図面 (/)

技術 明瞭な親水性及び撥油性置換を有するシラン及びシリコーン

出願人 ジェレストテクノロジーズ,インコーポレイテッド
発明者 パン,ユーリンアークルズ,バリー,シー.
出願日 2016年2月10日 (3年5ヶ月経過) 出願番号 2017-542139
公開日 2018年3月1日 (1年4ヶ月経過) 公開番号 2018-505895
状態 特許登録済
技術分野 第4族元素を含む化合物及びその製造
主要キーワード フィフォ 機器破損 粘着性膜 統合ディスプレイ 機器性能 機能表面 水素化物生成 自己洗浄性
関連する未来課題
重要な関連分野

この項目の情報は公開日時点(2018年3月1日)のものです。
また、この項目は機械的に抽出しているため、正しく解析できていない場合があります

図面 (0)

図面はありません

課題・解決手段

本発明は、式(I):(RfCH2CH2)2−n[R(OCH2CHR’)mOR”]nSiX2を有するシリコン化合物に関する。式(I)において、Rfは、4個以上の炭素原子を有する直鎖状又は分岐状全フッ化炭化水素であり、Rは、メチル又はエチル基であり、R’は、H又はCH3であり、mは、1〜約24の整数であり、R”は、1〜約11個の炭素原子を有する炭化水素架橋であり、nは、0〜2の整数であり、Xは、H、Cl、又はアルコキシ基である。本発明の材料は、加水分解縮合によるシロキサン又はシリコーンの生成及び表面改質における有用性の付与に使用することができる。

概要

背景

概要

本発明は、式(I):(RfCH2CH2)2−n[R(OCH2CHR’)mOR”]nSiX2を有するシリコン化合物に関する。式(I)において、Rfは、4個以上の炭素原子を有する直鎖状又は分岐状全フッ化炭化水素であり、Rは、メチル又はエチル基であり、R’は、H又はCH3であり、mは、1〜約24の整数であり、R”は、1〜約11個の炭素原子を有する炭化水素架橋であり、nは、0〜2の整数であり、Xは、H、Cl、又はアルコキシ基である。本発明の材料は、加水分解縮合によるシロキサン又はシリコーンの生成及び表面改質における有用性の付与に使用することができる。なし

目的

被覆の構造をナノ構造ベルで制御するためには、ケイ素原子においての置換により独立の低極性及び高極性を有するシランを提供する

効果

実績

技術文献被引用数
0件
牽制数
0件

この技術が所属する分野

(分野番号表示ON)※整理標準化データをもとに当社作成

ライセンス契約や譲渡などの可能性がある特許掲載中! 開放特許随時追加・更新中 詳しくはこちら

請求項1

次式(I)を有するシリコン化合物:(式中、Rfは、4個以上の炭素原子を有する直鎖状又は分岐状全フッ化炭化水素であり、Rは、メチル又はエチル基であり、R’は、H又はCH3であり、mは、1〜約24の整数であり、R”は、1〜約11個の炭素原子を有する炭化水素架橋であり、nは、0〜2の整数であり、Xは、H、Cl、又はアルコキシ基である)。

請求項2

Rfが、4〜約10の炭素原子を有する、請求項1に記載のシリコン化合物。

請求項3

mが、約2〜約6の整数である、請求項1に記載のシリコン化合物。

請求項4

R”が、CH2CH2CH2である、請求項1に記載のシリコン化合物。

請求項5

Xが、Cl、OCH3、又はOC2H5である、請求項1に記載のシリコン化合物。

請求項6

請求項1に記載のシリコン化合物の加水分解縮合によって形成されたポリマー状シロキサン化合物

請求項7

ビス[(メトキシポリエチレンオキシアルキルジクロロシランである、請求項1に記載のシリコン化合物。

請求項8

式[R(OCH2CHR’)mOR”]2SiX2を有する、請求項7に記載のシリコン化合物。

請求項9

請求項7に記載のシリコン化合物の加水分解縮合によって形成されたポリマー状のシロキサン化合物。

請求項10

ビス(ペルフルオロアルキル)ジクロロシランである、請求項1に記載のシリコン化合物。

請求項11

式(RfCH2CH2)2SiX2を有する、請求項10に記載のシリコン化合物。

請求項12

請求項10に記載のシリコン化合物の加水分解縮合によって形成されたポリマー状のシロキサン化合物。

請求項13

トリデカフルオロオクチル)(メトキシポリエチレンオキシプロピル)ジクロロシランである、請求項1に記載のシリコン化合物。

請求項14

約6〜8個のエチレンオキシド単位を有する(トリデカフルオロオクチル)(メトキシポリエチレンオキシプロピル)ジメトキシシランである、請求項1に記載のシリコン化合物。

請求項15

ビス(メトキシトリエチレンオキシプロピル)ジクロロシランである、請求項1に記載のシリコン化合物。

請求項16

ビス(メトキシトリエチレンオキシプロピル)ジメトキシシランである、請求項1に記載のシリコン化合物。

請求項17

ビス(ノナフルオロヘキシル)ジクロロシランである、請求項1に記載のシリコン化合物。

請求項18

[(メトキシ(ポリエチレンオキシ)アルキル]ヒドリドジクロロシラン。

請求項19

式[R(OCH2CHR’)mOR”]SiHX2(式中、Rは、メチル又はエチル基であり、R’は、H又はCH3であり、mは、1〜約24の整数であり、R”は、1〜約11個の炭素原子を有する炭化水素架橋であり、Xは、H、Cl、又はアルコキシ基である)を有する、請求項18に記載の[(メトキシ(ポリエチレンオキシ)アルキル]ヒドリドジクロロシラン。

請求項20

メトキシトリエチレンオキシプロピルヒドリドジクロロシランである、請求項18に記載の[(メトキシ(ポリエチレンオキシ)アルキル]ヒドリドジクロロシラン。

請求項21

次式(II)を有するシロキサンポリマー:(式中、Rfは、4個以上の炭素原子を有する直鎖状又は分岐状全フッ化炭化水素であり、Rは、メチル又はエチル基であり、R’は、H又はCH3であり、mは、1〜約24の整数であり、R”は、1〜約11個の炭素原子を有する炭化水素架橋であり、pは、0〜100の整数である)。

発明の詳細な説明

0001

[発明の名称
[0001]明瞭な親水性及び撥油性置換を有するシラン及びシリコーン

0002

[関連出願の相互参照
[0002]本出願は、2015年2月19日出願の米国特許仮出願第62/118,180号の優先権を主張し、その開示を参照により本明細書に組み込む。

0003

[発明の背景
[0003]透明な機能表面、特に統合ディスプレイ及び医療機器に関連するものがバイオバーデン及び環境汚染曝露されると、機能問題と衛生問題の両方が生じて、機器性能干渉する又は機器破損を引き起こすおそれがある。その結果、自己洗浄性であるとされている被覆への関心がますます高まっている。これらの被覆は時には超アンフィフォビック性又は超オムニフォビック性と呼ばれる。防曇及び防氷被覆はしばしば同じ概念に関係している。物理トポグラフィ及び製造技術の制御が被覆性能の実現において必須な要素であると同時に、提案される被覆のほぼすべてが、撥油性用に非常に低極性な成分、例えば全フッ化炭化水素など、又は親水性用に非プロトン性高極性な成分、例えばポリエーテルなどを含有するビルディングブロックを利用している。シラン及びシリコーンは、薄膜を形成できる能力のためにこれらの被覆用ビルディングブロックとしてしばしば関心を持たれている。

0004

[0004]これまで、単一のケイ素原子において明瞭な低極性及び高極性置換を含むシラン及びシリコーンの例はほとんどないが、1,1,2,2−テトラヒドロペルフルオロアルキルシラン及びポリエチレンオキシシランは周知である。ドデシルオキシポリエチレンオキシプロピルシランなどの、高極性及び低極性のブロックが単一置換において組み合わされている例はもっと限られている。被覆の構造をナノ構造ベルで制御するためには、ケイ素原子においての置換により独立の低極性及び高極性を有するシランを提供することが、表面処理としてもシリコーンモノマーとしても非常に望ましい。撥油性及び親水性を分子レベルで独立して制御することによって、環境的又は生物学的汚染由来粘着性膜を形成しにくい表面を構造化する好機がもたらされる。さらに、これらの材料に由来するポリマー状シロキサンは、潜在的界面活性剤である。

0005

[発明の概要
[0005]一実施形態では、本発明は、次式(I)を有するシリコン化合物に関する:

0006

[0006](式中、Rfは、4個以上の炭素原子を有する直鎖状又は分岐状全フッ化炭化水素であり、Rは、メチル又はエチル基であり、R’は、H又はCH3であり、mは、1〜約24の整数であり、R”は、1〜約11個の炭素原子を有する炭化水素架橋であり、nは、0〜2の整数であり、Xは、H、Cl、又はアルコキシ基である)。

0007

[0007]本発明はまた、[(メトキシポリエチレンオキシアルキルヒドリドジクロロシランを含む。

0008

[0008]さらなる一実施形態では、本発明は、次式(II)を有するシロキサンポリマーに関する:




(式中、Rfは、4個以上の炭素原子を有する直鎖状又は分岐状全フッ化炭化水素であり、Rは、メチル又はエチル基であり、R’は、H又はCH3であり、mは、1〜約24の整数であり、R”は、1〜約11個の炭素原子を有する炭化水素架橋であり、pは、0〜100の整数である)。

0009

[発明の詳細な説明]
[0009]本発明は、次式(I)を有する一連新規なシリコン化合物に関する:

0010

[0010]式(I)において、Rfは、4個以上の炭素原子(好ましくは4〜約10)を有する直鎖状又は分岐状全フッ化炭化水素であり、Rは、メチル又はエチル基であり、R’は、H又はCH3であり、mは、1〜約24、好ましくは約2〜6の整数であり、R”は、1〜約11個の炭素原子を有する炭化水素架橋、好ましくはCH2CH2CH2であり、nは、0〜2の整数であり、Xは、H、Cl、又はアルコキシ基、好ましくはメトキシ若しくはエトキシである。したがって、本発明の好ましい一実施形態(n=1)では、これらの材料は、親水性置換基及び撥油性置換基を含有する。これらの置換は、環境的又は生物学的汚染由来の粘着性膜を形成しにくい表面を構造化する好機を提供する。

0011

[0011]本発明による例示的な材料として、
ビスノナフルオロヘキシル)ジクロロシラン、
6〜8個のエチレンオキシ単位を有する(トリデカフルオロオクチル)(メトキシポリエチレンオキシプロピル)ジクロロシラン、
6〜8個のエチレンオキシ単位を有する(トリデカフルオロオクチル)(メトキシポリエチレンオキシプロピル)ジメトキシシラン
ビス[メトキシ(トリエチレンオキシ)プロピル]ジクロロシラン、
ビス[メトキシ(トリエチレンオキシ)プロピル]ジメトキシシラン、及び
ビス[メトキシ(トリエチレンオキシ)プロピル]ジエトキシシランが挙げられる。これらの材料は、特にシリカ質基材湿潤性及び放出特性を変えて、表面改質における有用性をもたらすと予想される。

0012

[0012]本発明の材料は、本発明に包含されてもいる新規な多段階合成を使用して調製することができる。本方法は、1,1,2,2−テトラヒドロペルフルオロアルキルトリクロロシラン又はアルコキシポリエチレンオキシアルキルトリクロロシランから出発する。各々のヒドリドジクロロシランへの変換は、ヒドリド移行反応によってなされる。次に、ヒドリドジクロロシランを適当なオレフィンと反応させ、次いで、確立したエステル化手順によってアルコキシシラン転化することができる。

0013

[0013]この手順の新規な点は、段階的ヒドロシリル化技術になるという点である。ジクロロシランの部分的ヒドロシリル化は、非常に低い収率でしか進行しない。さらに、直接ジシリル化はまったく起こらない。特定の理論に拘するものではないが、中間体のジクロロシランが活性白金(又は他の)触媒錯体相互作用することが推測される。

0014

[0014]同じ技術を施用して、本発明の範囲内の化合物でもあるビス(ペルフルオロアルキル)ジクロロシラン、及び6個超のEO(エチレンオキシ)単位を有するビス[(メトキシポリエチレンオキシ)アルキル]ジクロロシランを製造することができる。このような化合物は、式(RfCH2CH2)2SiX2及び[R(OCH2CHR’)mOR”]2SiX2で記載することができる。さらに、[(メトキシ(ポリエチレンオキシ)アルキル]ヒドリドジクロロシラン、例えば式[R(OCH2CHR’)mOR”]SiHX2を有するものなども本発明の範囲内にある。これらの式において、Rf、X、R、R’、R”、及びmは、先に記載した通りである。

0015

[0015]シロキサン又はシリコーンは、こうした材料を加水分解縮合することによって調製することができる。加水分解中にトリメチルクロロシランなどの末端キャッピング種又はジメチルジクロロシランなどのコモノマーを存在させることによって、加水分解縮合を改変することができる。これらのシロキサンは、次式(II)を有するポリマーとして通常記載することができる:




式(II)において、Rfは、4個以上の炭素原子を有する直鎖状又は分岐状全フッ化炭化水素であり、Rは、メチル又はエチル基であり、R’は、H又はCH3であり、mは、1〜約24の整数であり、R”は、1〜約11個の炭素原子を有する炭化水素架橋であり、pは、0〜100の整数である。

0016

[0016]次に、本発明を以下の非限定的な例に関して説明する。

0017

実施例1:ノナフルオロヘキシルジクロロシランの合成




[0017]窒素雰囲気下で、加熱マントルマグネティックスターラーポット温度計、滴下漏斗、及びドライアイス冷却器装備した1L容の3つ口フラスコに、ノナフルオロヘキシルトリクロロシラン(457.8g)及びテトラデシル(トリヘキシル)ホスホニウムクロリド(15.4g)を装入した。混合物を80℃に加熱し、ジメチルクロロシラン(124.9g)を混合物に滴下漏斗により1時間にわたって添加した。ポット温度は軽クロロシラン還流(light chlorosilane refluxing)のために低下した。添加完了後、反応を6〜8時間還流した。ポット温度が75℃にゆっくり上昇した。これは、ジメチルクロロシランのジメチルジクロロシランへの転化を示す。反応を室温に冷却した。混合物のGC分析低温法)は約84%の完了を示した。ポット窒素保護下で注意深くベントした。蒸留により粗生成物386.6g(純度63.5%、収率58.0%)を得た。

0018

実施例2:ビス(ノナフルオロヘキシル)ジクロロシランの合成




[0018]1ガロン容のオートクレーブに、実施例1の生成物(242.9g)とノナフルオロヘキセン(168.81g)と5%塩化白金酸六水和物CPA)とを含むTHF(0.5mL)を装入した。反応を密閉し、180℃(PSI約75)で24時間加熱した。反応を室温に冷却した。混合物のGC分析は反応の完了を示した。粗反応を蒸留により精製して、表題化合物を収率37.1%(152.0g)、沸点142〜148℃/50mmHg、密度(20℃)1.54g/ml、屈折率(20℃):1.3440、1H NMR(CDCl3):1.39(m、4H)及び2.30(m、4H)にて得た。

0019

実施例3:(トリデカフルオロオクチル)ジクロロシランの合成




[0019]窒素雰囲気下で、加熱マントル、マグネティックスターラー、ポット温度計、滴下漏斗、及びドライアイス冷却器を装備した1L容の3つ口フラスコに、(トリデカフルオロ−1,1,2,2−テトラヒドロオクチル)トリクロロシラン(481.6g)及びテトラデシル(トリヘキシル)ホスホニウムクロリド(12.8g)を装入した。混合物を85℃に加熱し、ジメチルクロロシラン(104.1g)を混合物に滴下漏斗により1〜2時間にわたってゆっくり添加した。ジメチルクロロシランの約半分を添加した後、反応を60℃に冷却した。GC分析は30%の転化を示した。軽質分を完全真空下で室温で取り除いた。反応を100℃で加熱し、ジメチルクロロシランの添加を再開した。添加完了後、反応を75℃で1〜2時間加熱した。反応を室温に冷却した。混合物のGC分析は約48%の完了を示した(二水素化物生成を観察開始)。ポットを窒素保護下で注意深くベントした。蒸留により生成物355.3g(純度53.6、収率42.2%)を得た。

0020

実施例4:(トリデカフルオロオクチル)(メトキシポリエチレンオキシプロピル)ジクロロシラン(6〜8個のEO)の合成




[0020]窒素雰囲気下で、加熱マントル、マグネティックスターラー、ポット温度計、滴下漏斗、及びドライアイス冷却器を装備した1L容の3つ口フラスコに、アリルオキシポリエチレンオキシドメチルエーテル(MW約350、約6〜8個のエチレンオキシド単位)(117.6g)を装入し、次いで、90℃で加熱した。実施例3の生成物(10mL)を滴下漏斗により添加し、続いて、5%塩化白金酸六水和物を含むTHF(0.5mL)を添加した。発熱反応が直ちに観察され、反応混合物は無色から暗褐色に変化した。発熱が観察されるとすぐに、実施例3からの生成物の添加を、90〜110℃の間の反応温度を維持できる速度で滴下漏斗により継続した。添加完了後、5%塩化白金酸六水和物を含むTHF0.25mLをさらに添加し、反応を100℃で45分間加熱した。反応の進行を1H NMRでモニターした。アリルオキシ(ポリエチレンオキシド)メチルエーテルのオレフィンピークがもはや存在しなくなったらすぐに、軽質分を蒸留により除去し、蒸留からの残渣をそれ以上精製せずに次のステップに進めた。

0021

実施例5:(トリデカフルオロオクチル)(メトキシポリエチレンオキシプロピル)ジメトキシシラン(6〜8個のEO)の合成




[0021]マグネティックスターリング(magnetic stirring)、ポット温度計、滴下漏斗、及び水凝縮器を装備した2L容のフラスコに、実施例4の生成物(334.8g)を装入し、次いで、90〜120℃に加熱した。オルトギ酸トリメチル(TMOF)(89.14g)を、塩化メチル放出を制御できる速度で滴下漏斗により添加した。添加完了後、反応混合物のpHをモニターした。反応のpHが酸性であった場合、TMOFをさらに添加して、反応を完了させた。軽質分を減圧蒸留により除去した。続いて、5wt%の木炭を残渣に添加し、混合物を50〜60℃で3〜4時間撹拌して、着色を除去し、生成物を収率40.2%(132.3g)、密度(20℃)1.24g/ml、屈折率(20℃):1.3968、1H NMR(CDCl3):0.66(m,2H)、0.80(m,2H)、1.63(m,2H)、2.05(m,2H)、3.34(s,3H)、3.43(m,2H)、3.55(s,6H)、及び3.56〜3.63(m,24H)にて得た。

0022

[0022]表面改質を調べるために、ホウケイ酸ガラススライドを5%表題化合物トルエン溶液に浸した。スライドを空気乾燥させ、次いで、110℃で10分間加熱し、続いて、エタノールで濯いだ。乾燥したスライドは、水では37℃及びヘキサデカンでは23℃の接触角をそれぞれ示した。

0023

実施例6:メトキシトリエチレンオキシプロピルジクロロシランの合成




[0023]窒素雰囲気下で、加熱マントル、マグネティックスターラー、ポット温度計、滴下漏斗、及びドライアイス冷却器を装備した1L容の3つ口フラスコに、メトキシトリエチレンオキシプロピルトリクロロシラン(339.7g)及びテトラデシル(トリヘキシル)ホスホニウムクロリド(13.0g)を装入した。混合物を85℃に加熱し、ジメチルクロロシラン(104.1g)を混合物に滴下漏斗により1〜2時間にわたってゆっくり添加した。ジメチルクロロシランの約半分を添加した後、反応を60℃に冷却した。GC分析は30%の転化を示した。軽質分を完全真空下で室温で取り除いた。反応を100℃で加熱し、ジメチルクロロシランの添加を再開した。添加完了後、反応を75℃で1〜2時間加熱した。反応を室温に冷却し、ポットを窒素保護下で注意深くベントした。蒸留により生成物238.4g(純度60.7%、収率78%、密度(20℃)1.013g/ml)を得た。

0024

実施例7:ビス(メトキシトリエチレンオキシプロピル)ジクロロシランの合成




[0024]窒素雰囲気下で、加熱マントル、マグネティックスターラー、ポット温度計、滴下漏斗、及びドライアイス冷却器を装備した1L容の3つ口フラスコに、アリルオキシ(トリエチレンオキシド)メチルエーテル(76.8g)を装入し、次いで、90℃で加熱した。実施例6の生成物(10mL)を滴下漏斗により添加し、続いて、5%塩化白金酸六水和物を含むTHF(0.5mL)を添加した。発熱反応が直ちに観察された。発熱が観察されるとすぐに、実施例3からの生成物の添加を、90〜110℃の間の反応温度を維持できる速度で滴下漏斗により継続した。温度が90℃未満に低下した場合、5%CPAを含むTHFをさらに添加した。添加完了後、5%塩化白金酸六水和物を含むTHF0.25mLをさらに添加し、反応を100℃で45分間加熱した。反応の進行を1H NMR及びGC分析でモニターし、実施例6からの未反応生成物が存在した場合、アリルオキシ(トリエチレンオキシド)メチルエーテルをさらに添加した。アリルオキシ(ポリエチレンオキシド)メチルエーテルのオレフィンピークがもはや存在しなくなったらすぐに、軽質分を蒸留により除去した。蒸留からの残渣をワイプトフィルムエバポレータを使用して精製して、所望生成物を収率58.4%(139.6g)、GC純度95.0%、密度(20℃)1.110g/ml、屈折率(20℃):1.4618、1H NMR(CDCl3):1.14(m,4H)、1.58(m,4H)、3.19(s,6H)、3.20〜3.45(m,28H)にて得た。

0025

実施例8:ビス(メトキシトリエチレンオキシプロピル)ジメトキシシランの合成




[0025]マグネティックスターリング、ポット温度計、滴下漏斗、ビグリューカラム、及び蒸留ヘッドを装備した1L容のフラスコに、実施例7の生成物(127.4g)を装入し、次いで、90〜120℃に加熱した。オルトギ酸トリメチル(TMOF)(53.06g)を、塩化メチル放出を制御できる速度で滴下漏斗により添加した。TMOFの添加が完了した後、反応を140℃で加熱して、ギ酸メチルを留去した。オルト酢酸トリメチル(TMOA)(15.02g)を、塩化メチル放出を制御できる速度で滴下漏斗により添加した。添加完了後、反応混合物のpHをモニターした。反応のpHが酸性であった場合、TMOFをさらに添加して、反応を完了させた。次いで、軽質分を減圧蒸留により除去した。生成物(残渣)は、収率95%(125.1g、密度(20℃)1.060g/ml、屈折率(20℃):1.4518、1H NMR(CDCl3):0.42(m,4H)、1.45(m,4H)、3.14(m,6H)、3.19(m,6H)、3.20〜3.45(m,28H)の色物として得られた。

0026

実施例9:トリメチルシロキシ末端を有するポリ(トリデカフルオロオクチル)(メトキシポリエチレンオキシプロピル)6〜8シロキサンの合成




[0026]マグネティックスターリング、ポット温度計、滴下漏斗、及び冷却器を装備した100mL容のフラスコに、(トリデカフルオロオクチル)(メトキシポリエチレンオキシプロピル)6〜8ジメトキシシラン14g、トリメチルクロロシラン0.04g、及びトリメチルメトキシシラン0.33gを装入した。DI水0.38gを上記混合物に20〜40℃のポット温度で添加した。添加完了後、反応混合物を30〜50℃でさらに90分間加熱した。混合物から30℃のポット温度で約1mmHgの減圧揮発性物質を除去して、粘性液体14.7gを密度(20℃)1.450g/ml、屈折率(20°):1.4047;MW=2000にて得た。

0027

[0027]上述の実施形態の広範な本発明の概念から逸脱することなく、上述の実施形態に変更を施すことは、当業者なら理解されよう。したがって、本発明は、開示された特定の実施形態に限定されるものではなく、添付の特許請求の範囲で定義される本発明の趣旨及び範囲内にある改変形態を包含するものであることを理解されたい。

ページトップへ

この技術を出願した法人

この技術を発明した人物

ページトップへ

関連する挑戦したい社会課題

関連する公募課題

該当するデータがありません

ページトップへ

技術視点だけで見ていませんか?

この技術の活用可能性がある分野

分野別動向を把握したい方- 事業化視点で見る -

(分野番号表示ON)※整理標準化データをもとに当社作成

ページトップへ

おススメ サービス

おススメ astavisionコンテンツ

新着 最近 公開された関連が強い技術

この 技術と関連性が強い技術

関連性が強い 技術一覧

この 技術と関連性が強い人物

関連性が強い人物一覧

この 技術と関連する社会課題

関連する挑戦したい社会課題一覧

この 技術と関連する公募課題

該当するデータがありません

astavision 新着記事

サイト情報について

本サービスは、国が公開している情報(公開特許公報、特許整理標準化データ等)を元に構成されています。出典元のデータには一部間違いやノイズがあり、情報の正確さについては保証致しかねます。また一時的に、各データの収録範囲や更新周期によって、一部の情報が正しく表示されないことがございます。当サイトの情報を元にした諸問題、不利益等について当方は何ら責任を負いかねることを予めご承知おきのほど宜しくお願い申し上げます。

主たる情報の出典

特許情報…特許整理標準化データ(XML編)、公開特許公報、特許公報、審決公報、Patent Map Guidance System データ