図面 (/)

技術 荷電粒子線装置及び走査電子顕微鏡

出願人 松定プレシジョン株式会社
発明者 熊本和哉松田定好
出願日 2018年8月9日 (2年4ヶ月経過) 出願番号 2018-150650
公開日 2018年12月6日 (2年0ヶ月経過) 公開番号 2018-195592
状態 特許登録済
技術分野 電子顕微鏡(3) 電子顕微鏡1 電子顕微鏡2
主要キーワード 照射電圧 冷却棒 ガス放出源 エネルギー増幅 開き角α 光学対物レンズ 絶縁フイルム プラス電源
関連する未来課題
重要な関連分野

この項目の情報は公開日時点(2018年12月6日)のものです。
また、この項目は機械的に抽出しているため、正しく解析できていない場合があります

図面 (19)

課題

荷電粒子線装置又は走査電子顕微鏡の性能向上を図ることができる。

解決手段

荷電粒子線装置は、荷電粒子線(12)を放出する荷電粒子源と、荷電粒子源に接続され、荷電粒子線(12)を加速する加速電源と、荷電粒子線(12)を試料(23)に集束させる第2の対物レンズ(26)と、第2の検出器(110)とを有する。第2の対物レンズ(26)は、試料(23)に対して荷電粒子線(12)が入射する側の反対側に設置されている。第2の検出器(110)には、荷電粒子線(12)の入射に伴い試料(23)から放出された電磁波及び試料(23)で反射された電磁波のうち少なくとも1つが入射する。第2の検出器(110)は、入射した電磁波を検出する。

概要

背景

荷電粒子線装置としては、走査電子顕微鏡(Scanning Electron Microscope:以下、「SEM」と略す。)、EPMA(Electron Probe Micro Analyser)、電子ビーム溶接機、電子線描画装置、及びイオンビーム顕微鏡などが存在する。

従来のSEMでは、高分解能化の観点からレンズの短焦点化に工夫が成されている。高分解能化のためには、レンズの光軸磁束密度分布B(z)においてBを強く、かつレンズの厚み、つまりB分布のz幅を薄くすることが必要である。

下記特許文献1には、2つの対物レンズ(第1の対物レンズと第2の対物レンズ)を備えたSEMが記載されている(以後、試料に対して電子銃側のレンズを第1の対物レンズといい、試料から見て電子銃の反対側にある対物レンズを第2の対物レンズと呼ぶ)。第2の対物レンズは、特に、加速電圧Vaccが0.5〜5kVの低加速時における高分解能観察モードで用いられる。第1の対物レンズは、加速電圧Vaccが0.5〜30kVにおける通常の観察モードで用いられる。

下記特許文献1において、第1の対物レンズと第2の対物レンズとは同時に動作させることはなく、モード毎にモード切り替え手段によって切り替えられる。また、下記特許文献1の第2の実施例([0017]段落)では、第2の対物レンズの磁極の一部を電気的絶縁部を介して電流電位的に分離することが記載されている。そして、磁極の一部と試料には、電圧Vdecelが印加される。

下記特許文献1の第1の実施例([0010]〜[0016]段落)では、二次電子(又は反射電子検出器は、第1の対物レンズよりもさらに電子銃側に置かれている。試料部で発生した二次電子(又は反射電子)は、第1の対物レンズの中を通過して検出器に入る。

下記特許文献2も、SEMの構成を開示している。特許文献2のSEMにおいて対物レンズは、試料に対して電子銃とは反対側に配置される。二次電子は二次電子検出器からの引込電界により偏向されて、二次電子検出器に捕獲される。

概要

荷電粒子線装置又は走査電子顕微鏡の性能向上をることができる。荷電粒子線装置は、荷電粒子線(12)を放出する荷電粒子源と、荷電粒子源に接続され、荷電粒子線(12)を加速する加速電源と、荷電粒子線(12)を試料(23)に集束させる第2の対物レンズ(26)と、第2の検出器(110)とを有する。第2の対物レンズ(26)は、試料(23)に対して荷電粒子線(12)が入射する側の反対側に設置されている。第2の検出器(110)には、荷電粒子線(12)の入射に伴い試料(23)から放出された電磁波及び試料(23)で反射された電磁波のうち少なくとも1つが入射する。第2の検出器(110)は、入射した電磁波を検出する。

目的

効果

実績

技術文献被引用数
0件
牽制数
0件

この技術が所属する分野

ライセンス契約や譲渡などの可能性がある特許掲載中! 開放特許随時追加・更新中 詳しくはこちら

請求項1

荷電粒子線を放出する荷電粒子源と、前記荷電粒子源に接続され、前記荷電粒子源から放出された前記荷電粒子線を加速する加速電源と、前記荷電粒子線を試料集束させる対物レンズと、前記荷電粒子線を前記試料上に走査させる偏向コイルと、前記荷電粒子線の焦点光軸方向に移動させ、各焦点において、前記荷電粒子線の入射に伴い前記試料から放出された電磁波を検出する検出器とを備え、前記各焦点において検出された電磁波を用いた複数の画像から3次元データを構築し、表示装置を用いて3次元画像を表示することを特徴とする荷電粒子線装置

請求項2

(i)前記焦点ごとに、前記荷電粒子線の入射に伴い前記試料から放出された反射電子又は二次電子信号を用いた第1画像及び前記電磁波を用いた第2画像を撮影し、(ii)前記焦点ごとに撮影された、各第1画像において焦点の合った第1部分、及び当該第1部分に対応する、各第2画像の第2部分を、各第1画像及び各第2画像から、それぞれ抽出し、(iii)抽出された、複数の第1部分及び複数の第2部分をそれぞれ合成し、前記複数の第1部分が合成された画像及び前記複数の第2部分が合成された画像を表示装置に表示させる制御装置をさらに備えることを特徴とする請求項1に記載の荷電粒子線装置。

請求項3

前記制御装置は、前記第1部分と前記第2部分とを合成し、当該合成された画像を前記表示装置に表示させることを特徴とする請求項2に記載の荷電粒子線装置。

請求項4

前記制御装置は、前記第1部分、前記第2部分、及び前記第1部分の位置を含む3次元データから3次元画像を前記表示装置に再現させることを特徴とする請求項2又は3に記載の荷電粒子線装置。

請求項5

前記検出器は、前記荷電粒子線の入射に伴い前記試料から放出されたX線を検出する、請求項1から4のいずれか1項に記載の荷電粒子線装置。

請求項6

前記検出器は、カソードルミネッセンスを検出する、請求項1から4のいずれか1項に記載の荷電粒子線装置。

請求項7

前記試料に負電位を与える、前記荷電粒子線を減速するためのリターディング電源をさらに備える、請求項1から6のいずれか1項に記載の荷電粒子線装置。

請求項8

請求項1から7のいずれか1項に記載の荷電粒子線装置を備える、走査電子顕微鏡

技術分野

0001

本発明は、荷電粒子線装置及び走査電子顕微鏡に関する。より特定的には、本発明は、性能向上を図ることができる荷電粒子線装置及び走査電子顕微鏡に関する。

背景技術

0002

荷電粒子線装置としては、走査電子顕微鏡(Scanning Electron Microscope:以下、「SEM」と略す。)、EPMA(Electron Probe Micro Analyser)、電子ビーム溶接機、電子線描画装置、及びイオンビーム顕微鏡などが存在する。

0003

従来のSEMでは、高分解能化の観点からレンズの短焦点化に工夫が成されている。高分解能化のためには、レンズの光軸磁束密度分布B(z)においてBを強く、かつレンズの厚み、つまりB分布のz幅を薄くすることが必要である。

0004

下記特許文献1には、2つの対物レンズ(第1の対物レンズと第2の対物レンズ)を備えたSEMが記載されている(以後、試料に対して電子銃側のレンズを第1の対物レンズといい、試料から見て電子銃の反対側にある対物レンズを第2の対物レンズと呼ぶ)。第2の対物レンズは、特に、加速電圧Vaccが0.5〜5kVの低加速時における高分解能観察モードで用いられる。第1の対物レンズは、加速電圧Vaccが0.5〜30kVにおける通常の観察モードで用いられる。

0005

下記特許文献1において、第1の対物レンズと第2の対物レンズとは同時に動作させることはなく、モード毎にモード切り替え手段によって切り替えられる。また、下記特許文献1の第2の実施例([0017]段落)では、第2の対物レンズの磁極の一部を電気的絶縁部を介して電流電位的に分離することが記載されている。そして、磁極の一部と試料には、電圧Vdecelが印加される。

0006

下記特許文献1の第1の実施例([0010]〜[0016]段落)では、二次電子(又は反射電子検出器は、第1の対物レンズよりもさらに電子銃側に置かれている。試料部で発生した二次電子(又は反射電子)は、第1の対物レンズの中を通過して検出器に入る。

0007

下記特許文献2も、SEMの構成を開示している。特許文献2のSEMにおいて対物レンズは、試料に対して電子銃とは反対側に配置される。二次電子は二次電子検出器からの引込電界により偏向されて、二次電子検出器に捕獲される。

先行技術

0008

特開2007−250223号公報
特開平6−181041号公報

発明が解決しようとする課題

0009

本発明は、荷電粒子線装置又は走査電子顕微鏡の性能向上を図ることを目的としている。

課題を解決するための手段

0010

上記目的を達成するためこの発明のある局面に従うと、荷電粒子線装置は、荷電粒子線を放出する荷電粒子源と、前記荷電粒子源に接続され、前記荷電粒子源から放出された前記荷電粒子線を加速する加速電源と、前記荷電粒子線を試料に集束させる対物レンズと、前記荷電粒子線を前記試料上に走査させる偏向コイルと、前記荷電粒子線の焦点を光軸方向に移動させ、各焦点において、前記荷電粒子線の入射に伴い前記試料から放出された電磁波を検出する検出器とを備え、前記各焦点において検出された電磁波を用いた複数の画像から3次元データを構築し、表示装置を用いて3次元画像を表示する。

発明の効果

0011

本発明によれば、荷電粒子線装置又は走査電子顕微鏡の性能向上を図ることができる。

図面の簡単な説明

0012

本発明の第1の実施の形態におけるSEMの構成を説明する概略断面図である。
本発明の第1の実施の形態で、第1の対物レンズを使い、反射電子及び二次電子を検出する場合を示す概略断面図である。
本発明の第1の実施の形態で、主な集束に第2の対物レンズを使い、二次電子を検出する場合を示す概略断面図である。
本発明の第1の実施の形態でのリターディング時のレンズ部を説明するための図であり、(a)リターディング時の等電位線、(b)第2の対物レンズの光軸上磁束密度分布B(z)、及び(c)リターディング時の荷電粒子の速度を説明する図である。
本発明の第1の実施の形態での絶縁部と試料台の他の構成を説明する概略断面図である。
本発明の第1の実施の形態における、第1の対物レンズによる開き角αの調整を説明する図であり、(a)シミュレーションデータ3(Vacc=−1kV)、(b)シミュレーションデータ4(Vacc=−10kV、Vdecel=−9kV)、及び(c)シミュレーションデータ5(Vacc=−10kV、Vdecel=−9kV、第1の対物レンズを使用)に対応する図である。
本発明の第1の実施の形態において、偏向コイルの上下偏向コイルの強度比調整で偏向の交点を調整することを説明するための図である。
本発明の第2の実施の形態において、第1の対物レンズがない簡易的な場合を説明する概略断面図である。
本発明の第4の実施の形態に係るSEMの装置構成概要例を示す断面図である。
従来の構造を有するSEMの装置構成を模式的に示す断面図である。
第4の実施の形態に係るSEMの装置構成の一変形例を示す断面図である。
第4の実施の形態に係るSEMの装置構成の別の変形例を示す断面図である。
第4の実施の形態に係るSEMの装置構成の別の変形例を示す断面図である。
第4の実施の形態に係るSEMの装置構成の別の変形例を示す断面図である。
第4の実施の形態に係るSEMの装置構成の別の変形例を示す断面図である。
第4の実施の形態に係るSEMの装置構成の別の変形例を示す断面図である。
本発明の第5の実施の形態に係るSEMの装置構成の一例を示す断面図である。
第5の実施の形態に係るSEMの装置構成の一変形例を示す断面図である。

実施例

0013

次に、図面を参照して本発明の実施形態を説明する。以下の図面は模式的なものであり、寸法や縦横比率現実のものとは異なることに留意すべきである。

0014

また、以下に示す本発明の実施の形態は、本発明の技術的思想具現化するための装置や方法を例示するものである。本発明の技術的思想は、構成部品材質、形状、構造、配置などを下記のものに特定するものでない。本発明の技術的思想は、特許請求の範囲に記載された技術的範囲内において、種々の変更を加えることができる。

0015

[第1の実施の形態]
図1を参照して、本発明の第1の実施の形態であるSEMの概略構成を説明する。

0016

このSEMは、電子源(荷電粒子源)11と、加速電源14と、コンデンサレンズ15と、対物レンズ絞り16と、二段偏向コイル17と、対物レンズ18、26と、検出器20とを備えた電子線装置である。加速電源14は、電子源11から放出される一次電子線(荷電粒子線)12を加速する。コンデンサレンズ15は、加速された一次電子線12を集束する。対物レンズ絞り16は、一次電子線12の不要な部分を除く。二段偏向コイル17は、一次電子線12を試料23上で二次元的に走査する。対物レンズ18、26は、一次電子線12を試料23上に集束させる。検出器20は、試料23から放出された信号電子21(二次電子21a、反射電子21b)を検出する。

0017

SEMは、電磁レンズの制御部として、第1の対物レンズ電源41と、第2の対物レンズ電源42と、制御装置45とを備える。第1の対物レンズ電源41は、第1の対物レンズ18の強度を可変する。第2の対物レンズ電源42は、第2の対物レンズ26の強度を可変する。制御装置45は、第1の対物レンズ電源41と第2の対物レンズ電源42とを制御する。

0018

制御装置45は、第1の対物レンズ18の強度と第2の対物レンズ26の強度とを、独立に制御できる。制御装置45は、両レンズを同時に制御できる。また、図には示していないが、各電源は制御装置45に接続されることで調整できるようになっている。

0019

電子源11としては、熱電子放出型(熱電子源型)、電界放出型ショットキー型、又は冷陰極型)を用いることができる。第1の実施の形態では、電子源11に、熱電子放出型のLaB6などの結晶電子源、又はタングステンフィラメントが用いられている。電子源11とアノード板接地電位)との間には、例えば加速電圧−0.5kVから−30kVが印加される。ウェーネルト電極13には、電子源11の電位よりも負の電位が与えられる。これにより、電子源11から発生した一次電子線12の量がコントロールされる。そして、電子源11のすぐ前方に、一次電子線12の一度目の最小径であるクロスオーバー径が作られる。この最小径が、電子源の大きさSoと呼ばれる。

0020

加速された一次電子線12は、コンデンサレンズ15により集束される。これにより、電子源の大きさSoが縮小する。コンデンサレンズ15により、縮小率及び試料23に照射される電流(以下、プローブ電流と呼ぶ。)が調整される。そして、対物レンズ絞り16により、不用な軌道電子が取り除かれる。対物レンズ絞り16の穴径に応じて、試料23に入射するビームの開き角αとプローブ電流とが調整される。

0021

対物レンズ絞り16を通過した一次電子線12は、走査用の二段偏向コイル17を通過した後、第1の対物レンズ18を通過する。汎用SEMは、第1の対物レンズ18を使って、一次電子線12の焦点を試料23上に合わせる。図1のSEMはこのような使い方もできる。

0022

図1において、電子源11から第1の対物レンズ18までの構成により、一次電子線12を試料23に向けて射出する上部装置51が構成される。また、電位板22と、それよりも下に配置される部材とにより下部装置52が構成される。下部装置52に試料23は保持される。上部装置51は、その内部を通った荷電粒子線が最終的に放出される孔部18cを有している。第1の実施の形態ではその孔部18cは、第1の対物レンズ18に存在する。検出器20は、上部装置51と下部装置52との間に配置されている。より具体的には、検出器20は、その孔部18cの下に取り付けられている。検出器20も、一次電子線12が通過する開口部を有している。検出器20は、孔部18cと開口部とが重なるように、第1の対物レンズ18の下部に取り付けられる。第1の対物レンズ18の下部に複数の検出器20が取り付けられてもよい。複数の検出器20は、一次電子線12の軌道をふさがないようにしつつ、検出器20の検出部を上部装置51の孔部18c以外にはできるだけ隙間がないようにして、取り付けられる。

0023

図2に、第1の対物レンズ18を使って、一次電子線12の焦点を試料23上に合わせる場合の例を示す。特に、厚みのある試料23はこの方法で観察される。

0024

一方で、第2の対物レンズ26を主に使うときは、第1の対物レンズ18を通過した一次電子線12は、第2の対物レンズ26で縮小集束される。この第2の対物レンズ26は、試料23に近づくほど強い磁場分布をしているため(図4の(b)参照)、低収差レンズを実現している。また、第1の対物レンズ18は、見やすい画像になるように、開き角αをコントロールすること、ならびに縮小率やレンズの形状、及び焦点深度を調整することに用いられる。すなわち、第1の対物レンズ18は、これらの各制御値を最適化するのに用いられる。また、第2の対物レンズ26のみで一次電子線12を集束しきれない場合には、第1の対物レンズ18で一次電子線12を集束させるための補助を行うこともできる。

0025

図3を参照して、リターディングをしない場合についての動作を説明する。

0026

リターディングをしない場合には、図1の電位板22は取り外してもよい。試料23はできるだけ第2の対物レンズ26に近づくように設置するのが良い。より詳しくは、試料23は、第2の対物レンズ26の上部(上面)からの距離が5mm以下になるように、第2の対物レンズ26の上部に近づけて設置するのが好ましい。

0027

一次電子線12は、加速電源14で加速されたエネルギーで試料23上を走査する。そのとき二次電子21aは、第2の対物レンズ26の磁場により磁束に巻きついて螺旋運動をしながら上昇する。二次電子21aは、試料23表面から離れると、急速に磁束密度が低下することにより旋回から振りほどかれて発散し、二次電子検出器19からの引込み電界により偏向されて二次電子検出器19に捕獲される。すなわち、二次電子検出器19は、二次電子検出器19から発生する電界が、荷電粒子線によって試料から放出される二次電子を引き付けるように、配置される。このようにして、二次電子検出器19に入る二次電子21aを多くすることができる。

0028

次に、図4を用いてリターディングをする場合について概略を説明する。図4において、(a)はリターディング時の等電位線を示し、(b)は第2の対物レンズの光軸上磁束密度分布B(z)を示し、(c)はリターディング時の荷電粒子の速度を示している。

0029

図4の(b)に示されるように、第2の対物レンズ26の光軸上磁束密度は試料に近いほど強い分布をしているので、対物レンズは低収差レンズになる。そして、試料23に負の電位を与えると、一次電子線12は試料23に近づくほど減速する(図4の(c)参照)。一次電子線12は速度が遅いほど磁場の影響を受けやすくなるため、試料23に近いほど第2の対物レンズ26が強いレンズになるといえる。そのため、試料23に負の電位を与えると、第2の対物レンズ26はさらに低収差のレンズとなる。

0030

また、信号電子21は、試料23のリターディング電圧による電界で加速され、エネルギー増幅して検出器20に入る。そのため、検出器20は高感度となる。このような構成にすることで、高分解能な電子線装置を実現できる。

0031

また、第1の対物レンズ18と第2の対物レンズ26との距離は、10mmから200mmとされる。より好ましくは30mmから50mmとすることが望ましい。第1の対物レンズ18と第2の対物レンズ26との距離が10mmより近いと、第1の対物レンズ18の直下に置いた検出器20で反射電子21bが検出できる。しかし、リターディング時に二次電子21aが第1の対物レンズ18の中に引きこまれやすくなる。第1の対物レンズ18と第2の対物レンズ26との距離を10mm以上離すことで、二次電子21aは検出器20で検出されやすくなる。また、第1の対物レンズ18と第2の対物レンズ26との隙間が30mm程度ある場合には、試料23の出し入れがとても行いやすくなる。

0032

次に、各部品の構成について詳細に説明する。まず第2の対物レンズ26の形状について、図1を参照して説明する。

0033

第2の対物レンズ26を形成する磁極は、一次電子線12の理想光軸中心軸が一致した中心磁極26aと、上部磁極26bと、筒形の側面磁極26cと、下部磁極26dとからなる。中心磁極26aは、上部ほど径が小さくなる形状である。中心磁極26aの上部は、例えば1段又は2段の円錐台形状である。中心磁極26aの下部は、円柱形状である。中心磁極26aの下部の中心軸には、貫通孔がない。上部磁極26bは、中心に向かってテーパ状に中心磁極26aの重心に近い側が薄くなる、円盤形状である。上部磁極26bの中心には、開口径dの開口が空いている。中心磁極26aの先端径Dは、6mmより大きく14mmより小さい。開口径dと先端径Dとの関係は、d−D≧4mmとされる。

0034

次に、磁極の具体的な例を示す。中心磁極26aと上部磁極26bとの両者の試料側の上面は、同じ高さとされる。中心磁極26aの下部外径は60mmである。この外径が細いと、透磁率の低下を招くので好ましくない。

0035

中心磁極26aがD=8mmの場合、上部磁極26bの開口径dは、12mmから32mmとすることが好ましい。より好ましくは、開口径dは、14mmから24mmである。開口径dが大きいほど、光軸上磁束密度分布は山がなだらかになって幅が広がり、一次電子線12の集束に必要なAT(アンペアターンコイル巻数N[T]と電流I[A]との積)を小さくすることができるというメリットがある。しかし、開口径dと先端径Dとの関係がd>4Dとなると、収差係数が大きくなる。ここでは上部磁極26bの開口径dは20mm、側面磁極26cの外径は150mmである。また、中心磁極26aの軸中心貫通穴があってもよい。

0036

ここで、例えば厚みが5mmの試料23に対し、30kVの高加速電圧でも一次電子線12を集束させる場合には、先端径Dは6mmより大きく14mmより小さくするのがよい。Dを小さくしすぎると、磁極が飽和し、一次電子線12が集束しない。一方で、Dを大きくすると性能が悪くなる。また、dとDとの大きさの差が4mmより小さいと、磁極が近すぎて飽和しやすくなり、一次電子線12が集束しない。また、第1の対物レンズ18と第2の対物レンズ26との距離が10mm以下になると、作業性が悪くなる。この距離が200mmより長すぎると、開き角αが大きくなりすぎる。この場合、収差を最適にするために、第1の対物レンズ18を使ってαを小さくする調整が必要になり、操作性が悪くなる。

0037

また例えば、5kV以下の加速電圧のみで使用し、試料23の厚みが薄い場合は、先端径Dは6mm以下にしてもよい。ただし、例えば加速電圧が5kVである場合において、Dを2mm、dを5mmにし、試料23の厚みを5mmにし、第2の対物レンズ26のみを用いると、磁極が飽和してしまい、一次電子線12が集束しない。しかし、試料23を薄いものに制限すれば、レンズはさらに高性能化できる。

0038

試料23に電位を与える方法として、第2の対物レンズ26の磁極の一部に電気的絶縁部を挟んで一部の磁極を接地電位から浮かし、試料23と磁極の一部にリターディング電圧を与えることもできる。ただし、この場合、磁気回路中に磁性体でないものを挟むと、磁気レンズが弱いものになる。また、リターディング電圧を高くすると放電が発生する。電気的絶縁部を厚くすると、さらに磁気レンズが弱いものになるという問題がある。

0039

図1に示されるように、上部磁極26bと中心磁極26aとの間に、非磁性体で成るシール部26f(例えば銅やアルミニウム又はモネル)を置くことが望ましい。シール部26fは、上部磁極26bと中心磁極26aとの間を、Oリング又はロウ付け真空気密にする。第2の対物レンズ26では、上部磁極26bと、シール部26f及び中心磁極26aとにより、真空側大気側とが気密分離される。上部磁極26bと真空容器とは、図には示していないが、Oリングで気密になるように結合されている。このようにすることで、第2の対物レンズ26は、真空側の面を除いて、大気にさらすことができるようになる。そのため、第2の対物レンズ26を冷却しやすくなる。

0040

真空容器の中に第2の対物レンズ26を入れることもできるが、真空度が悪くなる。コイル部26eが真空側にあると、ガス放出源になるからである。また、このように真空側と大気側とを気密分離しないと、真空引きをしたときにガスが第2の対物レンズ26と絶縁板25とが接しているところを通り、試料が動いてしまうという問題がある。

0041

コイル部26eは、たとえば6000ATのコイル電流にすることができる。コイルが発熱して高温になると、それを原因として、巻線被膜が融けてショートが発生することがある。第2の対物レンズ26が大気にさらすことができるようになることにより、冷却効率が上がる。例えば第2の対物レンズ26の下面の台をアルミニウム製にすることで、その台をヒートシンクとして利用することができる。そして、空冷ファン水冷などで第2の対物レンズ26を冷却できるようになる。このように気密分離することで、強励磁の第2の対物レンズ26とすることが可能になる。

0042

図1を参照して、リターディング部を説明する。

0043

第2の対物レンズ26の上に、絶縁板25を置く。絶縁板25は、例えば0.1mmから0.5mm程度の厚みのポリイミドフイルムポリエステルフイルム等である。そして、その上に、磁性のない導電性のある試料台24を置く。試料台24は、例えば底面が250μm厚のアルミニウム板で、周縁周縁端に近づくほど絶縁板25から離れる曲面形状に加工されたものである。試料台24は、さらに曲面部と絶縁板25との間の隙間に絶縁材31が充填されたものであってもよい。このようにすると、第2の対物レンズ26と試料台24との間の耐電圧上がり、安定して使うことができる。試料台24の平面形状は円形であるが、楕円矩形など、どのような平面形状であってもよい。

0044

試料台24の上に試料23が載置される。試料台24は、リターディング電圧を与えるために、リターディング電源27に接続される。電源27は、例えば0Vから−30kVまで印加できる出力が可変の電源とする。試料台24は、真空外部から位置移動ができるように絶縁物でできた試料台ステージ板29に接続されている。これにより、試料23の位置は変更可能である。試料台ステージ板29は、XYステージ(図示せず)に接続されており、真空外部から動かすことができる。

0045

試料23の上には円形の開口部のある導電性板(以下、電位板22と呼ぶ)が配置される。電位板22は、第2の対物レンズ26の光軸に対し垂直に設置される。この電位板22は、試料23に対して絶縁して配置される。電位板22は、電位板電源28に接続される。電位板電源28は、例えば0V及び−10kVから+10kVの出力が可変の電源である。電位板22の円形の開口部の直径は、2mmから20mm程度までであればよい。より好ましくは、開口部の直径は、4mmから12mmまでであればよい。あるいは、一次電子線12又は信号電子21が通過する電位板22の部分を導電性のメッシュ状にしてもよい。メッシュの網部が電子が通過しやすいように細くされ、開口率が大きくなるようにするとよい。この電位板22は、中心軸調整のために真空外部から位置を移動できるように、XYZステージ61に接続される。XYZステージ61は、電位板22を保持し、X方向、Y方向、及びZ方向に電位板22を移動させるものである。

0046

試料台24の周縁は電位板22側に厚みがある。例えば電位板22が平らであると、電位板22は試料台24周縁で試料台24に近くなる。そうなると放電しやすくなる。電位板22が、試料23の近く以外の場所では導電性試料台24から離れる形状を有していることで、試料台24との耐電圧を上げることができる。

0047

電位板22は、試料23から1mmから15mm程度の距離を離すことで、放電しないように配置されている。しかし、離しすぎないように配置されるのがよい。その目的は、第2の対物レンズ26の作る磁場が強い位置に減速電界を重ねるためである。もし、この電位板22が試料23から遠くに置かれた場合、あるいは電位板22が無い場合、一次電子線12が第2の対物レンズ26で集束される前に減速してしまい、収差を小さくする効果が減少する。

0048

それについて図4を参照して説明する(図4は、後で述べるシミュレーションデータ4のときに対応した説明図である)。図4の(a)は、リターディング時の等電位線を説明する図である。

0049

仮に電位板22の開口部が大きすぎ、試料23と電位板22との距離が近すぎる場合、等電位線が電位板22の開口部より電子銃側に大きくはみ出して分布する。この場合、一次電子が、電位板22に到着するまでに減速してしまうことがある。電位板22の開口径が小さいほど、電界のもれを減少させる効果がある。ただし、信号電子21が電位板22に吸収されないようにする必要がある。そのため、放電を起こさない範囲で試料23と電位板22との電位差を調整するとともに、試料23と電位板22との距離を調整することと、電位板22の開口径を適切に選ぶこととが大切となる。

0050

図4の(b)は、第2の対物レンズ26の光軸上磁束密度分布B(z)を説明する図である。縦軸はB(z)、横軸座標であり、第2の対物レンズ26の表面が原点(−0)である。第2の対物レンズ26に近いほど急激にB(z)が大きくなっている様子が示されている。

0051

図4の(c)は、リターディング時の荷電粒子の速度を説明する図である。荷電粒子線の速度は、試料直前で減速していることが示されている。

0052

電位板22を試料23の近くに置くことにより、一次電子の速度は、電位板22近くまではあまり変わらない。そして、一次電子は、電位板22あたりから試料23に近づくほど速度が遅くなり、磁場の影響を受けやすくなる。第2の対物レンズ26の作る磁場も試料23に近いほど強くなっているので、両方の効果が合わさって、試料23に近いほどさらに強いレンズになり、収差の小さいレンズになる。

0053

加速電圧をできるだけ大きくしながら、リターディング電圧を加速電圧に近づけることができれば、照射電子エネルギーを小さくして、電子が試料23の中に入り込む深さを浅くすることができる。これによって、試料の表面形状の高分解能観察が可能になる。さらに収差も小さくできることで、高分解能でかつ低加速のSEMが実現できる。

0054

第1の実施の形態では、試料23と電位板22との耐圧を簡単に高くすることができる。第1の対物レンズ18と第2の対物レンズ26との間は10mmから200mmの距離とすることができる。そのため、例えば平坦な試料23であれば、試料23と電位板22との間隔を5mm程度あければ、試料23と電位板22とに比較的簡単に10kV程度の電位差を印加することができる。った部分がある試料23の場合は放電しないように、距離や開口径を適切に選ぶ必要がある。

0055

図5に、試料の異なる配置例を示す。図5に示されるように、さらに、円筒形で上面がR加工された円筒放電防止電極30を、試料台24の上の試料23の周囲に設置して、放電しにくくするとよい。円筒放電防止電極30は、試料上の等電位線を滑らかにして、試料23のがたつきによる集束点のずれを緩和するのにも役立つ。

0056

第1の実施の形態における検出器20として、半導体検出器20、マイクロチャンネルプレート検出器20(MCP)、又は蛍光体発光方式のロビンソン検出器20が用いられる。これらの少なくともいずれかが第1の対物レンズ18の直下に配置される。二次電子検出器19は、二次電子21aを集めるように、電界が試料23の上方にかかるように配置される。

0057

半導体検出器20、MCP検出器20又はロビンソン検出器20は、第1の対物レンズ18の試料側に接し、光軸から3cm以内に配置される。より好ましくは、検出部の中心が光軸におかれ、その中心に一次電子が通過する開口部が設けられている検出器20が使用される。光軸から3cm以内に設置するのは、リターディングをした場合、信号電子は光軸近くに進むからである。

0058

一次電子線12は、加速電源14(Vacc)で加速に用いられた加速電圧からリターディング電圧Vdecelを引いた値、すなわち−(Vacc−Vdecel)[V]に電子電荷をかけたエネルギーで、試料23上を走査する。そのとき、試料23から信号電子21が放出される。加速電圧とリターディング電圧との値によって、電子の影響の受け方は異なる。反射電子21bは、第2の対物レンズ26の磁場によって、回転する力を受けると同時に、試料23と電位板22との間の電界のために加速する。そのため、反射電子21bの放射角の広がりが狭まり、検出器20に入射しやすくなる。また、二次電子21aも第2の対物レンズ26の磁場によって、回転する力を受けると同時に、試料23と電位板22との間の電界のために加速して、第1の対物レンズ18の下にある検出器20に入射する。二次電子21aも反射電子21bも加速し、エネルギーが増幅されて検出器20に入射するため、信号が大きくなる。

0059

汎用SEMでは、第1の対物レンズ18のようなレンズで電子を集束するのが通常である。この第1の対物レンズ18は、通常、試料23を第1の対物レンズ18に近づけるほど高分解能になるように設計されている。しかし、半導体検出器20などには厚みがあり、その厚み分は第1の対物レンズ18から試料23を離す必要がある。また、試料23を第1の対物レンズ18に近づけすぎると、二次電子21aが、第1の対物レンズ18の外にある二次電子検出器19に入りにくくなる。そのため汎用SEMでは、第1の対物レンズ18直下の位置に配置され、一次電子が通過する開口部がある厚みの薄い半導体検出器20が用いられる。試料23は、検出器20にぶつからないように少し隙間をあけて置かれる。したがって、試料23と第1の対物レンズ18とは少し離れてしまい、高性能化が難しくなる。

0060

第1の実施の形態では、第2の対物レンズ26を主レンズとして使う場合、試料23を第2の対物レンズ26に近づけて設置することができる。そして、第1の対物レンズ18と第2の対物レンズ26との間の距離を離すことができる。例えば30mm離せば、10mm程度の厚みのあるMCP検出器20を第1の対物レンズ18の直下に置くことが可能になる。また、ロビンソン型の検出器20や半導体検出器20を置くことも当然にできる。反射板を置いて、信号電子21を反射板にあてて、そこから発生又は反射した電子を第2の二次電子検出器で検出する方法もある。同等の作用を持つ様々な信号電子の検出器20を設置することができる。

0061

次に、レンズ光学系の性能に関連する開き角αについて説明する。

0062

一次電子線12が試料23に当たるときのビーム径を、プローブ径と呼ぶ。プローブ径を評価する式として次の式を使う。なお、以下の数式において、「^」に続く数字べき指数である。

0063

[数1]プローブ径Dprobe=sqrt[Dg^2+Ds^2+Dc^2+Dd^2] [nm]
[数2]光源の縮小直径Dg=M1・M2・M3・So=M・So [nm]
[数3]球面収差Ds=0.5Cs・α^3 [nm]
[数4]色収差Dc=0.5Cc・α・ΔV/Vi [nm]
[数5]回折収差:Dd=0.75×1.22×Lambda/α [nm]
ここで、電子源の大きさがSo、一段目コンデンサレンズ15aの縮小率がM1、二段目コンデンサレンズ15bの縮小率がM2、第1の対物レンズ18と第2の対物レンズ26とが作るレンズの縮小率がM3、全縮小率M=M1×M2×M3、球面収差係数がCs、色収差係数がCc、試料面での一次電子線12の開き角がα、照射電圧(一次電子が試料23に衝突するときのエネルギーに対応する電圧)がVi、一次電子線12のエネルギー広がりに対応する電圧がΔV、電子の波長がLambdaである。

0064

熱電子放出型電子源を用いたSEMの性能の一例について、シミュレーションデータを使って説明する。図1の第1の対物レンズ18はアウトレンズ型とする。

0065

第1の対物レンズ18で一次電子線12を集束する場合を示す。これは、汎用SEMに対応する。

0066

一次電子線12のΔVを1V、電子源の大きさSoを10μmとする。M1×M2=0.00282とする。穴径30ミクロンである対物レンズ絞り16を置いて、不用な軌道電子を取り除く。この対物レンズ絞り16の穴径によって、試料23に入射するビームの開き角αとプローブ電流が調整できる。WDを6mm、加速電圧Vacc=−30kV(Vi=30kV)とする。シミュレーション計算すると、
(シミュレーションデータ1)
Dprobe=4.4nm、Dg=1.59、Ds=3.81、Dc=0.916、Dd=1.25、
Cs=54.5mm、Cc=10.6mm、α=5.19mrad、M3=0.0575となる。

0067

次に、第2の対物レンズ26で一次電子線12を集束する場合を示す。

0068

図1の構成で、第2の対物レンズ26と第1の対物レンズ18との距離を40mmとする。第2の対物レンズ26は、D=8mm、d=20mmとし、αを調整するため対物レンズ絞り16の穴径を21.8ミクロンとする。このとき、汎用SEMのときと比べてプローブ電流量が変化しないように、コンデンサレンズ15を弱めて調整する。その他の条件は同じとする。Z=−4mmの位置での性能をシミュレーションすると、
(シミュレーションデータ2)
Dprobe=1.44nm、Dg=0.928、Ds=0.657、Dc=0.503、Dd=0.729、
Cs=1.87mm、Cc=3.391mm、α=8.89mrad、M3=0.0249となる。

0069

以上のように、第2の対物レンズ26を用いることで、SEMの性能が大幅によくなっていることがわかる。

0070

また、第1の対物レンズ18で集束するときと比べて、第2の対物レンズ26で集束するときは、Dgが小さくなっている。このことはプローブ径を同等にする場合、第1の対物レンズ18で集束するときと比べて、コンデンサレンズ15を弱めることができることを示している。したがって、第2の対物レンズ26を使うことで、汎用SEMと比べてプローブ電流を大電流化できることがわかる。

0071

次に第1の対物レンズ18は使わずに、第2の対物レンズ26を使い、加速電圧Vaccを−1kV(Vi=1kV)とする場合を説明する(リターディング電圧は0Vとする)。プローブ電流が変化しないように、コンデンサレンズ15を調整する(ただし、電子銃からの軌道とビーム量は−30kVのときと同じとする)。その他の条件は同じとする。以下がシミュレーションデータである。

0072

(シミュレーションデータ3)
結果を図6の(a)に示す。

0073

Dprobe=15.6nm、Dg=0.928、Ds=0.657、Dc=15.1、Dd=3.99、
Cs=1.87mm、Cc=3.39mm、α=8.89mrad、M3=0.0249である。

0074

この場合、Cs、Cc、α、M3、Dsはシミュレーションデータ2と変わらない。ΔV/Viが大きくなるため、プローブ径がとても大きくなる。

0075

次に、電位板22を試料23の上部に配置する例を説明する。電位板22の開口径はΦ5mm、試料23はΦ6mmとする。試料測定面をZ=−4mm(第2の対物レンズ26からの距離)とする。試料台24と電位板22との距離を8mm、試料測定面と電位板22との間隔を5mmとする。

0076

加速電圧Vaccは−10kV、電位板22を0V電位とし、試料23をVdecel=−9kVでリターディングし、Vi=1kVとした場合の数値をシミュレーションする。ここでは第1の対物レンズ18は使わず、第2の対物レンズ26のみで集束させる。

0077

(シミュレーションデータ4)
結果を図6の(b)に示す。

0078

Dprobe=5.72nm、Dg=0.924、Ds=2.93、Dc=4.66、Dd=1.26、
Cs=0.260mm、Cc=0.330mm、α=28.2mrad、M3=0.0247である。

0079

リターディング電圧Vdecelを−9kVにすると、照射電子のエネルギーは1keVとなる。加速電圧が−1kVのときと比べて、プローブ径が大幅に改善している。

0080

次にこの条件に第1の対物レンズ18を追加して使用し、強度を適切に調整する(シミュレーションデータ1で必要なAT(アンペアターン)の約0.37倍としてみる)例を示す。

0081

(シミュレーションデータ5)
結果を図6の(c)に示す。

0082

Dprobe=4.03nm、Dg=1.60、Ds=0.682、Dc=2.92、Dd=2.17、
Cs=0.312mm、Cc=0.357mm、α=16.3mrad、M3=0.0430である。

0083

ここでDprobeが減少していることがわかる。シミュレーションデータ4ではDc(=4.66)が飛びぬけて大きくなっていた。そこで、第1の対物レンズ18を少し加えることで、αを小さくすることができる。Dcは上記[数4]からCcとαに依存する。Ccは少し大きくなっているが、αは相当小さくなっている。そのためDcは小さくなっている。[数1]から、Dprobeは第1の対物レンズ18を使うことで小さくできることがわかる。

0084

図6の(a)のα=8.89mradに対して、図6の(b)ではα=28.2mradであり、リターディングによって大きな値になっている。すなわち、強いレンズになっていることがわかる。また、そのためにDdも小さくなっていることがわかる。図6の(c)では第1の対物レンズ18でαを調整してαが小さくなっていることがわかる。

0085

ここで大切なことは、対物レンズ絞り16の穴径を小さくしてαを調整することも可能であるが、その場合はプローブ電流が減少してしまうということである。しかし、第1の対物レンズ18を使用してαを調整してもプローブ電流は減少しない。そのため、試料23から発生する二次電子21aと反射電子21bは減少しない。

0086

また、リターディング電圧の印加によって検出器20の感度がよくなると、プローブ電流を減らすことができる。さらに対物レンズ絞り16の穴径を小さくしてαを小さくすることもできる。また、コンデンサレンズ15による縮小率M1×M2を小さくすることも可能になる。そのため、Dg、Ds、Dc、及びDdとの兼ね合いがあるので調整が必要だが、プローブ径をさらに小さくできる場合がある。対物レンズ絞り16と第1の対物レンズ18とでプローブ径を最適化できる。

0087

また、試料23によっては焦点深度が浅いレンズだと、凸凹の上の面と底の面どちらかにしかピントが合わないことがある。このような場合、プローブ径が同じでもαが小さいほど焦点深度が深くなり、きれいに見えることもある。第1の対物レンズ18を使って、像を見やすいように最適化することもできる。

0088

次に、第1の実施の形態における装置の様々な使い方の具体例を示す。

0089

図6の(b)では、加速電圧Vaccを−10kVとし、試料23を−9kVでリターディングするシミュレーションを示したが、例えば、加速電圧Vaccを−4kV、試料23を−3.9kVにして、Vi=100Vとすることもできる。加速電圧とリターディング電圧の比が1に近いほど、収差係数を小さくすることができる。また、上記では第2の対物レンズ26の磁極について、D=8mm、d=20mmとした場合を示したが、D=2、d=6等にすれば、試料高さや加速電圧の制限はあるが、より性能をよくすることができる。

0090

また、加速電圧を−10kVとしてリターディング無しの場合、二次電子検出器19で二次電子21aを検出できるが、半導体検出器20では検出できない。しかし、加速電圧を−20kVとし、リターディング電圧を−10kVとすれば約10keVのエネルギーで二次電子21aが半導体検出器20に入り、検出可能である。

0091

また、加速電圧を−10.5kVとし、リターディング電圧を−0.5kVとしたとき、二次電子21aは半導体検出器20では感度よく検出できない。しかしこのとき、二次電子検出器19で二次電子21aを検出することができる。すなわち、二次電子21aはリターディング電圧が低いときは二次電子検出器19で捕らえることができ、リターディング電圧を徐々に上げていくと半導体検出器20側で検出できる量が増えていく。このように、二次電子検出器19は、焦点を合わせながらリターディング電圧を上げていく調整時にも役立つ。

0092

第1の実施の形態の第2の対物レンズ26は、Z=−4.5mmで30keVの一次電子を集束できるように設計してある。試料位置が第2の対物レンズ26に近づけば、例えばZ=−0.5mmの位置では、100keVの一次電子も集束させることができる。リターディングをしない場合は、絶縁板25(絶縁フイルム)を第2の対物レンズ26の上に置かなくてもよい。そのため、この場合には、第2の対物レンズ26は、加速電圧が−100kVの一次電子線12を十分に集束できる。好ましくは第2の対物レンズ26は、加速電源を−30kVから−10kVのいずれかにして加速された荷電粒子線を、対物レンズの磁極の試料に最も近いところから見て、0mmから4.5mmのいずれかの高さの位置に集束可能であるように設計される。

0093

加速電圧は−15kVとし、試料23は−5kVとし、電位板22に−6kVをかけた場合について説明する。一次電子は、試料23に当たるときには、10keVになる。試料23から放出される二次電子21aのエネルギーは、100eV以下である。電位板22の電位は試料23の電位よりも1kV低いため、二次電子21aは電位板22を超えることができない。そのため、二次電子21aは検出できない。試料23から放出された1keV以上のエネルギーを持っている反射電子21bは、電位板22を通過することができる。さらに電位板22と第1の対物レンズ18下の検出器20との間に6kVの電位差があり、反射電子21bは加速され検出器20に入る。このように電位板22の電圧を調整できるようにすることによって、電位板22をエネルギーフィルタとして使うこともでき、さらに信号電子21を加速させることで感度を上げることも可能になる。

0094

次に、試料の高さが例えば7mmある場合について説明する。

0095

このとき、リターディングをする場合でも、上部磁極26bから絶縁板25と試料台24の厚みを含めて、例えばZ=−7.75mm程度の位置において測定が行われる。この場合、第2の対物レンズ26のみでは30keVの一次電子線12を集束させることはできない。しかし、加速電圧を下げなくても第1の対物レンズ18の助けを借りれば、一次電子線12を集束可能である。

0096

また、試料23の高さによっては、第1の対物レンズ18のみで集束させた方が性能良く観察できる場合もある(図2参照)。このように、試料23によって最適な使い方を選ぶことができる。

0097

上記では、第1の対物レンズ18と第2の対物レンズ26との間隔を40mmとする場合について述べたが、この距離は固定式でも可動式にしてもよい。第1の対物レンズ18と第2の対物レンズ26との距離を離すほど、縮小率M3は小さい値になる。そして開き角αは大きくできる。この方法でαを調整することができる。

0098

また、リターディング電圧が高いと信号電子21は光軸の近くを通って、検出器20の一次電子が通るための開口部に入りやすくなる。そのため検出器20の開口部は小さい程よい。検出器20の開口部はΦ1からΦ2mm程度にしておくと、感度がよい。電位板22の開口径や高さを調整し、電位板22の位置を光軸から少しずらすことで、信号電子21が検出器20に当たるように信号電子21の軌道を調整して感度をよくする方法がある。また、第1の対物レンズ18と第2の対物レンズ26との間に電場と磁場を直行させて印加するイークロスビー(ExB)を入れ、信号電子21を少し曲げるのもよい。一次電子の進行方向と信号電子21の進行方向とは逆なので、少し信号電子21を曲げるのに、弱い電場と磁場とを設けてもよい。少し曲がれば検出器20中心の開口部に入らず、検出できるようになる。また、単に第1の対物レンズ18と第2の対物レンズ26との間に電界を光軸に対して横からかけてもよい。このようにしても、一次電子は影響を受けにくいし、横ずれだけであれば画像への影響は少ない。例えば二次電子検出器19のコレクタ電極などによる電界を使って、信号電子21の軌道をコントロールすることも可能である。

0099

図3では、第2の対物レンズ26を主レンズとして使っている。試料台24が接地電位の場合、二次電子21aは二次電子検出器19で検出される。反射電子21bは半導体検出器20又はロビンソン検出器20などで検出される。試料23と検出器20とが10mmから20mm程度離れているときは、感度よく検出できる。しかし、40mm程度離れると、検出器20に入らない反射電子21bが増え、反射電子21bの検出量が少なくなる。このときに試料23にリターディング電圧を与えると、二次電子21aは半導体検出器20又はロビンソン検出器20などで検出されるようになる。また、リターディング電圧を与えることで、反射電子21bの広がりは抑えられ、半導体検出器20又はロビンソン検出器20などにおいて高感度で検出できるようになる。このように電位板22がない場合もリターディングは使用可能である。

0100

図2では、試料23が分厚い場合で、対物レンズとして第1の対物レンズ18を使った場合を示した。図2では、電位板22を動かすXYZステージ61を活用して、試料ステージとして使用することができる。より具体的には、電位板22に代えて、試料台24がXYZステージ61に接続されることにより、試料台24がX方向、Y方向及びZ方向に移動可能となる。このXYZステージ61は、試料台24を第1の対物レンズ18に近づける方向にも移動できる。これにより、汎用SEMのように装置が使用される。反射電子21bは半導体検出器20又はロビンソン検出器20などで検出され、二次電子21aは二次電子検出器19で検出される。通常、試料23は接地電位であるが、簡易的にリターディングもできる(電位板22なしでリターディングを行うことができる)。

0101

なお、図2では、試料台24がXYZステージ61に接続されるので、図1に示した電位板22及び試料台ステージ板29は不要となる。

0102

第2の対物レンズ電源42のみを使うときには、第1の対物レンズ18と試料測定面との距離よりも、第2の対物レンズ26と試料測定面との距離の方が近くなるように装置が構成され、第1の対物レンズ電源41のみを使うときには、第2の対物レンズ26と試料測定面との距離よりも、第1の対物レンズ18と試料測定面との距離の方が近くなるように装置が構成される。

0103

なお、高い測定性能が要求されず、比較的低性能の測定の場合であれば、第1の対物レンズ電源41のみを使うときであっても、第2の対物レンズ26と試料測定面との距離よりも、第1の対物レンズ18と試料測定面との距離の方が近くなるようにする必要はない。第1の対物レンズ18と試料測定面との距離よりも、第2の対物レンズ26と試料測定面との距離の方が近くなるようにしてもよい。つまり、試料23が第1の対物レンズ18と第2の対物レンズ26との間に配置されていればよい。例えば低倍率の測定の場合であれば、第2の対物レンズ26の近くに試料23を配置し、第1の対物レンズ電源41を用いて第1の対物レンズ18のみを使えばよい。

0104

図1でリターディングをした場合、試料23の電位が負になる。試料23をGNDレベルにしたまま電位板22に正の電圧を印加することも可能である(この手法を、ブースティング法と呼ぶ)。試料23に負の電圧を印加して、電位板22に正の電位をかけて、低加速SEMとしてさらに性能をよくすることも可能である。例として、第1の対物レンズ18は接地電位とし、電位板22に+10kVを印加し、試料23は接地電位にする場合を説明する。加速電圧は−30kVとする。一次電子は第1の対物レンズ18を通過するときは30keVであり、第1の対物レンズ18から電位板22にむけて加速され、電位板22あたりから試料23にむけて減速する。以下にこの場合のシミュレーションデータを示す。試料23と電位板22の形は、シミュレーションデータ4の場合と同じ条件とする。

0105

(シミュレーションデータ6)
Dprobe=1.31nm、Dg=0.904、Ds=0.493、Dc=0.389、Dd=0.710、
Cs=1.29mm、Cc=2.56mm、α=9.13mrad、M3=0.0244である。

0106

以上の結果によると、ブースティングなしの場合(シミュレーションデータ2)と比べて、プローブ径が改善している。

0107

信号電子21は、試料23と電位板22との間では加速されるが、電位板22と検出器20との間では減速される。検出器20が半導体検出器20である場合に反射電子21bを検出できるが、半導体検出器20は接地電位であるため、二次電子21aは減速し、検出できない。二次電子21aは二次電子検出器19で検出できる。リターディング電圧を試料23に印加すれば、半導体検出器20で二次電子21aも検出可能になる。

0108

次に図7を参照して、二段偏向コイル17の調整によって偏向軌道の交点を移動させることについて説明する。二段偏向コイル17で試料23上を二次元的に走査する。二段偏向コイル17の電子源側を上段偏向コイル17a、試料側を下段偏向コイル17bと呼ぶ。

0109

図1に示されるように、この二段偏向コイル17は、上段偏向コイル17aの強度を可変する上段偏向電源43と、下段偏向コイル17bの強度を可変する下段偏向電源44と、上段偏向電源43と下段偏向電源44とを制御する制御装置45とにより制御される。

0110

上段偏向コイル17aと下段偏向コイル17bは、第1の対物レンズ18の内部から見て一次電子線12が飛来してくる側に設置される(第1の対物レンズ18のレンズ主面より上流に設置、又はレンズ主面の位置に下段の偏向部材を置く場合には外側磁極18b(図7参照。なお、図7の符号18aは内側磁極を示す。)より上流に設置される)。上段偏向電源43と下段偏向電源44との使用電流比は、制御装置45によって可変となっている。

0111

図7の(a)では、二段の偏向コイル17によって、電子は光軸と第1の対物レンズ18の主面の交点近くを通過する軌道になっている。第1の対物レンズ18を主レンズとして使う場合(図2)には、このように設定される。第2の対物レンズ26を主レンズとして使うときに、図7の(a)のようにすると偏向収差が大きくなり、低倍率の画像ほど歪んでしまう。第2の対物レンズ26を主レンズとして使うときは、図7の(b)のように、上段偏向コイル17aと下段偏向コイル17bの強度比が、電子が第2の対物レンズ26の主面と光軸との交点近くを通過する軌道になるように調整される。調整は、上段偏向電源43と下段偏向電源44の使用電流比を調整する制御装置45によって行われる。このようにすることで、画像の歪は減少する。なお、使用電流比を調整することで偏向軌道の交点(クロス点)をずらすのではなく、巻き数の異なるコイルをリレーなどで切り替える方式(巻数の異なるコイルを複数設け、用いるコイルを制御装置で選ぶ方式)や、静電レンズの場合は電圧を切り替える方式(使用電圧比を可変する方式)を採用してもよい。

0112

図7に示されるように、偏向コイル17は第1の対物レンズ18内の隙間に配置してもよい。偏向コイル17は、第1の対物レンズ18内にあってもよいし、図1のようにそれよりもさらに荷電粒子線の上流側に位置してもよい。静電偏向を採用する場合には、偏向コイルに代えて偏向電極が採用される。

0113

[第2の実施の形態]
図8を参照して、第1の対物レンズ18のない簡易的な装置構成を説明する。

0114

ここでは半導体検出器20を下段偏向コイル17bの下に置いている。第1の対物レンズ18がない場合、その分下段偏向コイル17bと第2の対物レンズ26との距離を短くすることができる。このような装置構成は、小型化に適している。第1の実施の形態と比較して、第2の実施の形態でも第1の対物レンズ18を使用することを除いて、同様に装置を使用することができる。検出器20と第2の対物レンズ26との距離は、10mmから200mm離して設置されている。

0115

図8の装置においては、電子源11から下段偏向コイル17bまでの構成により、一次電子線12を試料23に向けて射出する上部装置51が構成される。また、電位板22と、それよりも下に配置される部材とにより下部装置52が構成される。下部装置52に試料23は保持される。上部装置51は、その内部を通った荷電粒子線が最終的に放出される孔部を有している。その孔部は、下段偏向コイル17bに存在する。検出器20は、その孔部の下に取り付けられている。検出器20も一次電子線12が通過する開口部を有しており、孔部と開口部とが重なるように、検出器20は下段偏向コイル17bよりも下部に取り付けられる。

0116

[第3の実施の形態]
第3の実施の形態では、電子源11に電界放出型のものを用いる。電界放出型は、熱電子放出型と比べて輝度が高く、光源の大きさは小さく、一次電子線12のΔVも小さく、色収差の面でも有利である。第3の実施の形態では第1の実施の形態との比較のために、第1の実施の形態の二段目コンデンサレンズ15bから下を第1の実施の形態と同じものとし、電子源部を電界放出型にし、一段目コンデンサレンズ15aをなくしている。一次電子線12のΔVを0.5eVとし、電子源の大きさSo=0.1μmとする。Z=−4mmとし、加速電圧Vaccを−30kV、第1の対物レンズ18はOFFとした性能を計算すると、以下のようになる。

0117

(シミュレーションデータ7)
Dprobe=0.974nm、Dg=0.071、Ds=0.591、Dc=0.248、Dd=0.730、
Cs=1.69mm、Cc=3.36mm、α=8.88mrad、M3=0.0249
電界放出型電子源は熱電子放出型と比べて輝度が高い。さらにコンデンサレンズ15が一段になっているので、プローブ電流は熱電子放出型のときと比べて多くなっている。それにもかかわらず、プローブ径が小さくなっていることがわかる。Ddが一番大きな値を示している。

0118

次の例では、加速電圧Vaccを−1kV(Vi=1kV)とする。第1の対物レンズ18は使わすに、第2の対物レンズ26を使い、電子を集束する。プローブ電流は変化しないようにコンデンサレンズ15を調整する。その場合は、以下のようになる。

0119

(シミュレーションデータ8)
Dprobe=8.48nm、Dg=0.071、Ds=0.591、Dc=7.45、Dd=4.00、
Cs=1.68mm、Cc=3.36mm、α=8.88mrad、M3=0.0249
以上のように、熱電子放出型(シミュレーションデータ3)では、Dprobe=15.6nmなので、電界放出型電子源の方がよいことがわかる。

0120

次に、電位板22と試料23を図1のように配置する例について説明する。試料測定面をZ=−4mmとする。

0121

加速電圧Vaccは−10kVとし、電位板22を0V電位にし、試料23を−9kVにした場合(Vi=1kV)について計算結果を以下に示す。ここでは第1の対物レンズ18は使わず、第2の対物レンズ26のみで集束させている。

0122

(シミュレーションデータ9)
Dprobe=3.92nm、Dg=0.071、Ds=2.90、Dc=2.32、Dd=1.26、
Cs=0.260mm、Cc=0.330mm、α=28.1mrad、M3=0.0248
収差の中でDsが一番大きな値になっている。これは、試料23に近くほど電子の速さが遅くなり磁場の影響を受けやすくなることと、磁束密度が試料23に近いほど大きな値であることから試料23に近いほど強いレンズになっているため、αが大きくなりすぎたこととによる。Dsは、αの3乗に比例することから、大きくなっている。第1の対物レンズ18を使うことで改善するのがよい。

0123

次に、第1の対物レンズ18を使用し、強度を最適調整した場合(シミュレーションデータ1のAT(アンペアターン)の約0.31倍にした場合)のデータを示す。

0124

(シミュレーションデータ10)
Dprobe=2.68nm、Dg=0.103、Ds=1.03、Dc=1.68、Dd=1.82、
Cs=0.279mm、Cc=0.344mm、α=19.5mrad、M3=0.0358
収差係数だけを見ると悪化しているが、プローブ径はαを調節したことにより、さらに改善している。

0125

ここでは第1の実施の形態と比較するため、対物レンズ絞り16の穴径を21.8ミクロンと同じにした。電界放出型の場合は、輝度が明るいため、そしてコンデンサレンズ15が一段になっているため、さらに穴径を小さくできる。そのため、回折収差が主な収差になる。

0126

以上のように本実施の形態によると、第2の対物レンズ26を使い、リターディングすることで、αが大きくなるレンズ系になり、回折収差を減らせるレンズ系となっている。すなわち、荷電粒子線装置において低収差の第2の対物レンズを実現することができる。信号電子を高感度で検出し、安価に高分解能化を実現することができる。

0127

本実施の形態によれば、信号電子が第1の対物レンズの中を通過しないため、検出部を簡単な構造にすることができる。第2の対物レンズの光軸上磁束密度は、試料に近いほど強い分布をしているので、対物レンズは低収差レンズになる。試料に負の電位を与えると、試料に近いほど強いレンズになり、対物レンズはさらに低収差レンズになる。試料のリターディング電圧による電界で、信号電子は加速され、エネルギー増幅して検出器に入るため、検出器は高感度となる。以上の構成によって、高分解能な荷電粒子線装置を実現することができる。

0128

[第4の実施の形態]
次に、第4の実施の形態におけるSEM(荷電粒子装置の一例)の装置構成について説明する。以下の説明において、上述の実施の形態と同様の構成(各構成の変形例も含む)については、上述と同じ符号を付し、それらの構成についての詳細な説明については省略する。

0129

上記の第1の実施の形態の大まかな構成は、次のように、第4の実施の形態においても同様である。上部装置51には、電子源11から第1の対物レンズ18までの構成が配置されている。上部装置51から試料23に向けて一次電子線12が射出される。下部装置52には、第2の対物レンズ26が配置されている。下部装置52に試料23が保持される。反射電子21bや、二次電子検出器19及び検出器20(第4の実施の形態においては、これらを総称して、第1の検出器19、20ということがある)も、同様に設けられる。二次電子検出器19は、二次電子21aを検出するために設けられる。

0130

第4の実施の形態においては、第1の対物レンズ18と第2の対物レンズ26との間に第2の検出器が配置されている点が、上述の実施の形態とは異なる。第2の検出器は、信号電子21を検出するための第1の検出器19、20とは異なる検出器である。第2の検出器は、試料23から放出又は反射された、第1の検出器の検出対象とは異なる電子又は電磁波が入射するように配置されている。第2の検出器は、第1の検出器の検出対象とは異なる電子又は電磁波を検出する。なお、第1の検出器として、検出器20と二次電子検出器19とのいずれか一方が配置されていて、他方が設けられていなくてもよい。

0131

第4の実施の形態において、第2の検出器は、第1の対物レンズ18よりも下方(試料23や第2の対物レンズ26に近づく側)に配置されている。特に、第1の検出器19、20に反射電子21b又は二次電子21aが入射する位置よりも、第2の検出器の一部に電子又は電磁波が入射する位置の方が、下方に位置している(第2の対物レンズ26に近くなっている)。第2の検出器の一部に電子又は電磁波が入射する位置は、第1の検出器19、20に反射電子21b又は二次電子21aが入射する位置よりも、一次電子線12が試料23に入射する入射位置に近くなっている。なお、逆に、第2の検出器の一部に電子又は電磁波が入射する位置は、第1の検出器19、20に反射電子21b又は二次電子21aが入射する位置よりも、一次電子線12が試料23に入射する入射位置から離れていても構わない。

0132

ここで、第2の検出器は、次のような電子及び電磁波のうちいずれかを検出可能あればよい。例えば、第2の検出器は、一次電子線12の入射に伴い試料23から放出された電磁波を検出可能であってもよい。この種の電磁波としては、例えば、特性X線連続X線、及びカソードルミネッセンス(CL)などが挙げられる。また、例えば、第2の検出器は、試料23に照射され、試料23で反射された電磁波を検出可能であってもよい。この種の電磁波としては、可視光線や、赤外線紫外線等の光が挙げられる。また、例えば、第2の検出器は、一次電子線12の入射に伴い試料23から放出されたオージェ電子を検出可能であってもよい。第4の実施の形態においては、第1の検出器19、20に加えて、このような電子及び電磁波のうちいずれかを検出可能な第2の検出器が設けられる。したがって、試料23についてより多様な分析や観察を行うことができる。

0133

以下、第4の実施の形態の具体例について説明する。

0134

図9は、本発明の第4の実施の形態に係るSEMの装置構成の概要例を示す断面図である。

0135

図9に示されるように、SEMの下部装置52の上面側の空間は、真空壁60で囲まれている。これにより、第1の対物レンズ18や、第1の検出器19、20や、試料23等は、真空環境におかれる。試料23は、絶縁板25を介して第2の対物レンズ26の上面に配置された試料台24に配置されている。信号電子21を検出する検出器20は、第1の対物レンズ18の下端部に配置されている。二次電子21aを検出する二次電子検出器19は、第1の対物レンズ18の側部に配置されている。

0136

ここで、図9に示されるSEMには、試料23から放出された特性X線121を検出する第2の検出器110が配置される。第2の検出器110は、エネルギー分散X線(EDX(EDSということもある))分析装置である。第2の検出器110は、SEMに付帯する装置として取り付けられている。このSEMでは、信号電子21を検出することによる試料23の観察に伴って、試料23のEDX分析を行うことができる。第2の検出器110は、第1の検出器19、20による信号電子21の検出を妨げないように配置されており、信号電子21の検出と、特性X線121の検出とは、同時に(並行して)行うことができるが、これに限られるものではない。

0137

第2の検出器110は、腕部113が、真空壁60の外側に配置された本体部から、真空壁60の内側に、略直線状に伸びるような構造を有している。腕部113は、真空壁60で囲まれた真空部に差し込まれている。腕部113の先端部には、板状に形成された板状部114が設けられている。腕部113及び板状部114は、金属製であって、導電性を有している。

0138

マウント部65は、Oリング等を用いて、真空壁60に、気密を維持するようにして取り付けられている。第2の検出器110は、マウント部65に、複数個調整ボルト67及びナット等を用いて固定されている。調整ボルト67及びナット等を調整することによりマウント部65や調整ボルト67の固定位置等が調整される。これにより、第2の検出器110の試料23に対する位置を微調整することができる。第2の検出器110の大きな移動方向は、上下方向(図の矢印Z方向;一次電子線12の入射方向)や、腕部113の長手方向(図の矢印Y方向)である。このように第2の検出器110の位置を調整することにより、腕部113の先端の位置、すなわち板状部114の位置を変更することができる。試料23に対する板状部114の位置、すなわち一次電子線12が通過する位置に対する板状部114の位置を、変更することができる。このことにより、第1の対物レンズ18を用いて一次電子線12を集束させる場合にも高さ調整及び前後左右の調整が可能になる。第2の検出器110、板状部114は、使用しないときは、腕部113の長手方向(図の矢印Y方向)に大きく移動させて保管することができる。

0139

板状部114は、一次電子線12の出射方向(以下、光軸ということがある。)に対して略垂直になるように配置される。板状部114には、孔部114aが設けられている。板状部114の位置は、孔部114aを一次電子線12が通過するように調整される。板状部114の試料23側の面(図において下面)には、X線検知部120が配置されている。X線検知部120は、例えばシリコンドリフト検出器(SDD)や超伝導遷移センサ(TES)である。X線検知部120には、一次電子線12の入射に伴い試料23から放出された特性X線121が入射する。第2の検出器110は、X線検知部120に特性X線121が入射されたとき、入射した特性X線121を検知する。

0140

なお、X線検知部120は、特性X線121を検知可能な部位と、他の信号電子や電磁波等を検知可能な部位とに分割されていてもよい。X線検知部120の試料側の面には、有機薄膜ベリリウム薄膜等が配置されていてもよい。これにより、試料23から放出される二次電子21aや反射電子21bがX線検知部120に入射せずに止まるようにし、X線検知部120がそれらの信号電子21等の影響を受けないようにすることができる。

0141

第2の検出器110の板状部114は、リターディングを行う場合の電位板としても機能する。すなわち、リターディング電源27は、試料台24に接続されており、板状部114は、腕部113を介して、例えば接地電位に接続される。板状部114は、上述の実施の形態における電位板22と同様に機能する。そのため、電位板22を別途設けることなく、電位板22を設けている場合と同様の効果を得ることができる。なお、板状部114には、接地電位に限られず、正の電位、又は負の電位が与えられるようにしてもよい。

0142

板状部114の位置は、上述のように適宜変更可能である。第1の対物レンズ18と第2の対物レンズ26との制御や、リターディング電圧の制御が行われることで、上述の実施の形態と同様に、試料23を高分解能で観察できるようになる。また、それに合わせて、試料23のEDX分析を行うことができ、多様な分析及び観察を行うことができる。

0143

ここで、従来のように、SEMの対物レンズが試料23に対して一次電子線12を出射する側(図において上側)にのみ設けられている場合(本実施の形態において第1の対物レンズ18のみが設けられているような場合に相当する)には、高分解能の観察を行おうとすると、対物レンズを試料23に近接させる必要があった。

0144

図10は、従来の構造を有するSEMの装置構成を模式的に示す断面図である。

0145

図10において、SEMの対物レンズ918と、反射電子を検出する検出器920と、二次電子検出器919とが示されている。高分解能の観察を行うために、試料923は、通常、対物レンズ918に近接して配置される。EDX分析を行うためのX線検出器915を試料923に近づけて配置しようとすると、X線検出器915が対物レンズ918よりも試料923側にはみ出す。そうすると、X線検出器915が試料923に接触する可能性が高くなる。対物レンズ918と試料923との間の距離を短くするためには、X線検出器915を対物レンズ918の側方に配置する必要がある。

0146

しかしながら、このようにX線検出器915を試料923から離れた位置に配置すると、検出効率が低くなる。X線検出器915に入射するX線量は、距離の二乗反比例して減少するからである。また、試料23の表面の凹部の内側から放射されたX線を検出することが困難になる。対物レンズ918によって遮られていない特性X線121をX線検出器915で検出するために、水平面(一次電子線12の光軸に対して垂直な面)に対するX線検出器915の角度(図において角度α1で示す;取り出し角ということがある)を小さくする必要があるからである。

0147

これに対し、図9に示されるような構造では、第2の対物レンズ26が設けられていることにより、上部装置51と第2の対物レンズ26との間にスペースを設けた状態であっても、高い分解能で試料23の観察を行うことができる。そして、EDX分析について見ると、上部装置51と第2の対物レンズ26との間のスペースに、特性X線121が入射するX線検知部120を配置することができる。したがって、X線検知部120を試料23により近づけることができ、かつ、X線検知部120に対する特性X線121の取り出し角を大きくすることができる。また、取り出し角を大きくすることができるので、試料23の表面の凹部の内側から放射されたX線を検出することができるようになる。取り出し角が大きくなるとX線が試料23を通過する幅が狭くなり、空間分解能が良くなる。これらのことから、SEM像を最適な条件で観察できる配置のまま、同時にX線検知部120の検出立体角を大きくすることができて検出効率を高くすることができ、かつ、第2の検出器110の分解能を高くすることができる。

0148

なお、上述の第1の実施の形態に対する第2の実施の形態のように、図9に示されるような構造において、第1の対物レンズ18は設けられなくてもよい。また、第2の検出器110は、リターディングが行われるときに電位板22として機能するものに限られない。第2の検出器110は、単に、特性X線121等を検出するX線検知部を備えているものであればよい。

0149

図11は、第4の実施の形態に係るSEMの装置構成の一変形例を示す断面図である。

0150

図11においては、図9に示される装置と同様にEDX分析を行うことができるSEMの構成の一例が示されている。このSEMは、図9に示される装置よりも単純な装置構成を有している。図11に示されるように、この装置は、一次電子線12を第2の対物レンズ26で集束させるものである。上部装置51(図11においては、二段偏向コイル17のほかの構成の図示は省略されている)には、対物レンズが設けられていない。また、リターディングは行われず、電位板は設けられてない。

0151

この装置には、検出器20及び二次電子検出器19と、特性X線121を検出するX線検出器である第2の検出器210とが設けられている。第1の検出器19、20は、上述の第2の実施の形態と同様に、一次電子線12が試料23に対して入射する側に配置されている。二次電子検出器19は、例えば、シンチレータ19aと、ライトガイド19bと、コレクタ電極19cとを有している。シンチレータ19aの電位は、例えば10kV程度に維持される。コレクタ電極19cの電位は、例えば−50Vから300V程度の範囲に維持される。これにより、試料23から放出された二次電子21aがシンチレータ19aに入射する。

0152

第2の検出器210の先端部近傍には、X線検出素子220が配置されている。第2の検出器210の内部には、X線検出素子220を冷却する冷却棒211が設けられている。第2の検出器210の先端部には、コリメータ214及びX線透過窓220aが設けられている。試料23から放射される特性X線121は、コリメータ214及びX線透過窓220aから、第2の検出器210に入射する。入射した特性X線121は、X線検出素子220で検出される。

0153

図11に示される装置では、第2の対物レンズ26を用いて一次電子線12が集束される。そのため、一次電子線12が試料23に対して入射する側に対物レンズを配置しなくても、高い分解能で試料23を観察できる。これにより、高い分解能での観察を可能としながら、第1の検出器19、20を試料23から比較的離れた位置に配置することができる。したがって、EDX分析を行うのにより好ましい位置に、第2の検出器210を配置することができる。具体的には、試料23に近い位置に、検出立体角が大きくなるような姿勢で第2の検出器210を配置することができ、第2の検出器210の検出効率を高くすることができる。

0154

なお、図11に示される装置の構成例において、図11二点鎖線で示されるように、一次電子線12が試料23に対して入射する側にも対物レンズを配置してもよい。このように上側装置に対物レンズが配置されていても、第2の対物レンズ26を用いることで、上述と同様の効果を得ることができる。すなわち、高い解像度で試料23を観察できるようにしつつ、より理想的な位置に第2の検出器210を配置してEDX分析を行うことができるようになる。

0155

図12は、第4の実施の形態に係るSEMの装置構成の別の変形例を示す断面図である。

0156

図12に示されるSEMでは、図11に示されるものと同様に、上部装置51や、第2の対物レンズ26や、第1の検出器19、20が設けられている。このSEMでは、上述のEDX分析装置に代えて、第2の検出器310が、付帯装置として取り付けられている。第2の検出器310は、カソードルミネッセンス(CLということもある)を検出する。このSEMでは、信号電子21を検出することによる試料23の観察と同時に、CLを用いた試料23の分析を行うことができる。すなわち、第2の検出器310は、第1の検出器19、20による信号電子21の検出を妨げないように配置されており、信号電子21の検出と、CLの検出とは、同時に(並行して)行うことができるが、これに限られるものではない。

0157

第2の検出器310は、楕円鏡光学素子の一例)320と、検出器本体310aに取り付けられた光ファイバ311とを有している。楕円鏡320は、検出器20と第2の対物レンズ26との間の位置であって、一次電子線12の通過経路上に配置されている。すなわち、楕円鏡320は、第1の検出器19、20よりも試料23の近くに配置されている。楕円鏡320には、一次電子線12や信号電子21が通過する孔部が設けられている。試料23から放出されたり反射されたりした信号電子21は、孔部を通り抜けて、第1の検出器19、20に入射する。

0158

一次電子線12が入射することで試料23から放出されたCL321は、第2の検出器310の一部である楕円鏡320に入射する。すなわち、第2の検出器310の一部にCL321が入射する位置は、第1の検出器19、20に信号電子21が入射する位置よりも、一次電子線12が試料23に入射する入射位置に近くなっている。

0159

楕円鏡320の鏡面320bは、試料23から放出された光を光ファイバ311の先端部に集光するような形状を有している。第2の検出器310に入射したCL321は、鏡面320bで反射されて光ファイバ311に集光され、光ファイバ311により検出器本体310aに導かれる。これにより、第2の検出器310でCL321が検出され、第2の検出器310を用いたCLによる分析が行われる。

0160

このように、図12に示される装置では、検出器20と第2の対物レンズ26との間の一次電子線12の通過経路上に楕円鏡320を配置することができる。そのため、カソードルミネッセンス321の集光を効率的に行うことができる。したがって、高い分解能での試料23の観察を可能としながら、高い感度でのCLによる分析を行うことができる。また、余裕を持って、楕円鏡320を配置可能な、試料23と検出器20との間のスペースをとることができる。したがって、楕円鏡320と試料23との間隔を十分に確保することができ、試料23が楕円鏡320に接触することを防止することができる。

0161

図13は、第4の実施の形態に係るSEMの装置構成の別の変形例を示す断面図である。

0162

図13においては、図12において示されたSEMの変形例が示されている。すなわち、図13に示されるSEMでは、図12に示されるものと同様に、上部装置51や、第2の対物レンズ26や、第1の検出器19、20が設けられている。このSEMでは、上述の第2の検出器310と同様にCL321を検出する第2の検出器410が、付帯装置として取り付けられている。このSEMでは、リターディングが行われる。

0163

第2の検出器410は、放物面鏡(光学素子の一例)420と、検出器本体310aと、光学レンズ411とを有している。放物面鏡420の鏡面420bは、試料23からCL321が放出される点を焦点とする曲面形状を有している。鏡面420bに入射したCL321は、平行光となって光学レンズ411に入射する。CL321は光学レンズ411で屈折して集光され、検出器本体310aに入射する。これにより、検出器本体310aで、CL321が効率的に検出される。

0164

放物面鏡420の下部には、導電性板である電位板422が取り付けられている。電位板422は、一次電子線12や信号電子21等が通過する孔部を有しており、試料23の近傍に位置するように配置されている。また、第2の対物レンズ26の上部には、絶縁板25、試料台24、絶縁材31等が配置されている。試料台24はリターディング電源27に接続されており、電位板422は、電位板電源28に接続されている。このような構成を有していることにより、このSEMでは、上述の第1の実施の形態と同様に、リターディングが行われる。

0165

このように、図13に示される装置では、図12に示される装置で得られる効果に加えて、さらに、リターディングが行われることによる効果が得られる。すなわち、照射電子エネルギーを小さくして、一次電子線12の電子が試料23の中に入り込む深さを浅くすることができる。これによって、試料の表面形状の高分解能観察が可能になる。さらに、電位板422を試料23に近づけることで収差を小さくできるので、高分解能でかつ低加速のSEMが実現できる。第2の対物レンズ26と試料台24との間に絶縁板25が設けられているので、耐電圧が上がり、第2の対物レンズ26による磁場を強くしつつ、安定して使用することができる。

0166

図12及び図13に示されるSEMにおいて、楕円鏡320や放物面鏡420、及びCL321が入射する光学部品等の位置は、微調整可能である。例えば、図9に示されるように楕円鏡320や放物面鏡420等が大気部から保持されており、大気部から、楕円鏡320や放物面鏡420等の位置を変更することができる。

0167

なお、楕円鏡320や放物面鏡420に設けられている一次電子線12等が通過する孔部の大きさは、適宜設定される。すなわち、孔部が比較的小さければ、反射電子21bの通過量は少なくなるが、CL321の光量は増加する。他方、孔部が比較的大きければ、CL321の光量は少なくなるが、反射電子21bの通過量は多くなる。

0168

図14は、第4の実施の形態に係るSEMの装置構成の別の変形例を示す断面図である。

0169

図14に示されるSEMでは、図11に示されるものと同様に、上部装置51や、第2の対物レンズ26や、第1の検出器19、20が設けられている。このSEMでは、上述のEDX分析装置に代えて、第2の検出器510が、付帯装置として取り付けられている。第2の検出器510は、光学顕微鏡としての機能を実現するものである。このSEMでは、信号電子21を検出することによる試料23の観察に伴って、光学的に試料23を観察することができる。第2の検出器510は、第1の検出器19、20による信号電子21の検出を妨げないように配置されており、信号電子21を検出することによる試料23の観察と、光学的な観察とは、同時に行うことができるが、これに限られるものではない。

0170

第2の検出器510は、光学顕微鏡の一例で、蛍光観察用の構成である。第2の検出器510は、光学検出部510aと、光源511と、照射レンズ512と、励起フィルタ513と、光学対物レンズ514と、ダイクロイックミラー515と、吸収フィルタ516と、結像レンズ517とを有している。また、第2の検出器510は、反射ミラー(光学素子の一例)520を有している。反射ミラー520は、検出器20と第2の対物レンズ26との間の一次電子線12の通過経路上に配置されている。すなわち、反射ミラー520は、第1の検出器19、20よりも試料23の近くに配置されている。反射ミラー520には、一次電子線12や信号電子21が通過する孔部が設けられている。試料23から放出されたり反射されたりした信号電子21は、孔部を通り抜けて、第1の検出器19、20に入射する。

0171

光源511から出射された光は、照射レンズ512及び励起フィルタ513を通って、ダイクロイックミラー515により反射される。そして、光学対物レンズ514を通して、反射ミラー520より試料23に照射される。試料23から放出(発光蛍光又は反射)された放出光521は、第2の検出器510の一部である反射ミラー520に入射する。すなわち、第2の検出器510の一部に放出光521が入射する位置は、第1の検出器19、20に信号電子21が入射する位置よりも、一次電子線12が試料23に入射する入射位置に近くなっている。なお、放出光521は、蛍光現象等により試料23から発光した放出光のほか(蛍光観察が行われる場合)、可視光等が試料23で反射された反射光であってもよく(一般的な可視光等を用いた観察が行われる場合)、以下ではそれらを区別せず放出光521と呼ぶ。

0172

反射ミラー520に入射した放出光521が反射されると、放出光521が、光学対物レンズ514、ダイクロイックミラー515、及び吸収フィルタ516をこの順に透過する。そして、放出光521は、結像レンズ517を通して光学検出部510aに結像する。これにより、光学検出部510aで放出光521が検出される。

0173

このように、このSEMでは、検出器20と第2の対物レンズ26との間の一次電子線12の通過経路上に、第2の検出器510の反射ミラー520を配置することができる。したがって、高い分解能での試料23の観察を可能としながら、光学顕微鏡を用いた観察を効率的に行うことができるようになる。また、反射ミラー520を配置するための、試料料23と検出器20との間のスペースを、余裕を持ってとることができる。したがって、反射ミラー520と試料23との間隔を十分に確保することができ、試料23が反射ミラー520に接触することを防止することができる。また、図13で示されたものと同様に、リターディングを行うことも可能である。

0174

なお、第2の検出器510は、光学顕微鏡の一例である蛍光観察用の構成に限られるものではなく、共焦点レーザ顕微鏡などのさまざまな光学系を用いることもできる。また、このような反射光学系を用いずに、試料23の上方に直接マイクロスコープ等を配置して、試料23を光学的に撮像するようにしてもよい。この場合であっても、試料23と検出器20との間のスペースに、マイクロスコープ等を高い感度での観察を行うためにより理想的な姿勢で試料23に対して配置することができる。したがって、高い分解能での試料23の観察を可能としながら、光学的な観察を効率的に行うことができるようになる。

0175

また、第2の対物レンズ26側の、試料23の下方に、光源を配置してもよい。この場合、下方から照射されて試料23を透過した(試料23から放出された)光が反射ミラー520に入射し、光学検出部510aで検出されるようにすればよい。

0176

図14に示されるSEMにおいて、反射ミラー520や光が通過する光学部品等の位置は、微調整可能である。例えば、図9に示されるように反射ミラー520や光学部品等が大気部から保持されており、大気部から、それらの位置を変更することができる。

0177

なお、反射ミラー520に設けられている一次電子線12等が通過する孔部の大きさは、適宜設定される。すなわち、孔部が比較的小さければ、反射電子21bの通過量は少なくなるが、放出光521の光量は増加する。他方、孔部が比較的大きければ、放出光521の光量は少なくなるが、反射電子21bの通過量は多くなる。

0178

図15は、第4の実施の形態に係るSEMの装置構成の別の変形例を示す断面図である。

0179

図15に示されるSEMでは、図11に示されるものと同様に、上部装置51や、第2の対物レンズ26や、第1の検出器19、20が設けられている。このSEMでは、上述のEDX分析装置に代えて、第2の検出器610が、付帯装置として取り付けられている。第2の検出器610は、波長分散X線分光器(WDX)である。このSEMでは、信号電子21を検出することによる試料23の観察に伴って、WDXによる試料23の分析を行うことができる。第2の検出器610は、第1の検出器19、20による信号電子21の検出を妨げないように配置されており、信号電子21を検出することによる試料23の観察と、WDXによる試料23の分析とは、同時に行うことができるが、これに限られるものではない。

0180

第2の検出器610は、X線検出器610aと、試料23から放射されたX線621が入射する分光結晶620とを有している。X線検出器610aは、分光結晶620により回折したX線621が入射するように、ローランド円618に沿って移動する。分光結晶620の試料23からの距離は、X線621の一定の取り出し角α1を保ったまま、変更される。分光結晶620は、第1の検出器19、20よりも試料23の近くに位置することができる。分光結晶620は、第1の検出器19、20よりも試料23から離して位置することもできる。また、X線検出器610aは、分光結晶620により回折したX線621が入射するように、ローランド円618に沿って移動するものに限られるものではない。さらに、第2の検出器610の一部である分光結晶620にX線621が入射する位置は、第1の検出器19、20に信号電子21が入射する位置よりも、一次電子線12が試料23に入射する入射位置から離れていても良い。

0181

図15に示されるSEMにおいても、第2の対物レンズ26が用いられているので、高い分解能での試料23の観察を可能としながら、WDXによる分析を行うことができる。また、分光結晶620を配置できる、試料23と検出器20との間のスペースを、余裕を持ってとることができる。そのため、X線621の取り出し角α1を、水平面に対して大きくとることができる。したがって、試料23上の微小領域から出たX線521を、効率良く取り込むことができ、WDXによる分析を高感度、高分解能で行うことができる。

0182

なお、図15に示されるSEMにおいて、第2の検出器610に、X線621を取り込んで平行ビームとして取り出すポリキャピラリ(光学素子の一例;図15に示されている)617が設けられていてもよい。このとき、X線621は、ポリキャピラリ617に入射し、平行ビームになってポリキャピラリ617から分光結晶620に出射される。ポリキャピラリ617の先端部を試料23の近くに配置することができるので、多くのX線621を平行ビームとして取り出して、分光結晶620に入射されるX線621の強度を大きくすることができる。したがって、WDXによる分析をより高感度で行うことができる。

0183

なお、図15のSEMにおいては、ポリキャピラリ617を設けているが、ポリキャピラリ617に代えて、集光ミラー回折格子といった様々なタイプの光学素子を設けても良い。第2の検出器610は縦型WDX又は横型WDXのいずれであっても良い。試料23、ポリキャピラリ617及びX線検出器610aは、ローランド円618に沿って移動するものに限られるものではない。X線検出器610aはCCDカメラのように二次元的なもので分光されたものを検出するものであっても良い。

0184

図15に示されるSEMにおいて、第2の検出器610の位置は、微調整可能である。例えば、図9に示されるように第2の検出器610を構成する部材が大気部から保持されており、大気部から、第2の検出器610の位置を変更することができる。

0185

図16は、第4の実施の形態に係るSEMの装置構成の別の変形例を示す断面図である。

0186

図16においては、EDX分析用の第2の検出器210とともに、WDX分析用の第2の検出器610が付帯装置として設けられている、SEMの変形例が示されている。また、このSEMでは、リターディングが行われる。図16に示されるSEMでは、図11に示されるものと同様に、上部装置51や、第2の対物レンズ26や、第1の検出器19、20が設けられている。

0187

WDX分析用の第2の検出器610は、上述の図15に示されるものと同様に構成されている。第2の検出器610は、ポリキャピラリ617を用いたものであり、WDXによる分析をより高感度で行うことができる。

0188

EDX分析用の第2の検出器210は、上述の図11に示されるものと同様の構成を有している。図16に示される例において、第2の検出器210の先端部には、リターディングに用いられる電位板422が設けられている。電位板422は、第2の検出器210の筐体に取り付けられた電位板固定部218を介して、試料23の近傍に位置するように配置されている。

0189

電位板422は、一次電子線12や信号電子21等が通過する孔部を有しており、試料23の近傍に位置するように配置されている。孔部は、試料23から出射される特性X線121が第2の検出器210のコリメータ214及びX線透過窓220aに入射するような位置に配置されている。また、第2の対物レンズ26の上部には、絶縁板25、試料台24、絶縁材31等が配置されている。試料台24はリターディング電源27に接続されており、電位板422は、電位板電源28に接続されている。このような構成を有していることにより、このSEMでは、上述の第1の実施の形態と同様に、リターディングが行われる。

0190

このように、図16に示される装置では、各第2の検出器210、610を試料23に近づけることができるため、EDX分析及びWDX分析の検出効率を高くしつつ、高い解像度で試料23を観察することができる。また、リターディングが行われることによる効果が得られ、照射電子エネルギーを小さくして、一次電子線12の電子が試料23の中に入り込む深さを浅くすることができる。これによって、試料の表面形状の高分解能観察が可能になる。さらに、電位板422を試料23に近づけることで収差を小さくできるので、高分解能でかつ低加速のSEMが実現できる。

0191

図16に示されるSEMにおいて、EDX分析用の第2の検出器210やWDX分析用の第2の検出器610を構成する部材等の位置は、微調整可能である。電位板422は、EDX分析用の第2の検出器210とは接続されずに独立に動かせるようにしてもよい。

0192

なお、電位板422は、WDX分析用の第2の検出器610側に取り付けられていてもよい。例えば、ポリキャピラリ617の先端部近傍に、電位板422が取り付けられていてもよい。また、電位板422は、ポリキャピラリ617とは接続されずに、独立に動かせるようにしてもよい。

0193

ここで、電位板422に電子やX線が当たると、蛍光X線が出射される。そうすると、EDX分析やWDX分析を行う際、試料23から出射されたX線と電位板422から出射されたX線とが合わせて分析される。この電位板422から出射されるX線が分析結果に及ぼす影響を軽減するため、電位板422は、軽元素薄膜(例えば、ベリリウム薄膜、有機薄膜、シリコンナイトライド薄膜などであるが、これに限られない)であることが好ましい。電位板422が軽元素の薄膜で構成される場合には、X線が、電位板422を通過しやすくなる。なお、電位板422が軽元素の薄膜で構成される場合には、電位板422の孔部が小さい場合であっても、X線が電位板422を通過し、検出器に入射しやすくなる。

0194

また、電位板422から出射されるX線が分析結果に及ぼす影響を軽減するため、電位板422の材料として、例えば分析対象の試料23とは検出ピークが異なる組成の材料が用いられるようにしてもよい。これにより、分析結果において電位板422の影響を除去しやすくなる。

0195

なお、図12から図16に示される装置においても、図11に示される装置について述べたのと同様に、一次電子線12が試料23に対して入射する側の対物レンズが設けられていてもよい。また、図14に示されるようなSEMにおいて、他の例と同様に電位板422が設けられ、リターディングが行われていてもよい。

0196

また、第4の実施の形態においては、図16に示されるような例に限られず、以上のような具体例のそれぞれに用いられる検出器を適宜組み合わせて1つの装置に配置するようにしてもよい。例えば、図11に示されるようなX線検出器である第2の検出器210と、図14に示されるような光学顕微鏡である第2の検出器510とが両方とも設けられていてもよい。これにより、多様な観察、分析を行うことができ、かつ、信号電子21を検出することによる観察を高い分解能で行うことができる。

0197

[第5の実施の形態]
次に、第5の実施の形態におけるSEM(荷電粒子装置の一例)の装置構成について説明する。以下の説明において、上述の実施の形態と同様の構成(各構成の変形例も含む)については、上述と同じ符号を付し、それらの構成についての詳細な説明については省略する。

0198

上記の第1の実施の形態の大まかな構成は、次のように、第5の実施の形態においても同様である。上部装置51には、電子源11から第1の対物レンズ18までの構成が配置されている。上部装置51から試料23に向けて一次電子線12が射出される。下部装置52には、第2の対物レンズ26が配置されている。下部装置52に試料23が保持される。二次電子検出器19及び検出器20も、同様に設けられる。二次電子検出器19は、二次電子21aを検出するために設けられる。

0199

図17は、本発明の第5の実施の形態に係るSEMの装置構成の一例を示す断面図である。

0200

図17に示されるSEMでは、図1に示されるものと同様に、上部装置51や、第2の対物レンズ26や、二次電子検出器19や、電位板22等が設けられている。このSEMでは、リターディングが行われる。このように、第5の実施の形態において、SEMは、基本的には図1に示されるものと同様の構成を有している。第5の実施の形態において、電位板22の下面(試料23側の面)に、反射電子21bを検出する第1の検出器720が配置されている点で図1に示されるものとは異なっている。

0201

第1の検出器720には、一次電子線12や二次電子21aが通過する孔部720aが設けられている。第1の検出器720としては、例えば、マイクロチャンネルプレートや、ロビンソン検出器や、半導体検出器等が用いられる。

0202

このように、図17に示される装置では、比較的試料23に近い位置に、第1の検出器720が配置される。入射する反射電子21bの立体角が大きく、反射電子21bの検出感度が向上するので、より高い感度で試料23の観察を行うことができる。

0203

図18は、第5の実施の形態に係るSEMの装置構成の一変形例を示す断面図である。

0204

図18に示されるSEMは、図17に示されるものと基本的に同様の構成を有している。このSEMでは、電位板22の下面に、第1の検出器720に加えて、特性X線121を検出する第2の検出器820が設けられている。

0205

第1の検出器720及び第2の検出器820は、互いに組み合わされて構成された検出ユニットとして構成されている。検出ユニットは、例えば、第2の対物レンズ26側から見た一部の領域に第1の検出器720が配置され、他の領域に第2の検出器820が配置されたものである。検出ユニットには、一次電子線12や二次電子21aが通過する孔部が設けられている。なお、第1の検出器720と第2の検出器820とは、別々に電位板22の下面に取り付けられていてもよい。

0206

このように、図18に示されるSEMでは、比較的試料23に近い位置に、第1の検出器720と第2の検出器820とが配置される。すなわち、第1の検出器720に信号電子21が入射する位置と、第2の検出器820に特性X線121が入射する位置とは、一次電子線12が試料23に入射する入射位置から同じ程度離れている。そのため、各検出器720、820に入射する反射電子21bや特性X線121の立体角が大きくなる。したがって、第1の検出器720では、反射電子21bの検出感度が向上するので、より高い感度で試料23の観察を行うことができる。また、高い分解能で試料23の観察を行えるようにしつつ、第2の検出器820によってEDX分析を効率的に行うことができる。第2の検出器820は、第1の検出器720による反射電子21bの検出を妨げないように配置されており、反射電子21bを検出することによる試料23の観察と、EDX分析とは、同時に行うことができる。

0207

なお、第2の検出器820として、他の種の検出器が設けられていてもよい。第4の実施の形態で具体例として示されている検出器を適宜組み合わせて電位板22の上方に配置するようにしてもよい。これにより、多様な観察、分析を行うことができ、かつ、信号電子21を検出することによる観察を高い分解能で行うことができる。また、電位板22の上方に、第1の検出器20が配置されていてもよい。

0208

なお、第5の実施の形態において、第1の検出器720の孔部720aの寸法は、一次電子線12が通過する程度に小さくてもよい。例えば、孔部720aは、円形の貫通孔であって、その直径がたとえば1ミリメートルから2ミリメートル程度が好ましい。このように孔部720aを小さくすることにより、反射電子21bのほとんどは電位板22より上方に通過することができなくなる。したがって、二次電子検出器19又は検出器20に入射する信号電子21のほとんどが二次電子21aとなるため、反射電子像との混合でない、鮮明な二次電子像を得ることができる。

0209

[その他]
本発明は上記実施形態によって記載したが、この開示の記述及び図面はこの発明を限定するものであると理解すべきではない。例えば荷電粒子源から試料23までの荷電粒子線の軌道を図では直線に描いてある。しかし、エネルギーフィルタなどを入れると軌道が曲げられる。荷電粒子線の軌道が曲がっている場合もある。このような場合も特許請求の範囲に記載された技術的範囲内に含まれる。また、第2の検出器110(又は、210、310、410、510、610、820)を使う場合、第1の検出器20を第1の対物レンズ18の内部に配置したり、第1の対物レンズ18よりも電子源11に近い位置に配置することも可能である。また、イオンビーム顕微鏡では負イオンの荷電粒子の場合、電子と同様の考え方ができ、第1の実施の形態、第4の実施の形態、又は第5の実施の形態と同様に適用できることがわかる。イオンの場合、電子と比べて質量が重いので、コンデンサレンズ15を静電レンズに、偏向コイル17を静電偏向に、第1の対物レンズ18を静電レンズにしてもよい。また、対物レンズ26は磁気レンズを用いる。

0210

また、He+イオン源のようにプラスイオンの荷電粒子を用いる場合には、イオン源の加速電源として正の加速電源14を用いる。リターディングを行わない場合は、第1の実施の形態、第4の実施の形態、又は第5の実施の形態と同様に装置を構成することができる。リターディングを行う場合は、リターディング電源27をプラス電源に切り替えるほか、上述の実施の形態と同様に装置を構成することができる。このとき、電位板22又は電位板422が接地電位であれば、試料23から放出した信号電子21は、負電荷であるため、試料23に引き戻されてしまう。この場合、電位板22又は電位板422の電位が試料23の電位よりも高くなるように電位板電源28を調整すればよい。例えば、荷電粒子線の加速電源14を+7kVとし、上部装置51を接地電位とし、電位板22又は電位板422を+6kVとし、試料23を+5kVとすればよい。そうすると、電位板22又は電位板422の位置に置いた第1の検出器720によって信号電子21を検出することができる。また、第1の検出器720は、電位板22のHe+イオン源側の面に配置してもよい。つまり、図17において、第1の検出器720の電位板22を挟んだ電位板22の裏側の位置である。この場合、信号電子21が試料23から電位板22の開口部を通過して上部装置51に近づく方向に飛行した場合、上部装置51の電位が接地電位であれば信号電子21は電位板22の正の電位に引き戻される。また、二次電子検出器19の正の電位に引き付けられ、検出される場合もある。電位板22の正の電位に引き戻される信号電子を電位板22のHe+イオン源側の面に配置された第1の検出器720で検出することも可能である。また、信号電子検出と同時に、第2の検出器110(又は、210、310、410、510、610、820)によって電磁波を検出することも可能となる。

0211

また、対物レンズ(第1の対物レンズ18又は第2の対物レンズ26)が強いレンズ(焦点距離の短いレンズ)であれば、対物レンズの焦点深度は浅く、それにより、焦点を合わせることができる試料23の高さの範囲は狭くなる。例えば、試料23の表面(観察される面)に凹凸または高低差がある場合、試料23の表面全体を焦点の合った状態で観察することは困難になる。このことは、第2の対物レンズ26を用いてリターディングを行う場合に、対物レンズが強いレンズになればなるほど(焦点距離が短くなればなるほど)、顕著になる。

0212

そこで、画像全体に焦点が合った画像を撮影するために、制御装置45及び第2の対物レンズ電源42を用いて第2の対物レンズ26の強度を変化させればよい。第2の対物レンズ26の強度を変化させることにより、焦点距離を光軸方向に変化させ、焦点距離ごとの画像を撮影する。そして、制御装置45を用いて、各画像における焦点の合った部分を各々抽出し、抽出された部分を合成することによって、焦点深度の深い画像を作成することができる(焦点深度合成EDF;Extended Depth of Focus)。

0213

また、焦点距離ごとに画像を撮影する際、第2の対物レンズ26の強度から焦点距離を求めることができるので、抽出された各部分の相対的な高さを把握することができる。これによって、複数の画像から3次元データを構築することができるので、表示装置を用いて3次元画像を表示することが可能となる。

0214

さらに、信号電子21(二次電子21a、反射電子21b)を検出する第1の検出器19(又は20)とは別の第2の検出器110(又は、210、310、410、510、610、820)を用いて、試料23から放出された電磁波(特性X線121、X線621及びCL321)の信号も検出することができる。第2の対物レンズ26の強度を変化させることにより、焦点距離を光軸方向に変化させ、それにより、信号電子21(二次電子21a、反射電子21b)及び電磁波の信号を焦点距離ごとに検出することにより、焦点距離ごとの画像を撮影することが可能となる。信号電子21を用いた撮影範囲と電磁波の信号を用いた撮影範囲とは同じ範囲となる。信号電子21を用いて撮影した画像(第1画像)における焦点の合った部分(第1部分)と、電磁波の信号を用いて撮影した画像(第2画像)における焦点の合った部分(第2部分)と、を同一撮影箇所ごとに対応させることにより、電磁波の信号を用いた、焦点深度の深い画像を作成することができる。

0215

さらに、電磁波の信号データを基に3次元データを作成し、3次元画像を表示装置に再現することが可能になる。3次元データから3次元画像を表示装置に再現することにより、様々な視点や角度から立体的に画像を観察、評価可能になるとともに、元素や蛍光などの表面の3次元観察が高分解能で可能になる。また、信号電子21を用いた画像と電磁波の信号を用いた画像とを合成し、合成画像を表示装置に表示することにより、観察者にとって理解しやすい画像を作成することも可能となる。また、光学顕微鏡を用いて撮影された画像と信号電子21を用いた画像とを合成してもよい。

0216

上述の各実施の形態におけるそれぞれの特徴点を適宜組み合わせてもよい。

0217

上記説明によって本発明は、荷電粒子線装置であるEPMA、電子線描画装置などの電子ビーム装置、又はイオンビーム顕微鏡などのイオンビーム装置に容易に適用できることが理解できる。

0218

上述の実施の形態及び変形例は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。

0219

本発明のある局面に従うと、荷電粒子線装置は、荷電粒子線を放出する荷電粒子源と、荷電粒子源に接続され、荷電粒子源から放出された荷電粒子線を加速する加速電源と、荷電粒子線を試料に集束させる対物レンズと、荷電粒子線の入射に伴い試料から放出された電磁波及び試料で反射された電磁波のうち少なくとも1つが入射し、入射した電磁波を検出する第2の検出器とを備え、対物レンズは、試料に対して荷電粒子線が入射する側の反対側に設置されている。

0220

好ましくは、荷電粒子線装置は、荷電粒子線の入射に伴い試料から放出された反射電子及び二次電子の少なくとも1つが入射し、入射した反射電子又は二次電子を検出する第1の検出器をさらに備える。

0221

好ましくは、第2の検出器は、第1の検出器による反射電子又は二次電子の検出を妨げないように配置されており、第1の検出器による反射電子又は二次電子の検出と、第2の検出器による電磁波の検出とは、同時に行うことができる。

0222

好ましくは、第2の検出器の一部に電磁波が入射する位置は、第1の検出器に反射電子又は二次電子が入射する位置と比べて、荷電粒子線が試料に入射する入射位置に近いか、入射位置から同じ程度離れている。

0223

好ましくは、荷電粒子線は、荷電粒子源を有する上部装置の内部を通り、最終的に上部装置に設けられた孔部を通して試料に向けて放出され、第1の検出器は、孔部の最下部に取り付けられている。

0224

好ましくは、第1の検出器は、荷電粒子線によって試料から放出される二次電子を引き付ける電界を生成し、二次電子を検出する二次電子検出器であり、荷電粒子源を有し荷電粒子線を放出する上部装置の側部に配置されている。

0225

好ましくは、荷電粒子線は、荷電粒子源を有する上部装置の内部を通り、最終的に上部装置に設けられた孔部を通して試料に向けて放出され、第1の検出器は、孔部よりも荷電粒子源側に配置されている。

0226

好ましくは、荷電粒子線装置は、試料に負電位を与える、荷電粒子線を減速するためのリターディング電源をさらに備える。

0227

好ましくは、試料と対物レンズとの間には、試料と対物レンズとを絶縁する絶縁板が配置されている。

0228

好ましくは、荷電粒子線装置は、試料の上部に、孔部のある電位板をさらに備え、電位板には、接地電位、正の電位、又は負の電位が与えられる。

0229

好ましくは、荷電粒子線は、正のイオンであり、試料には、接地電位以上の正の電位が与えられており、電位板には、試料の電位と比べて同電位又は高い電位が与えられている。

0230

好ましくは、第2の検出器は、電位板の試料側の面に配置されている。

0231

好ましくは、荷電粒子線装置は、試料の上部に配置され、孔部のある電位板をさらに備え、第1の検出器は複数設けられており、複数の第1の検出器のうち1つが電位板の試料側の面に配置されている。

0232

好ましくは、第2の検出器は、荷電粒子線の入射に伴い試料から放出されたX線を検出する。

0233

好ましくは、第2の検出器は、試料の近くに配置された光学素子を有し、荷電粒子線の入射に伴い試料から放出され、光学素子に入射したカソードルミネッセンスを検出する。

0234

好ましくは、第2の検出器は、試料の近くに配置された光学素子を有し、試料の表面に照射され、試料の表面で反射又は発光されて光学素子に入射した光を検出する。

0235

好ましくは、光学素子は、楕円鏡、放物面鏡、及び反射鏡のいずれかである。

0236

好ましくは、第2の検出器は、荷電粒子線の入射に伴い試料から放出されたX線を検出し、第2の検出器は、X線が入射する入射部が、導電性の腕部に形成された板状部に取り付けられており、板状部は、荷電粒子線が通過する開口部を有し、試料の近傍であって試料に対して荷電粒子線が入射する側に配置されており、板状部には、接地電位、正の電位、又は負の電位が与えられる。

0237

好ましくは、荷電粒子線装置は、試料に対して荷電粒子線が入射する側に設置された、対物レンズとは異なる他の対物レンズをさらに備え、第2の検出器は、対物レンズにより荷電粒子線を試料に集束させる場合と、対物レンズとは異なる他の対物レンズにより荷電粒子線を試料に集束させる場合との両方の場合において検出を行うことができる。

0238

好ましくは、荷電粒子線装置は、試料に対して荷電粒子線が入射する側に設置され、試料に入射する荷電粒子線の開き角を変更する、対物レンズとは異なる他の対物レンズをさらに備える。

0239

好ましくは、第2の検出器の試料に対する位置が調整できるように構成されている。

0240

好ましくは、(i)前記対物レンズの焦点距離を変化させることにより、焦点距離ごとに、前記荷電粒子線の入射に伴い前記試料から放出された反射電子又は二次電子信号を用いた第1画像及び前記電磁波を用いた第2画像を撮影し、(ii)焦点距離ごとに撮影された、各第1画像において焦点の合った第1部分、及び当該第1部分に対応する、各第2画像において焦点の合った第2部分を、各第1画像及び各第2画像から、それぞれ抽出し、(iii)抽出された、複数の第1部分及び複数の第2部分を合成し、当該合成された画像を表示装置に表示させる、制御装置をさらに備える。

0241

この発明の他の局面に従うと、走査電子顕微鏡は、上述のいずれかに記載の荷電粒子線装置を備える。

0242

11荷電粒子源(電子源)
12荷電粒子線(一次電子線)
13ウェーネルト電極
14加速電源
15コンデンサレンズ
15a一段目コンデンサレンズ
15b 二段目コンデンサレンズ
16対物レンズ絞り
17 二段偏向コイル
17a上段偏向コイル
17b下段偏向コイル
18 第1の対物レンズ
18a内側磁極
18b外側磁極
18c 孔部
19 第1の検出器(二次電子検出器)
20 第1の検出器(半導体検出器、ロビンソン検出器又はMCP検出器)
21信号電子
21a二次電子
21b反射電子
22、422電位板
23試料
24試料台
25絶縁板
26 第2の対物レンズ
26a中心磁極
26b 上部磁極
26c 側面磁極
26d 下部磁極
26eコイル部
26fシール部
27リターディング電源
28 電位板電源
29試料台ステージ板
30円筒放電防止電極
31絶縁材
41 第1の対物レンズ電源
42 第2の対物レンズ電源
43上段偏向電源
44下段偏向電源
45制御装置
51 上部装置
52 下部装置
61XYZステージ
110、210、310、410、510、610、820 第2の検出器
113 腕部
114 板状部
121特性X線(電磁波の一例)
320楕円鏡(光学素子の一例)
321カソードルミネッセンス(CL;電磁波の一例)
420放物面鏡(光学素子の一例)
520反射ミラー(光学素子の一例)
521放出光(電磁波の一例)
617ポリキャピラリ(光学素子の一例)
620分光結晶
621X線(電磁波の一例)
720 電位板部にある第1の検出器(半導体検出器、ロビンソン検出器又はMCP検出器)
α1 X線の取り出し角

ページトップへ

この技術を出願した法人

この技術を発明した人物

ページトップへ

関連する挑戦したい社会課題

関連する公募課題

ページトップへ

技術視点だけで見ていませんか?

この技術の活用可能性がある分野

分野別動向を把握したい方- 事業化視点で見る -

ページトップへ

おススメ サービス

おススメ astavisionコンテンツ

新着 最近 公開された関連が強い技術

  • 株式会社日立ハイテクノロジーズの「 欠陥観察装置」が 公開されました。( 2020/10/29)

    【課題】第1の撮像条件下の画像における欠陥座標を用いて第2の撮像条件下の画像における欠陥座標を算出できるようにして、欠陥観察のスループットを向上させる。【解決手段】荷電粒子顕微鏡と、この荷電粒子顕微鏡... 詳細

  • 株式会社日立ハイテクノロジーズの「 荷電粒子ビーム装置」が 公開されました。( 2020/10/29)

    【課題】実際の試料上での視野移動を行う場合であっても正確な位置に視野移動を可能とする荷電粒子線装置の提供を目的とする。【解決手段】本発明は、測定対象となる試料に照射する荷電粒子ビームを発生させる電子源... 詳細

  • 国立大学法人電気通信大学の「 顕微観察セル、及び顕微観察セルの作製方法」が 公開されました。( 2020/10/29)

    【課題】一つのセルでサイズの異なる複数の試料の顕微観察を可能にする顕微観察セルを提供する。【解決手段】顕微観察セルは、観察ビームを通過させる第1の窓と試料供給チューブを受け取る第1溝とが形成された第1... 詳細

この 技術と関連性が強い人物

関連性が強い人物一覧

この 技術と関連する社会課題

関連する挑戦したい社会課題一覧

この 技術と関連する公募課題

関連する公募課題一覧

astavision 新着記事

サイト情報について

本サービスは、国が公開している情報(公開特許公報、特許整理標準化データ等)を元に構成されています。出典元のデータには一部間違いやノイズがあり、情報の正確さについては保証致しかねます。また一時的に、各データの収録範囲や更新周期によって、一部の情報が正しく表示されないことがございます。当サイトの情報を元にした諸問題、不利益等について当方は何ら責任を負いかねることを予めご承知おきのほど宜しくお願い申し上げます。

主たる情報の出典

特許情報…特許整理標準化データ(XML編)、公開特許公報、特許公報、審決公報、Patent Map Guidance System データ