図面 (/)

技術 通信装置、基地局、方法及び記録媒体

出願人 ソニー株式会社
発明者 木村亮太松田大輝草島直紀唐懿夫眞田幸俊
出願日 2017年5月18日 (3年9ヶ月経過) 出願番号 2017-098801
公開日 2018年12月6日 (2年2ヶ月経過) 公開番号 2018-196005
状態 未査定
技術分野 交流方式デジタル伝送 伝送一般の監視、試験 移動無線通信システム
主要キーワード 想定結果 補助コントローラ コードワードサイズ 参照信号成分 半永続的 単位周波数帯域 流入制御 オーバーサンプリング後
関連する未来課題
重要な関連分野

この項目の情報は公開日時点(2018年12月6日)のものです。
また、この項目は機械的に抽出しているため、正しく解析できていない場合があります

図面 (20)

課題

複数の通信パラメータセットを混在させて通信する通信システムにおける適切な測定報告処理の仕組みを提供する。

解決手段

単位リソースにおいて複数の第1の通信パラメータセットを用いた通信が可能な基地局へ測定報告処理のトリガ情報通知し、前記基地局により前記トリガ情報に基づいて設定された、測定報告処理の対象とする第2の通信パラメータセットに基づいて前記基地局から受信した信号を測定し測定結果を示す情報を前記基地局に報告する測定報告処理部、を備える通信装置

概要

背景

近年、マルチキャリア変調技術(即ち、多重技術又はマルチアクセス技術)の代表として、OFDM(Orthogonal Frequency Division Multiplexing:直交周波数分割多重)、及びOFDMA(Orthogonal Frequency Division Multiple Access:直交周波数分割多元接続)が、多様な無線ステムで実用化されている。実用例としては、ディジタル放送無線LAN、及びセルラーシステムが挙げられる。OFDMは、マルチパス伝搬路に対する耐性があり、CP(Cyclic Prefix:サイクリックプリフィックス)を採用することで、マルチパス遅延波に起因するシンボル間干渉の発生を回避することが可能である。一方で、OFDMの欠点として、帯域外輻射のレベルが大きい点が挙げられる。また、PAPR(Peak-to-Average Power Ratio:ピーク対平均電力比)が高くなる傾向があり、送受信装置で発生する歪に弱いことも、欠点として挙げられる。

このようなOFDMの欠点であるPAPRを低減し、且つ、マルチパス伝搬路への耐性を持たせる方法として、SC(Single-Carrier:シングルキャリア変調FDE(Frequency Domain Equalization:周波数領域等化)とを組み合わせたSC−FDEの採用が挙げられる。SC−FDEは、SC−FDMA(Single Carrier. Frequency Division Multiple Access)又はDFT−S−OFDMA(Discrete Fourier Transform)−Spread OFDMA)とも称される場合がある。

他に、OFDMの欠点である帯域外輻射を抑制可能な、新たな変調技術が登場している。本変調技術は、OFDMにおけるS/P(Serial-to-Parallel)変換後のシンボルに対して、パルス整形フィルタ(Pulse Shape Filter)を適用することで、帯域外輻射の抑制を図るものである。フィルタリングの対象は、帯域全体、所定の数のサブキャリア単位(例えば、LTEにおけるリソースブロック単位等)、サブキャリアごと、などが考えられる。本変調技術の呼び名については、UF−OFDM(Universal Filtered-OFDM)、UFMC(Universal Filtered Multi-Carrier)、FBMC(Filter Bank Multi-Carrier)、GOFDM(Generalized OFDM)、GFDM(Generalized Frequency Division Multiplexing)など、多様に存在する。本明細書では、本変調技術をGFDMと称するが、もちろんその呼称は狭義の意味を持たない。

GFDMに関する技術の一例として、例えば下記特許文献1では、GFDMに対応する端末とGFDMに非対応なレガシ端末を収容可能にするために、複数の通信パラメータセットを混在させて通信する通信システムに関する技術が開示されている。具体的には、複数のサブキャリア間隔及び複数のサブシンボル長を混在させることが可能な通信システムに関する技術が開示されている。

概要

複数の通信パラメータセットを混在させて通信する通信システムにおける適切な測定報告処理の仕組みを提供する。単位リソースにおいて複数の第1の通信パラメータセットを用いた通信が可能な基地局へ測定報告処理のトリガ情報通知し、前記基地局により前記トリガ情報に基づいて設定された、測定報告処理の対象とする第2の通信パラメータセットに基づいて前記基地局から受信した信号を測定し測定結果を示す情報を前記基地局に報告する測定報告処理部、を備える通信装置

目的

そこで、本開示では、複数の通信パラメータセットを混在させて通信する通信システムにおける適切な測定報告処理の仕組みを提供する

効果

実績

技術文献被引用数
0件
牽制数
0件

この技術が所属する分野

ライセンス契約や譲渡などの可能性がある特許掲載中! 開放特許随時追加・更新中 詳しくはこちら

請求項1

単位リソースにおいて複数の第1の通信パラメータセットを用いた通信が可能な基地局へ測定報告処理のトリガ情報通知し、前記基地局により前記トリガ情報に基づいて設定された、測定報告処理の対象とする第2の通信パラメータセットに基づいて、前記基地局から受信した信号を測定し測定結果を示す情報を前記基地局に報告する測定報告処理部、を備える通信装置

請求項2

前記測定報告処理部は、受信したひとつの前記信号について、設定された複数の前記第2の通信パラメータセットの各々に基づいて測定する、請求項1に記載の通信装置。

請求項3

前記信号の送信に用いられる前記第1の通信パラメータセットと少なくともひとつの前記第2の通信パラメータセットとは異なる、請求項2に記載の通信装置。

請求項4

第2の通信パラメータセットは、波形及び物理層パラメータを含む、請求項1に記載の通信装置。

請求項5

第2の通信パラメータセットは、波形、周波数範囲、CP(CyclicPrefix)長、スロット長、又はターゲットBLER(BlockErrorRate)の少なくとも1つ以上を含む、請求項4に記載の通信装置。

請求項6

前記測定結果を示す情報は、前記測定報告処理の対象とした波形を示す情報を含む、請求項4に記載の通信装置。

請求項7

前記トリガ情報は、測定報告処理の実施要求、前記基地局からの信号の受信応答、又は前記測定結果を示す情報の少なくともいずれかである、請求項1に記載の通信装置。

請求項8

単位リソースにおいて複数の第1の通信パラメータセットを用いて通信装置と通信する通信制御部と、前記通信装置からの測定報告処理のトリガ情報の通知に基づいて、前記通信装置による測定報告処理の対象とする第2の通信パラメータセットの設定を前記通信装置に行う測定報告処理部と、を備える基地局。

請求項9

前記通信制御部は、前記通信装置による第2の通信パラメータセットに基づく測定結果を示す情報に基づいて、前記第1の通信パラメータセットを制御する、請求項8に記載の基地局。

請求項10

前記測定報告処理部は、前記通信装置による第2の通信パラメータセットに基づく測定結果を示す情報に基づいて、前記第2の通信パラメータセットを制御する、請求項8に記載の基地局。

請求項11

前記測定報告処理部は、前記通信装置による測定結果を示す情報の報告に用いられるリソースを前記通信装置に設定する、請求項8に記載の基地局。

請求項12

単位リソースにおいて複数の第1の通信パラメータセットを用いた通信が可能な基地局へ測定報告処理のトリガ情報を通知し、前記基地局により前記トリガ情報に基づいて設定された、測定報告処理の対象とする第2の通信パラメータセットに基づいて、前記基地局から受信した信号を測定し測定結果を示す情報を前記基地局に報告すること、を含むプロセッサにより実行される方法。

請求項13

単位リソースにおいて複数の第1の通信パラメータセットを用いて通信装置と通信することと、前記通信装置からの測定報告処理のトリガ情報の通知に基づいて、前記通信装置による測定報告処理の対象とする第2の通信パラメータセットの設定を前記通信装置に行うことと、を含むプロセッサにより実行される方法。

請求項14

コンピュータを、単位リソースにおいて複数の第1の通信パラメータセットを用いた通信が可能な基地局へ測定報告処理のトリガ情報を通知し、前記基地局により前記トリガ情報に基づいて設定された、測定報告処理の対象とする第2の通信パラメータセットに基づいて、前記基地局から受信した信号を測定し測定結果を示す情報を前記基地局に報告する測定報告処理部、として機能させるためのプログラムが記録された記録媒体

請求項15

コンピュータを、単位リソースにおいて複数の第1の通信パラメータセットを用いて通信装置と通信する通信制御部と、前記通信装置からの測定報告処理のトリガ情報の通知に基づいて、前記通信装置による測定報告処理の対象とする第2の通信パラメータセットの設定を前記通信装置に行う測定報告処理部と、として機能させるためのプログラムが記録された記録媒体。

技術分野

0001

本開示は、通信装置基地局、方法及び記録媒体に関する。

背景技術

0002

近年、マルチキャリア変調技術(即ち、多重技術又はマルチアクセス技術)の代表として、OFDM(Orthogonal Frequency Division Multiplexing:直交周波数分割多重)、及びOFDMA(Orthogonal Frequency Division Multiple Access:直交周波数分割多元接続)が、多様な無線ステムで実用化されている。実用例としては、ディジタル放送無線LAN、及びセルラーシステムが挙げられる。OFDMは、マルチパス伝搬路に対する耐性があり、CP(Cyclic Prefix:サイクリックプリフィックス)を採用することで、マルチパス遅延波に起因するシンボル間干渉の発生を回避することが可能である。一方で、OFDMの欠点として、帯域外輻射のレベルが大きい点が挙げられる。また、PAPR(Peak-to-Average Power Ratio:ピーク対平均電力比)が高くなる傾向があり、送受信装置で発生する歪に弱いことも、欠点として挙げられる。

0003

このようなOFDMの欠点であるPAPRを低減し、且つ、マルチパス伝搬路への耐性を持たせる方法として、SC(Single-Carrier:シングルキャリア変調FDE(Frequency Domain Equalization:周波数領域等化)とを組み合わせたSC−FDEの採用が挙げられる。SC−FDEは、SC−FDMA(Single Carrier. Frequency Division Multiple Access)又はDFT−S−OFDMA(Discrete Fourier Transform)−Spread OFDMA)とも称される場合がある。

0004

他に、OFDMの欠点である帯域外輻射を抑制可能な、新たな変調技術が登場している。本変調技術は、OFDMにおけるS/P(Serial-to-Parallel)変換後のシンボルに対して、パルス整形フィルタ(Pulse Shape Filter)を適用することで、帯域外輻射の抑制を図るものである。フィルタリングの対象は、帯域全体、所定の数のサブキャリア単位(例えば、LTEにおけるリソースブロック単位等)、サブキャリアごと、などが考えられる。本変調技術の呼び名については、UF−OFDM(Universal Filtered-OFDM)、UFMC(Universal Filtered Multi-Carrier)、FBMC(Filter Bank Multi-Carrier)、GOFDM(Generalized OFDM)、GFDM(Generalized Frequency Division Multiplexing)など、多様に存在する。本明細書では、本変調技術をGFDMと称するが、もちろんその呼称は狭義の意味を持たない。

0005

GFDMに関する技術の一例として、例えば下記特許文献1では、GFDMに対応する端末とGFDMに非対応なレガシ端末を収容可能にするために、複数の通信パラメータセットを混在させて通信する通信システムに関する技術が開示されている。具体的には、複数のサブキャリア間隔及び複数のサブシンボル長を混在させることが可能な通信システムに関する技術が開示されている。

先行技術

0006

国際公開第2017/056796号

発明が解決しようとする課題

0007

上記特許文献1に開示された技術は、開発されてから未だ日が浅く、複数の通信パラメータセットを混在させて通信する通信システムに関する検討が十分であるとは言い難い。例えば、複数の通信パラメータセットを混在させて通信する通信システムにおける測定報告処理も、検討が十分ではない観点のひとつである。

0008

そこで、本開示では、複数の通信パラメータセットを混在させて通信する通信システムにおける適切な測定報告処理の仕組みを提供する。

課題を解決するための手段

0009

本開示によれば、単位リソースにおいて複数の第1の通信パラメータセットを用いた通信が可能な基地局へ測定報告処理のトリガ情報通知し、前記基地局により前記トリガ情報に基づいて設定された、測定報告処理の対象とする第2の通信パラメータセットに基づいて、前記基地局から受信した信号を測定し測定結果を示す情報を前記基地局に報告する測定報告処理部、を備える通信装置が提供される。

0010

また、本開示によれば、単位リソースにおいて複数の第1の通信パラメータセットを用いて通信装置と通信する通信制御部と、前記通信装置からの測定報告処理のトリガ情報の通知に基づいて、前記通信装置による測定報告処理の対象とする第2の通信パラメータセットの設定を前記通信装置に行う測定報告処理部と、を備える基地局が提供される。

0011

また、本開示によれば、単位リソースにおいて複数の第1の通信パラメータセットを用いた通信が可能な基地局へ測定報告処理のトリガ情報を通知し、前記基地局により前記トリガ情報に基づいて設定された、測定報告処理の対象とする第2の通信パラメータセットに基づいて、前記基地局から受信した信号を測定し測定結果を示す情報を前記基地局に報告すること、を含むプロセッサにより実行される方法が提供される。

0012

また、本開示によれば、単位リソースにおいて複数の第1の通信パラメータセットを用いて通信装置と通信することと、前記通信装置からの測定報告処理のトリガ情報の通知に基づいて、前記通信装置による測定報告処理の対象とする第2の通信パラメータセットの設定を前記通信装置に行うことと、を含むプロセッサにより実行される方法が提供される。

0013

また、本開示によれば、コンピュータを、単位リソースにおいて複数の第1の通信パラメータセットを用いた通信が可能な基地局へ測定報告処理のトリガ情報を通知し、前記基地局により前記トリガ情報に基づいて設定された、測定報告処理の対象とする第2の通信パラメータセットに基づいて、前記基地局から受信した信号を測定し測定結果を示す情報を前記基地局に報告する測定報告処理部、として機能させるためのプログラムが記録された記録媒体が提供される。

0014

また、本開示によれば、コンピュータを、単位リソースにおいて複数の第1の通信パラメータセットを用いて通信装置と通信する通信制御部と、前記通信装置からの測定報告処理のトリガ情報の通知に基づいて、前記通信装置による測定報告処理の対象とする第2の通信パラメータセットの設定を前記通信装置に行う測定報告処理部と、として機能させるためのプログラムが記録された記録媒体が提供される。

発明の効果

0015

以上説明したように本開示によれば、複数の通信パラメータセットを混在させて通信する通信システムにおける適切な測定報告処理の仕組みが提供される。なお、上記の効果は必ずしも限定的なものではなく、上記の効果とともに、または上記の効果に代えて、本明細書に示されたいずれかの効果、または本明細書から把握され得る他の効果が奏されてもよい。

図面の簡単な説明

0016

GFDMをサポートする送信装置の構成の一例を説明するための説明図である。
OFDMをサポートする送信装置の構成の一例を説明するための説明図である。
SC−FDEをサポートする送信装置の構成の一例を説明するための説明図である。
本開示の一実施形態に係るシステムの概略的な構成の一例を示す説明図である。
本開示の一実施形態に係る基地局の構成の一例を示すブロック図である。
本開示の一実施形態に係る端末装置の構成の一例を示すブロック図である。
本実施形態に係るGFDMにおける周波数リソース及び時間リソースの構成の一例を説明するための説明図である。
本実施形態に係るGFDMをサポートする第1の送信装置の構成の一例を説明するための説明図である。
本実施形態に係るGFDMをサポートする第1の送信装置の構成の一例を説明するための説明図である。
本実施形態に係るGFDMをサポートする第1の送信装置の構成の一例を説明するための説明図である。
本実施形態に係るGFDMをサポートする第1の送信装置の構成の一例を説明するための説明図である。
本実施形態に係るGFDMをサポートする第2の送信装置の構成の一例を説明するための説明図である。
本実施形態に係るGFDMをサポートする第2の送信装置の構成の一例を説明するための説明図である。
本実施形態に係るリソース構成の一例を示す図である。
CP長電波伝搬路時間領域チャネルインパルス応答との関係性の一例を示す図である。
周波数チャネルにおける周波数範囲ごとの第1の通信パラメータセットの一例を示す図である。
本実施形態に係るシステムにおいて実行される測定報告処理の流れの一例を示すシーケンス図である。
本実施形態に係るシステムにおいて実行される測定報告処理の流れの他の一例を示すシーケンス図である。
想定する測定の周波数範囲と想定するDFT拡散の周波数範囲とが同一である場合を示す図である。
想定する測定の周波数範囲と想定するDFT拡散の周波数範囲とが異なる場合を示す図である。
端末装置による測定処理ブロックダイヤグラムの一例を示す図である。
本実施形態に係る端末装置により実行される測定処理の流れの一例を示す図である。
本実施形態に係る端末装置により実行される波形ごとの測定処理の流れの一例を示す図である。
本実施形態に係る端末装置により実行されるCP長ごとのCQIの測定処理の流れの一例を示す図である。
本実施形態に係る端末装置により実行される報告処理の流れの一例を示す図である。
eNBの概略的な構成の第1の例を示すブロック図である。
eNBの概略的な構成の第2の例を示すブロック図である。
スマートフォンの概略的な構成の一例を示すブロック図である。
カーナビゲーション装置の概略的な構成の一例を示すブロック図である。

実施例

0017

以下に添付図面を参照しながら、本開示の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。

0018

また、本明細書及び図面において、実質的に同一の機能構成を有する要素を、同一の符号の後に異なるアルファベットを付して区別する場合もある。例えば、実質的に同一の機能構成を有する複数の要素を、必要に応じて端末装置200A、200B及び200Cのように区別する。ただし、実質的に同一の機能構成を有する複数の要素の各々を特に区別する必要がない場合、同一符号のみを付する。例えば、端末装置200A、200B及び200Cを特に区別する必要が無い場合には、単に端末装置200と称する。

0019

なお、説明は以下の順序で行うものとする。
1.はじめに
1.1.通信品質測定及びリソーススケジューリング
1.2.波形変調方式
1.3.物理層パラメータ
1.4.技術的課題
2.構成例
2.1.全体構成
2.2.基地局の構成
2.3.端末装置の構成
3.技術的特徴
3.1.GFDM
3.2.通信パラメータセットの混在
3.3.測定報告処理
4.応用例
5.まとめ

0020

<<1.はじめに>>
以下、本開示の一実施形態に関連する技術について説明する。

0021

<1.1.通信品質測定及びリソーススケジューリング>
通信システムは、典型的には、複数のユーザの通信装置を収容し、マルチアクセスを可能にすることが望ましい。通信システムは、マルチアクセスを実現するために、どの通信装置が、どの無線リソースを利用するかを設定する。無線リソースとしては、例えば、周波数リソース(例えば、リソースブロックなど)、時間リソース(例えば、スロットフレームなど)、空間リソースアンテナアンテナポートプリコーディング行列など)、及び他の非直交リソース(例えば、拡散符号インタリーブパターン電力レベルなど)が挙げられる。上記設定を実施することは、リソーススケジューリング又はリソース割り当て(Resource Scheduling、Resource Allocation、又はResource Assignment)とも称される。

0022

セルラーシステムを例にすると、典型的には、基地局がスケジューリングを実施して、その結果(即ち、無線リソースの割り当て結果)を端末装置に通知する。基地局は、典型的には物理制御チャネル(Physical Control Channel)及び制御情報(Control Information)を用いて、割当て単位時間(例えば、フレーム、スロットなど)ごとに端末装置へ動的(Dynamic)にスケジューリング結果を通知する。無線リソースの割り当てがない端末装置に対しては、通知自体がスキップされてもよい。制御情報のフォーマット(Control Information Format)及びIE(Information Elements)については、対象となるシステムにおいてあらかじめ定義されている。

0023

基地局がスケジューリングを高効率に実施するためには、基地局と通信相手の端末装置との間の、電波伝搬状況及び干渉状況などを鑑みた通信品質を、基地局側が知ることが重要となる。そのための方法の一つとして、上記通信品質を端末装置が測定し、基地局へ測定結果をフィードバックする方法が知られている。この測定は、単に測定(Measurement)と称されることもあれば、特にCSI(Channel State Information)測定と称されることもある。測定すべき項目は、対象となるシステムにおいてあらかじめ定義されている。例えば、LTEにおいては、RI(Rank Indicator)、PMI(Precoding Matrix Indicator)、及びCQI(Channel Quality Indicator)が、CSI測定において主に測定すべき項目として定義されている。

0024

RIは、MIMO(multiple-input and multiple-output)電波伝搬路の特性などを鑑みた、適切な多重可能な空間レイヤ数(空間ストリーム数、MIMO電波伝搬路行列ランク数)の指標である。PMIは、MIMO電波伝搬路の特性などを鑑みた、適切なプリコーディング行列の指標である。CQIは、SINR(Signal to Noise plus Interference Ratio、信号対雑音干渉電力費)などを鑑みた、適切な送受信が可能なディジタル変調方式誤り訂正符号(FEC(Forward Error Correction)の符号化率(Code Rate、Coding Rate)、又はその組み合わせの指標である。適切な送受信が可能であることは、例えばブロック誤り率が基準を満たすこと(例えば、BLER(Block Error Rate)=10%など)として定義される。ディジタル変調方式としては、例えばBPSK、QPSK、16QAM、64QAM、256QAM、1024QAM、及び4096QAMなどがある。

0025

<1.2.波形変調方式>
以下、波形変調方式の一例として、GFDM、OFDM及びSC−FDEについて説明する。

0026

(GFDM)
図1は、GFDMをサポートする送信装置の構成の一例を説明するための説明図である。図1を参照すると、上位層からのビット列(例えば、トランスポートブロック)が処理されて、RF(radio frequency)信号が出力される。ビット列について、図1に示されるように、FEC(Forward Error Correction)符号化、レートマッチングスクランブリングインタリービング及びビット列からシンボル(例えば、複素シンボルであってもよく、信号点とも称され得る)へのマッピング(Bit-to-Complex Constellation Mapping)が行われ、その後変調が行われる。ビット列からシンボルへのマッピングでは、BPSK、QPSK、8PSK、16QAM、64QAM、又は256QAM等の多様なコンスタレーションが用いられ得る。変調においては、まずS/P変換が行われ、分割された複数の信号の各々に対して、リソースエレメントマッピング、オーバーサンプリング、及びパルス整形が行われ、その後行われる周波数から時間への変換(例えば、IDFT(Inverse Discrete Fourier Transform)又はIFFT(Inverse Fast Fourier Transform))により一つの時間領域の信号(即ち、時間波形)に合成される。変調の後、CP(Cyclic Prefix)付加、並びにアナログ処理及びRF処理が行われる。

0027

GFDMでは、所定の単位でフィルタリング(即ち、パルス整形)を施すために、サブキャリア上のシンボルに対してオーバーサンプリングが実施される。そして、オーバーサンプリング後のシンボルに対して、フィルタリングが実施される。周波数から時間への変換は、このフィルタリング後のシンボルに対して実施されることとなる。GFDMは、フィルタリングにより、OFDMの欠点であった帯域外輻射を抑制することが可能である。また、GFDMは、MIMO(multiple-input and multiple-output)等と組み合わされた場合でも、受信装置側がすべての処理を周波数領域で行うことを可能にする。ただし、フィルタリングの影響によって、エレメントごとにシンボル間干渉が発生するために、干渉キャンセラが受信装置側で用いられる。この点、OFDM及びSC−FDEでは、シンプルなFDEにより干渉の抑制が実現されていた。

0028

このように、GFDMは、帯域外輻射の欠点を克服する代償として、受信装置が複雑化する問題がある。MTC(Machine Type Communication)装置及びIoT(Internet of Things)装置等の、低コスト及び低消費電力での通信が望ましい装置に関しては、このような問題は致命的になり兼ねない。

0029

(OFDM)
図2は、OFDMをサポートする送信装置の構成の一例を説明するための説明図である。図2を参照すると、図1を参照して説明したGFDMをサポートする送信装置とは、破線で囲った変調部分について相違する。本相違点について説明すると、まずS/P変換が行われ、分割された複数の信号の各々に対してリソースエレメントマッピングが行われる。これにより、シンボルが所定のサブキャリアへと配置される。そして、所定数のサブキャリアに対して周波数から時間への変換(例えば、IDFT又はIFFT)が行われることで、一つの時間領域の信号に合成される。

0030

上述したように、OFDMは、マルチパス伝搬路に対する耐性があり、マルチパス遅延波に起因するシンボル間干渉の発生を回避することが可能である。一方で、OFDMの欠点として、帯域外輻射のレベルが大きい点が挙げられる。また、PAPRが高くなる傾向があり、送受信装置で発生する歪に弱いことも、欠点として挙げられる。

0031

(SC−FDE)
図3は、SC−FDEをサポートする送信装置の構成の一例を説明するための説明図である。図3を参照すると、図1を参照して説明したGFDMをサポートする送信装置とは、破線で囲った変調部分について相違する。本相違点について説明すると、まず、時間から周波数への変換(例えば、DFT(Discrete Fourier Transform)又はFFT(Inverse Fast Fourier Transform))が実施される。その後、周波数領域でのリソースエレメントマッピングが行われ、周波数から時間への変換により一つの時間領域の信号に合成される。その後、CPが付加されるので、受信装置は、FDEを実施することが容易になる。

0032

上述したように、SC−FDEは、PAPRを低減しつつ、マルチパス伝搬路にも耐性を持たせることができる。その一方で、SC−FDEは、MIMOと組み合わされた場合に、受信装置側での復号処理が複雑になる(例えば、ターボ等化、及び繰り返し干渉除去を行う)などの欠点もある。

0033

<1.3.物理層パラメータ>
通信システムでは、波形(Waveform)に関連する物理層パラメータ(Numerologyとも称される)が複数存在する。そのような物理層パラメータとしては、サブキャリア間隔(Subcarrier Spacing(SCS))、シンボル長(Symbol Length)、フレーム長(Frame Length、Transmission Time Interval (TTI))、スロット長(Slot Length)、サイクリックプリフィックス長(Cyclic Prefix (CP) Length、Guard Interval (GI) Length)、などが挙げられる。

0034

4G以前では、これらのパラメータの値として、基本的には一つのデフォルト値が定められており、オプションとして別の値が一あるいは複数定められていた。

0035

一方、5G以降の通信システムでは、要求条件の異なる複数のユースケースをシステムに収容することが要求される。そのようなユースケースとしては、eMBB(Enhanced mobile broadband)、mMTC(Massive machine type communications)およびURLLC(Ultra reliable and low latency communications)等が挙げられる。上記特許文献1では、このような要求を鑑みて、複数のサブキャリア間隔及び複数のサブシンボル長の値を一の周波数チャネルおよび時間リソース内で同時に収容・サポートすることを可能にする技術が開示されている。かかる技術によれば、多様な通信品質(スループット遅延、移動耐性等)を有するデータサービスを、同時に複数収容可能なGFDMシステムの構築が可能となる。例えば、一般的なデータダウンロードサービスストリーミングサービスに加えて、IoT及びM2Mのような通信を同時にサポートすることが可能となる。

0036

<1.4.技術的課題>
通信システムは、より高効率に多様なサービスを提供可能になることが求められている。そこで、本開示では、複数の波形及び複数の物理層パラメータの値を、一のリソース内で同時に収容・サポートにすることが可能な通信システムを提案する。具体的には、本開示では、複数の波形及び複数の物理層パラメータの値を、一のリソース内で同時に収容・サポートにする通信システムにおける、通信品質の測定及びスケジューリングに関する技術を提案する。

0037

<<2.構成例>>
<2.1.全体構成>
続いて、図4を参照して、本開示の一実施形態に係るシステム1の概略的な構成を説明する。図4は、本開示の一実施形態に係るシステム1の概略的な構成の一例を示す説明図である。図4を参照すると、システム1は、基地局100及び端末装置200を含む。ここでは、端末装置200は、ユーザとも呼ばれる通信装置である。当該ユーザは、ユーザ機器(User Equipment:UE)とも呼ばれ得る。ここでのUEは、LTE又はLTE−Aにおいて定義されているUEであってもよく、より一般的に通信機器を意味してもよい。

0038

(1)基地局100
基地局100は、セルラーシステム(又は移動体通信システム)の基地局として機能する通信装置である。基地局100は、基地局100のセル10内に位置する端末装置(例えば、端末装置200)との無線通信を行う。例えば、基地局100は、端末装置へのダウンリンク信号を送信し、端末装置からのアップリンク信号を受信する。

0039

(2)端末装置200
端末装置200は、セルラーシステム(又は移動体通信システム)において通信可能である。端末装置200は、セルラーシステムの基地局(例えば、基地局100)との無線通信を行う。例えば、端末装置200は、基地局からのダウンリンク信号を受信し、基地局へのアップリンク信号を送信する。

0040

(3)多重化/多元接続
とりわけ本開示の一実施形態では、基地局100は、直交多元接続/非直交多元接続により、複数の端末装置との無線通信を行う。より具体的には、基地局100は、GFDMを用いた多重化/多元接続により、複数の端末装置200との無線通信を行う。

0041

例えば、基地局100は、ダウンリンクにおいて、GFDMを用いた多重化/多元接続により、複数の端末装置200との無線通信を行う。より具体的には、例えば、基地局100は、複数の端末装置200への信号を、GFDMを用いて多重化する。この場合に、例えば、端末装置200は、所望信号(即ち、端末装置200への信号)を含む多重化信号から、干渉として1つ以上の他の信号を除去し、上記所望信号を復号する。

0042

なお、基地局100は、ダウンリンクの代わりに、又はダウンリンクとともに、アップリンクにおいて、GFDMを用いた多重化/多元接続により、複数の端末装置との無線通信を行ってもよい。この場合に、基地局100は、当該複数の端末装置により送信される信号を含む多重化信号から、当該信号の各々を復号してもよい。

0043

(4)補足
本技術は、HetNet(Heterogeneous Network)又はSCE(Small Cell Enhancement)などのマルチセルシステムにおいても適用可能である。また、本技術は、MTC装置及びIoT装置等に関しても適用可能である。

0044

<2.2.基地局の構成>
図5は、本開示の一実施形態に係る基地局100の構成の一例を示すブロック図である。図5を参照すると、基地局100は、アンテナ部110、無線通信部120、ネットワーク通信部130、記憶部140及び処理部150を備える。

0045

(1)アンテナ部110
アンテナ部110は、無線通信部120により出力される信号を電波として空間に放射する。また、アンテナ部110は、空間の電波を信号に変換し、当該信号を無線通信部120へ出力する。

0046

(2)無線通信部120
無線通信部120は、信号を送受信する。例えば、無線通信部120は、端末装置へのダウンリンク信号を送信し、端末装置からのアップリンク信号を受信する。

0047

(3)ネットワーク通信部130
ネットワーク通信部130は、情報を送受信する。例えば、ネットワーク通信部130は、他のノードへの情報を送信し、他のノードからの情報を受信する。例えば、上記他のノードは、他の基地局及びコアネットワークノードを含む。

0048

(4)記憶部140
記憶部140は、基地局100の動作のためのプログラム及び様々なデータを一時的に又は恒久的に記憶する。

0049

(5)処理部150
処理部150は、基地局100の様々な機能を提供する。処理部150は、通信制御部151及び測定報告処理部153を含む。通信制御部151は、後述する第1の通信パラメータセットを用いた端末装置200との通信を制御する機能を有する。測定報告処理部153は、後述する第2の通信パラメータセットの設定等の、端末装置200による測定報告処理を制御する機能を有する。なお、処理部150は、これらの構成要素以外の他の構成要素をさらに含み得る。即ち、処理部150は、これらの構成要素の動作以外の動作も行い得る。

0050

<2.3.端末装置の構成>
図6は、本開示の一実施形態に係る端末装置200の構成の一例を示すブロック図である。図6を参照すると、端末装置200は、アンテナ部210、無線通信部220、記憶部230及び処理部240を備える。

0051

(1)アンテナ部210
アンテナ部210は、無線通信部220により出力される信号を電波として空間に放射する。また、アンテナ部210は、空間の電波を信号に変換し、当該信号を無線通信部220へ出力する。

0052

(2)無線通信部220
無線通信部220は、信号を送受信する。例えば、無線通信部220は、基地局からのダウンリンク信号を受信し、基地局へのアップリンク信号を送信する。

0053

(3)記憶部230
記憶部230は、端末装置200の動作のためのプログラム及び様々なデータを一時的に又は恒久的に記憶する。

0054

(4)処理部240
処理部240は、端末装置200の様々な機能を提供する。処理部240は、通信制御部241及び測定報告処理部243を含む。通信制御部241は、後述する第1の通信パラメータセットを用いた基地局100との通信を制御する機能を有する。測定報告処理部243は、後述する第2の通信パラメータセットに基づいて測定報告処理を制御する機能を有する。なお、処理部240は、この構成要素以外の他の構成要素をさらに含み得る。即ち、処理部240は、この構成要素の動作以外の動作も行い得る。

0055

<<3.技術的特徴>>
続いて、システム1の技術的特徴を説明する。詳しくは、システム1に含まれる送信装置及び受信装置に関する技術的特徴を説明する。以下では、ダウンリンクを想定して、送信装置が基地局100であり受信装置が端末装置200であるものとして説明するが、アップリンクにおいても同様の説明が成り立つ。

0056

<3.1.GFDM>
(1)無線リソース
図7は、本実施形態に係るGFDMにおける周波数リソース及び時間リソースの構成の一例を説明するための説明図である。本実施形態に係るシステム1に、図7に示すコンポーネントキャリア(CC:Component Carrier)が割り当てられるものとする。コンポーネントキャリアの帯域幅をBCCとする。ここでのコンポーネントキャリアは、LTE又はLTE−Aにおいて定義されているコンポーネントキャリアであってもよく、より一般的に単位周波数帯域を意味していてもよい。このコンポーネントキャリアの中で、周波数リソースは、さらにNRB個のリソースブロック(RB:Resource Block)と呼ばれる、所定の帯域幅BRBのブロックに分割されている。マルチアクセスを実現する場合には、このリソースブロックを単位としてユーザへの周波数リソースの割当てが行われることが望ましい。リソースブロックの中は、さらにサブキャリアという単位に分割される。

0057

ここで、一般的なGFDM(あるいはOFDM)では、このサブキャリアの間隔(以下では、サブキャリア間隔(Subcarrier Spacing)とも称する)については対象のシステム内で固定の値が設定されていた。例えば、LTEのOFDMでは、15kHzがサブキャリア間隔として固定的に設定される。サブキャリア帯域幅が、サブキャリア間隔として捉えられてもよい。

0058

この点、本実施形態では、送信装置が、サブキャリア間隔を可変に設定可能であることを特徴のひとつとする。さらに、本実施形態では、サブキャリア間隔を、コンポーネントキャリア内のリソースブロックごとに異なる値、あるいはリソースブロック内でさらに異なる値を設定可能であることを特徴とする。このようにすることで、伝搬路状態に対して適切なサブキャリア間隔を設定することが可能となる。また、送信装置は、複数の受信装置との間で通信する場合に、受信装置ごとの性能及び要求に応じて適切なサブキャリア間隔を設定することが可能となる。そのため、システム1は、幅広いタイプの受信装置を収容することが可能となる。

0059

また、時間方向のリソースについては、まず基準となる単位として、サブフレームという単位がある。ここでのサブフレームは、LTE又はLTE−Aにおいて定義されているサブフレームであってもよく、より一般的に単位時間を意味していてもよい。このサブフレーム長は、基本的には固定的に設定されることが望ましい。サブフレームの中は、さらにGFDMシンボルという単位に区切られる。このGFDMシンボルごとにCPが付加されることとなる。GFDMシンボル長も、基本的には固定的に設定されることが望ましい。そして、GFDMシンボルは、さらにサブシンボルと呼ばれる単位に区切られる。このサブシンボルの時間長(以下では、サブシンボル長(Subsymbol period)とも称する)は、一般的なGFDMでは固定的に設定されていた。

0060

この点、本実施形態では、送信装置が、サブシンボル長を可変に設定可能であることを特徴のひとつとする。また、サブキャリアの場合と同様に、本実施形態では、サブシンボル長を、リソースブロックごとに異なる値、あるいはリソースブロック内でさらに異なる値を設定可能であることを特徴とする。

0061

0062

ここで、送信装置は、OFDM又はSC−FDEとの互換性が確保されるよう、パラメータを設定することが可能である。例えば、送信装置は、サブキャリア間隔及びサブシンボル長の設定を、OFDMにおける設定と同様にする、又はSC−FDEにおける設定と同様にすることで、後方互換性を確保することができる。これにより、システム1は、GFDMに非対応なレガシ端末も収容可能となる。

0063

(2)送信信号処理
サブキャリア間隔及びサブシンボル時間長を可変に設定した場合の送信信号処理について説明する。ここでの送信装置とは、例えば、通信制御部151による制御に基づき動作する無線通信部120を指す。また、ここでの受信装置とは、例えば、通信制御部241による制御に基づき動作する無線通信部220を指す。また、ここでは、HetNet又はSCEなどのマルチセルシステムを想定する。

0064

なお、以下の説明では、サブフレームに相当するインデックスは、断りがないかぎり省略している点に注意されたい。また、送信装置i又は受信装置uのインデックスi及びuは、その装置が属するセルのID、あるいはその装置が管理するセルのIDを示すものであってもよい。

0065

あるサブフレームtにおいて、送信装置iから受信装置uへ送信するビット列をbi,uとする。ビット列bi,uは、一のトランスポートブロックを構成するものであってもよい。また、以下では、送信装置iが受信装置uへ一のビット列を送信する場合について説明するが、送信装置iが受信装置uへ複数のビット列を送信してもよく、その際にビット列が複数のトランスポートブロックを構成してもよい。

0066

(2.1)第1の例
図8図11は、本実施形態に係るGFDMをサポートする第1の送信装置の構成の一例を説明するための説明図である。まず、送信装置は、ユーザごとに、図8に示した処理を行い、続いて図9に示した処理を行う。その後、送信装置は、送信アンテナポート毎に、図10及び図11に示した処理を行う。これらの図では、1以上のユーザに対してGFDM信号マルチアンテナ送信することを想定した場合の構成例を示している。即ち、ユーザ数(あるいは受信装置数)NU≧1であり、送信アンテナポート数(あるいは送信アンテナ数)NAP≧1である。なお、図中では、ユーザ数をUとし、送信アンテナポート数をPとしている。

0067

第1の例は、図2に示したOFDMの送信信号処理を拡張して、GFDMの送信信号処理を実現するものである。以下、図8図11を参照しながら、送信処理を説明する。

0068

図8に示すように、まず、送信装置は、送信するビット列に、CRCのための符号化、FEC符号化(例えば、畳み込み符号ターボ符号、又はLDPC符号など)、符号化率を調整するためのレートマッチング、ビットスクランブル、及びビットインタリーブなどを実施する。これらの処理は、次式の通り表現される。

0069

0070

それぞれの処理は、受信装置u、送信装置i、又はサブフレームtごとに処理構成が変化してもよい。なお、上記数式(1)では、処理を関数に見立てて、前段の処理結果を後段の処理の引数として扱っている。

0071

続いて、図9に示すように、送信装置は、上記ビット処理の後、ビット列を複素シンボルsにマッピング(即ち、変換)し、さらに空間レイヤlにマッピングする。これらの処理は、次式の通り表現される。

0072

0073

ここで、複素シンボルsへのマッピングには、BPSK、QPSK、8PSK、16QAM、64QAM、又は256QAM等の多様なコンスタレーションが用いられ得る。また、NSL,i,uは、受信装置uに対する空間レイヤ数である。

0074

送信装置は、空間レイヤにマッピング後、次式に示すように、シンボルに対して電力割当て及びプリコーディングを実施する。

0075

0076

0077

0078

0079

ここで、NAP,iは、送信装置iの送信アンテナポート数(あるいは送信アンテナ数)であり、基本的にNSL,i,u≦NAP,iの関係であることが望ましい。NEL,TLLは、後述するエレメント数である。Wは、プリコーディング行列であり、その要素は複素数又は実数であることが望ましい。Pは、電力割当て行列であり、その要素は実数であることが望ましく、次式に示すように対角行列であることが望ましい。

0080

0081

送信装置は、電力割当て及びプリコーディングの後に、次式で示すように、送信アンテナポートごとに信号を多重する。信号の多重には、例えば重畳多重、SPC(Superposition Coding)、MUST(Multiuser Superposition Transmission)、又はNOMA(Non-Orthogonal Multiple Access)等が採用され得る。

0082

0083

ここで、Uiは、送信装置iが信号を多重する受信装置uのインデクス集合である。

0084

以降の処理は、送信アンテナポートpごと、及びGFDMシンボルgごとの信号処理となる。図11に示すように、まず、送信装置は、S/P変換によって、シンボルを周波数方向展開した後、リソースエレメントマッピングによって、所定のサブキャリア及び所定のサブシンボルのエレメント上にシンボルを配置する。この配置のルールは、送信装置iが決めてもよく、また、多重されている受信装置uに対して決められるものであってもよい。

0085

リソースエレメントマッピングの結果、リソースブロックr(0≦r<NRB)内のサブキャリアに配置されたエレメントについて説明する。

0086

対象とするリソースブロック及びGFDMシンボルにおける、サブキャリア数をNSC,r,gとし、サブシンボル数をNSS,r,gとする。この場合、対象とするGFDMシンボル内のエレメント数はNEL,r,g=NSC,r,g×NSS,r,gとなる。

0087

サブキャリアkr,g及びサブシンボルmr,gに配置されたエレメントをxp,kr,g,mr,gとする。送信装置は、各々のエレメントを(即ち、サブキャリア及びサブシンボルごとに)、まずサンプリングレートNSR,r,gでオーバーサンプリングし、次いでフィルタ係数hp,kr,g,mr,g(n)によってフィルタリングする。nはサンプルのインデクスである。なお、図中のkは、サブキャリアのインデクスであり、Kは、サブキャリアの総数である。

0088

フィルタリング後のサンプルは、次式の通りとなる。なお、オーバーサンプリングの効果は、フィルタ係数の項に含まれている。

0089

0090

送信装置は、フィルタリング後に、サブキャリアごとの周波数f(k)で変調して多重する。リソースブロックr、GFDMシンボルgが含むサブキャリアインデクスの集合をKr,gとすると、多重後のGFDMシンボルc(n)は、次式の通りに表現される。

0091

0092

送信装置は、図11に示すように、参照信号についても、上述した送信信号処理のうちプリコーディング以降の処理と同様の処理を行う。まず、送信信号処理は、参照信号を生成すると、プリコーディング、S/P変換、及びリソースエレメントマッピングを行い、その後、エレメントごとにオーバーサンプリング及びフィルタリングを行う。そして、図10に示すように、送信装置はフィルタリング後の参照信号のエレメントを、GDFMシンボルに多重する。

0093

送信装置は、多重後のGFDMシンボルごとにCP及びCS(Cyclic Sufix)を付加する。CP及びCS付加後のGFDMシンボルは、次式の通りに表現される。

0094

0095

ここで、NCP,gは、GFDMシンボルgに付加されるCPのサンプル数である。

0096

(2.2)第2の例
図12及び図13は、本実施形態に係るGFDMをサポートする第2の送信装置の構成の一例を説明するための説明図である。第2の例に係る送信装置は、第1の例と同様に、まず、ユーザごとに、図8に示した処理を行い、続いて図9に示した処理を行う。その後、第2の例に係る送信装置は、送信アンテナポート毎に、図12及び図13に示した処理を行う。第1の例との相違点は、第2の例では、信号処理の領域が、時間、周波数、時間という順序を経ている点である。具体的には、第1の例ではユーザごとの処理とされていた部分が、第2の例では時間領域での処理となっている。

0097

第2の例は、図3に示したSC−FDEの送信信号処理を拡張して、GFDMの送信信号処理を実現するものである。本送信信号処理では、特に、オーバーサンプリングよりも前段で、処理対象の時間領域の信号を周波数変換する処理が行われることが特徴である。以下、図12及び図13を参照しながら、送信処理を説明する。

0098

図12に示すように、送信装置は、まず、時間シンボル系列に対して、時間から周波数への変換(例えば、DFT又はFFT等)を実施して、周波数成分に変換する。リソースブロックrの、サブキャリアk及びGFDMシンボルgに割当てられる時間シンボル系列をxp,r,gとすると、周波数変換後の周波数成分

0099

0100

0101

0102

ここで、FNは、サイズNのフーリエ変換行列である。

0103

送信装置は、周波数成分へ変換後、サブキャリアごとにオーバーサンプリングを実施する。オーバーサンプリング処理は、周波数領域では周波数成分の繰り返しに相当するため、次式のように表現される。

0104

0105

0106

ここで、行列INは、サイズNの単位行列である。つまり、IOS,N,Mは、INをM個並べた行列となっている。

0107

送信装置は、オーバーサンプリング後に、所定の数のサブキャリアごとにフィルタリングを実施する。例えば、送信装置は、周波数成分ごとに、周波数フィルタ係数乗算することでフィルタリングを実現する。なお、この所定の数は、1であってもよいし、1以上の任意の数であってもよい。1以上の任意の数としては、例えば後述する単位リソースに含まれるサブキャリアの数であってもよい。フィルタリング後の信号は、次式の通りに表現される。

0108

0109

ここで、行列Γは、フィルタリング係数である。この行列は、一般に対角行列とすることができる。つまり、行列Γは、次式の通りとされてもよい。

0110

0111

送信装置は、フィルタリング後に、周波数成分を所定のルールにしたがってマッピングして、周波数から時間への変換(例えば、IDFT又はIFFT、など)を実施する。各々の処理は、次式の通りに表現される。

0112

0113

0114

ここで、FHは、Fのエルミート行列である。また、Aは、サイズNIDFT×NSS,r,k,g×NSR,r,k,gの周波数マッピング行列である。サブキャリアごとのフィルタリング後の周波数成分k’が最終的な周波数成分kに配置される場合、周波数マッピング行列Aの(k,k’)成分は1となる。サブキャリアごとのフィルタリング後の周波数成分k’が最終的な周波数成分kに配置されない場合、周波数マッピング行列Aの(k,k’)成分は0となる。周波数マッピング行列Aは、各行の要素の和が1以下であること、及び各列の要素の和が1以下であることが望ましい。

0115

送信装置は、図13に示すように、参照信号についても、上述した送信信号処理のうちプリコーディング以降の処理と同様の処理を行う。まず、送信信号処理は、参照信号を生成すると、プリコーディング、時間から周波数への変換、及びリソースエレメントマッピングを行い、その後、エレメントごとにオーバーサンプリング、フィルタリング及び周波数マッピングを行う。そして、図12に示すように、送信装置は周波数マッピング後の参照信号のエレメントを、GDFMシンボルに多重する。

0116

送信装置は、周波数から時間への変換後のGFDMシンボルごとにCPを付加する。CP付加後のGFDMシンボルは、次式の通りに表現される。

0117

0118

ここで、NCP,gは、GFDMシンボルgに付加されるCPのサンプル数である。

0119

(2.3)第1の例と第2の例との比較
第1の例に係る送信装置と第2の例に係る送信装置とは、理論上は同一の波形を生成するものであると言える。ただし、以下に説明するような、異なる長さのサブシンボル及び/又は異なる間隔のサブキャリアを多重する場合においては、実装簡易性に差が出てくる。

0120

具体的には、第1の例の場合には、間隔が異なるサブキャリアが混在する場合、サブキャリアの多重にIDFT又はIFFTなどの高速演算を用いることが困難である。これは、IDFT及びIFFTでは、分解能が一定でない信号を入力とすることが困難であることに起因する。

0121

一方で、第2の例の場合には、パラメータを適切に設定することで、周波数から時間への変換にIDFT又はIFFTなどの高速演算を用いることが可能である。即ち、第2の例に係る送信装置の方が、第1の例に係る送信装置と比較して、実装の簡易性の観点から有用である。

0122

(3)パラメータ設定
以下では、本実施形態に係る送信装置によるパラメータ設定について説明する。

0123

(3.1)フィルタリングのパラメータ設定
本実施形態に係る送信装置は、ひとつ以上のサブキャリア又はひとつ以上のサブシンボルから成る単位リソースに含まれるサブキャリアの間隔又はサブシンボルの時間長の少なくともいずれかを可変に設定する。ここでの単位リソースとは、周波数リソースの単位(例えば、リソースブロック又はコンポーネントキャリア等)であってもよいし、時間リソースの単位(例えば、GFDMシンボル又はサブフレーム等)であってもよいし、周波数リソースと時間リソースとの組み合わせの単位であってもよい。そして、送信装置は、この設定に基づいてフィルタリングを行う。具体的には、送信装置は、設定されたサブキャリアの間隔に基づいてフィルタの帯域幅を可変に設定する。上記説明した第1又は第2の構成では、所定の数のサブキャリアごとにフィルタリングを行うことが可能であるので、可変に設定されたサブキャリアの間隔及び可変に設定されたサブシンボルの時間長を実現するリソース構成を実現することが可能となる。例えば、本実施形態に係る送信装置は、異なる時間長のサブシンボル及び/又は異なる間隔のサブキャリアを、同一のGFDMシンボル期間内で多重することができる。そのようなGFDMシンボルの構成の一例を、図14に示す。

0124

図14に示すように、送信装置は、サブシンボル長及びサブキャリア間隔に関し、単位リソースごとに異なる値を設定可能である。ただし、送信装置は、単位リソース内では、サブキャリア間隔及びサブシンボル長を同一に設定する。例えば、図14に示した例では、一のリソースブロック内ではサブキャリア間隔及びサブシンボル長が同一である。マルチユーザシステムにおいて、リソースブロックが周波数リソースの割当て単位とされる場合、このような設定により、一のユーザに対してはサブシンボル長及びサブキャリア間隔を所定値とすることが可能となる。これにより、送信処理及び受信処理をシンプルにすることが可能となる。また、送信装置は、サブシンボル長及びサブキャリア間隔に関し、GFDMシンボル単位で又はサブフレーム単位で異なる値を設定可能である。

0125

また、異なる単位リソース間で、サブキャリア数とサブシンボル数との積の値が同一であることが望ましい。例えば、図14に示した例では、同一のGFDMシンボル期間内で多重される複数のリソースブロックのサブキャリア数とサブシンボル数との積は全て8である。このようにすることで、可変パラメータを導入した場合の送信装置の構成及び受信装置の構成(即ち、送信処理及び受信処理)が簡素化され得る。

0126

送信装置は、サブキャリアの間隔を可変に設定可能である。例えば、送信装置は、サブキャリアの間隔を、システム1で定められる設定可能な最小値整数倍に設定し得る。また、送信装置は、サブキャリア間隔を、単位リソースの帯域幅を割り切れる値に設定し得る。これらの設定により、送信装置は、利用可能な全周波数リソースを無駄なく使い切ることが可能になる。なお、サブキャリア間隔の最小値は、GFDMシンボル内のサブシンボル数が1である場合のサブキャリア間隔に等しいことが望ましい。

0127

送信装置は、サブシンボル長を可変に設定可能である。例えば、送信装置は、サブシンボル長を、システム1で定められる設定可能な最小値の整数倍に設定し得る。また、送信装置は、サブシンボル長を、単位リソースの時間長を割り切れる値に設定し得る。これらの設定により、送信装置は、利用可能な全時間リソースを無駄なく使い切ることが可能になる。なお、サブシンボル長の最小値は、リソースブロック内のサブキャリア数が1である場合のサブシンボル長に等しいことが望ましい。

0128

下記の表に、本実施形態に係るシステム1において取り得る、リソースに関するパラメータの範囲の一例を示した。

0129

0130

なお、図14では、CPを付加する前段階の様子が図示されている。送信装置は、付加対象のひとつ以上の単位リソースに同一の時間長のCPを付加する。

0131

(3.2)オーバーサンプリングのパラメータ設定
オーバーサンプリングのパラメータは、送信処理に応じて設定されてもよい。

0132

例えば、図8図11に示した第1の送信装置に関しては、サンプリングレートNSR,r,gは、サブキャリア総数以上であることが望ましい。さらに、サブシンボル長及びサブキャリア間隔が可変の場合、サブキャリア総数には、実際のサブキャリア数が設定されてもよい(即ち、ガードインターバルが考慮しなくてもよい)。これに代えて、サブキャリア総数には、すべてのサブキャリア間隔をシステム1で取り得る最小値とした場合のサブキャリア数(即ち、システム1が取り得る最大のサブキャリア総数)が設定されてもよい。また、サブキャリアの多重がIDFT又はIFFTにより実行される場合、オーバーサンプリングパラメータNSR,r,gには、そのIDFTサイズ又はIFFTサイズが設定されてもよい。

0133

例えば、図12及び図13に示した第2の送信装置に関しては、オーバーサンプリングのパラメータは、第1の送信装置の場合と比較して、小さい値を設定可能である。例えば、RCフィルタ(Raised-Cosine Filter)あるいはRRCフィルタ(Root-Raised-Cosine Filter)に対応する送信フィルタ係数が採用される場合、オーバーサンプリング数高々2であれば足りると言える。もちろん、その場合であってもオーバーサンプリング数は2以上であってもよい。

0134

<3.2.通信パラメータセットの混在>
基地局100は、単位リソースにおいて、ひとつ以上の通信パラメータを含む通信パラメータセットを複数用いた通信が可能である。換言すると、基地局100は、単位リソースにおいて複数の通信パラメータセットを混在させて端末装置200と通信することが可能である。

0135

単位リソースは、所定の周波数リソース及び所定の時間リソースから成るリソースである。単位リソースは、例えばひとつ又は複数のコンポーネントキャリア、リソースブロック又はサブキャリアと、ひとつ又は複数のフレーム、サブフレーム、スロット又はシンボルから成る。

0136

システム1において実際の通信に用いられる通信パラメータセットを、以下では第1の通信パラメータセットとも称する。第1の通信パラメータセットは、例えば、参照信号及び共有チャネル(Physical Shared Channel)の送信に用いられる。第2の通信パラメータセットについては後述する。第1の通信パラメータセットと第2の通信パラメータセットとを特に区別する必要がない場合、これらを通信パラメータセットと総称する。

0137

・第1の通信パラメータセットの一例
第1の通信パラメータセットに含まれる通信パラメータは、多様に考えられる。一例として、下記の表3に、第1の通信パラメータセットに含まれる通信パラメータの一例を示した。基地局100及び端末装置200は、表3の示した複数の項目の各々に挙げた複数の候補を用いて通信することができる。なお、表3に示した項目及び候補はあくまで一例であって、これらに限定されないことに注意されたい。

0138

0139

第1の通信パラメータセットは、上記表3に示したように、波形及び物理層パラメータを含む。なお、物理層パラメータは、上記表3に示した項目のうち周波数範囲、サブキャリア間隔、CP長、スロット長及びターゲットBLERを指す。さらに、第1の通信パラメータセットは、トランスポートブロックサイズ(Transport Block Size)、コードワードサイズ(Codeword Size)、及びコードブロックサイズ(Code Block Size)を含んでもよい。第1の通信パラメータセットは、上述したこれらの通信パラメータの少なくとも1つ以上を含んでいればよく、他の任意の通信パラメータをさらに含んでいてもよい。

0140

波形は、例えば、上述したOFDMA、DFT−S−OFDMA(SC−FDMA)、及びGFDMAなどが候補として考えられる。波形の種類によって、得られる周波数ダイバーシティの効果が変わり得る。即ち、波形の種類によって、BLER及びCQIの換算に影響があると考えられる。なお、OFDMA、DFT−S−OFDMA(SC−FDMA)、及びGFDMAは、一般的には変調方式又はマルチアクセス方式に分類される技術である。本明細書では、これらの技術により生成される波形に着目して、これらの技術を波形として捉える。

0141

サブキャリア間隔は、値が大きくなるほどシンボル長が短縮される。即ち、シンボル数が同一の場合、サブキャリア間隔が大きくなるほどTTIが短縮される。TTIを短縮する(あるいはシンボル数を小さくする)ことで、送受信装置間のやり取り(例えば、データ送信と当該データのACK/NACK等)の時間を短縮することが可能であり、低遅延通信のユースケースの実現への寄与が可能となる。

0142

システム1では、ノーマルCP(Normal CP)と、ノーマルCPよりも長いCP長を有する拡張CP(Extended CP)とがサポートされる。CP長は、サブキャリア間隔又はシンボル長に応じた長さであり、典型的には、サブキャリア間隔に反比例し、シンボル長に比例する。CP長は、サブキャリア間隔又はシンボル長に応じた所定値であってもよい。CP長は、電波伝搬路のマルチパス遅延波に対する耐性に影響し、CP長が長いほど遅延時間の大きな遅延波まで耐性を高めることができる。この点について、図15を参照して説明する。

0143

図15は、CP長と電波伝搬路の時間領域チャネルインパルス応答との関係性の一例を示す図である。本図では、4つのCP長が例示されており、両端矢印の長さがそれぞれのCP長に相当する。第1のCP長は、サブキャリア間隔が15kHzの場合のノーマルCP長である。第2のCP長は、サブキャリア間隔が15kHzの場合の拡張CP長である。第3のCP長は、サブキャリア間隔が60kHzの場合のノーマルCP長である。第4のCP長は、サブキャリア間隔が60kHzの場合の拡張CP長である。両端矢印の内部に収まっている遅延波は、所望信号成分(SINRのS(信号成分))として扱うことができる。一方、両端矢印の外部にある遅延波は、干渉信号成分(SINRのI(干渉成分))となる。本図に示すように、CP長によって、SINRが変わり、その結果BLER及びCQIの換算に影響を与えることとなる。

0144

スロット長は、1回に割り当てる時間リソースの単位であり、シンボル数で定義される。ここでのシンボルは、例えば、OFDMAシンボル、DFT−S−OFDMAシンボル、又はGFDMAシンボルなどである。シンボル数は、TTIに関連するため、低遅延通信のユースケースの実現に寄与する。また、シンボル数が異なると、TTI中に送受信可能なデータサイズ(例えば、Transport Block Size、Codeword Size、又はPayload Sizeなどのビット数)が異なってくるので、結果としてBLER及びCQIの換算に影響がある。

0145

ターゲットBLERは、CQIの換算に影響を与えるパラメータである。ユースケースによっては、従来よりも低いターゲットBLERが設定されることが望ましい場合ある。そのため、ターゲットBLERも複数候補があることが望ましい。例えば、V2X(Vehicle-to-Everything)通信など、安全性が求められるユースケースでは、低いターゲットBLERが設定されることが望ましい。

0146

・第1の通信のパラメータの混在
基地局100は、単位リソースにおいて複数の第1の通信パラメータセットを用いて通信する。その際、基地局100は、例えば単位リソースを周波数範囲又は時間範囲の少なくともいずれかで区切り、各々で異なる第1の通信パラメータセットを用いて通信する。

0147

一例として、第1の通信パラメータセットは、周波数チャネル(例えば、コンポーネントキャリア)内の所定の周波数範囲ごとに異なっていてもよい。ただし、その場合、各々の周波数範囲において、共有チャネルと参照信号とで、同じ第1の通信パラメータセットが用いられるものとする。この場合、基地局100は、周波数範囲と当該周波数範囲において用いられる第1の通信パラメータセットとを、第2の通信パラメータセットとは別に端末装置200に通知して設定することが望ましい。この設定のための設定情報は、セル固有(即ち、基地局100固有)又はユーザ固有(端末装置200固有)の値として、下りリンク物理報知チャネル(Physical Broadcast Channel, PBCH)又は物理共有チャネル(Physical Downlink Shared Channel,PDSCH)を介して静的、準静的又は動的に通知されることが望ましい。

0148

図16は、周波数チャネルにおける周波数範囲ごとの第1の通信パラメータセットの一例を示す図である。図16に示した例では、3つの周波数範囲において、各々異なる第1の通信パラメータセットが用いられる。例えば、最も周波数が低い4リソースブロックでは、波形A、サブキャリア間隔SCSA及びCP長CPAが用いられる。次に周波数が低い4リソースブロックでは、波形B、サブキャリア間隔SCSB及びCP長CPBが用いられる。最も周波数が高い4リソースブロックでは、波形C、サブキャリア間隔SCSC及びCP長CPCが用いられる。各々の周波数範囲内では、共有チャネルと参照信号とで同じ第1の通信パラメータセットが用いられる。端末装置200は、基地局100からの事前の設定により、どの周波数範囲でどの第1の通信パラメータセットが用いられるかを知ることができる。なお、本図では4リソースブロックごとに同一の第1の通信パラメータセットが用いられる周波数範囲が区切られているが、必ずしも同一のリソースブロック数ごとに区切られる必要はないことに注意されたい。

0149

他の一例として、第1の通信パラメータセットは、周波数チャネル(例えば、コンポーネントキャリア)内では同一であってもよい。周波数チャネルに対応するデフォルトの通信パラメータセットが第1の通信パラメータセットとして用いられる場合、第1の通信パラメータセットの通知及び設定は省略されてもよい。例えば、波形がOFDMA、サブキャリア間隔が15kHz又は同一の周波数チャネルにおけるPBCH若しくは同期信号と同じ値、CP長がノーマルCPである場合、第1の通信パラメータセットの通知及び設定が省略されてもよい。第1の通信パラメータセットは、異なる周波数チャネル間で異なっていてもよい。

0150

<3.3.測定報告処理>
(1)全体的な測定報告処理の流れ
端末装置200は、基地局100から送信された信号に基づいて、基地局100との間の通信品質を測定する。この測定に用いられる信号は、典型的には参照信号である。参照信号以外の、例えばデータ信号等の任意の信号が、測定のために用いられてもよい。以下では、測定のための信号として参照信号が用いられるものとして説明する。

0151

基地局100は、参照信号を端末装置200に送信する。参照信号は、例えばCSI−RS(Channel State Information Reference Signal)であってもよい。一方で、端末装置200は、基地局100から受信した参照信号を測定する。そして、端末装置200は、測定結果を示す情報(以下、測定報告とも称する)を基地局100に(即ち、送信)報告する。

0152

これらの一連の処理を、測定報告処理とも称する。測定報告処理は、参照信号を測定する測定処理と、測定処理による測定結果を報告する報告処理とに分類され得る。

0153

以下、図17及び図18を参照して、測定報告処理の全体的な流れの一例を説明する。

0154

図17は、本実施形態に係るシステム1において実行される測定報告処理の流れの一例を示すシーケンス図である。本シーケンスには、基地局100及び端末装置200が関与する。本シーケンスに先立って、基地局100は、第1の通信パラメータセットを端末装置200に通知(即ち、送信)し設定しておくものとする。

0155

図17に示すように、まず、端末装置200は、CSIリクエストを基地局100に送信する(ステップS100)。CSIリクエストとは、測定報告処理の実施要求である。CSIリクエストは、例えば、測定報告処理を実施したい旨、測定する項目、参照信号の送信のリクエスト、報告用のリソース割り当てのリクエスト等を含み得る。CSIリクエストは、例えばPUCCH(Physical Uplink Control Channel)又はPUSCH(Physical Uplink Shared Channel)を介して送信され得る。

0156

次いで、基地局100は、測定に関する設定を端末装置200に行う(ステップS102)。例えば、基地局100は、後述する第2の通信パラメータセットを端末装置200に通知して設定する。他にも、端末装置200は、後述する測定処理の実施タイミング及び報告処理の実施タイミングを端末装置200に通知して設定する。この設定は、PBCH(Physical Broadcast Channel)又はPDSCH(Physical Downlink Shared Channel)を介して行われ得る。

0157

次に、基地局100は、端末装置200に参照信号を送信する(ステップS104)。参照信号は、例えばCSI−RSである。基地局100は、CSI−RSを、第1の通信パラメータセットを用いて端末装置200に送信する。

0158

そして、端末装置200は、基地局100から受信した参照信号に基づいて測定を行う(ステップS106)。このとき、端末装置200は、CSI−RSの送信に第2の通信パラメータセットが用いられたものと想定して、測定を行う。

0159

次いで、端末装置200は、測定結果を示す情報(測定報告)を基地局100に報告する(ステップS108)。測定報告は、例えばPUCCH又はPUSCHを介して送信され得る。次に、基地局100は、測定報告に基づいてスケジューリングを行う(ステップS110)。

0160

図18は、本実施形態に係るシステム1において実行される測定報告処理の流れの他の一例を示すシーケンス図である。本シーケンスには、基地局100及び端末装置200が関与する。本シーケンスにおけるステップS202〜S210における処理は、図17に示したシーケンスにおけるステップS102〜S110における処理と同様である。図17に示したシーケンスは、端末装置200が測定報告処理のトリガを掛ける場合を示している。一方で、図18に示したシーケンスは、基地局100が測定報告処理のトリガを掛ける場合を示している。

0161

(2)実施タイミング
・測定の実施タイミング
測定の実施タイミングは、基地局100により設定されてもよい。例えば、基地局100は、セル固有の測定タイミング又は測定周期を、システム情報(例えば、SIB(System Information Block)又はMIB(Master Information Block))を用いて静的又は準静的に予め設定する。あるいは、基地局100は、ユーザ固有(即ち、端末装置200固有)の測定タイミング又は測定周期を、RRCコンフィギュレーション又はRRCリコンフィギュレーションを用いて静的、準静的又は動的に設定してもよい。これらの場合、システム情報、RRCコンフィギュレーション又はRRCリコンフィギュレーションは、下りリンクの物理報知チャネル(Physical Broadcast Channel, PBCH)又は物理共有チャネル(Physical Downlink Shared Channel,PDSCH)を介して、基地局100から端末装置200へ通知される。

0162

測定の実施タイミングは、端末装置200により設定されてもよい。

0163

・報告の実施タイミング
端末装置200による報告(即ち、フィードバック)の実施タイミングは、基地局100により設定されてもよい。例えば、基地局100は、セル固有の報告タイミング又は報告周期を、システム情報(例えば、SIB又はMIB)を用いて静的又は準静的に予め設定する。あるいは、基地局100は、ユーザ固有(即ち、端末装置200固有)の報告タイミング又は報告周期を、RRCコンフィギュレーション又はRRCリコンフィギュレーションを用いて静的、準静的又は動的に設定してもよい。これらの場合、システム情報、RRCコンフィギュレーション又はRRCリコンフィギュレーションは、下りリンクの物理報知チャネル又は物理共有チャネルを介して、基地局100から端末装置200へ通知される。

0164

報告の実施タイミングは、端末装置200により設定されてもよい。

0165

・測定報告処理の実施トリガ
測定報告処理の実施トリガは、基地局100により掛けられてもよいし、端末装置200により掛けられてもよい。端末装置200がトリガを掛ける場合、端末装置200は、測定報告処理のトリガ情報を基地局100に通知する。トリガ情報は、測定報告処理の実施要求(例えば、図17に示したCSIリクエスト)、基地局100からの信号の受信応答(ACK/NACK)、又は測定報告の少なくともいずれかである。

0166

基地局100は、端末装置200からのトリガ情報の通知に基づいて、測定に関する設定を端末装置200に行う。例えば、基地局100は、CSIリクエストに基づいて、ACK/NACKの安定性に基づいて、又は測定報告の内容に基づいて、測定に関する設定を行う。測定に関する設定は、後述する第2の通信パラメータセットの設定、並びに後述する測定処理の実施タイミング及び報告処理の実施タイミングの設定を含む。

0167

(3)第2の通信パラメータセット
基地局100は、測定報告処理の対象とする通信パラメータセットを端末装置200に設定する。測定報告処理の対象とする通信パラメータセットとは、参照信号の送信に用いられたものと想定して測定報告処理を行うべき通信パラメータセットである。測定報告処理の対象とする通信パラメータセットは、測定対象の通信パラメータセットとして捉えられてもよい。また、測定報告処理の対象とする通信パラメータセットは、報告(即ち、フィードバック)対象の通信パラメータセットとして捉えられてもよい。

0168

ここで、基地局100は、測定報告処理の対象とする通信パラメータセットとして、測定対象の通信パラメータセットと報告対象の通信パラメータセットとを、別々に設定してもよい。即ち、測定対象の通信パラメータセットと報告対象の通信パラメータセットとは異なっていてもよい。例えば、複数の測定対象の通信パラメータセットのうち、一部の通信パラメータセットが報告対象の通信パラメータセットであってもよい。また、複数の測定対象の通信パラメータセットのうち、受信電力閾値以上である等の所定の条件を満たす通信パラメータセットについての測定報告のみを報告の対象とするよう設定されてもよい。

0169

測定報告処理の対象とする通信パラメータセットを、第2の通信パラメータセットとも称する。

0170

第2の通信パラメータセットは、第1の通信パラメータセットと同様に、波形及び物理層パラメータを含む。即ち、第2の通信パラメータセットは、例えば波形、周波数範囲、サブキャリア間隔、CP長、スロット長、及びターゲットBLERを含む。さらに、第2の通信パラメータセットは、トランスポートブロックサイズ(Transport Block Size)、コードワードサイズ(Codeword Size)、及びコードブロックサイズ(Code Block Size)を含んでもよい。なお、周波数範囲は、測定報告処理の対象とする周波数範囲及びDFT拡散の周波数範囲を含み得る。とりわけ、波形に関しては、他の通信パラメータとは独立して個別に設定されることが望ましい。第2の通信パラメータセットは、上述したこれらの通信パラメータの少なくとも1つ以上を含んでいればよく、他の任意の通信パラメータをさらに含んでいてもよい。

0171

第1の通信パラメータセットと第2の通信パラメータセットとは、同一であってもよい。一方で、第1の通信パラメータセットと第2の通信パラメータセットとは、その一部又は全部が異なっていてもよい。例えば、実際の参照信号の送信に用いられた波形と異なる波形が想定された測定報告処理が行われてもよい。この場合、基地局100は、実際には送信に用いていない通信パラメータセットに関する測定結果の報告を受けることが可能である。

0172

基地局100は、複数の第2の通信パラメータセットを端末装置200に設定してもよい。この場合、端末装置200において複数の第2の通信パラメータセットの各々に基づいて測定報告処理が行われる。これにより、基地局100は、使用し得る複数の通信パラメータセットについて、それらを用いた場合の通信品質を、1度の参照信号の送信により、端末装置200に測定させることが可能となる。従って、システム1における測定報告処理のオーバーヘッドを抑制することが可能である。

0173

第2の通信パラメータセットは、例えば下りリンクの物理報知チャネル(Physical Broadcast Channel, PBCH)又は物理共有チャネル(Physical Downlink Shared Channel,PDSCH)を介して、基地局100から端末装置200へ通知される。

0174

・第1の通信パラメータセットと第2の通信パラメータセットとの関係
以下、第1の通信パラメータセットと第2の通信パラメータセットとの関係について説明する。

0175

基地局100は、所定の周波数リソース及び所定の時間リソースにおいて、第1の通信パラメータセットを用いて参照信号を端末装置200に送信する。端末装置200は、この参照信号について、第2の通信パラメータセットを想定して測定報告処理を行う。第1の通信パラメータセットと第2の通信パラメータセットとは同一であることが望ましい。ただし、両者が異なることも許容される。第1の通信パラメータセットと第2の通信パラメータセットとの関係を、下記の表4に示す。下記の表4では、参照信号の送信に実際に用いられる第1の通信パラメータセットと、第2の通信パラメータセットとの関係が示されている。

0176

0177

(4)第2の通信パラメータセットに基づく測定報告処理
端末装置200は、第2の通信パラメータセットに基づいて測定報告処理を行う。詳しくは、端末装置200は、基地局100により設定された第2の通信パラメータセットに基づいて、基地局100から受信した参照信号を測定し、測定結果を示す情報を基地局100に報告する。

0178

複数の第2の通信パラメータセットが設定される場合がある。その場合、端末装置200は、受信したひとつの参照信号について、設定された複数の第2の通信パラメータセットの各々に基づいて測定する。詳しくは、端末装置200は、ひとつの参照信号について、当該参照信号の送信に用いられたと想定する通信パラメータセットごとに測定を行い、複数の測定結果を得る。ここで、参照信号の送信に用いられる第1の通信パラメータセットと想定する少なくともひとつの第2の通信パラメータセットとは異なっていてもよい。
この場合、端末装置200は、参照信号の送信に用いられる第1の通信パラメータセットと異なる第2の通信パラメータセットに基づく測定結果をも、1度の参照信号の受信で得ることが可能となる。従って、システム1における測定報告処理のオーバーヘッドを抑制することが可能である。

0179

複数の第2の通信パラメータセットが設定される場合、設定されたすべての第2の通信パラメータセットに基づく測定報告処理が行われることが望ましい。設定された複数の第2の通信パラメータセットのうち、一部の第2の通信パラメータセットに基づく測定報告処理のみが行われてもよい。

0180

第2の通信パラメータセットが基地局100により設定されない場合も考えられる。その場合、端末装置200は、自身で第2の通信パラメータセットを設定する。このとき、端末装置200は、第2の通信パラメータセットをひとつ設定してもよいし、複数設定してもよい。

0181

以下、端末装置200による第2の通信パラメータセットに基づく測定処理について詳しく説明する。

0182

(4.1)測定処理
・想定する波形の設定
端末装置200は、第2の通信パラメータセットが示す波形を想定して測定を行う。複数の波形が想定される場合、端末装置200は、想定する波形ごとに測定を行う。若しくは、端末装置200は、1度の測定では1つの波形のみを想定してもよい。

0183

まず、端末装置200は、送受信装置間の電波伝搬路のチャネル応答推定する。ここでの送受信装置間とは、基地局100と端末装置200との間であってもよいし、端末装置200と別の端末装置200との間であってもよい。端末装置200は、周波数領域および時間領域の両方のチャネル応答を推定することが望ましい。また、それぞれの領域のチャネル応答は、さらにMIMO(Multi-Input Multi-Output)の空間領域およびマルチアンテナの特徴も含んで推定されていることが望ましい。端末装置200は、チャネル応答を推定した後、特に時間領域のチャネル応答の推定値から、チャネル応答の長さを推定する。ここで、推定対象のチャネル応答の長さとは、例えば図15に示したような、時間領域のチャネル応答のうち所定の条件を満たす遅延波の遅延時間の差の最大値に相当する。

0184

・RIの測定
端末装置200は、想定する波形の特徴に応じて測定を行う。例えば、想定する波形の特徴に応じたRIの測定を行う。

0185

端末装置200は、波形がシングルキャリア波形の特徴を有するか否かに基づいて測定を行ってもよい。下記表5に、シングルキャリア波形の特徴を持つ波形と持たない波形の一例を示す。

0186

0187

シングルキャリアの特徴を有するか否かの基準の一例として、送信側でDFT拡散又はFFT拡散が実施されるか否かが挙げられる。例えば、図3図12及び図13に示した送信装置では、時間から周波数への変換(Time-to-Frequency Conversion)処理において、DFT拡散又はFFT拡散が行われる。そのため、SC−FDMA、DFT−S−OFDMA、GFDMA(DFT拡散を使うGFDMA)は、シングルキャリア波形の特徴を持つ波形であると捉えることができる。一方で、DFT拡散又はFFT拡散が行われない波形については、シングルキャリア波形の特徴を持たない波形であると捉えることができる。

0188

シングルキャリア波形の特徴を持たない波形を想定する場合、端末装置200は、チャネル応答の空間的特徴及びMIMOの特徴から、RI(Rank Indicator)の値を測定する。RIの測定は、MIMOチャネルを行列で表現した場合、その行列のランク数であることが望ましい。

0189

一方で、シングルキャリア波形の特徴を持つ波形を想定する場合、端末装置200は、RIの測定値を所定の値に固定することが望ましい。例えば、端末装置200は、チャネル応答のMIMOのランク数を1に固定する。この場合、RI=0となる。また、別の例として、端末装置200は、シングルキャリアの特徴をもつ波形を想定した場合とそうでない波形を想定した場合とで、RIで想定する最大値を異なる値に設定してもよい。例えば、シングルキャリアの特徴をもつ場合の最大値を、シングルキャリアの特徴をもたない場合の最大値以下とすることが望ましい。

0190

端末装置200は、波形が直交波形又は非直交波形のいずれの特徴を有するかに基づいて測定を行ってもよい。下記表6に、直交波形の特徴を持つ波形と非直交波形の特徴を持つ波形の一例を示す。

0191

0192

表6に示すように、直交波形の特徴をもつ波形としては、例えば、SC−FDMA、DFT−S−OFDMA、OFDMAがある。これらは、図2及び図3を参照して上記説明したように、送信信号処理において、オーバーサンプリング及びフィルタリングといった処理を行わないことを特徴とする波形であるとも言える。

0193

他方、表6に示すように、非直交波形の特徴をもつ波形としては、例えば、Filtered OFDMA、UF(Universal Filtered)−OFDMA、FBMC(Filterbank Multicarrier)、GFDMA(Generalized Frequency Division Multiple Access)、FTN(Faster−Than−Nyquist)などができる。これらは、図1図8図12を参照して上記説明したように、送信信号処理において、オーバーサンプリング及びフィルタリングといった処理を行うことを特徴とする波形であるとも言える。

0194

・PMIの測定
端末装置200は、PMIを測定する。PMIの候補となるプリコーディング行列の母集団は、測定したRIの値に基づいて決められることが望ましい。

0195

・CQIの測定
端末装置200は、CQIを測定する。とりわけ、端末装置200は、想定するCP長及びターゲットBLERに基づいてCQIを測定する。

0196

端末装置200は、CQIを測定するために、まず、実効的なSINR(Effective SINR)を推定する。ここで、干渉雑音成分(SINRのIとN)には、端末装置200の熱雑音マルチセル環境における他セルからの同一チャネル干渉及び隣接チャネル干渉、電波伝搬路のマルチパス遅延とCP長とに起因するシンボル間干渉、波形に起因する干渉、並びにその他の干渉が含まれる。端末装置200は、これらのうちシンボル間干渉については、想定するCP長に基づいてSINRの推定を行う。

0197

なお、想定するCP長として、基地局100による設定以外にも、端末装置200により測定されたCP長が採用されてもよい。また、想定するCP長として、測定されたCP長以外にも複数のCP長が採用されてもよい。あるいは、測定するCP長として、測定されたCP長と独立したCP長の値が採用されてもよい。

0198

複数のCP長が想定される場合、端末装置200は、想定するCP長ごとに測定を行う。CP長によってSINRが変わる可能性があるためである。

0199

複数のターゲットBLERが想定される場合、端末装置200は、想定するターゲットBLERごとに測定を行う。具体的には、端末装置200は、想定するターゲットBLERごとにCQIの測定を行う。ターゲットBLERによってCQIが変わる可能性があるためである。端末装置200は、推定した実効的なSINRを、波形に対応するBLERカーブの値と比較することで、CQIを測定する。BLERカーブは、候補CQIごとに用意されていることが望ましい。BLERカーブと実効的なSINRの比較から、ターゲットBLERを満たすCQIのうち、最も高い周波数利用効率をCQIの結果とすることが望ましい。

0200

・周波数範囲の想定に基づく測定
端末装置200は、周波数範囲の想定に基づいて測定を行う。

0201

とりわけ、送信側でDFT拡散を行う波形(即ち、シングルキャリア波形の特徴をもつ波形)が想定される場合、端末装置200は、周波数範囲の想定に基づいて測定を行う。想定される周波数範囲は、測定の(即ち、測定対象の)周波数範囲、及びDFT拡散の周波数範囲である。これらの周波数範囲は、典型的には第2の通信パラメータセットとして基地局100から設定される。なお、想定するDFT拡散の周波数範囲の設定は、送信側でDFT拡散を利用する波形を利用する場合にのみ行われることが望ましい。即ち、送信側でDFT拡散を利用しない波形を利用する場合には、想定するDFT拡散の周波数範囲の設定は行われなくてもよい。

0202

想定する測定の周波数範囲と想定するDFT拡散の周波数範囲との関係性は、図19及び図20に示す2通りが考えられる。図19は、想定する測定の周波数範囲と想定するDFT拡散の周波数範囲とが同一である場合を示す図である。図20は、想定する測定の周波数範囲と想定するDFT拡散の周波数範囲とが異なる場合を示す図である。測定の周波数範囲は、必ずしも周波数チャネルの帯域幅(例えば、コンポーネントキャリアの帯域幅)である必要はないことに注意されたい。DFT拡散の周波数範囲は、測定の周波数範囲以下であることが望ましい。測定の周波数範囲とDFT拡散の周波数範囲とは、整数倍の関係にあることが望ましい。DFT拡散の周波数範囲は、リソースブロックの帯域幅の整数倍であることが望ましい。

0203

端末装置200は、想定する周波数範囲がこれら2通りの関係のいずれであるかに基づいて測定を行う。これにより、端末装置200は、例えば実効的なSINRを推定する際に、周波数ダイバーシティの効果をより正確に推定結果に組み込むことが可能となる。

0204

(4.2)測定処理に関する具体的な処理
図21は、端末装置200による測定処理のブロックダイヤグラムの一例を示す図である。図中のブロックへ破線矢印で入力される情報は、想定される第2の通信パラメータセットである。図21に示すように、端末装置200は、まず、周波数領域の信号を受信し、その中から参照信号成分(例えば参照信号のリソースエレメント)を抜き出す。次いで、端末装置200は、抜き出した参照信号を用いてチャネル推定を行う。

0205

次に、端末装置200は、想定する波形、周波数範囲又はサブキャリア間隔の少なくともいずれか、及びチャネル推定値(周波数領域であることが望ましい)を用いて、送受信装置間のMIMO電波伝搬路の適切なランクと適切なプリコーディング行列とを推定する。ここで、プリコーディング行列については、あらかじめ定められた複数のプリコーディング行列の組み(即ち、Codebook)の中から選択されることが望ましい。ランク及びプリコーディング行列については、報告のために、RI及びPMIにそれぞれ変換される。

0206

チャネル推定値は、CQIを導出するためのSINR推定にも用いられる。端末装置200は、想定する波形、周波数範囲、サブキャリア間隔又はCP長の少なくともいずれかに基づいて、所望信号成分及び干渉成分を推定する。まず、端末装置200は、CP長を推定する。次いで、端末装置200は、チャネル推定値を時間領域のチャネルインパルス応答に変換した上で、CP長に収まるチャネルインパルス応答の合計電力と、CP長から外れるチャネルインパルス応答の合計電力とを、SINRに反映する。この処理については、図15を参照して上記説明した通りである。なお、CP長は、報告のために、CP長に対応する指標であるCPI(Cyclic Prefix Indicator)に変換される。

0207

端末装置200は、SINRを推定した後、SINRの推定値を用いてBLERの推定を行う。ここで、端末装置200は、想定する波形の種類の各々に対応するBLER参考値(例えばCQIごとのSINR対BLERのテーブル)を記憶していることが望ましい。さらに、端末装置200は、スロット長及びデータサイズ(Transport Block Sizeなど)ごとのBLER参考値を記憶していることが望ましい。

0208

端末装置200は、BLERを推定後、SINR推定値BLER推定値とを比較して、ターゲットBLERを満たすCQIを1つ以上列挙する。端末装置200は、列挙したCQIのうち、実際にフィードバックするCQIを選択する。ターゲットBLERを満たすCQIのうち、周波数利用効率が最も高いCQIが選択されることが望ましい。端末装置200は、複数のターゲットBLERが想定される場合、想定されるターゲットBLERごとにひとつのCQIを選択する。

0209

また、端末装置200は、想定した波形を、報告のために、波形に対応する指標であるWI(Waveform Indicator)に変換する。

0210

(4.3)報告処理
端末装置200は、第2の通信パラメータセットに基づいて報告を行う。複数の第2の通信のパラメータが設定された場合には、端末装置200の複数の第2の通信パラメータセットの各々についての測定結果を示す情報(即ち、測定報告)を報告する。測定結果を示す情報は、例えば、CQI、RI、PMI、CPI又はWIの少なくともいずれかを含む。

0211

ここで、測定結果を示す情報は、少なくとも測定報告処理の対象とした波形を示す情報(即ち、WI)を含むことが望ましい。波形は、CQI等の他の測定結果への影響が大きいためである。測定報告処理の対象とした波形を示す情報が少なくとも報告されることで、基地局100は、波形の影響を加味して端末装置200からの測定報告を解釈することが可能となる。

0212

端末装置200による測定報告の報告に用いられるリソースは、基地局100により設定されてもよい。例えば、基地局100は、CSIリクエストに応じて報告用のリソースを端末装置200に割り当てる。他にも、端末装置200は、事前に基地局100により設定されたリソースプールから選択したリソースを用いて報告情報を報告してもよい。

0213

端末装置200は、1度の測定報告処理において、複数の測定報告を報告してもよい。例えば、複数の第2の通信パラメータセットが設定された場合、端末装置200は、受信したひとつの参照信号について、複数の第2の通信パラメータセットの各々に基づいて測定した結果を基地局100に報告する。上述したように、測定対象の第2の通信パラメータセットと報告対象の第2の通信パラメータセットとは異なっていてもよく、即ち、端末装置200は、測定した内の一部の結果を基地局100に報告してもよい。

0214

(4.4)測定処理及び報告処理の周期及び頻度について
端末装置200の負荷削減及び電力消費削減の観点から、測定処理の実施頻度は低いことが望ましい。また、システム1全体のオーバーヘッド削減の観点から、報告処理の実施頻度は低いことが望ましい。

0215

測定及び報告の対象項目である、RI、PMI、CQI、WI及びCPIは、その変動の時間的振る舞いがそれぞれ異なり得る。一般的に、PMI及びCQIは、変動の時間的粒度が短いと考えられる。その次に、RIの変動の時間的粒度が短いと考えられる。その次に、CPIの変動の時間的粒度が短く、WIは、これらの中では最も時間的粒度が長いと考えられる。

0216

以上のような特徴から、測定及び報告の実施は、対象項目ごとに設定されることが望ましい。具体的には、変動の時間的粒度が短いものほど、測定及び報告の実施周期を短く且つ実施頻度を高く設定されることが望ましい。また、変動の時間的粒度が長いものほど、測定及び報告の実施周期を長く且つ実施頻度を低く設定されることが望ましい。定性的には、測定及び報告の実施周期及び実施頻度は以下の関係にあることが望ましい。
測定及び報告の実施周期
CQI≦PMI≦RI≦CPI≦WI
測定及び報告の実施頻度
CQI≧PMI≧RI≧CPI≧WI

0217

端末装置200は、複数の対象項目の測定結果を、まとめて報告してもよいし、個別に報告してもよい。例えば、端末装置200は、実施周期が長く実施頻度が低い対象項目の測定結果を報告する場合には、それよりも実施周期が短く実施頻度が高い対象項目の測定結果を一緒に報告してもよい。換言すると、端末装置200は、実施周期が短く実施頻度が高い対象項目の測定結果を報告する場合には、それよりも実施周期が長く実施頻度が低い対象項目の想定結果を一緒には報告しなくてもよい。また、端末装置200は、実施周期が短く実施頻度が低い対象項目の測定結果は、測定の実施の度に報告しなくてもよく、それより実施周期が長く実施頻度が高い対象項目の測定結果の報告の際にまとめて報告してもよい。

0218

ここで、波形は、その他の対象項目の測定結果すべてに影響を与え得る。そのため、WIが報告される場合には、その他の対象項目の測定結果もまとめて報告されることが望ましい。このことは、上述した測定及び報告の実施周期及び実施頻度とは独立して実現されることが望ましい。

0219

また、DFT−S−OFDMA、SC−FDMA、又はGFDMAなど、シングルキャリア波形の特徴をもつ波形は、MIMOのうち、空間レイヤあるいは空間ストリームに別の情報あるいは別の信号を多重する空間多重(Spatial Multiplexing)が向かない可能性がある。そのため、WIが報告される場合、且つWIがシングルキャリア波形の特徴をもつ波形を示す場合、RI=0(空間レイヤ数=1、または空間ストリーム数=1)に固定されることが望ましい。RI=0が明示的に報告されてもよいし、WIがシングルキャリア波形の特徴をもつ波形を示すことがRI=0を黙示的に示していてもよく、この場合、RIの報告は省略されてもよい。後者の場合、報告される情報量を削減して、報告のオーバーヘッドを削減することが可能である。

0220

(4.5)測定報告に基づく制御
基地局100は、端末装置200による第2の通信パラメータセットに基づく測定報告に基づいて、第1の通信パラメータセットを制御する。換言すると、基地局100は、第1の通信パラメータセットの制御のために、第2の通信パラメータセットを設定して、端末装置200に測定報告処理を実施させる。これにより、基地局100は、第1の通信パラメータの制御を効率的に実施して、システム1の通信効率を向上させることが可能である。

0221

基地局100は、端末装置200による第2の通信パラメータセットに基づく測定報告に基づいて、第2の通信パラメータセットを制御する。換言すると、基地局100は、第2の通信パラメータセットの制御のために、第2の通信パラメータセットを設定して、端末装置200に測定報告処理を実施させる。これにより、基地局100は、第2の通信パラメータの制御を効率的に実施する可能である。

0222

基地局100は、端末装置200による第2の通信パラメータセットに基づく測定報告に基づいて、スケジューリングを行う。換言すると、基地局100は、スケジューリングのために、第2の通信パラメータセットを設定して、端末装置200に測定報告処理を実施させる。これにより、基地局100は、スケジューリングを効率的に実施する可能である。

0223

基地局100は、端末装置200による第2の通信パラメータセットに基づく測定報告に基づいて、端末装置200による測定処理及び/又は報告処理の実施タイミングを制御する。これにより、基地局100は、測定報告処理に係るオーバーヘッドを抑制することが可能である。

0224

(4.6)補足
端末装置200は、RI、PMI、CQI、WI及びCPI以外の情報を測定し、報告してもよい。例えば、基地局100が複数のビームを用いて通信可能な場合、端末装置200は、望ましいビームを示す情報を測定して報告してもよい。また、端末装置200は、参照信号の送信に用いるべきリソースを示す情報(CSI-RS Resource Indicator)を測定して報告してもよい。

0225

上述したように、ある波形に変調された参照信号に基づいて、複数の波形を想定した測定報告処理が行われ得る。その際、参照信号の波形と測定報告処理で想定すべき波形とが対応付けられてもよい。また、参照信号は、当該参照信号の変調に用いられた波形ごとに固定化された異なるリソースにおいて送信されてもよいし、異なる波形間で共通のリソースにおいて送信されてもよい。

0226

波形について補足する。波形の相違は、送信処理の相違又は受信処理の相違に言い換えることができる。前者は、例えばサブキャリア間隔の相違、CP長の相違若しくは有無、DFT換算処理の有無、フィルタバンク処理の有無、サブバンドフィルタリング処理の有無、サブキャリアフィルタリング処理の有無、及びFaster-Than-Nyquist処理の有無である。後者は、例えば干渉キャンセラ設定の有無である。

0227

(4.7)処理の流れ
・測定処理
以下、図22図24を参照して、測定処理の流れの一例を説明する。

0228

図22は、本実施形態に係る端末装置200により実行される測定処理の流れの一例を示す図である。図22に示すように、まず、端末装置200は、測定を実施するタイミングであるか否かを判定する(ステップS300)。測定を実施するタイミングであると判定されるまで、端末装置200は待機する(ステップS300/NO)。一方で、測定を実施するタイミングであると判定された場合(ステップS300/YES)、端末装置200は、測定対象の波形が基地局100により設定されているか否かを判定する(ステップS302)。測定対象の波形が基地局100により設定されていると判定された場合(ステップS302/YES)、端末装置200は、基地局100により設定された測定対象の波形ごとに測定を実施する(ステップS306)。一方で、測定対象の波形が基地局100により設定されていないと判定された場合(ステップS302/NO)、端末装置200は、測定対象の波形を1つ以上選択して(ステップS304)、選択した測定対象の波形ごとに測定を実施する(ステップS306)。

0229

続いて、上記ステップS306における測定対象の波形ごとの測定について、図23及び図24を参照して説明する。

0230

図23は、本実施形態に係る端末装置200により実行される波形ごとの測定処理の流れの一例を示す図である。図23に示すように、まず、端末装置200は、周波数領域チャネル応答を推定する(ステップS400)。次いで、端末装置200は、時間領域チャネル応答及びチャネル応答の長さを推定する(ステップS402)。次に、端末装置200は、CPIを測定する(ステップS404)。次いで、端末装置200は、測定対象の波形がシングルキャリア波形の特徴をもつか否かを判定する(ステップS406)。測定対象の波形がシングルキャリア波形の特徴をもつと判定された場合(ステップS406/YES)、端末装置200は、RIを所定の値(例えば、RI=0)とする(ステップS408)。一方で、測定対象の波形がシングルキャリア波形の特徴をもたないと判定された場合(ステップS406/NO)、端末装置200は、RIを測定する(ステップS410)。その後、端末装置200は、PMIを測定する(ステップS412)。次いで、端末装置200は、測定対象のCP長が基地局100により設定されているか否かを判定する(ステップS414)。測定対象のCP長が基地局100により設定されていると判定された場合(ステップS414/YES)、端末装置200は、基地局100により設定された測定対象のCP長ごとにCQIを測定する(ステップS422)。一方で、測定対象のCP長が基地局100により設定されていないと判定された場合(ステップS414/NO)、端末装置200は、CPIの測定値を基に測定対象のCP長を選択するか否かを判定する(ステップS416)。CPIの測定値を基に測定対象のCP長を選択すると判定された場合(ステップS416/YES)、端末装置200は、測定対象のCP長として、測定したCPIに基づくCP長をひとつ以上選択する(ステップS418)。そして、端末装置200は、測定したCPIに基づいて選択したひとつ以上の測定対象のCP長ごとにCQIを測定する(ステップS422)。一方で、CPIの測定値を基に測定対象のCP長を選択しないと判定された場合(ステップS416/NO)、端末装置200は、測定対象のCP長をひとつ以上選択する(ステップS420)。そして、端末装置200は、選択したひとつ以上の測定対象のCP長ごとにCQIを測定する(ステップS422)。

0231

続いて、上記ステップS422における測定対象のCP長ごとのCQIの測定について、図24を参照して説明する。

0232

図24は、本実施形態に係る端末装置200により実行されるCP長ごとのCQIの測定処理の流れの一例を示す図である。図24に示すように、まず、端末装置200は、ターゲットBLERが基地局100により設定されているか否かを判定する(ステップS500)。ターゲットBLERが基地局100により設定されていると判定された場合(ステップS500/YES)、端末装置200は、基地局100により設定された測定対象のターゲットBLERごとにCQIを測定する(ステップS504)。一方で、ターゲットBLERが基地局100により設定されていないと判定された場合(ステップS500/NO)、端末装置200は、測定対象のターゲットBLERをひとつ以上選択し(ステップS502)、選択した測定対象のターゲットBLERごとにCQIを測定する(ステップS504)。

0233

・報告処理
以下、図25を参照して、報告処理の流れの一例を説明する。

0234

図25は、本実施形態に係る端末装置200により実行される報告処理の流れの一例を示す図である。図25に示すように、まず、端末装置200は、報告を実施するタイミングであるか否かを判定する(ステップS600)。報告を実施するタイミングであると判定されるまで、端末装置200は待機する(ステップS600/NO)。一方で、報告を実施するタイミングであると判定された場合(ステップS600/YES)、端末装置200は、報告対象の波形が基地局100により設定されているか否かを判定する(ステップS602)。報告対象の波形が基地局100により設定されていると判定された場合(ステップS602/YES)、端末装置200は、基地局100により設定された報告対象の波形ごとに測定報告を生成する(ステップS606)。一方で、報告対象の波形が基地局100により設定されていないと判定された場合(ステップS602/NO)、端末装置200は、報告対象の波形を1つ以上選択して(ステップS604)、選択した報告対象の波形ごとに測定報告を生成する(ステップS606)。そして、端末装置200、生成した測定報告を基地局100に報告する(ステップS608)。

0235

<<4.応用例>>
本開示に係る技術は、様々な製品へ応用可能である。例えば、基地局100は、マクロeNB又はスモールeNBなどのいずれかの種類のeNB(evolved Node B)として実現されてもよい。スモールeNBは、ピコeNB、マイクロeNB又はホームフェムト)eNBなどの、マクロセルよりも小さいセルをカバーするeNBであってよい。その代わりに、基地局100は、NodeB又はBTS(Base Transceiver Station)などの他の種類の基地局として実現されてもよい。基地局100は、無線通信を制御する本体(基地局装置ともいう)と、本体とは別の場所に配置される1つ以上のRRH(Remote Radio Head)とを含んでもよい。また、後述する様々な種類の端末が一時的に又は半永続的基地局機能を実行することにより、基地局100として動作してもよい。

0236

また、例えば、端末装置200は、スマートフォン、タブレットPC(Personal Computer)、ノートPC、携帯型ゲーム端末、携帯型/ドングル型のモバイルルータ若しくはデジタルカメラなどのモバイル端末、又はカーナビゲーション装置などの車載端末として実現されてもよい。また、端末装置200は、M2M(Machine To Machine)通信を行う端末(MTC(Machine Type Communication)端末ともいう)として実現されてもよい。さらに、端末装置200は、これら端末に搭載される無線通信モジュール(例えば、1つのダイで構成される集積回路モジュール)であってもよい。

0237

<4.1.基地局に関する応用例>
(第1の応用例)
図26は、本開示に係る技術が適用され得るeNBの概略的な構成の第1の例を示すブロック図である。eNB800は、1つ以上のアンテナ810、及び基地局装置820を有する。各アンテナ810及び基地局装置820は、RFケーブルを介して互いに接続され得る。

0238

アンテナ810の各々は、単一の又は複数のアンテナ素子(例えば、MIMOアンテナを構成する複数のアンテナ素子)を有し、基地局装置820による無線信号の送受信のために使用される。eNB800は、図26に示したように複数のアンテナ810を有し、複数のアンテナ810は、例えばeNB800が使用する複数の周波数帯域にそれぞれ対応してもよい。なお、図26にはeNB800が複数のアンテナ810を有する例を示したが、eNB800は単一のアンテナ810を有してもよい。

0239

基地局装置820は、コントローラ821、メモリ822、ネットワークインタフェース823及び無線通信インタフェース825を備える。

0240

コントローラ821は、例えばCPU又はDSPであってよく、基地局装置820の上位レイヤの様々な機能を動作させる。例えば、コントローラ821は、無線通信インタフェース825により処理された信号内のデータからデータパケットを生成し、生成したパケットをネットワークインタフェース823を介して転送する。コントローラ821は、複数のベースバンドプロセッサからのデータをバンドリングすることによりバンドルドパケットを生成し、生成したバンドルドパケットを転送してもよい。また、コントローラ821は、無線リソース管理(Radio Resource Control)、無線ベアラ制御(Radio Bearer Control)、移動性管理(Mobility Management)、流入制御(Admission Control)又はスケジューリング(Scheduling)などの制御を実行する論理的な機能を有してもよい。また、当該制御は、周辺のeNB又はコアネットワークノードと連携して実行されてもよい。メモリ822は、RAM及びROMを含み、コントローラ821により実行されるプログラム、及び様々な制御データ(例えば、端末リスト送信電力データ及びスケジューリングデータなど)を記憶する。

0241

ネットワークインタフェース823は、基地局装置820をコアネットワーク824に接続するための通信インタフェースである。コントローラ821は、ネットワークインタフェース823を介して、コアネットワークノード又は他のeNBと通信してもよい。その場合に、eNB800と、コアネットワークノード又は他のeNBとは、論理的なインタフェース(例えば、S1インタフェース又はX2インタフェース)により互いに接続されてもよい。ネットワークインタフェース823は、有線通信インタフェースであってもよく、又は無線バックホールのための無線通信インタフェースであってもよい。ネットワークインタフェース823が無線通信インタフェースである場合、ネットワークインタフェース823は、無線通信インタフェース825により使用される周波数帯域よりもより高い周波数帯域を無線通信に使用してもよい。

0242

無線通信インタフェース825は、LTE(Long Term Evolution)又はLTE−Advancedなどのいずれかのセルラー通信方式をサポートし、アンテナ810を介して、eNB800のセル内に位置する端末に無線接続を提供する。無線通信インタフェース825は、典型的には、ベースバンド(BB)プロセッサ826及びRF回路827などを含み得る。BBプロセッサ826は、例えば、符号化/復号、変調/復調及び多重化/逆多重化などを行なってよく、各レイヤ(例えば、L1、MAC(Medium Access Control)、RLC(Radio Link Control)及びPDCP(Packet Data Convergence Protocol))の様々な信号処理を実行する。BBプロセッサ826は、コントローラ821の代わりに、上述した論理的な機能の一部又は全部を有してもよい。BBプロセッサ826は、通信制御プログラムを記憶するメモリ、当該プログラムを実行するプロセッサ及び関連する回路を含むモジュールであってもよく、BBプロセッサ826の機能は、上記プログラムのアップデートにより変更可能であってもよい。また、上記モジュールは、基地局装置820のスロットに挿入されるカード若しくはブレードであってもよく、又は上記カード若しくは上記ブレードに搭載されるチップであってもよい。一方、RF回路827は、ミキサ、フィルタ及びアンプなどを含んでもよく、アンテナ810を介して無線信号を送受信する。

0243

無線通信インタフェース825は、図26に示したように複数のBBプロセッサ826を含み、複数のBBプロセッサ826は、例えばeNB800が使用する複数の周波数帯域にそれぞれ対応してもよい。また、無線通信インタフェース825は、図26に示したように複数のRF回路827を含み、複数のRF回路827は、例えば複数のアンテナ素子にそれぞれ対応してもよい。なお、図26には無線通信インタフェース825が複数のBBプロセッサ826及び複数のRF回路827を含む例を示したが、無線通信インタフェース825は単一のBBプロセッサ826又は単一のRF回路827を含んでもよい。

0244

図26に示したeNB800において、図5等を参照して説明した基地局100に含まれる1つ以上の構成要素(通信制御部151及び/又は測定報告処理部153)は、無線通信インタフェース825において実装されてもよい。あるいは、これらの構成要素の少なくとも一部は、コントローラ821において実装されてもよい。一例として、eNB800は、無線通信インタフェース825の一部(例えば、BBプロセッサ826)若しくは全部、及び/又はコントローラ821を含むモジュールを搭載し、当該モジュールにおいて上記1つ以上の構成要素が実装されてもよい。この場合に、上記モジュールは、プロセッサを上記1つ以上の構成要素として機能させるためのプログラム(換言すると、プロセッサに上記1つ以上の構成要素の動作を実行させるためのプログラム)を記憶し、当該プログラムを実行してもよい。別の例として、プロセッサを上記1つ以上の構成要素として機能させるためのプログラムがeNB800にインストールされ、無線通信インタフェース825(例えば、BBプロセッサ826)及び/又はコントローラ821が当該プログラムを実行してもよい。以上のように、上記1つ以上の構成要素を備える装置としてeNB800、基地局装置820又は上記モジュールが提供されてもよく、プロセッサを上記1つ以上の構成要素として機能させるためのプログラムが提供されてもよい。また、上記プログラムを記録した読み取り可能な記録媒体が提供されてもよい。

0245

また、図26に示したeNB800において、図5を参照して説明した無線通信部120は、無線通信インタフェース825(例えば、RF回路827)において実装されてもよい。また、アンテナ部110は、アンテナ810において実装されてもよい。また、ネットワーク通信部130は、コントローラ821及び/又はネットワークインタフェース823において実装されてもよい。また、記憶部140は、メモリ822において実装されてもよい。

0246

(第2の応用例)
図27は、本開示に係る技術が適用され得るeNBの概略的な構成の第2の例を示すブロック図である。eNB830は、1つ以上のアンテナ840、基地局装置850、及びRRH860を有する。各アンテナ840及びRRH860は、RFケーブルを介して互いに接続され得る。また、基地局装置850及びRRH860は、光ファイバケーブルなどの高速回線で互いに接続され得る。

0247

アンテナ840の各々は、単一の又は複数のアンテナ素子(例えば、MIMOアンテナを構成する複数のアンテナ素子)を有し、RRH860による無線信号の送受信のために使用される。eNB830は、図27に示したように複数のアンテナ840を有し、複数のアンテナ840は、例えばeNB830が使用する複数の周波数帯域にそれぞれ対応してもよい。なお、図27にはeNB830が複数のアンテナ840を有する例を示したが、eNB830は単一のアンテナ840を有してもよい。

0248

基地局装置850は、コントローラ851、メモリ852、ネットワークインタフェース853、無線通信インタフェース855及び接続インタフェース857を備える。コントローラ851、メモリ852及びネットワークインタフェース853は、図26を参照して説明したコントローラ821、メモリ822及びネットワークインタフェース823と同様のものである。

0249

無線通信インタフェース855は、LTE又はLTE−Advancedなどのいずれかのセルラー通信方式をサポートし、RRH860及びアンテナ840を介して、RRH860に対応するセクタ内に位置する端末に無線接続を提供する。無線通信インタフェース855は、典型的には、BBプロセッサ856などを含み得る。BBプロセッサ856は、接続インタフェース857を介してRRH860のRF回路864と接続されることを除き、図26を参照して説明したBBプロセッサ826と同様のものである。無線通信インタフェース855は、図27に示したように複数のBBプロセッサ856を含み、複数のBBプロセッサ856は、例えばeNB830が使用する複数の周波数帯域にそれぞれ対応してもよい。なお、図27には無線通信インタフェース855が複数のBBプロセッサ856を含む例を示したが、無線通信インタフェース855は単一のBBプロセッサ856を含んでもよい。

0250

接続インタフェース857は、基地局装置850(無線通信インタフェース855)をRRH860と接続するためのインタフェースである。接続インタフェース857は、基地局装置850(無線通信インタフェース855)とRRH860とを接続する上記高速回線での通信のための通信モジュールであってもよい。

0251

また、RRH860は、接続インタフェース861及び無線通信インタフェース863を備える。

0252

接続インタフェース861は、RRH860(無線通信インタフェース863)を基地局装置850と接続するためのインタフェースである。接続インタフェース861は、上記高速回線での通信のための通信モジュールであってもよい。

0253

無線通信インタフェース863は、アンテナ840を介して無線信号を送受信する。無線通信インタフェース863は、典型的には、RF回路864などを含み得る。RF回路864は、ミキサ、フィルタ及びアンプなどを含んでもよく、アンテナ840を介して無線信号を送受信する。無線通信インタフェース863は、図27に示したように複数のRF回路864を含み、複数のRF回路864は、例えば複数のアンテナ素子にそれぞれ対応してもよい。なお、図27には無線通信インタフェース863が複数のRF回路864を含む例を示したが、無線通信インタフェース863は単一のRF回路864を含んでもよい。

0254

図27に示したeNB830において、図5等を参照して説明した基地局100に含まれる1つ以上の構成要素(通信制御部151及び/又は測定報告処理部153)は、無線通信インタフェース855及び/又は無線通信インタフェース863において実装されてもよい。あるいは、これらの構成要素の少なくとも一部は、コントローラ851において実装されてもよい。一例として、eNB830は、無線通信インタフェース855の一部(例えば、BBプロセッサ856)若しくは全部、及び/又はコントローラ851を含むモジュールを搭載し、当該モジュールにおいて上記1つ以上の構成要素が実装されてもよい。この場合に、上記モジュールは、プロセッサを上記1つ以上の構成要素として機能させるためのプログラム(換言すると、プロセッサに上記1つ以上の構成要素の動作を実行させるためのプログラム)を記憶し、当該プログラムを実行してもよい。別の例として、プロセッサを上記1つ以上の構成要素として機能させるためのプログラムがeNB830にインストールされ、無線通信インタフェース855(例えば、BBプロセッサ856)及び/又はコントローラ851が当該プログラムを実行してもよい。以上のように、上記1つ以上の構成要素を備える装置としてeNB830、基地局装置850又は上記モジュールが提供されてもよく、プロセッサを上記1つ以上の構成要素として機能させるためのプログラムが提供されてもよい。また、上記プログラムを記録した読み取り可能な記録媒体が提供されてもよい。

0255

また、図27に示したeNB830において、例えば、図5を参照して説明した無線通信部120は、無線通信インタフェース863(例えば、RF回路864)において実装されてもよい。また、アンテナ部110は、アンテナ840において実装されてもよい。また、ネットワーク通信部130は、コントローラ851及び/又はネットワークインタフェース853において実装されてもよい。また、記憶部140は、メモリ852において実装されてもよい。

0256

<4.2.端末装置に関する応用例>
(第1の応用例)
図28は、本開示に係る技術が適用され得るスマートフォン900の概略的な構成の一例を示すブロック図である。スマートフォン900は、プロセッサ901、メモリ902、ストレージ903、外部接続インタフェース904、カメラ906、センサ907、マイクロフォン908、入力デバイス909、表示デバイス910、スピーカ911、無線通信インタフェース912、1つ以上のアンテナスイッチ915、1つ以上のアンテナ916、バス917、バッテリー918及び補助コントローラ919を備える。

0257

プロセッサ901は、例えばCPU又はSoC(System on Chip)であってよく、スマートフォン900のアプリケーションレイヤ及びその他のレイヤの機能を制御する。メモリ902は、RAM及びROMを含み、プロセッサ901により実行されるプログラム及びデータを記憶する。ストレージ903は、半導体メモリ又はハードディスクなどの記憶媒体を含み得る。外部接続インタフェース904は、メモリーカード又はUSB(Universal Serial Bus)デバイスなどの外付けデバイスをスマートフォン900へ接続するためのインタフェースである。

0258

カメラ906は、例えば、CCD(Charge Coupled Device)又はCMOS(Complementary Metal Oxide Semiconductor)などの撮像素子を有し、撮像画像を生成する。センサ907は、例えば、測位センサジャイロセンサ地磁気センサ及び加速度センサなどのセンサ群を含み得る。マイクロフォン908は、スマートフォン900へ入力される音声音声信号へ変換する。入力デバイス909は、例えば、表示デバイス910の画面上へのタッチを検出するタッチセンサキーパッドキーボード、ボタン又はスイッチなどを含み、ユーザからの操作又は情報入力受け付ける。表示デバイス910は、液晶ディスプレイ(LCD)又は有機発光ダイオード(OLED)ディスプレイなどの画面を有し、スマートフォン900の出力画像を表示する。スピーカ911は、スマートフォン900から出力される音声信号を音声に変換する。

0259

無線通信インタフェース912は、LTE又はLTE−Advancedなどのいずれかのセルラー通信方式をサポートし、無線通信を実行する。無線通信インタフェース912は、典型的には、BBプロセッサ913及びRF回路914などを含み得る。BBプロセッサ913は、例えば、符号化/復号、変調/復調及び多重化/逆多重化などを行なってよく、無線通信のための様々な信号処理を実行する。一方、RF回路914は、ミキサ、フィルタ及びアンプなどを含んでもよく、アンテナ916を介して無線信号を送受信する。無線通信インタフェース912は、BBプロセッサ913及びRF回路914を集積したワンチップのモジュールであってもよい。無線通信インタフェース912は、図28に示したように複数のBBプロセッサ913及び複数のRF回路914を含んでもよい。なお、図28には無線通信インタフェース912が複数のBBプロセッサ913及び複数のRF回路914を含む例を示したが、無線通信インタフェース912は単一のBBプロセッサ913又は単一のRF回路914を含んでもよい。

0260

さらに、無線通信インタフェース912は、セルラー通信方式に加えて、近距離無線通信方式近接無線通信方式又は無線LAN(Local Area Network)方式などの他の種類の無線通信方式をサポートしてもよく、その場合に、無線通信方式ごとのBBプロセッサ913及びRF回路914を含んでもよい。

0261

アンテナスイッチ915の各々は、無線通信インタフェース912に含まれる複数の回路(例えば、異なる無線通信方式のための回路)の間でアンテナ916の接続先切り替える。

0262

アンテナ916の各々は、単一の又は複数のアンテナ素子(例えば、MIMOアンテナを構成する複数のアンテナ素子)を有し、無線通信インタフェース912による無線信号の送受信のために使用される。スマートフォン900は、図28に示したように複数のアンテナ916を有してもよい。なお、図28にはスマートフォン900が複数のアンテナ916を有する例を示したが、スマートフォン900は単一のアンテナ916を有してもよい。

0263

さらに、スマートフォン900は、無線通信方式ごとにアンテナ916を備えてもよい。その場合に、アンテナスイッチ915は、スマートフォン900の構成から省略されてもよい。

0264

バス917は、プロセッサ901、メモリ902、ストレージ903、外部接続インタフェース904、カメラ906、センサ907、マイクロフォン908、入力デバイス909、表示デバイス910、スピーカ911、無線通信インタフェース912及び補助コントローラ919を互いに接続する。バッテリー918は、図中に破線で部分的に示した給電ラインを介して、図28に示したスマートフォン900の各ブロックへ電力を供給する。補助コントローラ919は、例えば、スリープモードにおいて、スマートフォン900の必要最低限の機能を動作させる。

0265

図28に示したスマートフォン900において、図6等を参照して説明した端末装置200に含まれる1つ以上の構成要素(通信制御部241及び/又は測定報告処理部243)は、無線通信インタフェース912において実装されてもよい。あるいは、これらの構成要素の少なくとも一部は、プロセッサ901又は補助コントローラ919において実装されてもよい。一例として、スマートフォン900は、無線通信インタフェース912の一部(例えば、BBプロセッサ913)若しくは全部、プロセッサ901、及び/又は補助コントローラ919を含むモジュールを搭載し、当該モジュールにおいて上記1つ以上の構成要素が実装されてもよい。この場合に、上記モジュールは、プロセッサを上記1つ以上の構成要素として機能させるためのプログラム(換言すると、プロセッサに上記1つ以上の構成要素の動作を実行させるためのプログラム)を記憶し、当該プログラムを実行してもよい。別の例として、プロセッサを上記1つ以上の構成要素として機能させるためのプログラムがスマートフォン900にインストールされ、無線通信インタフェース912(例えば、BBプロセッサ913)、プロセッサ901、及び/又は補助コントローラ919が当該プログラムを実行してもよい。以上のように、上記1つ以上の構成要素を備える装置としてスマートフォン900又は上記モジュールが提供されてもよく、プロセッサを上記1つ以上の構成要素として機能させるためのプログラムが提供されてもよい。また、上記プログラムを記録した読み取り可能な記録媒体が提供されてもよい。

0266

また、図28に示したスマートフォン900において、例えば、図6を参照して説明した無線通信部220は、無線通信インタフェース912(例えば、RF回路914)において実装されてもよい。また、アンテナ部210は、アンテナ916において実装されてもよい。また、記憶部230は、メモリ902において実装されてもよい。

0267

(第2の応用例)
図29は、本開示に係る技術が適用され得るカーナビゲーション装置920の概略的な構成の一例を示すブロック図である。カーナビゲーション装置920は、プロセッサ921、メモリ922、GPS(Global Positioning System)モジュール924、センサ925、データインタフェース926、コンテンツプレーヤ927、記憶媒体インタフェース928、入力デバイス929、表示デバイス930、スピーカ931、無線通信インタフェース933、1つ以上のアンテナスイッチ936、1つ以上のアンテナ937及びバッテリー938を備える。

0268

プロセッサ921は、例えばCPU又はSoCであってよく、カーナビゲーション装置920のナビゲーション機能及びその他の機能を制御する。メモリ922は、RAM及びROMを含み、プロセッサ921により実行されるプログラム及びデータを記憶する。

0269

GPSモジュール924は、GPS衛星から受信されるGPS信号を用いて、カーナビゲーション装置920の位置(例えば、緯度経度及び高度)を測定する。センサ925は、例えば、ジャイロセンサ、地磁気センサ及び気圧センサなどのセンサ群を含み得る。データインタフェース926は、例えば、図示しない端子を介して車載ネットワーク941に接続され、車速データなどの車両側で生成されるデータを取得する。

0270

コンテンツプレーヤ927は、記憶媒体インタフェース928に挿入される記憶媒体(例えば、CD又はDVD)に記憶されているコンテンツ再生する。入力デバイス929は、例えば、表示デバイス930の画面上へのタッチを検出するタッチセンサ、ボタン又はスイッチなどを含み、ユーザからの操作又は情報入力を受け付ける。表示デバイス930は、LCD又はOLEDディスプレイなどの画面を有し、ナビゲーション機能又は再生されるコンテンツの画像を表示する。スピーカ931は、ナビゲーション機能又は再生されるコンテンツの音声を出力する。

0271

無線通信インタフェース933は、LTE又はLTE−Advancedなどのいずれかのセルラー通信方式をサポートし、無線通信を実行する。無線通信インタフェース933は、典型的には、BBプロセッサ934及びRF回路935などを含み得る。BBプロセッサ934は、例えば、符号化/復号、変調/復調及び多重化/逆多重化などを行なってよく、無線通信のための様々な信号処理を実行する。一方、RF回路935は、ミキサ、フィルタ及びアンプなどを含んでもよく、アンテナ937を介して無線信号を送受信する。無線通信インタフェース933は、BBプロセッサ934及びRF回路935を集積したワンチップのモジュールであってもよい。無線通信インタフェース933は、図29に示したように複数のBBプロセッサ934及び複数のRF回路935を含んでもよい。なお、図29には無線通信インタフェース933が複数のBBプロセッサ934及び複数のRF回路935を含む例を示したが、無線通信インタフェース933は単一のBBプロセッサ934又は単一のRF回路935を含んでもよい。

0272

さらに、無線通信インタフェース933は、セルラー通信方式に加えて、近距離無線通信方式、近接無線通信方式又は無線LAN方式などの他の種類の無線通信方式をサポートしてもよく、その場合に、無線通信方式ごとのBBプロセッサ934及びRF回路935を含んでもよい。

0273

アンテナスイッチ936の各々は、無線通信インタフェース933に含まれる複数の回路(例えば、異なる無線通信方式のための回路)の間でアンテナ937の接続先を切り替える。

0274

アンテナ937の各々は、単一の又は複数のアンテナ素子(例えば、MIMOアンテナを構成する複数のアンテナ素子)を有し、無線通信インタフェース933による無線信号の送受信のために使用される。カーナビゲーション装置920は、図29に示したように複数のアンテナ937を有してもよい。なお、図29にはカーナビゲーション装置920が複数のアンテナ937を有する例を示したが、カーナビゲーション装置920は単一のアンテナ937を有してもよい。

0275

さらに、カーナビゲーション装置920は、無線通信方式ごとにアンテナ937を備えてもよい。その場合に、アンテナスイッチ936は、カーナビゲーション装置920の構成から省略されてもよい。

0276

バッテリー938は、図中に破線で部分的に示した給電ラインを介して、図29に示したカーナビゲーション装置920の各ブロックへ電力を供給する。また、バッテリー938は、車両側から給電される電力を蓄積する。

0277

図29に示したカーナビゲーション装置920において、図6等を参照して説明した端末装置200に含まれる1つ以上の構成要素(通信制御部241及び/又は測定報告処理部243)は、無線通信インタフェース933において実装されてもよい。あるいは、これらの構成要素の少なくとも一部は、プロセッサ921において実装されてもよい。一例として、カーナビゲーション装置920は、無線通信インタフェース933の一部(例えば、BBプロセッサ934)若しくは全部及び/又はプロセッサ921を含むモジュールを搭載し、当該モジュールにおいて上記1つ以上の構成要素が実装されてもよい。この場合に、上記モジュールは、プロセッサを上記1つ以上の構成要素として機能させるためのプログラム(換言すると、プロセッサに上記1つ以上の構成要素の動作を実行させるためのプログラム)を記憶し、当該プログラムを実行してもよい。別の例として、プロセッサを上記1つ以上の構成要素として機能させるためのプログラムがカーナビゲーション装置920にインストールされ、無線通信インタフェース933(例えば、BBプロセッサ934)及び/又はプロセッサ921が当該プログラムを実行してもよい。以上のように、上記1つ以上の構成要素を備える装置としてカーナビゲーション装置920又は上記モジュールが提供されてもよく、プロセッサを上記1つ以上の構成要素として機能させるためのプログラムが提供されてもよい。また、上記プログラムを記録した読み取り可能な記録媒体が提供されてもよい。

0278

また、図29に示したカーナビゲーション装置920において、例えば、図6を参照して説明した無線通信部220は、無線通信インタフェース933(例えば、RF回路935)において実装されてもよい。また、アンテナ部210は、アンテナ937において実装されてもよい。また、記憶部230は、メモリ922において実装されてもよい。

0279

また、本開示に係る技術は、上述したカーナビゲーション装置920の1つ以上のブロックと、車載ネットワーク941と、車両側モジュール942とを含む車載システム(又は車両)940として実現されてもよい。車両側モジュール942は、車速エンジン回転数又は故障情報などの車両側データを生成し、生成したデータを車載ネットワーク941へ出力する。

0280

<<5.まとめ>>
以上、図1図29を参照して、本開示の一実施形態について詳細に説明した。上記説明したように、本実施形態に係るシステム1は、単位リソースにおいて複数の通信パラメータセットを混在させた通信が可能である。そのようなシステム1において、基地局100は、端末装置200による測定報告処理の対象とする第2の通信パラメータセットの設定を端末装置200に行う。端末装置200は、基地局100により設定された第2の通信パラメータセットに基づいて、基地局100から受信した信号を測定し測定結果を示す情報を端末装置200に報告する。このように、測定報告処理の対象とする第2の通信パラメータセットを基地局100が設定することが可能であり、端末装置200は、その設定に基づいて測定報告処理を行うことが可能である。第2の通信パラメータセットの設定及びそれに基づく測定報告処理が行われることで、複数の通信パラメータセットを混在させて通信する通信システムにおける測定報告処理が適切に行われる。

0281

以上、添付図面を参照しながら本開示の好適な実施形態について詳細に説明したが、本開示の技術的範囲はかかる例に限定されない。本開示の技術分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本開示の技術的範囲に属するものと了解される。

0282

例えば、上記では、主にダウンリンクの参照信号に基づく測定報告処理について説明したが、アップリンクの参照信号に基づく測定報告処理についても本技術は適用可能である。その場合、参照信号は、例えばSRS(Sounding Reference Signal)であってもよい。

0283

また、本明細書に記載された効果は、あくまで説明的または例示的なものであって限定的ではない。つまり、本開示に係る技術は、上記の効果とともに、または上記の効果に代えて、本明細書の記載から当業者には明らかな他の効果を奏しうる。

0284

なお、以下のような構成も本開示の技術的範囲に属する。
(1)
単位リソースにおいて複数の第1の通信パラメータセットを用いた通信が可能な基地局へ測定報告処理のトリガ情報を通知し、前記基地局により前記トリガ情報に基づいて設定された、測定報告処理の対象とする第2の通信パラメータセットに基づいて、前記基地局から受信した信号を測定し測定結果を示す情報を前記基地局に報告する測定報告処理部、
を備える通信装置。
(2)
前記測定報告処理部は、受信したひとつの前記信号について、設定された複数の前記第2の通信パラメータセットの各々に基づいて測定する、前記(1)に記載の通信装置。
(3)
前記信号の送信に用いられる前記第1の通信パラメータセットと少なくともひとつの前記第2の通信パラメータセットとは異なる、前記(2)に記載の通信装置。
(4)
第2の通信パラメータセットは、波形及び物理層パラメータを含む、前記(1)〜(3)のいずれか一項に記載の通信装置。
(5)
第2の通信パラメータセットは、波形、周波数範囲、CP(Cyclic Prefix)長、スロット長、又はターゲットBLER(Block Error Rate)の少なくとも1つ以上を含む、前記(4)に記載の通信装置。
(6)
前記測定結果を示す情報は、前記測定報告処理の対象とした波形を示す情報を含む、前記(4)又は(5)に記載の通信装置。
(7)
前記トリガ情報は、測定報告処理の実施要求、前記基地局からの信号の受信応答、又は前記測定結果を示す情報の少なくともいずれかである、前記(1)〜(6)のいずれか一項に記載の通信装置。
(8)
単位リソースにおいて複数の第1の通信パラメータセットを用いて通信装置と通信する通信制御部と、
前記通信装置からの測定報告処理のトリガ情報の通知に基づいて、前記通信装置による測定報告処理の対象とする第2の通信パラメータセットの設定を前記通信装置に行う測定報告処理部と、
を備える基地局。
(9)
前記通信制御部は、前記通信装置による第2の通信パラメータセットに基づく測定結果を示す情報に基づいて、前記第1の通信パラメータセットを制御する、前記(8)に記載の基地局。
(10)
前記測定報告処理部は、前記通信装置による第2の通信パラメータセットに基づく測定結果を示す情報に基づいて、前記第2の通信パラメータセットを制御する、前記(8)又は(9)に記載の基地局。
(11)
前記測定報告処理部は、前記通信装置による測定結果を示す情報の報告に用いられるリソースを前記通信装置に設定する、前記(8)〜(10)のいずれか一項に記載の基地局。
(12)
単位リソースにおいて複数の第1の通信パラメータセットを用いた通信が可能な基地局へ測定報告処理のトリガ情報を通知し、前記基地局により前記トリガ情報に基づいて設定された、測定報告処理の対象とする第2の通信パラメータセットに基づいて、前記基地局から受信した信号を測定し測定結果を示す情報を前記基地局に報告すること、
を含むプロセッサにより実行される方法。
(13)
単位リソースにおいて複数の第1の通信パラメータセットを用いて通信装置と通信することと、
前記通信装置からの測定報告処理のトリガ情報の通知に基づいて、前記通信装置による測定報告処理の対象とする第2の通信パラメータセットの設定を前記通信装置に行うことと、
を含むプロセッサにより実行される方法。
(14)
コンピュータを、
単位リソースにおいて複数の第1の通信パラメータセットを用いた通信が可能な基地局へ測定報告処理のトリガ情報を通知し、前記基地局により前記トリガ情報に基づいて設定された、測定報告処理の対象とする第2の通信パラメータセットに基づいて、前記基地局から受信した信号を測定し測定結果を示す情報を前記基地局に報告する測定報告処理部、
として機能させるためのプログラムが記録された記録媒体。
(15)
コンピュータを、
単位リソースにおいて複数の第1の通信パラメータセットを用いて通信装置と通信する通信制御部と、
前記通信装置からの測定報告処理のトリガ情報の通知に基づいて、前記通信装置による測定報告処理の対象とする第2の通信パラメータセットの設定を前記通信装置に行う測定報告処理部と、
として機能させるためのプログラムが記録された記録媒体。

ページトップへ

この技術を出願した法人

この技術を発明した人物

ページトップへ

関連する挑戦したい社会課題

関連する公募課題

ページトップへ

おススメ サービス

おススメ astavisionコンテンツ

新着 最近 公開された関連が強い技術

  • 株式会社NTTドコモの「 ユーザ端末及び無線通信方法」が 公開されました。( 2020/12/17)

    【課題・解決手段】ビーム失敗回復手順に用いられる周波数リソースを適切に設定するために、ユーザ端末は、ビーム失敗を検出した場合にビーム失敗回復要求を送信する送信部と、前記ビーム失敗回復要求に対する応答を... 詳細

  • 株式会社NTTドコモの「 ユーザ装置」が 公開されました。( 2020/12/17)

    【課題・解決手段】ユーザ装置であって、当該ユーザ装置の能力情報を格納する能力情報格納部と、前記能力情報を基地局に通知する能力情報通知部とを有し、前記能力情報通知部は、当該ユーザ装置によってサポートされ... 詳細

  • 株式会社NTTドコモの「 ユーザ装置、及び上り送信タイミング調整方法」が 公開されました。( 2020/12/17)

    【課題・解決手段】基地局とユーザ装置とを備える無線通信システムにおける前記ユーザ装置において、前記基地局に上り信号を送信する信号送信部と、前記基地局から下り信号を受信する信号受信部と、前記信号送信部か... 詳細

この 技術と関連性が強い技術

関連性が強い 技術一覧

この 技術と関連性が強い人物

関連性が強い人物一覧

この 技術と関連する社会課題

関連する挑戦したい社会課題一覧

この 技術と関連する公募課題

関連する公募課題一覧

astavision 新着記事

サイト情報について

本サービスは、国が公開している情報(公開特許公報、特許整理標準化データ等)を元に構成されています。出典元のデータには一部間違いやノイズがあり、情報の正確さについては保証致しかねます。また一時的に、各データの収録範囲や更新周期によって、一部の情報が正しく表示されないことがございます。当サイトの情報を元にした諸問題、不利益等について当方は何ら責任を負いかねることを予めご承知おきのほど宜しくお願い申し上げます。

主たる情報の出典

特許情報…特許整理標準化データ(XML編)、公開特許公報、特許公報、審決公報、Patent Map Guidance System データ