のβRhap残基の約80%のC2ヒドロキシル基がO−アセチル化されている。

0109

血清型22F多糖を、当業者には公知の単離手順を用いて細菌から直接得ることができる(例えば、米国特許出願公開第2006/0228380号、第2006/0228381号、第2007/0184071号、第2007/0184072号、第2007/0231340号、および第2008/0102498号、ならびにWO2008/118752に開示された方法を参照されたい)。さらに、それらを、合成プロトコールを用いて生産することができる。

0110

血清型22Fのストレプトコッカス・ニューモニエ(S.pneumoniae)株を、確立された培養株保存機関(例えば、Streptococcal Reference Laboratory(Centers for Disease Control and Prevention、Atlanta、GA)など)または臨床標本から得ることができる。

0111

ストレプトコッカス・ニューモニエ(S.pneumoniae)溶解物からの血清型22F多糖の精製により得られる単離された血清型22F莢膜多糖および場合により、精製された多糖のサイジングを、例えば、分子量(MW)および前記血清型22F莢膜多糖1mMあたりのアセテートのmMを含む、様々なパラメータにより特徴付けることができる。

0112

好ましくは、有利な濾過特徴および/または収率を有する血清型22Fコンジュゲートを生成するために、標的分子量範囲への多糖のサイジングを、担体タンパク質へのコンジュゲーションの前に実施する。有利には、精製された血清型22F多糖のサイズを、例えば、O−アセチル基の存在などの多糖の構造の重要な特徴を保持しながら減少させる。好ましくは、精製された血清型22F多糖のサイズを、機械的均一化により減少させる。

0113

好ましい実施形態においては、精製された多糖のサイズを、高圧均一化により減少させる。高圧均一化は、十分に小さい寸法を有する流路を通してプロセス流をポンプすることにより高い剪断速度を達成する。剪断速度は、より大きい印加される均一化圧力を用いることにより増大し、ホモジェナイザーにより供給流を再循環させることにより曝露時間を増大させることができる。

0114

高圧均一化プロセスは、O−アセチル基の存在などの、多糖の構造的特徴を保持しながら、精製された血清型22F多糖のサイズを減少させるのに特に好適である。

0115

いくつかの実施形態においては、コンジュゲーション前のストレプトコッカス・ニューモニエ(S.pneumoniae)血清型22Fからの精製された多糖は、10kDa〜2,000kDaの分子量を有する。一実施形態においては、莢膜多糖は、50kDa〜1,000kDaの分子量を有する。別の実施形態においては、莢膜多糖は、70kDa〜900kDaの分子量を有する。別の実施形態においては、莢膜多糖は、100kDa〜800kDaの分子量を有する。別の実施形態においては、莢膜多糖は、200kDa〜600kDaの分子量を有する。別の実施形態においては、莢膜多糖は、400kDa〜700kDaの分子量を有する。

0116

さらなる実施形態においては、莢膜多糖は、100kDa〜1,000kDa;100kDa〜900kDa;100kDa〜800kDa;100kDa〜700kDa;100kDa〜600kDa;100kDa〜500kDa;100kDa〜400kDa;100kDa〜300kDa;150kDa〜1,000kDa;150kDa〜900kDa;150kDa〜800kDa;150kDa〜700kDa;150kDa〜600kDa;150kDa〜500kDa;150kDa〜400kDa;150kDa〜300kDa;200kDa〜1,000kDa;200kDa〜900kDa;200kDa〜800kDa;200kDa〜700kDa;200kDa〜600kDa;200kDa〜500kDa;200kDa〜400kDa;200kDa〜300kDa;250kDa〜1,000kDa;250kDa〜900kDa;250kDa〜800kDa;250kDa〜700kDa;250kDa〜600kDa;250kDa〜500kDa;250kDa〜400kDa;250kDa〜350kDa;300kDa〜1,000kDa;300kDa〜900kDa;300kDa〜800kDa;300kDa〜700kDa;300kDa〜600kDa;300kDa〜500kDa;300kDa〜400kDa;400kDa〜1,000kDa;400kDa〜900kDa;400kDa〜800kDa;400kDa〜700kDa;400kDa〜600kDa;500kDa〜600kDaの分子量;および同様の所望の分子量範囲を有する。上記範囲のいずれかの中の任意の全整数が、本開示の実施形態として企図される。

0117

多糖は、通常の精製手順の間にサイズがわずかに減少するようになってもよい。さらに、本明細書の上記に記載のように、22F多糖を、コンジュゲーションの前にサイジング技術にかけてもよい。上記の分子量範囲は、最終的なサイジングステップの後、コンジュゲーションの前(例えば、活性化の前)の精製された多糖を指す。

0118

多糖のO−アセチル化の程度を、当技術分野で公知の任意の方法により、例えば、プロトンNMR(Lemercinierら(1996)Carbohydrate Research 296:83〜96;Jonesら(2002)J.Pharmaceutical and Biomedical Analysis 30:1233〜1247;WO2005/033148およびWO00/56357を参照されたい)により決定することができる。別の一般的に用いられる方法は、Hestrin,S.(1949)J.Biol.Chem.180:249〜261に記載されている。好ましくは、O−アセチル基の存在は、イオン−HPLC分析により決定される。

0119

精製された、単離された、もしくは活性化された血清型22F莢膜多糖中、または血清型22F多糖−担体タンパク質コンジュゲート中のO−アセチルの存在は、前記多糖1mMあたりのアセテートのmM数として、または多糖反復単位あたりのO−アセチル基の数として表される。

0120

好ましい実施形態においては、ストレプトコッカス・ニューモニエ(S.pneumoniae)血清型22Fからの精製された多糖は、前記血清型22F莢膜多糖1μmolあたり少なくとも0.2、0.4、0.6、0.8、1.0、1.2、1.4または1.6μmolのアセテートを有する。

0121

1.2.8肺炎球菌多糖血清型33F
図7に示されるように、血清型33Fの多糖反復単位は、骨格内のαGalp残基のC2ヒドロキシル基に連結された末端αGalpを有する分枝状五糖類骨格(2つのガラクトピラノース(Galp)、2つのガラクトフラノース(Galf)および1つのグルコピラノース(Glcp))からなる(Lemercinierら(2006)、Carbohydrate Research 341(1):68〜74)。骨格3−β−Galf残基のC2ヒドロキシル基がO−アセチル化されていることが文献中で報告されている。

0122

血清型33F多糖を、当業者には公知の単離手順を用いて細菌から直接得ることができる(例えば、米国特許出願公開第2006/0228380号、第2006/0228381号、第2007/0184071号、第2007/0184072号、第2007/0231340号、および第2008/0102498号、ならびにWO2008/118752に開示された方法を参照されたい)。さらに、それらを、合成プロトコールを用いて生産することができる。

0123

血清型33Fのストレプトコッカス・ニューモニエ(S.pneumoniae)株を、確立された培養株保存機関(例えば、Streptococcal Reference Laboratory(Centers for Disease Control and Prevention、Atlanta、GA)など)または臨床標本から得ることができる。

0124

血清型33Fからの精製された多糖を活性化(例えば、化学的に活性化)して、それらが反応できるようにした後、本明細書にさらに記載されるように、本発明のグリココンジュゲート中に組み込むことができる。

0125

ストレプトコッカス・ニューモニエ(S.pneumoniae)溶解物からの血清型33F多糖の精製により得られる単離された血清型33F莢膜多糖および場合により、精製された多糖のサイジングを、例えば、分子量および前記血清型33F莢膜多糖1mMあたりのアセテートのmMを含む、様々なパラメータにより特徴付けることができる。

0126

いくつかの実施形態においては、コンジュゲーション前のストレプトコッカス・ニューモニエ(S.pneumoniae)血清型33Fからの精製された多糖は、10kDa〜2,000kDaの分子量を有する。他のそのような実施形態においては、糖類は、50kDa〜2,000kDaの分子量を有する。さらなるそのような実施形態においては、糖類は、50kDa〜1,750kDa;50kDa〜15,00kDa;50kDa〜1,250kDa;50kDa〜1,000kDa;50kDa〜7500kDa;50kDa〜500kDa;100kDa〜2,000kDa;100kDa〜1,750kDa;100kDa〜1,500kDa;100kDa〜1,250kDa;100kDa〜1,000kDa;100kDa〜750kDa;100kDa〜500kDa;200kDa〜2,000kDa;200kDa〜1,750kDa;200kDa〜1,500kDa;200kDa〜1,250kDa;200kDa〜1,000kDa;200kDa〜750kDa;または200kDa〜500kDaの分子量を有する。上記の範囲のいずれかの中の全ての整数は本開示の実施形態と企図される。

0127

多糖は、通常の精製手順の間にサイズがわずかに減少するようになってもよい。さらに、本明細書に記載のように、多糖を、コンジュゲーションの前にサイジング技術にかけてもよい。上記の分子量範囲は、最終的なサイジングステップの後、コンジュゲーションの前(例えば、活性化の前)の精製された多糖を指す。

0128

精製された、単離された、もしくは活性化された血清型33F莢膜多糖中、または血清型33F多糖−担体タンパク質コンジュゲート中のO−アセチルの存在は、前記多糖1mMあたりのアセテートのmM数として、または多糖反復単位あたりのO−アセチル基の数として表される。

0129

好ましい実施形態においては、ストレプトコッカス・ニューモニエ(S.pneumoniae)血清型33Fからの精製された多糖は、前記血清型33F莢膜多糖1μmolあたり少なくとも0.2、0.4、0.6、0.8、1.0、1.2、1.4または1.6μmolのアセテートを有する。

0130

1.3 本発明のグリココンジュゲート
精製された糖類は、担体タンパク質と反応することができる糖類(すなわち、活性化された糖類)を作製するために化学的に活性化される。一度活性化されたら、それぞれの莢膜糖類は、担体タンパク質に別々にコンジュゲートされて、グリココンジュゲートを形成する。一実施形態においては、それぞれの莢膜糖類は、同じ担体タンパク質にコンジュゲートされている。糖類の化学的活性化およびその後の担体タンパク質へのコンジュゲーションは、本明細書に開示される活性化およびコンジュゲーションの方法によって達成することができる。

0131

1.3.1ストレプトコッカス・ニューモニエ(S.pneumoniae)血清型1、3、4、5、6A、6B、7F、9V、14、18C、19A、19Fおよび23Fに由来するグリココンジュゲート
ストレプトコッカス・ニューモニエ(S.pneumoniae)の血清型1、3、4、5、6A、6B、7F、9V、14、18C、19A、19Fおよび23Fに由来する莢膜多糖は、当業者には公知の標準的な技術により調製される(例えば、WO2006/110381、WO2008/118752、WO2006/110352、ならびに米国特許出願公開第2006/0228380号、第2006/0228381号、第2008/0102498号、および第2008/0286838号を参照されたい)。

0132

1つの実施形態において、多糖を、1−シアノ−4−ジメチルアミノピリジニウムテトラフルオロホウ酸(CDAP)を用いて活性化して、シアン酸エステルを形成させる。次いで、活性化された多糖を、担体タンパク質(好ましくは、CRM197)上のアミノ基に、直接、またはスペーサー(リンカー)基を介してカップリングさせる。例えば、スペーサーをシスタミンまたはシステアミンとして、チオール化された多糖を得てもよく、このチオール化された多糖は、マレイミド活性化担体タンパク質(例えば、N−[γ−マレイミドブチリルオキシスクシンイミドエステル(GMBS)を用いる)またはハロアセチル化担体タンパク質(例えば、ヨードアセトイミド、N−スクシンイミジルブロモアセテート(SBA;SIB)、N−スクシンイミジル(4−ヨードアセチル)アミノ安息香酸(SIAB)、スルホスクシンイミジル(4−ヨードアセチル)アミノ安息香酸(スルホ−SIAB)、N−スクシンイミジルヨードアセテート(SIA)もしくはスクシンイミジル3−[ブロモアセトアミド]プロピオン酸(SBAP))との反応後に得られるチオエーテル結合を介して担体にカップリングすることができる。好ましくは、シアン酸エステル(CDAP化学反応により作製されていてもよい)を、ヘキサンジアミンまたはアジピン酸ジヒドラジドADH)とカップリングし、アミノ誘導体化糖類を、タンパク質担体上のカルボキシル基を介してカルボジイミド(例えば、EDACまたはEDC)化学反応を用いて担体タンパク質(例えば、CRM197)にコンジュゲートする。そのようなコンジュゲートは、例えば、WO93/15760、WO95/08348およびWO96/129094に記載されている。

0133

コンジュゲーションのための他の好適な技術は、カルボジイミド、ヒドラジド活性エステルノルボラン、p−ニトロ安息香酸、N−ヒドロキシスクシンイミド、S−−NHS、EDC、TSTUを用いる。多くは、国際特許出願公開第WO98/42721号に記載されている。コンジュゲーションはカルボニルリンカーを伴ってもよく、これは、糖類の遊離ヒドロキシル基と1,1’−カルボニルジイミダゾール(CDI)との反応(Bethellら(1979)、J.Biol.Chern.254:2572〜2574;Hearnら(1981)、J.Chromatogr.218:509〜518を参照されたい)、およびそれに続く、カルバメート結合を形成させるためのタンパク質との反応により形成され得る。これは、アノマー末端の一次ヒドロキシル基への還元、場合により、一次ヒドロキシル基の保護/脱保護、CDIカルバメート中間体を形成させるための一次ヒドロキシル基とCDIとの反応およびCDIカルバメート中間体とタンパク質上のアミノ基とのカップリングを含んでもよい。

0134

好ましい実施形態においては、ストレプトコッカス・ニューモニエ(S.pneumoniae)の血清型1、3、4、5、6A、6B、7F、9V、14、18C、19A、19Fおよび23Fに由来する少なくとも1つの莢膜多糖を、還元的アミノ化(米国特許出願公開第2006/0228380号、第2007/0231340号、第2007/0184071号、および第2007/0184072号、WO2006/110381、WO2008/079653、およびWO2008/143709に記載のような)により担体タンパク質にコンジュゲートさせる。好ましい実施形態においては、ストレプトコッカス・ニューモニエ(S.pneumoniae)の血清型1、3、4、5、6A、6B、7F、9V、14、18C、19A、19Fおよび23Fに由来する莢膜多糖を、還元的アミノ化により担体タンパク質に全てコンジュゲートさせる。

0135

還元的アミノ化は、2つのステップ:(1)多糖の酸化、および(2)コンジュゲートを形成させるための活性化された多糖および担体タンパク質の還元を含む。酸化の前に、多糖を加水分解してもよい。機械的または化学的加水分解を用いることができる。化学的加水分解を、酢酸を用いて行うことができる。酸化ステップは、過ヨウ素酸塩との反応を含んでもよい。本発明の目的では、用語「過ヨウ素酸塩」は、過ヨウ素酸塩と過ヨウ素酸の両方を含む;この用語はまた、メタ過ヨウ素酸塩(IO4−)とオルト過ヨウ素酸塩(IO65−)の両方および過ヨウ素酸塩の様々な塩(例えば、過ヨウ素酸ナトリウムおよび過ヨウ素酸カリウム)も含む。

0136

1つの実施形態においては、ストレプトコッカス・ニューモニエ(S.pneumoniae)の血清型1、3、4、5、6A、6B、7F、9V、14、18C、19A、19Fまたは23Fに由来する莢膜多糖を、メタ過ヨウ素酸塩の存在下、好ましくは、過ヨウ素酸ナトリウム(NaIO4)の存在下で酸化させる。別の実施形態においては、ストレプトコッカス・ニューモニエ(S.pneumoniae)の血清型1、3、4、5、6A、6B、7F、9V、14、18C、19A、19Fおよび23Fに由来する莢膜多糖を、オルト過ヨウ素酸塩の存在下、好ましくは、過ヨウ素酸の存在下で酸化させる。

0137

多糖の酸化ステップの後、多糖は活性化されると言われ、本明細書の以下では「活性化された多糖」と呼ばれる。活性化された多糖および担体タンパク質を、独立に(個別凍結乾燥)または一緒に(同時凍結乾燥)、凍結乾燥(凍結−乾燥)することができる。一実施形態においては、活性化された多糖および担体タンパク質は同時に凍結乾燥される。別の実施形態においては、活性化された多糖および担体タンパク質は独立に凍結乾燥される。

0138

一実施形態においては、凍結乾燥は、非還元糖の存在下で行われ、可能な非還元糖としては、スクローストレハロースラフィノーススタキオースメレジトースデキストランマンニトールラクチトールおよびパラチニットが挙げられる。

0139

コンジュゲーションプロセスの第2のステップは、還元剤を用いた、コンジュゲートを形成させるための活性化された多糖および担体タンパク質の還元(いわゆる、還元的アミノ化)である。好適である還元剤としては、シアノ水素化ホウ素ナトリウムなどのシアノ水素化ホウ素、ボラン−ピリジン、または水素化ホウ素交換樹脂が挙げられる。一実施形態においては、還元剤は、シアノ水素化ホウ素ナトリウムである。

0140

1つの実施形態において、還元反応は、水性溶媒中で実行され、別の実施形態においては、反応は非プロトン性溶媒中で実行される。1つの実施形態において、還元反応は、DMSO(ジメチルスルホキシド)またはDMFジメチルホルムアミド溶媒中で実行される。DMSOまたはDMF溶媒を用いて、凍結乾燥された活性化された多糖および担体タンパク質を復元させることができる。

0141

還元反応の終わりに、コンジュゲート中に残存する未反応のアルデヒド基があってもよく、これらのものを好適なキャッピング剤を用いてキャップすることができる。一実施形態においては、このキャッピング剤は、水素化ホウ素ナトリウム(NaBH4)である。コンジュゲーション(還元反応および場合により、キャッピング)の後、グリココンジュゲートを精製することができる。グリココンジュゲートを、透析濾過および/またはイオン交換クロマトグラフィーおよび/またはサイズ排除クロマトグラフィーにより精製することができる。1つの実施形態において、グリココンジュゲートは透析濾過またはイオン交換クロマトグラフィーまたはサイズ排除クロマトグラフィーにより精製される。一実施形態においては、グリココンジュゲートは滅菌濾過される。

0142

いくつかの実施形態においては、ストレプトコッカス・ニューモニエ(S.pneumoniae)血清型9Vおよび/または18Cに由来するグリココンジュゲートは、10%〜100%、20%〜100%、30%〜100%、40%〜100%、50%〜100%、60%〜100%、70%〜100%、75%〜100%、80%〜100%、90%〜100%、50%〜90%、60%〜90%、70%〜90%または80%〜90%のO−アセチル化度を有する糖類を含む。他の実施形態においては、O−アセチル化度は、10%以上、20%以上、30%以上、40%以上、50%以上、60%以上、70%以上、80%以上、もしくは90%以上、または約100%である。

0143

いくつかの実施形態においては、本発明のストレプトコッカス・ニューモニエ(S.pneumoniae)血清型9Vおよび/または18Cに由来するグリココンジュゲートは、O−アセチル化されている。いくつかの実施形態においては、ストレプトコッカス・ニューモニエ(S.pneumoniae)血清型9Vに由来するグリココンジュゲートはO−アセチル化されており、ストレプトコッカス・ニューモニエ(S.pneumoniae)血清型18Cに由来するグリココンジュゲートは、脱−O−アセチル化されている。

0144

1.3.2ストレプトコッカス・ニューモニエ(S.pneumoniae)血清型22Fに由来するグリココンジュゲート
1つの実施形態において、血清型22Fグリココンジュゲートは、1−シアノ−4−ジメチルアミノピリジニウムテトラフルオロホウ酸(CDAP)を用いて多糖を活性化して、シアン酸エステルを形成させることにより得られる。活性化された多糖を、担体タンパク質上のアミノ基に直接、またはスペーサー(リンカー)基を介してカップリングさせることができる。例えば、スペーサーをシスタミンまたはシステアミンとして、チオール化された多糖を得てもよく、このチオール化された多糖は、マレイミド−活性化担体タンパク質(例えば、GMBSを用いる)またはハロアセチル化担体タンパク質(例えば、ヨードアセトイミド、SIB、SIAB、スルホ−SIAB、SIA、もしくはSBAPを用いる)との反応後に得られるチオエーテル結合を介して担体にカップリングすることができる。好ましくは、シアン酸エステル(CDAP化学反応により作製されていてもよい)を、ヘキサンジアミンまたはアジピン酸ジヒドラジド(ADH)とカップリングし、アミノ誘導体化された糖類を、タンパク質担体上のカルボキシル基を介してカルボジイミド(例えば、EDACまたはEDC)化学反応を用いて担体タンパク質にコンジュゲートさせる。そのようなコンジュゲートは、例えば、WO93/15760、WO95/08348およびWO96/129094に記載されている。

0145

他の好適な技術は、カルボジイミド、ヒドラジド、活性エステル、ノルボラン、p−ニトロ安息香酸、N−ヒドロキシスクシンイミド、S−−NHS、EDC、TSTUを用いる。多くは、国際特許出願公開第WO98/42721号に記載されている。コンジュゲーションはカルボニルリンカーを伴ってもよく、これは、糖類の遊離ヒドロキシル基とCDIとの反応(Bethellら(1979)、J.Biol.Chern.254:2572〜2574;Hearnら(1981)、J.Chromatogr.218:509〜518を参照されたい)、およびそれに続く、カルバメート結合を形成させるためのタンパク質との反応により形成され得る。これは、アノマー末端の一次ヒドロキシル基への還元、場合により、一次ヒドロキシル基の保護/脱保護、CDIカルバメート中間体を形成させるための一次ヒドロキシル基とCDIとの反応およびCDIカルバメート中間体とタンパク質上のアミノ基とのカップリングを含んでもよい。

0146

好ましい実施形態においては、本発明の血清型22Fグリココンジュゲートは、還元的アミノ化を用いて調製される。還元的アミノ化は、2つのステップ:(1)個々の六糖類単位中の隣接ジオールからアルデヒド官能基を生成するための多糖の酸化、および(2)コンジュゲートを形成させるための活性化された多糖および担体タンパク質(例えば、CRM197)の還元を含む。

0147

好ましくは、酸化の前に、標的分子量(MW)範囲への血清型22F多糖のサイジングを実施する。有利には、精製された血清型22F多糖のサイズを、例えば、O−アセチル基の存在などの多糖の構造の重要な特徴を保持しながら減少させる。好ましくは、精製された血清型22F多糖のサイズを、機械的均一化により減少させる(上記のセクション1.2.7を参照されたい)。

0148

1つの実施形態において、血清型多糖は、
(a)単離された血清型22F多糖を、酸化剤と反応させるステップ;ならびに
(b)クエンチング剤の添加により酸化反応をクエンチして、活性化された血清型22F多糖を得るステップ
を含むプロセスにより活性化(酸化)する。

0149

好ましい実施形態においては、酸化剤は、過ヨウ素酸塩である。本発明の目的では、用語「過ヨウ素酸塩」は、過ヨウ素酸塩と過ヨウ素酸の両方を含む;この用語はまた、メタ過ヨウ素酸塩(IO4−)とオルト過ヨウ素酸塩(IO65−)の両方および過ヨウ素酸塩の様々な塩(例えば、過ヨウ素酸ナトリウムおよび過ヨウ素酸カリウム)も含む。好ましい実施形態においては、酸化剤は、過ヨウ素酸ナトリウムである。好ましい実施形態においては、血清型22F多糖の酸化に用いられる過ヨウ素酸塩は、メタ過ヨウ素酸塩である。好ましい実施形態においては、血清型22F多糖の酸化に用いられる過ヨウ素酸塩は、メタ過ヨウ素酸ナトリウムである。

0150

一実施形態においては、クエンチング剤は、隣接ジオール、1,2−アミノアルコールアミノ酸グルタチオン亜硫酸塩重硫酸塩亜ジチオン酸塩メタ重亜硫酸塩チオ硫酸塩亜リン酸塩次亜リン酸塩または亜リン酸から選択される。

0151

一実施形態においては、クエンチング剤は、式(I):

0152

(式中、R1は、H、メチルエチルプロピルまたはイソプロピルから選択される)の1,2−アミノアルコールである。

0153

一実施形態においては、クエンチング剤は、亜硫酸塩、重硫酸塩、亜ジチオン酸塩、メタ重亜硫酸塩、チオ硫酸塩、亜リン酸塩、次亜リン酸塩または亜リン酸のナトリウムおよびカリウム塩から選択される。

0154

一実施形態においては、クエンチング剤は、アミノ酸である。そのような実施形態においては、前記アミノ酸を、セリントレオニンシステインシスチンメチオニンプロリンヒドロキシプロリントリプトファンチロシン、およびヒスチジンから選択することができる。

0155

一実施形態においては、クエンチング剤は、重硫酸塩、亜ジチオン酸塩、メタ重亜硫酸塩、チオ硫酸塩などの亜硫酸塩である。

0156

一実施形態においては、クエンチング剤は、2つの隣接ヒドロキシル基(隣接ジオール)、すなわち、2つの隣接する炭素原子に共有的に連結された2つのヒドロキシル基を含む化合物である。

0157

好ましくは、クエンチング剤は、式(II):

0158

(式中、R1およびR2はそれぞれ独立に、H、メチル、エチル、プロピルまたはイソプロピルから選択される)の化合物である。

0159

好ましい実施形態においては、クエンチング剤は、グリセロール、エチレングリコールプロパン−1,2−ジオールブタン−1,2−ジオールもしくはブタン−2,3−ジオール、またはアスコルビン酸である。好ましい実施形態においては、クエンチング剤は、ブタン−2,3−ジオールである。

0160

好ましい実施形態においては、単離された血清型22F多糖は、
(a)単離された血清型22F多糖を過ヨウ素酸塩と反応させるステップ;ならびに
(b)ブタン−2,3−ジオールの添加により酸化反応をクエンチングして、活性化された血清型22F多糖を得るステップ
を含むプロセスにより活性化する。

0161

多糖の酸化ステップの後、多糖は活性化されると言われ、本明細書の以下では「活性化された多糖」と呼ばれる。

0162

好ましい実施形態においては、活性化された血清型22F多糖は精製される。活性化された血清型22F多糖は、ゲル浸透クロマトグラフィー(GPC)、透析または限外濾過/透析濾過などの当業者には公知の方法に従って精製される。例えば、活性化された22F多糖は、限外濾過装置を用いる濃縮および透析濾過により精製される。

0163

好ましい実施形態においては、活性化された血清型22F多糖の酸化度は、2〜30、2〜25、2〜20、2〜15、2〜10、2〜5、5〜30、5〜25、5〜20、5〜15、5〜10、10〜30、10〜25、10〜20、10〜15、15〜30、15〜25、15〜20、20〜30、または20〜25である。好ましい実施形態においては、活性化された血清型22F多糖の酸化度は、2〜10、4〜8、4〜6、6〜8、6〜12、8〜14、9〜11、10〜16、12〜16、14〜18、16〜20、16〜18、18〜22、または18〜20である。

0164

好ましい実施形態においては、活性化された血清型22F多糖は、25kDa〜1,000kDa、100kDa〜1,000kDa、300kDa〜800kDa、300kDa〜700kDa、300kDa〜600kDa、400kDa〜1,000kDa、400kDa〜800kDa、400kDa〜700kDaまたは400kDa〜600kDaの分子量を有する。1つの実施形態において、活性化された血清型22F多糖は、300kDa〜800kDaの分子量を有する。1つの実施形態において、活性化された血清型22F多糖は、400kDa〜600kDaの分子量を有する。好ましい実施形態において、活性化された血清型22F多糖は、400kDa〜600kDaの分子量および10〜25、10〜20、12〜20または14〜18の酸化度を有する。好ましい実施形態において、活性化された血清型22F多糖は、400kDa〜600kDaの分子量および10〜20の酸化度を有する。

0165

好ましい実施形態においては、活性化された血清型22F多糖は、血清型22F多糖1mMあたり少なくとも0.1、0.2、0.3、0.4、0.5、0.6もしくは0.7または約0.8mMのアセテートを含む。好ましい実施形態においては、活性化された血清型22F多糖は、血清型22F多糖1mMあたり少なくとも0.5、0.6もしくは0.7mMのアセテートを含む。好ましい実施形態においては、活性化された血清型22F多糖は、血清型22F多糖1mMあたり少なくとも0.6mMのアセテートを含む。好ましい実施形態においては、活性化された血清型22F多糖は、血清型22F多糖1mMあたり少なくとも0.7mMのアセテートを含む。

0166

好ましい実施形態においては、活性化された血清型22F多糖は、400kDa〜800kDaの分子量を有し、血清型22F多糖1mMあたり少なくとも0.6mMのアセテートを含む。

0167

好ましい実施形態においては、活性化された血清型22F多糖は、400kDa〜800kDaの分子量、12〜20の酸化度を有し、血清型22F多糖1mMあたり少なくとも0.6mMのアセテートを含む。

0168

活性化された多糖および/または担体タンパク質を、独立に(個別凍結乾燥)または一緒に(同時凍結乾燥)凍結乾燥(凍結−乾燥)することができる。

0169

1つの実施形態において、活性化された血清型22F多糖を、場合により、糖類の存在下で凍結乾燥する。好ましい実施形態においては、糖類は、スクロース、トレハロース、ラフィノース、スタキオース、メレジトース、デキストラン、マンニトール、ラクチトールおよびパラチニットから選択される。好ましい実施形態においては、糖類はスクロースである。一実施形態においては、次いで、凍結乾燥された活性化された多糖を、担体タンパク質を含む溶液と混合する。

0170

別の実施形態においては、活性化された多糖および担体タンパク質を同時に凍結乾燥する。そのような実施形態においては、活性化された血清型22F多糖を、担体タンパク質と混合し、場合により、糖類の存在下で凍結乾燥する。好ましい実施形態においては、糖類は、スクロース、トレハロース、ラフィノース、スタキオース、メレジトース、デキストラン、マンニトール、ラクチトールおよびパラチニットから選択される。好ましい実施形態においては、糖類はスクロースである。次いで、同時に凍結乾燥された多糖および担体タンパク質を、溶液中に再懸濁し、還元剤と反応させることができる。

0171

コンジュゲーションプロセスの第2のステップは、還元剤を用いて、コンジュゲートを形成させるための活性化された多糖および担体タンパク質の還元(還元的アミノ化)である。

0172

活性化された血清型22F多糖は、
(c)活性化された血清型22F多糖を担体タンパク質と混合するステップ;ならびに
(d)混合された活性化された血清型22F多糖および担体タンパク質を、還元剤と反応させて、血清型22F多糖−担体タンパク質コンジュゲートを形成させるステップ
を含むプロセスによって担体タンパク質にコンジュゲートさせることができる。

0173

1つの実施形態において、還元反応を水性溶媒中で実行する。別の実施形態においては、反応を非プロトン性溶媒中で実行する。1つの実施形態において、還元反応を、DMSO(ジメチルスルホキシド)またはDMF(ジメチルホルムアミド)溶媒中で実行する。DMSOまたはDMF溶媒を用いて、凍結乾燥された活性化された多糖および担体タンパク質を復元させることができる。

0174

ジメチルスルホキシド(DMSO)中での還元的アミノ化による活性化された血清型22F多糖とタンパク質担体とのコンジュゲーションは、例えば、多糖のO−アセチル化のレベルを有意に低下させ得る水性相における還元的アミノ化と比較して、多糖のO−アセチル含量を保持するのに好適である。したがって、好ましい実施形態においては、ステップ(c)およびステップ(d)を、DMSO中で実行する。

0175

1つの実施形態において、還元剤は、BronstedまたはLewis酸の存在下のシアノ水素化ホウ素ナトリウム、トリアセトキシ水素化ホウ素ナトリウム、水素化ホウ素ナトリウムまたは水素化ホウ素亜鉛ピリジンボラン、2−ピコリンボラン、2,6−ジボランメタノールジメチルアミン−ボラン、t−BuMeiPrN−BH3、ベンジルアミン−BH3または5−エチル−2−メチルピリジンボラン(PEMB)などのアミンボランである。好ましい実施形態においては、還元剤は、シアノ水素化ホウ素ナトリウムである。

0176

還元反応の終わりに、コンジュゲート中に残存する未反応のアルデヒド基が存在してもよく、これらのものを、好適なキャッピング剤を用いてキャップすることができる。一実施形態においては、このキャッピング剤は、水素化ホウ素ナトリウム(NaBH4)である。

0177

担体タンパク質への血清型22F多糖のコンジュゲーション後、グリココンジュゲートを、当業者には公知の様々な技術により精製する(多糖−タンパク質コンジュゲートの量に関して富化する)ことができる。これらの技術としては、透析、濃縮/透析濾過操作、接線流濾過沈降/溶出、カラムクロマトグラフィー(DEAEまたは疎水性相互作用クロマトグラフィー)、および深層濾過が挙げられる。

0178

いくつかの実施形態においては、本発明の血清型22Fグリココンジュゲートは、10kDa〜2,000kDaの分子量を有する糖類を含む。他のそのような実施形態においては、糖類は、50kDa〜1,000kDaの分子量を有する。他のそのような実施形態においては、糖類は、70kDa〜900kDaの分子量を有する。他のそのような実施形態においては、糖類は、100kDa〜800kDaの分子量を有する。他のそのような実施形態においては、糖類は、200kDa〜600kDaの分子量を有する。さらなるそのような実施形態においては、糖類は、100kDa〜1,000kDa;100kDa〜900kDa;100kDa〜800kDa;100kDa〜700kDa;100kDa〜600kDa;100kDa〜500kDa;100kDa〜400kDa;100kDa〜300kDa;150kDa〜1,000kDa;150kDa〜900kDa;150kDa〜800kDa;150kDa〜700kDa;150kDa〜600kDa;150kDa〜500kDa;150kDa〜400kDa;150kDa〜300kDa;200kDa〜1,000kDa;200kDa〜900kDa;200kDa〜800kDa;200kDa〜700kDa;200kDa〜600kDa;200kDa〜500kDa;200kDa〜400kDa;200kDa〜300kDa;250kDa〜1,000kDa;250kDa〜900kDa;250kDa〜800kDa;250kDa〜700kDa;250kDa〜600kDa;250kDa〜500kDa;250kDa〜400kDa;250kDa〜350kDa;300kDa〜1000kDa;300kDa〜900kDa;300kDa〜800kDa;300kDa〜700kDa;300kDa〜600kDa;300kDa〜500kDa;300kDa〜400kDa;400kDa〜1,000kDa;400kDa〜900kDa;400kDa〜800kDa;400kDa〜700kDa;400kDa〜600kDa;500kDa〜600kDaの分子量を有する。上記範囲のいずれかの中の任意の全整数が、本開示の実施形態として企図される。いくつかのそのような実施形態においては、血清型22Fグリココンジュゲートは、還元的アミノ化を用いて調製される。

0179

いくつかの実施形態においては、本発明の血清型22Fグリココンジュゲートは、400kDa〜15,000kDa;500kDa〜10,000kDa;2,000kDa〜10,000kDa;3,000kDa〜8,000kDa;または3,000kDa〜5,000kDaの分子量を有する。他の実施形態においては、血清型22Fグリココンジュゲートは、500kDa〜10,000kDaの分子量を有する。他の実施形態においては、血清型22Fグリココンジュゲートは、1,000kDa〜8,000kDaの分子量を有する。さらに他の実施形態においては、血清型22Fグリココンジュゲートは、2,000kDa〜8,000kDaまたは3,000kDa〜7,000kDaの分子量を有する。さらなる実施形態においては、本発明の血清型22Fグリココンジュゲートは、200kDa〜20,000kDa;200kDa〜15,000kDa;200kDa〜10,000kDa;200kDa〜7,500kDa;200kDa〜5,000kDa;200kDa〜3,000kDa;200kDa〜1,000kDa;500kDa〜20,000kDa;500kDa〜15,000kDa;500kDa〜12,500kDa;500kDa〜10,000kDa;500kDa〜7,500kDa;500kDa〜6,000kDa;500kDa〜5,000kDa;500kDa〜4,000kDa;500kDa〜3,000kDa;500kDa〜2,000kDa;500kDa〜1,500kDa;500kDa〜1,000kDa;750kDa〜20,000kDa;750kDa〜15,000kDa;750kDa〜12,500kDa;750kDa〜10,000kDa;750kDa〜7,500kDa;750kDa〜6,000kDa;750kDa〜5,000kDa;750kDa〜4,000kDa;750kDa〜3,000kDa;750kDa〜2,000kDa;750kDa〜1,500kDa;1,000kDa〜15,000kDa;1,000kDa〜12,500kDa;1,000kDa〜10,000kDa;1,000kDa〜7,500kDa;1,000kDa〜6,000kDa;1,000kDa〜5,000kDa;1,000kDa〜4,000kDa;1,000kDa〜2,500kDa;2,000kDa〜15,000kDa;2,000kDa〜12,500kDa;2,000kDa〜10,000kDa;2,000kDa〜7,500kDa;2,000kDa〜6,000kDa;2,000kDa〜5,000kDa;2,000kDa〜4,000kDa;または2,000kDa〜3,000kDaの分子量を有する。

0180

さらなる実施形態においては、本発明の血清型22Fグリココンジュゲートは、3,000kDa〜20,000kDa;3,000kDa〜15,000kDa;3,000kDa〜10,000kDa;3,000kDa〜7,500kDa;3,000kDa〜5,000kDa;4,000kDa〜20,000kDa;4,000kDa〜15,000kDa;4,000kDa〜12,500kDa;4,000kDa〜10,000kDa;4,000kDa〜7,500kDa;4,000kDa〜6,000kDa;または4,000kDa〜5,000kDaの分子量を有する。

0181

さらなる実施形態においては、本発明の血清型22Fグリココンジュゲートは、5,000kDa〜20,000kDa;5,000〜15,000kDa;5,000kDa〜10,000kDa;5,000kDa〜7,500kDa;6,000kDa〜20,000kDa;6,000kDa〜15,000kDa;6,000kDa〜12,500kDa;6,000kDa〜10,000kDa;または6,000kDa〜7,500kDaの分子量を有する。

0182

グリココンジュゲートの分子量は、SEC−MALLSにより測定される。上記範囲のいずれかの中の任意の全整数が、本開示の実施形態として企図される。

0183

好ましい実施形態においては、本発明の血清型22Fグリココンジュゲートは、血清型22F多糖1mMあたり少なくとも0.1、0.2、0.3、0.4、0.5、0.6もしくは0.7または約0.8mMのアセテートを含む。好ましい実施形態においては、グリココンジュゲートは、血清型22F多糖1mMあたり少なくとも0.5、0.6または0.7mMのアセテートを含む。好ましい実施形態においては、グリココンジュゲートは、血清型22F多糖1mMあたり少なくとも0.6mMのアセテートを含む。好ましい実施形態においては、グリココンジュゲートは、血清型22F多糖1mMあたり少なくとも0.7mMのアセテートを含む。

0184

好ましい実施形態においては、グリココンジュゲート中の血清型22F多糖1mMあたりのアセテートのmMの、単離された多糖中の血清型22F多糖1mMあたりのアセテートのmMに対する比は、少なくとも0.6、0.65、0.7、0.75、0.8、0.85、0.9、または0.95である。好ましい実施形態においては、グリココンジュゲート中の血清型22F多糖1mMあたりのアセテートのmMの、単離された多糖中の血清型22F多糖1mMあたりのアセテートのmMに対する比は、少なくとも0.7である。好ましい実施形態においては、グリココンジュゲート中の血清型22F多糖1mMあたりのアセテートのmMの、単離された多糖中の血清型22F多糖1mMあたりのアセテートのmMに対する比は、少なくとも0.9である。

0185

好ましい実施形態においては、グリココンジュゲート中の血清型22F多糖1mMあたりのアセテートのmMの、活性化された多糖中の血清型22F多糖1mMあたりのアセテートのmMに対する比は、少なくとも0.6、0.65、0.7、0.75、0.8、0.85、0.9、または0.95である。好ましい実施形態においては、グリココンジュゲート中の血清型22F多糖1mMあたりのアセテートのmMの、活性化された多糖中の血清型22F多糖1mMあたりのアセテートのmMに対する比は、少なくとも0.7である。好ましい実施形態においては、グリココンジュゲート中の血清型22F多糖1mMあたりのアセテートのmMの、活性化された多糖中の血清型22F多糖1mMあたりのアセテートのmMに対する比は、少なくとも0.9である。

0186

本発明の血清型22Fグリココンジュゲートを特徴付けるための別の方法は、コンジュゲートされたリシンの範囲(コンジュゲーション度)として特徴付けることができる、糖類にコンジュゲートされる担体タンパク質(例えば、CRM197)中のリシン残基の数によるものである。多糖への共有結合に起因する、担体タンパク質のリシン改変証拠を、当業者には公知の日常的な方法を用いるアミノ酸分析により得ることができる。コンジュゲーションは、コンジュゲート材料を生成するために用いられるCRM197タンパク質出発材料と比較して、回収されるリシン残基の数の減少をもたらす。好ましい実施形態においては、本発明の血清型22Fグリココンジュゲートのコンジュゲーション度は、2〜15、2〜13、2〜10、2〜8、2〜6、2〜5、2〜4、3〜15、3〜13、3〜10、3〜8、3〜6、3〜5、3〜4、5〜15、5〜10、8〜15、8〜12、10〜15または10〜12である。1つの実施形態において、本発明の血清型22Fグリココンジュゲートのコンジュゲーション度は、約2、約3、約4、約5、約6、約7、約8、約9、約10、約11、約12、約13、約14または約15である。好ましい実施形態においては、本発明の血清型22Fグリココンジュゲートのコンジュゲーション度は、4〜7である。いくつかのそのような実施形態においては、担体タンパク質はCRM197である。

0187

本発明の血清型22Fグリココンジュゲートを、糖類の担体タンパク質に対する比(重量/重量)により特徴付けることもできる。いくつかの実施形態においては、グリココンジュゲート中の血清型22F多糖の担体タンパク質に対する比(w/w)は、0.5〜3.0(例えば、約0.5、約0.6、約0.7、約0.8、約0.9、約1.0、約1.1、約1.2、約1.3、約1.4、約1.5、約1.6、約1.7、約1.8、約1.9、約2.0、約2.1、約2.2、約2.3、約2.4、約2.5、約2.6、約2.7、約2.8、約2.9、または約3.0)である。他の実施形態においては、糖類の担体タンパク質に対する比(w/w)は、0.5〜2.0、0.5〜1.5、0.8〜1.2、0.5〜1.0、1.0〜1.5または1.0〜2.0である。さらなる実施形態においては、糖類の担体タンパク質に対する比(w/w)は、0.8〜1.2である。好ましい実施形態においては、コンジュゲート中の血清型22F莢膜多糖の担体タンパク質に対する比は、0.9〜1.1である。いくつかのそのような実施形態においては、担体タンパク質はCRM197である。

0188

本発明の血清型22Fグリココンジュゲートおよび免疫原性組成物は、担体タンパク質に共有的にコンジュゲートされないが、それにも拘わらず、グリココンジュゲート組成物中に存在する遊離糖類を含有してもよい。遊離糖類を、グリココンジュゲートと非共有的会合させる(すなわち、非共有的に結合させる、吸着させる、またはその中に、もしくはそれと共に捕捉させる)ことができる。

0189

好ましい実施形態においては、血清型22Fグリココンジュゲートは、血清型22F多糖の総量と比較して約50%、45%、40%、35%、30%、25%、20%または15%未満の遊離血清型22F多糖を含む。好ましい実施形態においては、血清型22Fグリココンジュゲートは、血清型22F多糖の総量と比較して約40%未満の遊離血清型22F多糖を含む。好ましい実施形態においては、血清型22Fグリココンジュゲートは、血清型22F多糖の総量と比較して約25%未満の遊離血清型22F多糖を含む。好ましい実施形態においては、血清型22Fグリココンジュゲートは、血清型22F多糖の総量と比較して約20%未満の遊離血清型22F多糖を含む。好ましい実施形態においては、血清型22Fグリココンジュゲートは、血清型22F多糖の総量と比較して約15%未満の遊離血清型22F多糖を含む。

0190

血清型22Fグリココンジュゲートを、その分子サイズ分布(Kd)により特徴付けることもできる。サイズ排除クロマトグラフィー媒体(CL−4B)を用いて、コンジュゲートの相対分子サイズ分布を決定することができる。サイズ排除クロマトグラフィー(SEC)は、コンジュゲートの分子サイズ分布をプロファイルするための重力送りカラム中で用いられる。媒体中の小孔から排除される高分子は低分子よりも迅速に溶出する。画分収集装置を用いて、カラム溶出液収集する。画分を、糖類アッセイにより比色的に試験する。Kdの決定のために、カラムを較正して、分子が完全に排除される画分(V0)、(Kd=0)、最大保持を表す画分(Vi)、(Kd=1)を確立する。特定の試料属性に達する画分(Ve)は、Kd=(Ve−V0)/(Vi−V0)の式によりKdと関連する。

0191

好ましい実施形態においては、少なくとも30%の血清型22Fグリココンジュゲートが、CL−4Bカラム中で0.3より低いか、またはそれと等しいKdを有する。好ましい実施形態においては、少なくとも40%のグリココンジュゲートが、CL−4Bカラム中で0.3より低いか、またはそれと等しいKdを有する。好ましい実施形態においては、少なくとも45%、50%、55%、60%、65%、70%、75%、80%、または85%の血清型22Fグリココンジュゲートが、CL−4Bカラム中で0.3より低いか、またはそれと等しいKdを有する。好ましい実施形態においては、少なくとも60%の血清型22Fグリココンジュゲートが、CL−4Bカラム中で0.3より低いか、またはそれと等しいKdを有する。好ましい実施形態においては、50%〜80%の血清型22Fグリココンジュゲートが、CL−4Bカラム中で0.3より低いか、またはそれと等しいKdを有する。好ましい実施形態においては、65%〜80%の血清型22Fグリココンジュゲートが、CL−4Bカラム中で0.3より低いか、またはそれと等しいKdを有する。

0192

1.3.3ストレプトコッカス・ニューモニエ(S.pneumoniae)血清型33Fに由来するグリココンジュゲート
1つの実施形態において、血清型33Fグリココンジュゲートは、1−シアノ−4−ジメチルアミノピリジニウムテトラフルオロホウ酸(CDAP)を用いて多糖を活性化して、シアン酸エステルを形成させることにより得られる。活性化された多糖を、担体タンパク質上のアミノ基に直接、またはスペーサー(リンカー)基を介してカップリングさせることができる。例えば、スペーサーをシスタミンまたはシステアミンとして、チオール化された多糖を得てもよく、このチオール化された多糖は、マレイミド−活性化担体タンパク質(例えば、GMBSを用いる)またはハロアセチル化担体タンパク質(例えば、ヨードアセトイミド、SIB、SIAB、スルホ−SIAB、SIA、もしくはSBAPを用いる)との反応後に得られるチオエーテル結合を介して担体にカップリングすることができる。好ましくは、シアン酸エステル(CDAP化学反応により作製されていてもよい)を、ヘキサンジアミンまたはアジピン酸ジヒドラジド(ADH)とカップリングし、アミノ誘導体化された糖類を、タンパク質担体上のカルボキシル基を介してカルボジイミド(例えば、EDACまたはEDC)化学反応を用いて担体タンパク質にコンジュゲートさせる。そのようなコンジュゲートは、例えば、WO93/15760、WO95/08348およびWO96/129094に記載されている。

0193

他の好適な技術は、カルボジイミド、ヒドラジド、活性エステル、ノルボラン、p−ニトロ安息香酸、N−ヒドロキシスクシンイミド、S−−NHS、EDC、TSTUを用いる。多くは、国際特許出願公開第WO98/42721号に記載されている。コンジュゲーションはカルボニルリンカーを伴ってもよく、これは、糖類の遊離ヒドロキシル基とCDIとの反応(Bethellら(1979)、J.Biol.Chern.254:2572〜2574;Hearnら(1981)、J.Chromatogr.218:509〜518を参照されたい)、およびそれに続く、カルバメート結合を形成させるためのタンパク質との反応により形成され得る。これは、アノマー末端の一次ヒドロキシル基への還元、場合により、一次ヒドロキシル基の保護/脱保護、CDIカルバメート中間体を形成させるための一次ヒドロキシル基とCDIとの反応およびCDIカルバメート中間体とタンパク質上のアミノ基とのカップリングを含んでもよい。

0194

ある特定の実施形態においては、本発明の血清型33Fグリココンジュゲートは、還元的アミノ化を用いて調製される。そのような実施形態においては、本発明の血清型33Fグリココンジュゲートを、水性相中での還元的アミノ化(RAC/水性)を用いて調製することができる。水性相中での還元的アミノ化は、肺炎球菌コンジュゲートワクチンを生産するために適用され、成功を収めてきた(例えば、WO2006/110381を参照されたい)。しかし、好ましくは、還元的アミノ化を用いる場合、血清型33Fグリココンジュゲートは、DMSO中での還元的アミノ化(RAC/DMSO)により調製される。RAC/水性プロセスを用いてO−アセチル官能基を保持することに関連する課題を考慮すれば、DMSO中での還元的アミノ化が好ましい。RAC/DMSOは、肺炎球菌コンジュゲートワクチンを生産するために適用され、成功を収めてきた(例えば、WO2006/110381を参照されたい)。

0195

好ましい実施形態においては、本発明の血清型33Fグリココンジュゲートは、実施例1、2および3ならびにWO2014/027302に記載のような、eTECコンジュゲーション(以後、「血清型33F eTEC結合されたグリココンジュゲート」)を用いて調製される。前記33Fグリココンジュゲートは、1つまたは複数のeTECスペーサーを介して担体タンパク質に共有的にコンジュゲートされた糖類を含み、糖類はカルバメート結合を介してeTECスペーサーに共有的にコンジュゲートされ、担体タンパク質はアミド結合を介してeTECスペーサーに共有的にコンジュゲートされている。本発明のeTEC結合されたグリココンジュゲートを、一般式(III):

0196

(式中、eTECスペーサーを構成する原子は、中央の箱に含まれる)により表すことができる。

0197

eTECスペーサーは、7つの直鎖状原子(すなわち、−C(O)NH(CH2)2SCH2C(O)−)を含み、糖類と担体タンパク質との安定なチオエーテルおよびアミド結合を提供する。eTEC結合されたグリココンジュゲートの合成は、糖類の活性化ヒドロキシル基と、チオアルキルアミン試薬、例えば、シスタミンもしくはシステインアミンまたはその塩のアミノ基との反応を含み、糖類とのカルバメート結合を形成して、チオール化された糖類を生ずる。1つまたは複数の遊離スルフヒドリル基の生成は、活性化されたチオール化された糖類を得るための還元剤との反応により達成される。活性化されたチオール化された糖類の遊離スルフヒドリル基と、アミン含有残基上に1つまたは複数のα−ハロアセトアミド基を有する活性化された担体タンパク質との反応は、チオエーテル結合を生成してコンジュゲートを形成し、ここで、担体タンパク質はアミド結合によりeTECスペーサーに結合される。

0198

本発明の血清型33Fグリココンジュゲートにおいて、糖類は、多糖またはオリゴ糖類であってもよい。担体タンパク質を、本明細書に記載の、または当業者には公知の任意の好適な担体から選択することができる。よくある実施形態においては、糖類は多糖である。いくつかのそのような実施形態においては、担体タンパク質はCRM197である。いくつかのそのような実施形態においては、eTEC結合されたグリココンジュゲートは、ストレプトコッカス・ニューモニエ(S.pneumoniae)血清型33F莢膜多糖を含む。

0199

特に好ましい実施形態においては、eTEC結合されたグリココンジュゲートは、eTECスペーサーを介してCRM197に共有的にコンジュゲートされているPn−33F莢膜多糖を含む(血清型33F eTEC結合されたグリココンジュゲート)。

0200

いくつかの実施形態においては、本発明の血清型33Fグリココンジュゲートは、10kDa〜2,000kDaの分子量を有する糖類を含む。他のそのような実施形態においては、糖類は、50kDa〜2,000kDaの分子量を有する。さらなるそのような実施形態においては、糖類は、50kDa〜1,750kDa;50kDa〜1,500kDa;50kDa〜1,250kDa;50kDa〜1,000kDa;50kDa〜750kDa;50kDa〜500kDa;100kDa〜2,000kDa;100kDa〜1,750kDa;100kDa〜1,500kDa;100kDa〜1,250kDa;100kDa〜1,000kDa;100kDa〜750kDa;100kDa〜500kDa;200kDa〜2,000kDa;200kDa〜1,750kDa;200kDa〜1,500kDa;200kDa〜1,250kDa;200kDa〜1,000kDa;200kDa〜750kDa;または200kDa〜500kDaの分子量を有する。上記範囲のいずれかの中の任意の全整数が、本開示の実施形態として企図される。

0201

いくつかの実施形態においては、本発明の血清型33Fグリココンジュゲートは、50kDa〜20,000kDaの分子量を有する。他の実施形態においては、血清型33Fグリココンジュゲートは、500kDa〜10,000kDaの分子量を有する。他の実施形態においては、血清型33Fグリココンジュゲートは、200kDa〜10,000kDaの分子量を有する。さらに他の実施形態においては、血清型33Fグリココンジュゲートは、1,000kDa〜3,000kDaの分子量を有する。

0202

さらなる実施形態においては、本発明の血清型33Fグリココンジュゲートは、200kDa〜20,000kDa;200kDa〜15,000kDa;200kDa〜10,000kDa;200kDa〜7,500kDa;200kDa〜5,000kDa;200kDa〜3,000kDa;200kDa〜1,000kDa;500kDa〜20,000kDa;500kDa〜15,000kDa;500kDa〜12,500kDa;500kDa〜10,000kDa;500kDa〜7,500kDa;500kDa〜6,000kDa;500kDa〜5,000kDa;500kDa〜4,000kDa;500kDa〜3,000kDa;500kDa〜2,000kDa;500kDa〜1,500kDa;500kDa〜1,000kDa;750kDa〜20,000kDa;750kDa〜15,000kDa;750kDa〜12,500kDa;750kDa〜10,000kDa;750kDa〜7,500kDa;750kDa〜6,000kDa;750kDa〜5,000kDa;750kDa〜4,000kDa;750kDa〜3,000kDa;750kDa〜2,000kDa;750kDa〜1,500kDa;1,000kDa〜15,000kDa;1,000kDa〜12,500kDa;1,000kDa〜10,000kDa;1,000kDa〜7,500kDa;1,000kDa〜6,000kDa;1,000kDa〜5,000kDa;1,000kDa〜4,000kDa;1,000kDa〜2,500kDa;2,000kDa〜15,000kDa;2,000kDa〜12,500kDa;2,000kDa〜10,000kDa;2,000kDa〜7,500kDa;2,000kDa〜6,000kDa;2,000kDa〜5,000kDa;2,000kDa〜4,000kDa;2,000kDa〜3,000kDa;3,000kDa〜20,000kDa;3,000kDa〜15,000kDa;3,000kDa〜12,500kDa;3,000kDa〜10,000kDa;3,000kDa〜9,000kDa;3,000kDa〜8,000kDa;3,000kDa〜7,000kDa;3,000kDa〜6,000kDa;3,000kDa〜5,000kDa;または3,000kDa〜4,000kDaの分子量を有する。上記範囲のいずれかの中の任意の全整数が、本開示の実施形態として企図される。

0203

本発明の血清型33Fグリココンジュゲートを特徴付けるための別の方法は、コンジュゲートされたリシンの範囲(コンジュゲーション度)として特徴付けることができる、糖類にコンジュゲートされる担体タンパク質(例えば、CRM197)中のリシン残基の数によるものである。

0204

好ましい実施形態においては、本発明の血清型33Fグリココンジュゲートのコンジュゲーション度は、2〜20、4〜16、2〜15、2〜13、2〜10、2〜8、2〜6、2〜5、2〜4、3〜15、3〜13、3〜10、3〜8、3〜6、3〜5、3〜4、5〜15、5〜10、8〜15、8〜12、10〜15または10〜12である。1つの実施形態において、本発明の血清型33Fグリココンジュゲートのコンジュゲーション度は、約2、約3、約4、約5、約6、約7、約8、約9、約10、約11、約12、約13、約14、約15、約16、約17、約18、約19または約20である。好ましい実施形態においては、本発明の血清型33Fグリココンジュゲートのコンジュゲーション度は、4〜16である。いくつかのそのような実施形態においては、担体タンパク質はCRM197である。

0205

好ましい実施形態においては、担体タンパク質は、39個のリシン残基を含むCRM197を含む。いくつかのそのような実施形態においては、CRM197は、糖類に共有的に連結された39個のうちの4〜16個のリシン残基を含んでもよい。このパラメータを表現するための別の方法は、約10%〜約41%のCRM197リシンが糖類に共有的に連結されることである。別のそのような実施形態においては、CRM197は、糖類に共有的に連結された39個のうちの2〜20個のリシン残基を含んでもよい。このパラメータを表現するための別の方法は、約5%〜約50%のCRM197リシンが糖類に共有的に連結されることである。いくつかの実施形態においては、CRM197は、糖類に共有的に連結された39個のうちの約4、約5、約6、約7、約8、約9、約10、約11、約12、約13、約14、約15、または約16個のリシン残基を含んでもよい。

0206

よくある実施形態においては、担体タンパク質は、担体タンパク質上のリシン残基の1つまたは複数のε−アミノ基へのアミド結合を介してeTECスペーサーに共有的にコンジュゲートされている。いくつかのそのような実施形態においては、担体タンパク質は、糖類に共有的にコンジュゲートされた2〜20個のリシン残基を含む。他のそのような実施形態においては、担体タンパク質は、糖類に共有的にコンジュゲートされた4〜16個のリシン残基を含む。

0207

本発明の血清型33Fグリココンジュゲートを、糖類の担体タンパク質に対する比(重量/重量)により特徴付けることもできる。いくつかの実施形態においては、糖類の担体タンパク質に対する比(w/w)は0.2〜4.0(例えば、約0.2、約0.3、約0.4、約0.5、約0.6、約0.7、約0.8、約0.9、約1.0、約1.1、約1.2、約1.3、約1.4、約1.5、約1.6、約1.7、約1.8、約1.9、約2.0、約2.1、約2.2、約2.3、約2.4、約2.5、約2.6、約2.7、約2.8、約2.9、約3.0、約3.1、約3.2、約3.3、約3.4、約3.5、約3.6、約3.7、約3.8、約3.9、または約4.0)である。他の実施形態においては、糖類の担体タンパク質に対する比(w/w)は1.0〜2.5である。さらなる実施形態においては、糖類の担体タンパク質に対する比(w/w)は0.4〜1.7である。いくつかのそのような実施形態においては、担体タンパク質はCRM197である。

0208

担体タンパク質上のリシンへの糖類鎖の結合の頻度は、本発明の血清型33Fグリココンジュゲートを特徴付けるための別のパラメータである。例えば、いくつかの実施形態においては、担体タンパク質と多糖との間の少なくとも1つの共有結合は、多糖の4個の糖類反復単位ごとに存在する。別の実施形態においては、担体タンパク質と多糖との間の共有結合は、多糖の10個の糖類反復単位ごとに少なくとも1回存在する。別の実施形態においては、担体タンパク質と多糖との間の共有結合は、多糖の15個の糖類反復単位ごとに少なくとも1回存在する。さらなる実施形態においては、担体タンパク質と多糖との間の共有結合は、多糖の25個の糖類反復単位ごとに少なくとも1回存在する。

0209

よくある実施形態においては、担体タンパク質はCRM197であり、CRM197と多糖との間のeTECスペーサーを介する共有結合は、多糖の4、10、15または25個の糖類反復単位ごとに少なくとも1回存在する。

0210

他の実施形態においては、コンジュゲートは、5〜10個の糖類反復単位ごと;2〜7個の糖類反復単位ごと;3〜8個の糖類反復単位ごと;4〜9個の糖類反復単位ごと;6〜11個の糖類反復単位ごと;7〜12個の糖類反復単位ごと;8〜13個の糖類反復単位ごと;9〜14個の糖類反復単位ごと;10〜15個の糖類反復単位ごと;2〜6個の糖類反復単位ごと;3〜7個の糖類反復単位ごと;4〜8個の糖類反復単位ごと;6〜10個の糖類反復単位ごと;7〜11個の糖類反復単位ごと;8〜12個の糖類反復単位ごと;9〜13個の糖類反復単位ごと;10〜14個の糖類反復単位ごと;10〜20個の糖類反復単位ごと;4〜25個の糖類反復単位ごとまたは2〜25個の糖類反復単位ごとに担体タンパク質と糖類との間に少なくとも1つの共有結合を含む。よくある実施形態においては、担体タンパク質はCRM197である。

0211

別の実施形態においては、担体タンパク質と糖類との間の少なくとも1つの結合は、多糖の2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24または25個の糖類反復単位ごとに存在する。1つの実施形態において、担体タンパク質はCRM197である。上記範囲のいずれかの中の任意の全整数が、本開示の実施形態として企図される。

0212

コンジュゲーション中に考慮する重要な点は、糖類エピトープの一部を形成し得るO−アシル、リン酸またはグリセロールリン酸側鎖などの個々の成分の潜在的に感受性の非糖類置換官能基の保持を可能にする条件の開発である。

0213

一実施形態においては、本発明の血清型33Fグリココンジュゲートは、10%〜100%のO−アセチル化度を有する糖類を含む。いくつかのそのような実施形態においては、糖類は、50%〜100%のO−アセチル化度を有する。

0214

他のそのような実施形態においては、糖類は、75%〜100%のO−アセチル化度を有する。さらなる実施形態においては、糖類は、70%より高いか、またはそれと等しい(70%以上)のO−アセチル化度を有する。

0215

好ましい実施形態においては、本発明の血清型33Fグリココンジュゲートは、血清型33F莢膜多糖1mMあたり少なくとも0.1、0.2、0.3、0.4、0.5、0.6、0.7または0.8mMのアセテートを含む。好ましい実施形態においては、グリココンジュゲートは、血清型33F莢膜多糖1mMあたり少なくとも0.5、0.6または0.7mMのアセテートを含む。好ましい実施形態においては、グリココンジュゲートは、血清型33F莢膜多糖1mMあたり少なくとも0.6mMのアセテートを含む。好ましい実施形態においては、グリココンジュゲートは、血清型33F莢膜多糖1mMあたり少なくとも0.7mMのアセテートを含む。好ましい実施形態においては、O−アセチル基の存在は、イオン−HPLC分析により決定される。

0216

好ましい実施形態においては、グリココンジュゲート中の血清型33F多糖1mMあたりのアセテートのmMの、単離された多糖中の血清型33F多糖1mMあたりのアセテートのmMに対する比は、少なくとも0.6、0.65、0.7、0.75、0.8、0.85、0.9、または0.95である。好ましい実施形態においては、グリココンジュゲート中の血清型33F多糖1mMあたりのアセテートのmMの、単離された多糖中の血清型33F多糖1mMあたりのアセテートのmMに対する比は、少なくとも0.7である。好ましい実施形態においては、グリココンジュゲート中の血清型33F多糖1mMあたりのアセテートのmMの、単離された多糖中の血清型33F多糖1mMあたりのアセテートのmMに対する比は、少なくとも0.9である。

0217

好ましい実施形態においては、グリココンジュゲート中の血清型33F多糖1mMあたりのアセテートのmMの、活性化された多糖中の血清型33F多糖1mMあたりのアセテートのmMに対する比は、少なくとも0.6、0.65、0.7、0.75、0.8、0.85、0.9、または0.95である。好ましい実施形態においては、グリココンジュゲート中の血清型33F多糖1mMあたりのアセテートのmMの、活性化された多糖中の血清型33F多糖1mMあたりのアセテートのmMに対する比は、少なくとも0.7である。好ましい実施形態においては、グリココンジュゲート中の血清型33F多糖1mMあたりのアセテートのmMの、活性化された多糖中の血清型33F多糖1mMあたりのアセテートのmMに対する比は、少なくとも0.9である。

0218

本発明の血清型33Fグリココンジュゲートおよび免疫原性組成物は、担体タンパク質に共有的にコンジュゲートされないが、それにも拘わらず、グリココンジュゲート組成物中に存在する遊離糖類を含有してもよい。遊離糖類を、グリココンジュゲートと非共有的に会合させる(すなわち、非共有的に結合させる、吸着させる、またはその中に、もしくはそれと共に捕捉させる)ことができる。

0219

いくつかの実施形態においては、本発明の血清型33Fグリココンジュゲートは、血清型33F多糖の総量と比較して約50%、45%、40%、35%、30%、25%、20%、15%、10%または5%未満の遊離血清型33F多糖を含む。好ましくは、血清型33Fグリココンジュゲートは、15%未満の遊離糖類、より好ましくは、10%未満の遊離糖類、さらにより好ましくは、5%未満の遊離糖類を含む。好ましい実施形態においては、血清型33Fグリココンジュゲートは、血清型33F多糖の総量と比較して約25%未満の遊離血清型33F多糖を含む。好ましい実施形態においては、血清型33Fグリココンジュゲートは、血清型33F多糖の総量と比較して約20%未満の遊離血清型33F多糖を含む。好ましい実施形態においては、血清型33Fグリココンジュゲートは、血清型33F多糖の総量と比較して約15%未満の遊離血清型33F多糖を含む。

0220

ある特定の好ましい実施形態においては、本発明は、1つまたは複数の以下の特徴を、単独で、または組み合わせて有する血清型33Fグリココンジュゲートを提供する:多糖が50kDa〜2,000kDaの分子量を有する;グリココンジュゲートが500kDa〜10,000kDaの分子量を有する;担体タンパク質が糖類に共有的に連結された2〜20個のリシン残基を含む;糖類の担体タンパク質に対する比(w/w)が0.2〜4.0である;グリココンジュゲートが多糖の4、10、15または25個の糖類反復単位ごとに少なくとも1個の担体タンパク質と多糖との間の共有結合を含む;糖類が75%〜100%のO−アセチル化度を有する;コンジュゲートが全多糖に対して約15%未満の遊離多糖を含む;担体タンパク質がCRM197である。

0221

血清型33Fグリココンジュゲートを、その分子サイズ分布(Kd)により特徴付けることもできる。サイズ排除クロマトグラフィー媒体(CL−4B)を用いて、上記のように、コンジュゲートの相対分子サイズ分布を決定することができる。1つの実施形態において、少なくとも15%の本発明の血清型33Fグリココンジュゲートが、CL−4Bカラム中で0.3より低いか、またはそれと等しいKdを有する。1つの実施形態において、少なくとも15%、20%、25%、30%、35%、40%、45%、50%、60%、70%、80%または90%の本発明の血清型33Fグリココンジュゲートが、CL−4Bカラム中で0.3より低いか、またはそれと等しいKdを有する。

0222

好ましい実施形態においては、少なくとも35%の本発明の血清型33Fグリココンジュゲートが、CL−4Bカラム中で0.3より低いか、またはそれと等しいKdを有する。好ましい実施形態においては、少なくとも40%、45%、50%、55%、60%、65%、70%、75%、80%または85%の本発明の血清型33Fグリココンジュゲートが、CL−4Bカラム中で0.3より低いか、またはそれと等しいKdを有する。好ましい実施形態においては、少なくとも60%の本発明の血清型33Fグリココンジュゲートが、CL−4Bカラム中で0.3より低いか、またはそれと等しいKdを有する。好ましい実施形態においては、少なくとも70%の本発明の血清型33Fグリココンジュゲートが、CL−4Bカラム中で0.3より低いか、またはそれと等しいKdを有する。

0223

好ましい実施形態においては、40%〜90%の血清型33Fグリココンジュゲートが、CL−4Bカラム中で0.3より低いか、またはそれと等しいKdを有する。好ましい実施形態においては、50%〜90%の血清型33Fグリココンジュゲートが、CL−4Bカラム中で0.3より低いか、またはそれと等しいKdを有する。好ましい実施形態においては、65%〜80%の血清型33Fグリココンジュゲートが、CL−4Bカラム中で0.3より低いか、またはそれと等しいKdを有する。

0224

1.3.4ストレプトコッカス・ニューモニエ(S.pneumoniae)血清型15Bに由来するグリココンジュゲート
1つの実施形態において、血清型15Bグリココンジュゲートは、1−シアノ−4−ジメチルアミノピリジニウムテトラフルオロホウ酸(CDAP)を用いて多糖を活性化して、シアン酸エステルを形成させることにより得られる。活性化された多糖を、担体タンパク質上のアミノ基に直接、またはスペーサー(リンカー)基を介してカップリングさせることができる。例えば、スペーサーをシスタミンまたはシステアミンとして、チオール化された多糖を得てもよく、このチオール化された多糖は、マレイミド−活性化担体タンパク質(例えば、GMBSを用いる)またはハロアセチル化担体タンパク質(例えば、ヨードアセトイミド、SIB、SIAB、スルホ−SIAB、SIA、もしくはSBAPを用いる)との反応後に得られるチオエーテル結合を介して担体にカップリングすることができる。好ましくは、シアン酸エステル(CDAP化学反応により作製されていてもよい)を、ヘキサンジアミンまたはアジピン酸ジヒドラジド(ADH)とカップリングし、アミノ誘導体化された糖類を、タンパク質担体上のカルボキシル基を介してカルボジイミド(例えば、EDACまたはEDC)化学反応を用いて担体タンパク質にコンジュゲートさせる。そのようなコンジュゲートは、例えば、WO93/15760、WO95/08348およびWO96/129094に記載されている。

0225

他の好適な技術は、カルボジイミド、ヒドラジド、活性エステル、ノルボラン、p−ニトロ安息香酸、N−ヒドロキシスクシンイミド、S−−NHS、EDC、TSTUを用いる。多くは、国際特許出願公開第WO98/42721号に記載されている。コンジュゲーションはカルボニルリンカーを伴ってもよく、これは、糖類の遊離ヒドロキシル基とCDIとの反応(Bethellら(1979)、J.Biol.Chern.254:2572〜2574;Hearnら(1981)、J.Chromatogr.218:509〜518を参照されたい)、およびそれに続く、カルバメート結合を形成させるためのタンパク質との反応により形成され得る。これは、アノマー末端の一次ヒドロキシル基への還元、場合により、一次ヒドロキシル基の保護/脱保護、CDIカルバメート中間体を形成させるための一次ヒドロキシル基とCDIとの反応およびCDIカルバメート中間体とタンパク質上のアミノ基とのカップリングを含んでもよい。

0226

好ましい実施形態においては、本発明の血清型15Bグリココンジュゲートは、還元的アミノ化を用いて調製される。還元的アミノ化は、2つのステップ:(1)個々の六糖類単位中の隣接ジオールからアルデヒド官能基を生成するための多糖の酸化、および(2)コンジュゲートを形成させるための活性化された多糖および担体タンパク質の還元を含む。

0227

好ましくは、酸化の前に、標的分子量(MW)範囲への血清型15B多糖のサイジングを実施する。有利には、精製された血清型15B多糖のサイズを、例えば、O−アセチル基の存在などの多糖の構造の重要な特徴を保持しながら減少させる。好ましくは、精製された血清型15B多糖のサイズを、機械的均一化により減少させる(上記のセクション1.2.6を参照されたい)。

0228

酸化ステップは、過ヨウ素酸塩との反応を含んでもよい。本発明の目的では、用語「過ヨウ素酸塩」は、過ヨウ素酸塩と過ヨウ素酸の両方を含む;この用語はまた、メタ過ヨウ素酸塩(IO4−)とオルト過ヨウ素酸塩(IO65−)の両方および過ヨウ素酸塩の様々な塩(例えば、過ヨウ素酸ナトリウムおよび過ヨウ素酸カリウム)も含む。好ましい実施形態においては、血清型15B莢膜多糖の酸化に用いられる過ヨウ素酸塩は、メタ過ヨウ素酸塩である。好ましい実施形態においては、血清型15B莢膜多糖の酸化に用いられる過ヨウ素酸塩は、メタ過ヨウ素酸ナトリウムである。

0229

好ましい実施形態においては、多糖を、0.01〜10.0、0.05〜5.0、0.1〜1.0、0.5〜1.0、0.7〜0.8、0.05〜0.5、0.1〜0.3モル当量の酸化剤と反応させる。好ましい実施形態においては、多糖を、約0.1、0.15、0.2、0.25、0.3、0.35、0.4、0.45、0.5、0.55、0.6、0.65、0.7、0.75、0.8、0.85、0.9、0.95モル当量の酸化剤と反応させる。好ましい実施形態においては、多糖を、約0.15モル当量の酸化剤と反応させる。好ましい実施形態においては、多糖を、約0.25モル当量の酸化剤と反応させる。好ましい実施形態においては、多糖を、約0.5モル当量の酸化剤と反応させる。好ましい実施形態においては、多糖を、約0.6モル当量の酸化剤と反応させる。好ましい実施形態においては、多糖を、約0.7モル当量の酸化剤と反応させる。

0230

好ましい実施形態においては、反応の持続時間は、1時間〜50時間、10時間〜30時間、15時間〜20時間、15時間〜17時間または約16時間である。

0231

好ましい実施形態においては、反応の温度を、15℃〜45℃、15℃〜30℃、20℃〜25℃に維持する。好ましい実施形態においては、反応の温度を、約23℃に維持する。

0232

好ましい実施形態においては、酸化反応を、リン酸ナトリウムリン酸カリウム、2−(N−モルホリノエタンスルホン酸(MES)またはBis−Trisから選択される緩衝液中で実行する。好ましい実施形態においては、緩衝液はリン酸カリウムである。

0233

好ましい実施形態においては、緩衝液は1mM〜500mM、1mM〜300mM、または50mM〜200mMの濃度を有する。好ましい実施形態においては、緩衝液は約100mMの濃度を有する。

0234

好ましい実施形態においては、酸化反応を、4.0〜8.0、5.0〜7.0、または5.5〜6.5のpHで実行する。好ましい実施形態においては、pHは約6.0である。

0235

好ましい実施形態においては、活性化された血清型15B莢膜多糖は、0.5mg/mL〜5mg/mLの単離された血清型15B莢膜多糖を、0.2〜0.3モル当量の過ヨウ素酸塩と、20℃〜25℃の温度で反応させることにより得る。

0236

好ましい実施形態においては、活性化された血清型15B莢膜多糖を精製する。活性化された血清型15B莢膜多糖を、ゲル浸透クロマトグラフィー(GPC)、透析または限外濾過/透析濾過などの、当業者には公知の方法に従って精製する。例えば、活性化された莢膜多糖を、限外濾過装置を用いる濃縮および透析濾過により精製する。

0237

好ましい実施形態においては、活性化された血清型15B莢膜多糖の酸化度は、2〜20、2〜15、2〜10、2〜5、5〜20、5〜15、5〜10、10〜20、10〜15、または15〜20である。好ましい実施形態においては、活性化された血清型15B莢膜多糖の酸化度は、2〜10、4〜8、4〜6、6〜8、6〜12、8〜12、9〜11、10〜16、12〜16、14〜18、16〜20、16〜18、または18〜20である。

0238

好ましい実施形態においては、活性化された血清型15B莢膜多糖は、5kDa〜500kDa、50kDa〜500kDa、50kDa〜450kDa、100kDa〜400kDa、100kDa〜350kDaの分子量を有する。好ましい実施形態においては、活性化された血清型15B莢膜多糖は、100kDa〜350kDaの分子量を有する。好ましい実施形態においては、活性化された血清型15B莢膜多糖は、100kDa〜300kDaの分子量を有する。好ましい実施形態においては、活性化された血清型15B莢膜多糖は、100kDa〜250kDaの分子量を有する。

0239

好ましい実施形態においては、活性化された血清型15B莢膜多糖は、前記血清型15B莢膜多糖1mMあたり少なくとも0.1、0.2、0.3、0.4、0.5、0.6、0.7または0.8mMのアセテートを含む。好ましい実施形態においては、活性化された血清型15B莢膜多糖は、前記血清型15B莢膜多糖1mMあたり少なくとも0.5、0.6または0.7mMのアセテートを含む。好ましい実施形態においては、活性化された血清型15B莢膜多糖は、前記血清型15B莢膜多糖1mMあたり少なくとも0.6mMのアセテートを含む。好ましい実施形態においては、活性化された血清型15B莢膜多糖は、前記血清型15B莢膜多糖1mMあたり少なくとも0.7mMのアセテートを含む。

0240

好ましい実施形態においては、活性化された血清型15B莢膜多糖は、前記血清型15B莢膜多糖1mMあたり少なくとも0.1、0.2、0.3、0.4、0.5、0.6、0.7または0.8mMのグリセロールを含む。好ましい実施形態においては、活性化された血清型15B莢膜多糖は、前記血清型15B莢膜多糖1mMあたり少なくとも0.5、0.6または0.7mMのグリセロールを含む。好ましい実施形態においては、活性化された血清型15B莢膜多糖は、前記血清型15B莢膜多糖1mMあたり少なくとも0.6mMのグリセロールを含む。好ましい実施形態においては、活性化された血清型15B莢膜多糖は、前記血清型15B莢膜多糖1mMあたり少なくとも0.7mMのグリセロールを含む。

0241

好ましい実施形態においては、活性化された血清型15B莢膜多糖は、100kDa〜250kDaの分子量を有し、前記血清型15B莢膜多糖1mMあたり少なくとも0.6mMのアセテートを含む。

0242

好ましい実施形態においては、活性化された血清型15B莢膜多糖は、100kDa〜250kDaの分子量を有し、前記血清型15B莢膜多糖1mMあたり少なくとも0.6mMのグリセロールを含む。

ページトップへ

この技術を出願した法人

この技術を発明した人物

ページトップへ

関連する挑戦したい社会課題

該当するデータがありません

関連する公募課題

該当するデータがありません

ページトップへ

技術視点だけで見ていませんか?

この技術の活用可能性がある分野

分野別動向を把握したい方- 事業化視点で見る -

(分野番号表示ON)※整理標準化データをもとに当社作成

該当するデータがありません

ページトップへ

おススメ サービス

おススメ astavisionコンテンツ

この 技術と関連性が強い技術

該当するデータがありません

この 技術と関連性が強い法人

該当するデータがありません

この 技術と関連性が強い人物

該当するデータがありません

この 技術と関連する社会課題

該当するデータがありません

この 技術と関連する公募課題

該当するデータがありません

astavision 新着記事

サイト情報について

本サービスは、国が公開している情報(公開特許公報、特許整理標準化データ等)を元に構成されています。出典元のデータには一部間違いやノイズがあり、情報の正確さについては保証致しかねます。また一時的に、各データの収録範囲や更新周期によって、一部の情報が正しく表示されないことがございます。当サイトの情報を元にした諸問題、不利益等について当方は何ら責任を負いかねることを予めご承知おきのほど宜しくお願い申し上げます。

主たる情報の出典

特許情報…特許整理標準化データ(XML編)、公開特許公報、特許公報、審決公報、Patent Map Guidance System データ