図面 (/)

技術 麺類用粉末油脂組成物

出願人 日清オイリオグループ株式会社
発明者 大本典正鍾マンイー生稲淳一
出願日 2017年3月23日 (4年5ヶ月経過) 出願番号 2017-056756
公開日 2018年10月11日 (2年10ヶ月経過) 公開番号 2018-157781
状態 特許登録済
技術分野 穀類誘導製品3(麺類) 食用油脂
主要キーワード X線回折法 捏和混練 測定回 成形容易性 最終冷却 シグマアルドリッチ製 三斜晶 回析ピーク
関連する未来課題
重要な関連分野

この項目の情報は公開日時点(2018年10月11日)のものです。
また、この項目は機械的に抽出しているため、正しく解析できていない場合があります

図面 (8)

課題

本発明の課題は、生地が捏ねやすくまとまりやすいと共に、つやと弾力があり、滑らかでのどごしが良い食感を有する麺類を製造するための麺類用粉末油脂組成物を提供することである。

解決手段

次の(a)の条件を満たす粉末状の油脂組成物を含有する、麺類用粉末油脂組成物とする。(a)グリセリンの1位〜3位に炭素数xの脂肪酸残基Xを有する1種以上のXXX型トリグリセリドを含む油脂成分を含有する粉末油脂組成物であって、前記炭素数xは10〜22から選択される整数であり、前記油脂成分がβ型油脂を含み、前記粉末油脂組成物の粒子板状形状を有し、前記粉末油脂組成物のゆるめ嵩密度が0.05〜0.6g/cm3である。

概要

背景

麺類とは、その原料及び加工法の違いにより、うどん、そば、中華麺スパゲッティマカロニ、ビーフン等の各種様々なものがあり、従来より、小麦粉等の原料の改良を始め、製麺機製麺法等の加工法の改善が積み重ねられ、麺類の製造時には、食用油乳化剤を含有する食用油脂又は粉末油脂等が幅広く用いられるようになってきている。

例えば、ジグリセリンモノ脂肪酸エステルを有効成分として含有する即席麺フライ用油脂組成物を添加する方法が知られている(特許文献1)。また、乳化剤を含有してなるO/W型粉末油脂を用いる方法も知られている(特許文献2)。
このように、乳化剤を含有する食用油脂又は粉末油脂を添加して、こしの強い食感等を有する麺類を製造する方法はこれまで様々提案されているが、近年、消費者嗜好多様化・複雑化する中で、従前の方法では必ずしも消費者のニーズを十分に満足しているとはいえず、より弾力があり、のどごしが良好な食感を有する麺類を製造するための別の方法が求められていた。

概要

本発明の課題は、生地が捏ねやすくまとまりやすいと共に、つやと弾力があり、滑らかでのどごしが良い食感を有する麺類を製造するための麺類用粉末油脂組成物を提供することである。次の(a)の条件を満たす粉末状の油脂組成物を含有する、麺類用粉末油脂組成物とする。(a)グリセリンの1位〜3位に炭素数xの脂肪酸残基Xを有する1種以上のXXX型トリグリセリドを含む油脂成分を含有する粉末油脂組成物であって、前記炭素数xは10〜22から選択される整数であり、前記油脂成分がβ型油脂を含み、前記粉末油脂組成物の粒子板状形状を有し、前記粉末油脂組成物のゆるめ嵩密度が0.05〜0.6g/cm3である。

目的

本発明の課題は、生地が捏ねやすくまとまりやすいと共に、つやと弾力があり、滑らかでのどごしが良い食感を有する麺類を製造するための麺類用粉末油脂組成物を提供する

効果

実績

技術文献被引用数
0件
牽制数
0件

この技術が所属する分野

ライセンス契約や譲渡などの可能性がある特許掲載中! 開放特許随時追加・更新中 詳しくはこちら

請求項1

以下の(a)の条件を満たす粉末状の油脂組成物を含有する、麺類用粉末油脂組成物。(a)グリセリンの1位〜3位に炭素数xの脂肪酸残基Xを有する1種以上のXXX型トリグリセリドを含む油脂成分を含有する粉末油脂組成物であって、前記炭素数xは10〜22から選択される整数であり、前記油脂成分がβ型油脂を含み、前記粉末油脂組成物の粒子板状形状を有し、前記粉末油脂組成物のゆるめ嵩密度が0.05〜0.6g/cm3である。

請求項2

前記油脂成分がβ型油脂からなる、請求項1に記載の粉末油脂組成物。

請求項3

前記XXX型トリグリセリドが、前記油脂成分の全質量を100質量%とした場合、50質量%以上含有する、請求項1又は2に記載の粉末油脂組成物。

請求項4

前記炭素数xが16〜18から選択される整数である、請求項1ないし3のいずれか1項に記載の粉末油脂組成物。

請求項5

前記粉末油脂組成物のゆるめ嵩密度が、0.1〜0.4g/cm3である、請求項1ないし4のいずれか1項に記載の粉末油脂組成物。

請求項6

前記粉末油脂組成物の板状形状が、1.1以上のアスペクト比を有する、請求項1ないし5のいずれかに記載の粉末油脂組成物。

請求項7

前記粉末油脂組成物が、示差走査熱量測定法によってα型油脂が検出されない、請求項1ないし6のいずれか1項に記載の粉末油脂組成物。

請求項8

前記粉末油脂組成物が、X線回折測定において4.5〜4.7Åに回析ピークを有する、請求項1ないし7のいずれか1項に記載の粉末油脂組成物。

請求項9

前記粉末油脂組成物のX線回折測定におけるピーク強度比(4.6Åのピーク強度/(4.6Åのピーク強度+4.2Åのピーク強度))が0.2以上である、請求項1ないし8のいずれか1項に記載の粉末油脂組成物。

請求項10

前記粉末油脂組成物が、XXX型トリグリセリドを含む油脂組成物原料を、下記式から得られる冷却温度以上に保ち、冷却固化して得たβ型油脂を含有する、請求項1ないし9のいずれか1項に記載の粉末油脂組成物。冷却温度(℃)=炭素数x×6.6—68

請求項11

前記粉末油脂組成物が、XXX型トリグリセリドを含む油脂組成物原料を、前記β型油脂に対応するα型油脂の融点以上の温度に保ち、冷却固化して得たβ型油脂を含有する、請求項1ないし9のいずれか1項に記載の粉末油脂組成物。

請求項12

前記粉末油脂組成物の平均粒径が20μm以下である、請求項1ないし11のいずれか1項に記載の粉末油脂組成物。

請求項13

請求項1〜12のいずれか1項に記載の粉末油脂組成物を原材料として含有してなる、麺類

請求項14

請求項1〜12のいずれか1項に記載の粉末油脂組成物を、原材料中の穀粉100質量部に対して0.5〜15質量部含有してなる、請求項13に記載の麺類。

請求項15

麺類の製造工程において、原材料中に請求項1〜12のいずれか1項に記載の粉末油脂組成物を配合する工程を有することを特徴とする、麺類の製造方法。

請求項16

原材料中の穀粉100質量部に対して、前記粉末油脂組成物を0.5〜15質量部配合する、請求項15に記載の製造方法。

請求項17

請求項1〜12のいずれか1項に記載の粉末油脂組成物を有効成分として含有する、麺類用食感改良剤

技術分野

0001

本発明は、生地が捏ねやすくまとまりやすいと共に、つやと弾力があり、滑らかでのどごしが良い食感を有する麺類を製造するための麺類用粉末油脂組成物に関する。また、それを含有する麺類又はプレミックス、及びこれらの製造法にも関する。

背景技術

0002

麺類とは、その原料及び加工法の違いにより、うどん、そば、中華麺スパゲッティマカロニ、ビーフン等の各種様々なものがあり、従来より、小麦粉等の原料の改良を始め、製麺機製麺法等の加工法の改善が積み重ねられ、麺類の製造時には、食用油乳化剤を含有する食用油脂又は粉末油脂等が幅広く用いられるようになってきている。

0003

例えば、ジグリセリンモノ脂肪酸エステルを有効成分として含有する即席麺フライ用油脂組成物を添加する方法が知られている(特許文献1)。また、乳化剤を含有してなるO/W型粉末油脂を用いる方法も知られている(特許文献2)。
このように、乳化剤を含有する食用油脂又は粉末油脂を添加して、こしの強い食感等を有する麺類を製造する方法はこれまで様々提案されているが、近年、消費者嗜好多様化・複雑化する中で、従前の方法では必ずしも消費者のニーズを十分に満足しているとはいえず、より弾力があり、のどごしが良好な食感を有する麺類を製造するための別の方法が求められていた。

先行技術

0004

特開平9−275900号公報
特開平1−320961号公報

発明が解決しようとする課題

0005

本発明の課題は、生地が捏ねやすくまとまりやすいと共に、つやと弾力があり、滑らかでのどごしが良い食感を有する麺類を製造するための麺類用粉末油脂組成物を提供することである。

課題を解決するための手段

0006

本発明者らは、粉末油脂を添加することで、つやと弾力があり、滑らかでのどごしが良い食感を有する麺類の製造方法について鋭意研究を行った結果、特定の条件を満たす粉末油脂組成物を用いることによって、生地が捏ねやすくまとまりやすいと共に、つやと弾力があり、滑らかでのどごしが良い食感を有する麺類が得られることを見出し、本発明を完成させた。

0007

〔1〕以下の(a)の条件を満たす粉末状の油脂組成物を含有する、麺類用粉末油脂組成物。(a)グリセリンの1位〜3位に炭素数xの脂肪酸残基Xを有する1種以上のXXX型トリグリセリドを含む油脂成分を含有する粉末油脂組成物であって、前記炭素数xは10〜22から選択される整数であり、前記油脂成分がβ型油脂を含み、前記粉末油脂組成物の粒子板状形状を有し、前記粉末油脂組成物のゆるめ嵩密度が0.05〜0.6g/cm3である。
〔2〕前記油脂成分がβ型油脂からなる、〔1〕に記載の粉末油脂組成物。
〔3〕前記XXX型トリグリセリドが、前記油脂成分の全質量を100質量%とした場合、50質量%以上含有する、〔1〕又は〔2〕に記載の粉末油脂組成物。
〔4〕前記炭素数xが16〜18から選択される整数である、〔1〕ないし〔3〕のいずれか1項に記載の粉末油脂組成物。
〔5〕前記粉末油脂組成物のゆるめ嵩密度が、0.1〜0.4g/cm3である、〔1〕ないし〔4〕のいずれか1項に記載の粉末油脂組成物。
〔6〕前記粉末油脂組成物の板状形状が、1.1以上のアスペクト比を有する、〔1〕ないし〔5〕のいずれかに記載の粉末油脂組成物。
〔7〕前記粉末油脂組成物が、示差走査熱量測定法によってα型油脂が検出されない、〔1〕ないし〔6〕のいずれか1項に記載の粉末油脂組成物。
〔8〕前記粉末油脂組成物が、X線回折測定において4.5〜4.7Åに回析ピークを有する、〔1〕ないし〔7〕のいずれか1項に記載の粉末油脂組成物。
〔9〕前記粉末油脂組成物のX線回折測定におけるピーク強度比(4.6Åのピーク強度/(4.6Åのピーク強度+4.2Åのピーク強度))が0.2以上である、〔1〕ないし〔8〕のいずれか1項に記載の粉末油脂組成物。
〔10〕前記粉末油脂組成物が、XXX型トリグリセリドを含む油脂組成物原料を、下記式から得られる冷却温度以上に保ち、冷却固化して得たβ型油脂を含有する、〔1〕ないし〔9〕のいずれか1項に記載の粉末油脂組成物。冷却温度(℃) = 炭素数x × 6.6 — 68
〔11〕前記粉末油脂組成物が、XXX型トリグリセリドを含む油脂組成物原料を、前記β型油脂に対応するα型油脂の融点以上の温度に保ち、冷却固化して得たβ型油脂を含有する、〔1〕ないし〔9〕のいずれか1項に記載の粉末油脂組成物。
〔12〕前記粉末油脂組成物の平均粒径が20μm以下である、〔1〕ないし〔11〕のいずれか1項に記載の粉末油脂組成物。
〔13〕〔1〕〜〔12〕のいずれか1項に記載の粉末油脂組成物を原材料として含有してなる、麺類。
〔14〕〔1〕〜〔12〕のいずれか1項に記載の粉末油脂組成物を、原材料中の穀粉100質量部に対して0.5〜15質量部含有してなる、〔13〕に記載の麺類。
〔15〕麺類の製造工程において、原材料中に〔1〕〜〔12〕のいずれか1項に記載の粉末油脂組成物を配合する工程を有することを特徴とする、麺類の製造方法。
〔16〕原材料中の穀粉100質量部に対して、前記粉末油脂組成物を0.5〜15質量部配合する、〔15〕に記載の麺類の製造方法。
〔17〕〔1〕〜〔12〕のいずれか1項に記載の粉末油脂組成物を有効成分として含有する、麺類用食感改良剤

発明の効果

0008

本発明によれば、特定の条件を満たす麺類用粉末油脂組成物を用いることにより、麺類生地が捏ねやすくまとまりやすいので、製造特性が良くなるという効果が得られる。更に、茹であげた麺の表面につやがあり、弾力のある、舌触りが滑らかでのどごしが良い食感を有する品質に優れた麺類を誰でも簡便に製造することができる。これにより、従来の麺類用粉末油脂では満足できなかった人々の需要応えることができる。

図面の簡単な説明

0009

本発明の製造実施例7の粉末油脂組成物(β型油脂)の外観写真である。
本発明の製造実施例7の粉末油脂組成物(β型油脂)の外観写真である。
本発明の製造比較例3の油脂組成物(α型油脂)の外観写真である。
本発明の製造実施例7の粉末油脂組成物(β型油脂)の顕微鏡写真である。
本発明の製造比較例3の油脂組成物(α型油脂)の顕微鏡写真である。
本発明の製造実施例7の粉末油脂組成物(β型油脂)のX線回折図である。
本発明の製造比較例3の油脂組成物(α型油脂)のX線回折図である。

0010

以下、本発明の麺類について順を追って記述する。
<麺類>
本発明における「麺類」とは、後述する麺類用粉末油脂組成物を原材料として含有してなるものである。また、「麺類」とは、主に小麦粉を主たる原料として製造するものであるが、小麦粉以外のその他の穀粉、例えば、大麦粉、米粉そば粉コーンフラワー大豆粉などを用いて製造してもよい。小麦粉等の穀粉にその他の原材料を加えて加水し、混合し、捏ねて製麺したものであり、麺の種類は特に限定されない。例えば、うどん、きしめん、冷麦、素麺、中華麺、ビーフン、マカロニ及びスパゲッティ等が挙げられる。また、これらの麺の形態は、生麺、茹麺乾麺、蒸麺、即席麺、フリーズドライ麺又は冷凍麺であってもよい。その中でも、本発明では、特にうどん(茹麺)であることが好ましい。

0011

<麺類用粉末油脂組成物>
本発明は、以下の(a)の条件を満たす粉末状の油脂組成物(以下、単に「粉末油脂組成物」ともいう。)を含有する、麺類用粉末油脂組成物に関する。
(a)グリセリンの1位〜3位に炭素数xの脂肪酸残基Xを有する1種以上のXXX型トリグリセリドを含む油脂成分を含有する粉末油脂組成物であって、前記炭素数xは10〜22から選択される整数であり、前記油脂成分がβ型油脂を含み、前記粉末油脂組成物の粒子は板状形状を有し、前記粉末油脂組成物のゆるめ嵩密度が0.05〜0.6g/cm3である。本発明の麺類用粉末油脂組成物は、上記の粉末油脂組成物の他、任意に乳化剤、香料脱脂粉乳全脂粉乳ココアパウダー砂糖デキストリン等のその他の成分を含んでいてもよい。
麺類用粉末油脂組成物中の上記(a)の条件を満たす粉末油脂組成物の含有量は、麺類用粉末油脂組成物の全質量を100質量%とした場合、例えば、50質量%以上、好ましくは60質量%以上、より好ましくは、70質量%以上、さらに好ましくは、80質量%以上を下限とし、例えば、100質量%以下、好ましくは、99質量%以下、より好ましくは、95質量%以下を上限とする範囲である。麺類用粉末油脂組成物の100質量%が、上記(a)の条件を満たす粉末油脂組成物であってよい。当該粉末油脂組成物は1種類又は2種類以上用いることができ、好ましくは1種類又は2種類であり、より好ましくは1種類が用いられる。

0012

<油脂成分>
本発明の粉末油脂組成物は、油脂成分を含有する。当該油脂成分は、少なくともXXX型トリグリセリドを含み、任意にその他のトリグリセリドを含む。
上記油脂成分はβ型油脂を含む。ここで、β型油脂とは、油脂の結晶多形の一つであるβ型の結晶のみからなる油脂である。その他の結晶多形の油脂としては、β’型油脂及びα型油脂があり、β’型油脂とは、油脂の結晶多形の一つであるβ’型の結晶のみからなる油脂である。α型油脂とは、油脂の結晶多形の一つであるα型の結晶のみからなる油脂である。油脂の結晶には、同一組成でありながら、異なる副格子構造(結晶構造)を持つものがあり、結晶多形と呼ばれている。代表的には、六方晶型、斜方晶垂直型及び三斜晶平行型があり、それぞれα型、β’型及びβ型と呼ばれている。また、各多形の融点はα、β’、βの順に融点が高くなり、各多形の融点は、炭素数xの脂肪酸残基Xの種類により異なるので、以下、表1にそれぞれ、トリカプリントリラウリントリミリスチントリパルミチントリステアリントリアキジン、トリベヘニンである場合の各多形の融点(℃)を示す。なお、表1は、Nissim Garti et al.、”Crystallization and Polymorphism of Fats and Fatty Acids”、Marcel Dekker Inc.、1988、pp.32-33に基づいて作成した。そして、表1の作成にあたり、融点の温度(℃)は小数点第1位を四捨五入した。また、油脂の組成とその各多形の融点がわかれば、少なくとも当該油脂中にβ型油脂が存在するか否かを検出することができる。

0013

0014

これらの多形を同定する一般的な手法は、X線回折法があり、回折条件は下記のブラッグの式によって与えられる。
2dsinθ=nλ(n=1,2,3・・・)
この式を満たす位置に回折ピークが現れる。ここでdは格子定数、θは回折(入射)角、λはX線の波長、nは自然数である。短面間隔に対応する回折ピークの2θ=16〜27°からは、結晶中の側面のパッキング(副格子)に関する情報が得られ、多形の同定を行なうことができる。特にトリアシルグリセロールの場合、2θ=19、23、24°(4.6Å付近、3.9Å付近、3.8Å付近)にβ型の特徴的ピークが、21°(4.2Å)付近にα型の特徴的なピーク出現する。なお、X線回折測定は、例えば、20℃に維持したX線回折装置((株)リガク、試料水平型X線回折装置UItimaIV)を用いて測定される。X線の光源としてはCuKα線(1.54Å)が最もよく利用される。

0015

さらに、上記油脂の結晶多形は、示差走査熱量測定法(DSC法)によっても予測することができる。例えば、β型油脂の予測は、示差走査熱量計エスアイアイナノテクノロジー株式会社製、品番BSC6220)によって10℃/分の昇温速度で100℃まで昇温することにより得られるDSC曲線に基づいて油脂の結晶構造を予測することにより行われる。

0016

ここで、油脂成分はβ型油脂を含むもの、又は、β型油脂を主成分(50質量%超)として含むものあればよく、好ましい態様としては、上記油脂成分がβ型油脂から実質的になるものであり、より好ましい態様は上記油脂成分がβ型油脂からなるものであり、特に好ましい態様は、上記油脂成分がβ型油脂のみからなるものである。上記油脂成分のすべてがβ型油脂である場合とは、示差走査熱量測定法によってα型油脂及び/又はβ’型油脂が検出されない場合である。別の好ましい態様としては、上記油脂成分(又は油脂成分を含む粉末油脂組成物)が、X線回折測定において、4.5〜4.7Å付近、好ましくは4.6Å付近に回析ピークを有し、表1のα型油脂及び/又はβ’型油脂の短面間隔のX線回折ピークがない、特に、4.2Å付近に回折ピークを有さない場合であり、かかる場合も上記油脂成分のすべてがβ型油脂であると判断できる。本発明の更なる態様として、上記油脂成分が全てβ型油脂であることが好ましいが、その他のα型油脂やβ’型油脂が含まれていてもよい。ここで、本発明における油脂成分が「β型油脂を含む」こと及びα型油脂+β型油脂に対するβ型油脂の相対的な量の指標は、X線回折ピークのうち、β型の特徴的ピークとα型の特徴的ピークとの強度比率:[β型の特徴的ピークの強度/(α型の特徴的ピークの強度+β型の特徴的ピークの強度)](以下、ピーク強度比ともいう。)から想定できる。具体的には、上述のX線回折測定に関する知見をもとに、β型の特徴的ピークである2θ=19°(4.6Å)のピーク強度とα型の特徴的ピークである2θ=21°(4.2Å)のピーク強度の比率:19°/(19°+21°)[4.6Å/(4.6Å+4.2Å)]を算出することで上記油脂成分のβ型油脂の存在量を表す指標とし、「β型油脂を含む」ことが理解できる。本発明は、上記油脂成分が全てβ型油脂である(即ち、ピーク強度比=1)ことが好ましいが、例えば、該ピーク強度比の下限値が、例えば0.4以上、好ましくは、0.5以上、より好ましくは、0.6以上、さらに好ましくは、0.7以上、特に好ましくは、0.75以上、殊更好ましくは0.8以上であることが適当である。ピーク強度が0.4以上であれば、β型油脂を主成分が50質量%超であるとみなすことができる。該ピーク強度比の上限値は1であることが好ましいが、0.99以下、0.98以下、0.95以下、0.93以下、0.90以下、0.85以下、0.80以下等であってもかまわない。ピーク強度比は、上記下限値及び上限値のいずれか若しくは任意の組み合わせであり得る。

0017

<XXX型トリグリセリド>
本発明の油脂成分は、グリセリンの1位〜3位に炭素数xの脂肪酸残基Xを有する1種以上のXXX型トリグリセリドを含む。当該XXX型トリグリセリドは、グリセリンの1位〜3位に炭素数xの脂肪酸残基Xを有するトリグリセリドであり、各脂肪酸残基Xは互いに同一である。ここで、当該炭素数xは10〜22から選択される整数であり、好ましくは12〜22から選択される整数、より好ましくは14〜20から選択される整数、更に好ましくは16〜18から選択される整数である。
脂肪酸残基Xは、飽和あるいは不飽和の脂肪酸残基であってもよい。具体的な脂肪酸残基Xとしては、例えば、カプリン酸ラウリン酸ミリスチン酸パルミチン酸ステアリン酸アラキジン酸ベヘン酸等の残基が挙げられるがこれに限定するものではない。脂肪酸としてより好ましくは、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、アラキジン酸及びベヘン酸であり、さらに好ましくは、ミリスチン酸、パルミチン酸、ステアリン酸、及びアラキジン酸であり、殊更好ましくは、パルミチン酸及びステアリン酸である。
当該XXX型トリグリセリドの含有量は、油脂成分の全質量を100質量%とした場合、例えば、50質量%以上、好ましくは60質量%以上、より好ましくは、70質量%以上、さらに好ましくは、80質量%以上を下限とし、例えば、100質量%以下、好ましくは、99質量%以下、より好ましくは、95質量%以下を上限とする範囲である。XXX型トリグリセリドは1種類又は2種類以上用いることができ、好ましくは1種類又は2種類であり、より好ましくは1種類が用いられる。XXX型トリグリセリドが2種類以上の場合は、その合計値がXXX型トリグリセリドの含有量となる。

0018

<その他のトリグリセリド>
本発明の油脂成分は、本発明の効果を損なわない限り、上記XXX型トリグリセリド以外の、その他のトリグリセリドを含んでいてもよい。その他のトリグリセリドは、複数の種類のトリグリセリドであってもよく、合成油脂であっても天然油脂であってもよい。合成油脂としては、トリカプリル酸グリセリルトリカプリン酸グリセリル等が挙げられる。天然油脂としては、例えば、ココアバターヒマワリ油菜種油大豆油綿実油等が挙げられる。本発明の油脂成分中の全トリグリセリドを100質量%とした場合、その他のトリグリセリドは、1質量%以上、例えば、5〜50質量%程度含まれていても問題はない。その他のトリグリセリドの含有量は、例えば、0〜30質量%、好ましくは0〜18質量%、より好ましくは0〜15質量%、更に好ましくは0〜8質量%である。

0019

<その他の成分>
本発明の粉末油脂組成物は、上記トリグリセリド等の油脂成分の他、任意に乳化剤、香料、脱脂粉乳、全脂粉乳、ココアパウダー、砂糖、デキストリン等のその他の成分を含んでいてもよい。これらその他の成分の量は、本発明の効果を損なわない限り任意の量とすることができるが、例えば、粉末油脂組成物の全質量を100質量%とした場合、0〜70質量%、好ましくは0〜65質量%、より好ましくは0〜30質量%である。その他の成分は、その90質量%以上が、平均粒径が1000μm以下である紛体であることが好ましく、平均粒径が500μm以下の紛体であることがより好ましい。なお、ここでいう平均粒径は、レーザー回折散乱法(ISO133201及びISO9276-1)によって測定した値である。
但し、本発明の好ましい粉末油脂組成物は、実質的に上記油脂成分のみからなることが好ましく、かつ、油脂成分は、実質的にトリグリセリドのみからなることが好ましい。また、「実質的に」とは、油脂組成物中に含まれる油脂成分以外の成分または油脂成分中に含まれるトリグリセリド以外の成分が、粉末油脂組成物または油脂成分を100質量%とした場合、例えば、好ましくは0〜15質量%、より好ましくは0〜10質量%、さらに好ましくは0〜5質量%であることを意味する。

0020

<粉末油脂組成物の製造>
本発明の粉末油脂組成物は、グリセリンの1位〜3位に炭素数xの脂肪酸残基Xを有する1種以上のXXX型トリグリセリドを含む油脂組成物原料を溶融状態とし、特定の冷却温度に保ち、冷却固化することにより、噴霧ミル等の粉砕機による機械粉砕等特別の加工手段を採らなくても、粉末状の油脂組成物(粉末油脂組成物)を得ることができる。より具体的には、(a)上記XXX型トリグリセリドを含む油脂組成物原料を準備し、任意に工程(b)として、工程(a)で得られた油脂組成物原料を加熱し、前記油脂組成物原料中に含まれるトリグリセリドを溶解して溶融状態の前記油脂組成物原料を得、さらに(d)前記油脂組成物原料を冷却固化して、β型油脂を含有し、その粒子形状が板状である粉末油脂組成物を得る。なお、冷却後に得られる固形物に対して、ハンマーミルカッターミル等、公知の粉砕加工手段を適用して、該粉末油脂組成物を生産することもできる。

0021

上記工程(d)の冷却は、例えば、溶融状態の油脂組成物原料を、当該油脂組成物原料に含まれる油脂成分のβ型油脂の融点より低い温度であって、かつ、次式
冷却温度(℃) =炭素数x × 6.6 — 68
から求められる冷却温度以上の温度で行われる。このような温度範囲で冷却すれば、β型油脂を効率よく生成でき、細かい結晶ができるので、粉末油脂組成物を容易に得ることができる。なお、前記「細かい」とは、一次粒子(一番小さい大きさの結晶)が、例えば20μm以下、好ましくは、15μm以下、より好ましくは10μmの場合をいう。また、このような温度範囲で冷却しないと、β型油脂が生成せず、油脂組成物原料よりも体積が増加した空隙を有する固形物ができない場合がある。さらに、本発明では、このような温度範囲で冷却することによって、静置した状態でβ型油脂を生成させ、粉末油脂組成物の粒子を板状形状とさせたものであり、冷却方法は、本発明の粉末油脂組成物を特定するために有益なものである。本発明の麺類用粉末油脂組成物の好ましい平均粒径として、例えば、20μm以下の平均粒径を挙げることができる。平均粒径の測定方法は上述したとおりである。さらに、20μm以下の細かい粒子は人間の感覚では感じとることが困難であるため、20μm以下の粒子を用いることで、ざらついた食感を与えることなく、融点の高い粉末油脂組成物を麺類に添加することができる。

0022

<粉末油脂組成物の特性>
本発明の粉末油脂組成物は、常温(20℃)で粉末状の固体である。
本発明の粉末油脂組成物のゆるめ嵩密度は、例えば実質的に油脂成分のみからなる場合、0.05〜0.6g/cm3、好ましくは0.1〜0.5g/cm3であり、より好ましくは0.1〜0.4g/cm3又は0.15〜0.4g/cm3であり、さらに好ましくは0.2〜0.3g/cm3である。ここで「ゆるめ嵩密度」とは、粉体を自然落下させた状態の充填密度である。ゆるめ嵩密度(g/cm3)の測定は、例えば、内径15mm×25mLのメスシリンダーに、当該メスシリンダーの上部開口端から2cm程度上方から粉末油脂組成物の適量を落下させて疎充填し、充填された質量(g)の測定と容量(mL)の読み取りを行い、mL当たりの当該粉末油脂組成物の質量(g)を算出することで求めることができる。また、ゆるめ嵩密度は、(株)蔵持科学器械製作所のカサ比重測定器を使用し、JIS K-6720(又はISO 1060-1及び2)に基づいて測定したカサ比重から算出することもできる。具体的には、試料120mLを、受器(内径40mm×高さ85mmの100mL円柱形容器)の上部開口部から38mmの高さの位置から、該受器に落とす。受器から盛り上がった試料はすり落とし、受器の内容積(100mL)分の試料の質量(Ag)を量し、以下の式からゆるめ嵩密度を求めることができる。
ゆるめ嵩密度(g/mL)=A(g)/100(mL)
測定は3回行ってその平均値を取ることが好ましい。

0023

また、本発明の粉末油脂組成物は、通常、その粒子が板状形状の形態を有し、例えば、5〜200μm、好ましくは10〜150μm、より好ましくは20〜120μm、殊更好ましくは、25〜100μmの平均粒径(有効径)を有する。ここで、当該平均粒径(有効径)は、粒度分布測定装置(例えば、日機装株式会社製 MicrotracMT3300ExII)でレーザー回折散乱法(ISO133201、ISO9276-1)に基づいて求めることができる。有効径とは、測定対象となる結晶の実測回折パターンが、球形と仮定して得られる理論的回折パターンに適合する場合の、当該球形の粒径を意味する。このように、レーザー回折散乱法の場合、球形と仮定して得られる理論的回折パターンと、実測回折パターンを適合させて有効径を算出しているので、測定対象が板状形状であっても球状形状であっても同じ原理で測定することができる。ここで、板状形状は、アスペクト比が1.1以上であることが好ましく、より好ましくは、1.2以上のアスペクト比であり、さらに好ましくは1.2〜3.0、特に好ましくは、1.3〜2.5、殊更好ましくは1.4〜2.0のアスペクト比である。なお、ここでいうアスペクト比とは、粒子図形に対して、面積が最小となるように外接する長方形囲み、その長方形の長辺の長さと短辺の長さの比と定義される。また、粒子が球状形状の場合は、アスペクト比は1.1より小さくなる。従来技術である、極度硬化油等の常温で固体脂含量の高い油脂を溶解し直接噴霧する方法では、粉末油脂組成物の粒子が表面張力によって、球状形状となり、アスペクト比は1.1未満となる。そして、前記アスペクト比は、例えば、光学顕微鏡走査型電子顕微鏡などによる直接観察により、任意に選択した粒子について、その長軸方向の長さおよび短軸方向の長さを計測することによって、計測した個数の平均値として求めることができる。

0024

<粉末油脂組成物の製造方法>
本発明の粉末油脂組成物は、以下の工程、
(a)XXX型トリグリセリドを含む油脂組成物原料を準備する工程、
(b)工程(a)で得られた油脂組成物原料を任意に加熱等し、前記油脂組成物原料中に含まれるトリグリセリドを溶解して溶融状態の前記油脂組成物原料を得る任意の工程、(d)前記油脂組成物原料を冷却固化して、β型油脂を含有し、その粒子形状が板状である粉末油脂組成物を得る工程、
を含む方法によって製造することができる。
また、上記工程(b)と(d)の間に、工程(c)として粉末生成を促進するための任意工程、例えば(c1)シーディング工程、(c2)テンパリング工程、及び/又は(c3)予備冷却工程を含んでいてもよい。さらに上記工程(d)で得られる粉末油脂組成物は、工程(d)の冷却後に得られる固形物を粉砕して粉末状の油脂組成物を得る工程(e)によって得られるものであってもよい。以下、上記工程(a)〜(e)について説明する。

0025

(a)原料準備工程
工程(a)で準備されるXXX型トリグリセリドを含む油脂組成物原料は、グリセリンの1位〜3位に炭素数xの脂肪酸残基Xを有する1種以上のXXX型トリグリセリドを含む通常のXXX型トリグリセリド等の油脂の製造方法に基づいて製造され、もしくは容易に市場から入手され得る。ここで、上記炭素数x及び脂肪酸残基Xで特定されるXXX型トリグリセリドは、最終的に得られる目的の油脂成分のものと結晶多形以外の点で同じである。当該原料にはβ型油脂が含まれていてもよく、例えば、β型油脂の含有量が0.1質量%以下、0.05質量%以下、又は0.01質量%以下含んでいてもよい。但し、β型油脂は、当該原料を加熱等により溶融状態にすることにより消失するので、当該原料は溶融状態の原料であってもよい。当該原料が、例えば溶融状態である場合に、β型油脂を実質的に含まないことは、XXX型トリグリセリドに限らず、実質的に全ての油脂成分がβ型油脂ではない場合も意味し、β型油脂の存在は、上述したX線回折測定によりβ型油脂に起因する回折ピーク、示差走査熱量測定法によるβ型油脂の確認等によって確認することができる。「β型油脂を実質的に含まない」場合のβ型油脂の存在量は、X線回折ピークのうち、β型の特徴的ピークとα型の特徴的ピークとの強度比率[β型の特徴的ピークの強度/(α型の特徴的ピークの強度+β型の特徴的ピークの強度)](ピーク強度比)から想定できる。上記油脂組成物原料の当該ピーク強度比は、例えば0.2以下であり、好ましくは、0.15以下であり、より好ましくは、0.10以下である。油脂組成物原料には、上述したとおりのXXX型トリグリセリドを1種類又は2種以上含んでいてもよく、好ましくは1種類又は2種類であり、より好ましくは1種類である。
具体的には、例えば、上記XXX型トリグリセリドは、脂肪酸または脂肪酸誘導体とグリセリンを用いた直接合成によって製造することができる。XXX型トリグリセリドを直接合成する方法としては、(i)炭素数Xの脂肪酸とグリセリンとを直接エステル化する方法(直接エステル合成)、(ii)炭素数xである脂肪酸Xのカルボキシル基アルコキシル基と結合した脂肪酸アルキル(例えば、脂肪酸メチル及び脂肪酸エチル)とグリセリンとを塩基性または酸性触媒条件下にて反応させる方法(脂肪酸アルキルを用いたエステル交換合成)、(iii)炭素数xである脂肪酸Xのカルボキシル基の水酸基ハロゲン置換された脂肪酸ハロゲン化物(例えば、脂肪酸クロリド及び脂肪酸ブロミド)とグリセリンとを塩基性触媒下にて反応させる方法(酸ハライド合成)が挙げられる。
XXX型トリグリセリドは前述の(i)〜(iii)のいずれの方法によっても製造できるが、製造の容易さの観点から、(i)直接エステル合成又は(ii)脂肪酸アルキルを用いたエステル交換合成が好ましく、(i)直接エステル合成がより好ましい。

0026

XXX型トリグリセリドを(i)直接エステル合成によって製造するには、製造効率の観点から、グリセリン1モルに対して脂肪酸Xまたは脂肪酸Yを3〜5モルを用いることが好ましく、3〜4モルを用いることがより好ましい。
XXX型トリグリセリドの(i)直接エステル合成における反応温度は、エステル化反応によって生ずる生成水が系外に除去できる温度であればよく、例えば、120℃〜300℃が好ましく、150℃〜270℃がより好ましく、180℃〜250℃がさらに好ましい。反応を180〜250℃で行うことで、特に効率的にXXX型トリグリセリドを製造することができる。

0027

XXX型トリグリセリドの(i)直接エステル合成においては、エステル化反応を促進する触媒を用いても良い。触媒としては酸触媒、及びアルカリ土類金属アルコキシド等が挙げられる。触媒の使用量は、反応原料の総質量に対して0.001〜1質量%程度であることが好ましい。
XXX型トリグリセリドの(i)直接エステル合成においては、反応後、水洗アルカリ脱酸及び/又は減圧脱酸、及び吸着処理等の公知の精製処理を行うことで、触媒や原料未反応物を除去することができる。更に、脱色・脱臭処理を施すことで、得られた反応物をさらに精製することができる。

0028

上記油脂組成物原料中に含まれるXXX型トリグリセリドの量は、例えば、当該原料中に含まれる全トリグリセリドの全質量を100質量%とした場合、100〜50質量%、好ましくは95〜55質量%、より好ましくは90〜60質量%である。さらに殊更好ましくは85〜65質量%である。

0029

<その他のトリグリセリド>
XXX型トリグリセリドを含む油脂組成物原料となるその他のトリグリセリドとしては、上記XXX型トリグリセリドの他、本発明の効果を損なわない限り、各種トリグリセリドを含めてもよい。その他のトリグリセリドとしては、例えば、上記XXX型トリグリセリドの脂肪酸残基Xの1つが脂肪酸残基Yに置換したX2Y型トリグリセリド、上記XXX型トリグリセリドの脂肪酸残基Xの2つが脂肪酸残基Yに置換したXY2型トリグリセリド等を挙げることができる。
上記その他のトリグリセリドの量は、例えば、XXX型トリグリセリドの全質量を100質量%とした場合、0〜100質量%、好ましくは0〜70質量%、より好ましくは1〜40質量%である。

0030

また、本発明の油脂組成物原料としては、上記XXX型トリグリセリドを直接合成する代わりに、天然由来トリグリセリド組成物に対し水素添加、エステル交換又は分別を行ったものを使用してもよい。天然由来のトリグリセリド組成物としては、例えば、ナタネ油、大豆油、ヒマワリ油、ハイオレイックヒマワリ油サフラワー油パームステアリン及びこれらの混合物等を挙げることができる。特に、これらの天然由来のトリグリセリド組成物の硬化油部分硬化油、極度硬化油が好ましいものとして挙げられる。さらに好ましくは、ハードパームステアリン、ハイオレイックヒマワリ油極度硬化油、菜種極度硬化油、大豆極度硬化油が挙げられる。

0031

さらに、本発明の油脂組成物原料としては、市販されている、トリグリセリド組成物又は合成油脂を挙げることができる。例えば、トリグリセリド組成物としては、ハードパームステアリン(日清オイリグループ株式会社製)、菜種極度硬化油(横関油脂工業株式会社製)、大豆極度硬化油(横関油脂工業株式会社製)を挙げることができる。また、合成油脂としては、トリパルミチン(東京化成工業株式会社製)、トリステアリン(シグマアルドリッチ製)、トリステアリン(東京化成工業株式会社製)、トリアラキジン(東京化成工業株式会社製)トリベヘニン(東京化成工業株式会社製)を挙げることができる。
その他、パーム極度硬化油は、XXX型トリグリセリドの含量が少ないので、トリグリセリドの希釈成分として使用できる。

0032

<その他の成分>
上記油脂組成物原料としては、上記トリグリセリドの他、任意に部分グリセリド、脂肪酸、抗酸化剤、乳化剤、水などの溶媒等のその他の成分を含んでいてもよい。これらその他の成分の量は、本発明の効果を損なわない限り任意の量とすることができるが、例えば、XXX型トリグリセリドの全質量を100質量%とした場合、0〜5質量%、好ましくは0〜2質量%、より好ましくは0〜1質量%である。

0033

上記油脂組成物原料は、成分が複数含まれる場合、任意に混合してもよい。混合は、均質反応基質が得られる限り公知のいかなる混合方法を用いてもよいが、例えば、パドルミキサーアジホモミキサーディスパーミキサー等で行うことができる。
当該混合は、必要に応じて加熱下で混合してもよい。加熱は、後述の工程(b)における加熱温度と同程度であることが好ましく、例えば、50〜120℃、好ましくは60〜100℃、より好ましくは70〜90℃、さらに好ましくは80℃で行われる。

0034

(b)溶融状態の前記油脂組成物を得る工程
上記(d)工程の前に、上記工程(a)で準備された油脂組成物原料は、準備された時点で溶融状態にある場合、加熱せずにそのまま冷却されるが、準備された時点で溶融状態にない場合は、任意に加熱され、該油脂組成物原料中に含まれるトリグリセリドを融解して溶融状態の油脂組成物原料を得る。
ここで、油脂組成物原料の加熱は、上記油脂組成物原料中に含まれるトリグリセリドの融点以上の温度、特にXXX型トリグリセリドを融解できる温度、例えば、70〜200℃、好ましくは、75〜150℃、より好ましくは80〜100℃であることが適当である。また、加熱は、例えば、0.1〜3時間、好ましくは、0.3〜2時間、より好ましくは0.5〜1時間継続することが適当である。

0035

(d)溶融状態の油脂組成物を冷却して粉末油脂組成物を得る工程
上記工程(a)又は(b)で準備された溶融状態の油脂組成物原料は、さらに冷却固化されて、β型油脂を含有し、その粒子形状が板状である粉末油脂組成物を形成する。
ここで、「溶融状態の油脂組成物原料を冷却固化」するためには、冷却温度の上限値として、溶融状態の油脂組成物原料を、当該油脂組成物原料に含まれる油脂成分のβ型油脂の融点より低い温度に保つことが必要である。「油脂組成物原料に含まれる油脂成分のβ型油脂の融点より低い温度」とは、例えば、炭素数が18のステアリン酸残基を3つ有するXXX型トリグリセリドの場合、β型油脂の融点は74℃であるので(表1)、当該融点より1〜30℃低い温度(即ち44〜73℃)、好ましくは当該融点より1〜20℃低い温度(即ち54〜73℃)、より好ましくは当該融点より1〜15℃低い温度(即ち59〜73℃)、特に好ましくは、1℃、2℃、3℃、4℃、5℃、6℃、7℃、8℃、9℃または10℃低い温度である。
より好ましくは、β型油脂を得るためには、冷却温度の下限値として、以下の式から求められる冷却温度以上に保つことが適当である。
冷却温度(℃) = 炭素数x × 6.6 — 68
(式中、炭素数xは、油脂組成物原料中に含まれるXXX型トリグリセリドの炭素数x)
このような冷却温度以上とするのは、XXX型トリグリセリドを含有するβ型油脂を得るために、当該油脂の結晶化の際、冷却温度をβ型油脂以外のα型油脂やβ’型油脂が結晶化しない温度に設定する必要があるためである。冷却温度は、主にXXX型トリグリセリドの分子の大きさに依存するので、炭素数xと最適な冷却温度の下限値との間には一定の相関関係があることが理解できる。
例えば、油脂組成物原料に含まれるXXX型トリグリセリドが、炭素数が18のステアリン酸残基を3つ有するXXX型トリグリセリドである場合、冷却温度の下限値は50.8℃以上となる。従って、炭素数が18のステアリン酸残基を3つ有するXXX型トリグリセリドの場合、「溶融状態の油脂組成物原料を冷却固化」する温度は、50.8℃以上72℃以下がより好ましいこととなる。
また、XXX型トリグリセリドが2種以上の混合物である場合は、炭素数xが小さい方の冷却温度に合わせてその下限値を決定することができる。例えば、油脂組成物原料に含まれるXXX型トリグリセリドが、炭素数が16のパルミチン酸残基を3つ有するXXX型トリグリセリドと炭素数が18のステアリン酸残基を3つ有するXXX型トリグリセリドとの混合物である場合、冷却温度の下限値は小さい方の炭素数16に合わせて37.6℃以上となる。

0036

別の態様として、上記冷却温度の下限値は、XXX型トリグリセリドを含む油脂組成物原料の、当該β型油脂に対応するα型油脂の融点以上の温度であることが適当である。例えば、油脂組成物原料に含まれるXXX型トリグリセリドが、炭素数が18のステアリン酸残基を3つ有するXXX型トリグリセリドである場合、当該ステアリン酸残基を3つ有するXXX型トリグリセリドのα型油脂の融点は55℃であるから(表1)、かかる場合の「溶融状態の油脂組成物原料を冷却固化」する温度は、55℃以上72℃以下が好ましいこととなる。

0037

さらに別の態様として、溶融状態にある油脂組成物原料の冷却は、例えばxが10〜12のときは最終温度が、好ましくは−2〜46℃、より好ましくは12〜44℃、更に好ましくは14〜42℃の温度になるように冷却することによって行われる。冷却における最終温度は、例えばxが13又は14のときは、好ましくは24〜56℃、より好ましくは32〜54℃、更に好ましくは40〜52℃であり、xが15又は16のときは、好ましくは36〜66℃、より好ましくは44〜64℃、更に好ましくは52〜62℃であり、xが17又は18のときは、好ましくは50〜72℃、より好ましくは54〜70℃、更に好ましくは58〜68℃であり、xが19又は20のときは、好ましくは62〜80℃、より好ましくは66〜78℃、更に好ましくは70〜77℃であり、xが21又は22のときは、好ましくは66〜84℃、より好ましくは70〜82℃、更に好ましくは74〜80℃である。上記最終温度において、例えば、好ましくは2時間以上、より好ましくは4時間以上、更に好ましくは6時間以上であって、好ましくは2日間以下、より好ましくは24時間以下、更に好ましくは12時間以下、静置することが適当である。

0038

(c)粉末生成促進工程
さらに、工程(d)の前、上記工程(a)又は(b)と(d)との間に、(c)粉末生成を促進するための任意工程として、工程(d)で使用する溶融状態の油脂組成物原料に対し、シーディング法(c1)、テンパリング法(c2)及び/又は(c3)予備冷却法による処理を行ってもよい。これらの任意工程(c1)〜(c3)は、いずれか単独で行ってもよいし、複数の工程を組み合わせて行ってもよい。ここで、工程(a)又は(b)と工程(d)との間とは、工程(a)又は(b)中、工程(a)又は(b)の後であって工程(d)の前、工程(d)中を含む意味である。
シーディング法(c1)及びテンパリング法(c2)は、本発明の粉末油脂組成物の製造において、溶融状態にある油脂組成物原料をより確実に粉末状とするために、最終温度まで冷却する前に、溶融状態にある油脂組成物原料を処置する粉末生成促進方法である。 ここで、シーディング法(c1)とは、粉末の核(種)となる成分を溶融状態にある油脂組成物原料の冷却時に少量添加して、粉末化を促進する方法である。具体的には、例えば、工程(b)で得られた溶融状態にある油脂組成物原料に、当該油脂組成物原料中のXXX型トリグリセリドと炭素数が同じXXX型トリグリセリドを好ましくは80質量%以上、より好ましくは90質量%以上含む油脂粉末を核(種)となる成分として準備する。この核となる油脂粉末を、溶融状態にある油脂組成物原料の冷却時、当該油脂組成物原料の温度が、例えば、最終冷却温度±0〜+10℃、好ましくは+5〜+10℃の温度に到達した時点で、当該溶融状態にある油脂組成物原料100質量部に対して0.1〜1質量部、好ましくは0.2〜0.8質量部添加することにより、油脂組成物の粉末化を促進する方法である。
また、テンパリング法(c2)とは、溶融状態にある油脂組成物原料の冷却において、最終冷却温度で静置する前に一度、工程(d)の冷却温度よりも低い温度、例えば5〜20℃低い温度、好ましくは7〜15℃低い温度、より好ましくは10℃程度低い温度に、好ましくは10〜120分間、より好ましくは30〜90分間程度冷却することにより、油脂組成物の粉末化を促進する方法である。
さらに、予備冷却法(c3)とは、前記工程(a)又は(b)で得られた溶融状態の油脂組成物原料を、工程(d)にて冷却する前に、前記XXX型トリグリセリドを含む油脂組成物原料を準備した時の温度と前記油脂組成物原料の冷却時の冷却温度との間の温度で一旦冷却する方法、言い換えれば、工程(a)又は(b)の溶融状態の温度よりも低く、工程(d)の冷却温度よりも高い温度で一旦予備冷却する方法である。(c3)予備冷却法に続いて、工程(d)の油脂組成物原料の冷却時の冷却温度で冷却することが行われる。工程(d)の冷却温度より高い温度とは、例えば、工程(d)の冷却温度よりも2〜40℃高い温度、好ましくは3〜30℃高い温度、より好ましくは4〜30℃高い温度、さらに好ましくは5〜10℃程度高い温度であり得る。前記予備冷却する温度を低く設定すればするほど、工程(d)の冷却温度における本冷却時間を短くすることができる。すなわち、予備冷却法とは、シーディング法やテンパリング法と異なり、冷却温度を段階的に下げるだけで油脂組成物の粉末化を促進できる方法であり、工業的に製造する場合に利点が大きい。

0039

(e)固形物を粉砕して粉末油脂組成物を得る工程
上記工程(d)の冷却によって粉末油脂組成物を得る工程は、より具体的には、工程(d)の冷却によって得られる固形物を粉砕して粉末油脂組成物を得る工程(e)によって行われてもよい。
詳細に説明すると、まず、上記油脂組成物原料を融解して溶融状態の油脂組成物を得、その後冷却して溶融状態の油脂組成物原料よりも体積が増加した空隙を有する固形物を形成する。空隙を有する固形物となった油脂組成物は、軽い衝撃を加えることで粉砕でき、固形物が容易に崩壊して粉末状となる。
ここで、軽い衝撃を加える手段は特に特定されないが、振る、掛ける等により、軽く振動(衝撃)を与えて粉砕する(ほぐす)方法が、簡便で好ましい。
なお、該固形物を公知の粉砕加工手段により粉砕してもよい。このような粉砕加工手段の一例としては、ハンマーミル、カッターミル等が挙げられる。

0040

<麺類生地の原材料中の麺類用粉末油脂組成物の含有量>
本発明の麺類は、その麺類生地の原材料中の穀粉100質量部に対して上記麺類用粉末油脂組成物を好ましくは0.5〜15質量部含有する。つまり、本発明の麺類用粉末油脂組成物の含有量は、対粉ベースで、好ましくは0.5〜15質量部であり、より好ましくは1〜10質量部であり、さらに好ましくは1〜5質量部である。
上記麺類用粉末油脂組成物が対粉ベースで0.5質量部以上であると、所望の効果が得られるので好ましく、対粉ベースで15質量部以内であれば、麺類生地のまとまりがよく、麺の良い食感が得られるので好ましい。
この麺類用粉末油脂組成物の含有量は、麺類用プレミックスについても同様である。ただし、麺類用プレミックスでは、麺類生地の原材料中の穀粉100質量部に対して配合される。

0041

<麺類に含まれる穀粉>
本発明の麺類に用いられる穀粉は、主には小麦粉(強力粉、中力粉、薄力粉)を意味するが、これ以外にも、大麦粉、米粉、そば粉、コーンフラワー、大豆粉、澱粉などが挙げられ、これらの1種又は2種以上を混合して用いることができる。

0042

<麺類に含まれるその他の成分>
本発明の麺類においては、麺類に一般的に配合される原材料もあわせて使用することができる。具体的には、例えば、水、食塩かん水、大豆・小麦たん白、増粘多糖類、乳化剤、調味料香辛料、香料、着色料等を使用することができる。これらその他の成分の量は、本発明の効果を損なわない限り任意の量とすることができる。

0043

<麺類の製造法>
本発明の麺類の製造法としては、従来公知の麺類の製造工程において、原材料中に本発明の麺類用粉末油脂組成物を配合する工程を有する方法が用いられる。前記配合する工程は任意であるが、例えば、ミキサーブレンダー又はニーダー等を用いて、小麦粉、大麦粉、米粉、そば粉等の穀粉又はこれらを2種以上混合した穀粉に、本発明の麺類用粉末油脂組成物を添加し、水、食塩水、かん水又は必要によりその他の原材料を加え、混合し、捏ねて麺類生地を作り、その生地を複合機麺帯とし、圧延し、切刃にて麺線を得ることができる。そしてこの麺線を用いて、常法により、生麺、茹麺、乾麺、蒸麺、即席麺、フリーズドライ麺又は冷凍麺を製造することができる。

0044

<麺類用プレミックス>
本発明の麺類用プレミックスとは、小麦粉などの穀粉に、乾燥卵、油脂(粉末油脂)、増粘多糖類、乳化剤、調味料、香辛料、香料、着色料などの全部又は一部を混合したもので、水、食塩水、かん水又は必要によりその他のものを加え、捏和混練、製麺後、加熱処理(茹でる、蒸す、揚げるなど)するだけで、簡単に麺類を作れるよう調製した粉を総称したものをいう。プレミックスを使用する場合のメリットは、例えば、(1)高品質の製品が簡単にできる、(2)品質の均一性が確保できる、(3)煩雑な作業が軽減でき、時間、場所、労力の節減が図れる、などが挙げられる。本発明の麺類用粉末油脂組成物は、このような麺類用プレミックスを作るための材料の一部(油脂分)として利用することができる。

0045

<麺類用プレミックスの製造法>
本発明の麺類用プレミックスの製造法としては、上記麺類生地の粉末状の原材料中に本発明の麺類用粉末油脂組成物を配合し、ミキサー、ブレンダー又はニーダーなどの機械混練すれば、製造することができる。

0046

<麺類用食感改良剤>
ところで、以上述べたように、本発明に用いる麺類用粉末油脂組成物は、麺類をつやと弾力があり、滑らかでのどごしが良い食感のものへ改変するから、本発明は、上記麺類用粉末油脂組成物を有効成分とする、麺類用食感改良剤にも関する。以下に示すように、本発明の麺用食感改良剤を麺類に配合することにより、麺類をつやと弾力があり、滑らかでのどごしが良い食感のものとする食感改良効果を達成することができる。
本発明の麺類用食感改良剤は、上述の麺類用粉末油脂組成物を有効成分として含有する。本発明の麺類用食感改良剤は、上記の粉末油脂組成物を、好ましくは60質量%以上含有し、より好ましくは80質量%以上含有し、さらに好ましくは100質量%以上含有する。
また、本発明の麺類用食感改良剤は、有効成分であると上述した麺類用粉末油脂組成物を含有したものであればよく、この他に本発明の効果を損なわない範囲で、大豆油、菜種油などの油脂、デキストリン、澱粉等の賦形剤品質改良剤等の他の成分を含有させたものであってもよい。
但し、本発明の好ましい麺類用食感改良剤は、実質的に当該麺類用粉末油脂組成物のみからなることが好ましい。また「実質的に」とは、麺類用食感改良剤中に含まれる麺類用粉末油脂組成物以外の成分が、麺類用食感改良剤を100質量%とした場合、例えば、0〜15質量%、好ましくは0〜10質量%、より好ましくは0〜5質量%であることを意味する。

0047

次に、実施例および比較例を挙げ、本発明を更に詳しく説明するが、本発明はこれらに何ら制限されるものではない。また。以下において「g」とは、質量を示し、「%」とは、特別な記載がない場合、質量%を示し、「部」とは質量部を示す。
分析方法
トリグリセリド組成
ガスクロマトグラフィー分析条件
DB1-ht(0.32mm×0.1μm×5m)Agilent Technologies社(123-1131)
注入量 :1.0μL
注入口 :370℃
検出器:370℃
スプリット比:50/1 35.1kPaコンスタントプレッシャー
カラムCT :200℃(0min hold)〜(15℃/min)〜370℃(4min hold)
・X線回折測定
X線回折装置UltimaIV(株式会社リガク社製)を用いて、CuKα(λ=1.542Å)を線源とし、Cu用フィルタ使用、出力1.6kW、操作角0.96〜30.0°、測定速度2°/分の条件で測定した。この測定により、XXX型トリグリセリドを含む油脂成分におけるα型油脂、β’型油脂、及びβ型油脂の存在を確認した。4.6Å付近のピークのみを有し、4.1〜4.2Å付近のピークを有しない場合は、油脂成分のすべてがβ型油脂であると判断した。
なお、上記X線回析測定の結果から、ピーク強度比=[β型の特徴的ピークの強度(2θ=19°(4.6Å))/(α型の特徴的ピークの強度(2θ=21°(4.2Å))+β型の特徴的ピークの強度(2θ=19°(4.6Å)))]をβ型油脂の存在量を表す指標として測定した。

0048

・ゆるめ嵩密度
実施例等で得られた粉末油脂組成物のゆるめ嵩密度(g/cm3)は、内径15mm×25mLのメスシリンダーに、当該メスシリンダーの上部開口端から2cm程度上方から粉末油脂組成物を落下させて疎充填し、充填された質量(g)の測定と容量(mL)の読み取りを行い、mL当たりの当該粉末油脂組成物の質量(g)を算出することで求めた。
・結晶(顕微鏡写真)
3Dリアルサーフェスビュー顕微鏡VE-8800(株式会社キーエンス製)にて得られた粉末油脂組成物の結晶の撮影を行った。得られた顕微鏡写真を図4(製造実施例7)及び図5(製造比較例3)に示す。
・アスペクト比
走査型電子顕微鏡S-3400N(株式会社日立ハイテクノロジーズ製)により直接観察し、画像解析式粒度分布測定ソフトウェア(株式会社マウンテック製 Mac−View)を用いて、任意に選択した粒子について、その長軸方向の長さおよび短軸方向の長さを計測し、計測した個数の平均値として測定した。
・平均粒径
粒度分布測定装置(日機装株式会社製 MicrotracMT3300ExII)でレーザー回折散乱法(ISO133201,ISO9276-1)に基づいて測定した。

0049

原料油脂
(1)麺類用粉末油脂組成物(融点約67℃)
1位〜3位にステアリン酸残基(炭素数18)を有するトリグリセリド(XXX型:79.1質量%、菜種極度硬化油、横関油脂工業株式会社製)25gを80℃にて0.5時間維持して完全に融解し、60℃恒温槽にて12時間冷却し、体積が増加した空隙を有する固形物を形成させ、結晶化を完了させた後、室温(25℃)状態まで冷却した。得られた固形物をハンマーミルで粉砕することで粉末状の結晶組成物(ゆるめ嵩密度:0.2g/cm3、アスペクト比1.6、平均粒径14.4μm、X線回折測定回析ピーク:4.6Å、ピーク強度比:0.89)を得た。この粉末油脂組成物Aを用いた。
(2)油脂粉末(融点約47℃):
パーム油硬化油を原料として、スプレークーラーによる噴霧冷却で油脂粉末(ゆるめ嵩密度:0.5g/cm3、平均粒径162μm)を得た。

0050

<その他の原材料>
実施例における、麺類の原材料の一部である中力粉及び食塩は、市販されているものを用いた。

0051

[実施例1]
<うどんの製造法及び評価>
下記表2の配合表に従って、実施例1、比較例1及び参考例1のうどんを常法に従って製造した。具体的には、まず、下記に示された配合の水に食塩を加え混合し、食塩水を作った。次に、中力粉、又は中力粉に各々、麺類用粉末油脂組成物又は油脂粉末を混合し、そこに前記食塩水を加えて生地を捏ね上げた。次に、前記生地を45分間室温ねかした後、再度軽く捏ねてから10分間室温でねかした。前記生地を麺棒でのばして、約3mm幅に切断し、生うどんを得た。前記生うどんを沸騰水中に入れて茹であげ、茹でたうどん(茹麺)を製造した。

0052

0053

<うどんの評価>
上記で製造した、実施例1、比較例1及び参考例1のうどんについて、以下の評価方法に従って評価し、その評価結果を表3に示した。

0054

<うどんの評価方法>
(1)生地の捏ねあげ時間:食塩水を入れてから生地が捏ねあがるまでの時間(分)を測定した。

0055

(2)材料の分散及び生地の状態:食塩水の生地への分散及び生地の捏ねあがり状態の評価方法
以下の基準に従って、総合的に評価した。
○:食塩水の生地への分散が良好で、生地が捏ねやすく、まとまりやすい。
△:食塩水が生地へ分散するが、生地が捏ねにくく、まとまりにくい。
×:食塩水が生地へ分散しにくく、生地が捏ねにくく、だまになりやすい。

0056

(3)麺成形容易性:生うどんの成形・切断の状態の評価方法
以下の基準に従って、総合的に評価した。
○:生地がのばしやすく、カットがしやすい。
△:生地がのび、カットができる。
×:生地がのばしにくく、カットがしにくい。

0057

(4)茹で上げ時間:生うどんが茹で上がるまでの時間(分)を測定した。

0058

(5)茹麺の状態(つや):茹でたうどんの表面の状態の評価方法
以下の基準に従って、熟練した5名パネラーにより、総合的に評価した。
○:つやがある。
△:つやが少ない。
×:つやがない。

0059

(6)茹麺の食感(弾力、滑らかなのどごし):茹でたうどんの食感の評価方法
以下の基準に従って、熟練した5名パネラーにより、総合的に評価した。
○:弾力があるが、滑らかさが少なく、のどごしも弱い。
△:弾力がやや欠けており、滑らかさもなく、のどごしも弱い。
×:弾力がなく、固く、のどごしも悪い。

0060

(7)茹麺の付着性:茹でたうどんの付着状態の評価方法
茹でたうどんを10cmの長さに切り、切った15本を接触させて横に並べ、更に3段に重ね、室温で静置し、30分後の付着状態について、以下の基準に従って、熟練した5名パネラーにより、総合的に評価した。
○:麺と麺が付着しているが、すぐに剥がれる。
△:麺と麺が付着していて、剥がれにくい。
×:麺と麺が付着していて、剥がれない。

0061

0062

表3の結果から明らかであるように、本発明の麺類用粉末油脂組成物を用いて製造したうどんは、通常の油脂粉末を用いて製造したものと比較して、食塩水の生地への分散は良好で、生地が捏ねやすくまとまりやすくなるので、製造特性が良くなることがわかった。更に、茹でて出来上がったうどんは、つやと弾力があり、滑らかでのどごしの良い食感を有していることもわかった。以上の点から、本発明の麺類用粉末油脂組成物は、麺類を大量生産する上でも極めて有用な物質であることが明らかとなった。

0063

さらに、本発明の粉末油脂組成物の製造実施例を以下に示す。これらの製造実施例により得られた粉末状の組成物も、前記実施例同様に、麺類用粉末油脂組成物として使用することができる。
(製造実施例1):x=16
1位〜3位にパルミチン酸残基(炭素数16)を有するトリグリセリド(XXX型:89.7質量%、トリパルミチン、東京化成工業株式会社製)25gを80℃にて0.5時間維持して完全に融解し、50℃恒温槽にて12時間冷却し、体積が増加した空隙を有する固形物を形成させ、結晶化を完了させた後、室温(25℃)状態まで冷却した。得られた固形物をほぐすことで粉末状の結晶組成物(ゆるめ嵩密度:0.2g/cm3、アスペクト比:2.0、平均粒径:119μm、X線回折測定回析ピーク:4.6Å、ピーク強度比:0.90)を得た。

0064

(製造実施例2):x=16
1位〜3位にパルミチン酸残基(炭素数16)を有するトリグリセリド(XXX型:69.9質量%、ハードパームステアリン、日清オイリオグループ株式会社製)25gを80℃にて0.5時間維持して完全に融解し、50℃恒温槽にて12時間冷却し、体積が増加した空隙を有する固形物を形成させ、結晶化を完了させた後、室温(25℃)状態まで冷却した。得られた固形物をほぐすことで粉末状の結晶組成物(ゆるめ嵩密度:0.3g/cm3、アスペクト比1.4、平均粒径99μm、X線回折測定回析ピーク:4.6Å、ピーク強度比:0.88)を得た。

0065

(製造実施例3):x=16、(c2)テンパリング法
1位〜3位にパルミチン酸残基(炭素数16)を有するトリグリセリド(XXX型:89.7質量%、トリパルミチン、東京化成工業株式会社製)15gを、80℃にて0.5時間維持して完全に融解し、30℃恒温槽にて0.01時間冷却した後、60℃恒温槽にて2時間静置し、体積が増加した空隙を有する固形物を形成させ、結晶化を完了させた後、室温(25℃)状態まで冷却した。得られた固形物をほぐすことで粉末状の結晶組成物(ゆるめ嵩密度:0.2g/cm3、アスペクト比2.0、平均粒径87μm、X線回折測定回析ピーク:4.6Å、ピーク強度比:0.89)を得た。

0066

(製造実施例4):x=16、(c1)シーディング法
1位〜3位にパルミチン酸残基(炭素数16)を有するトリグリセリド(XXX型:89.7質量%、トリパルミチン、東京化成工業株式会社製)15gを80℃にて0.5時間維持して完全に融解し、60℃恒温槽にて品温が60℃になるまで冷却した後、トリパルミチン油脂粉末を原料油脂に対して、0.1質量%添加し、60℃恒温槽にて2時間静置し、体積が増加した空隙を有する固形物を形成させ、結晶化を完了させた後、室温(25℃)状態まで冷却した。得られた固形物をほぐすことで粉末状の結晶組成物(ゆるめ嵩密度:0.2g/cm3、アスペクト比2.0、平均粒径92μm、X線回折測定回析ピーク:4.6Å、ピーク強度比:0.89)を得た。

0067

(製造実施例5):x=18
1位〜3位にステアリン酸残基(炭素数18)を有するトリグリセリド(XXX型:99.6質量%、トリステアリン、シグマアルドリッチ製)3gを80℃にて0.5時間維持して完全に融解し、60℃恒温槽にて12時間冷却し、体積が増加した空隙を有する固形物を形成させ、結晶化を完了させた後、室温(25℃)状態まで冷却した。得られた固形物をほぐすことで粉末状の結晶組成物(ゆるめ嵩密度:0.2g/cm3、アスペクト比2.0、平均粒径30μm、X線回折測定回析ピーク:4.6Å、ピーク強度比:0.93)を得た。

0068

(製造実施例6):x=18
1位〜3位にステアリン酸残基(炭素数18)を有するトリグリセリド(XXX型:96.0質量%、トリステアリン、東京化成工業株式会社製)25gを80℃にて0.5時間維持して完全に融解し、55℃恒温槽にて12時間冷却し、体積が増加した空隙を有する固形物を形成させ、結晶化を完了させた後、室温(25℃)状態まで冷却した。得られた固形物をほぐすことで粉末状の結晶組成物(ゆるめ嵩密度:0.2g/cm3、アスペクト比2.0、平均粒径31μm、X線回折測定回析ピーク:4.6Å、ピーク強度比:0.88)を得た。

0069

(製造実施例7):x=18
1位〜3位にステアリン酸残基(炭素数18)を有するトリグリセリド(XXX型:79.1質量%、菜種極度硬化油、横関油脂工業株式会社製)25gを80℃にて0.5時間維持して完全に融解し、55℃恒温槽にて12時間冷却し、体積が増加した空隙を有する固形物を形成させ、結晶化を完了させた後、室温(25℃)状態まで冷却した。得られた固形物をほぐすことで粉末状の結晶組成物(ゆるめ嵩密度:0.2g/cm3、アスペクト比1.6、平均粒径54μm、X線回折測定回析ピーク:4.6Å、ピーク強度比:0.89)を得た。

0070

(製造実施例8):x=18
1位〜3位にステアリン酸残基(炭素数18)を有するトリグリセリド(XXX型:66.7質量%、大豆極度硬化油、横関油脂工業株式会社製)25gを80℃にて0.5時間維持して完全に融解し、55℃恒温槽にて12時間冷却し、体積が増加した空隙を有する固形物を形成させ結晶化を完了させた後、室温(25℃)状態まで冷却した。得られた固形物をほぐすことで粉末状の結晶組成物(ゆるめ嵩密度:0.3g/cm3、アスペクト比1.4、平均粒径60μm、X線回折測定回析ピーク:4.6Å、ピーク強度比:0.91)を得た。

0071

(製造実施例9):x=18
1位〜3位にステアリン酸残基(炭素数18)を有するトリグリセリド(XXX型:84.1質量%、日清ひまわり油(S)(ハイオレイックヒマワリ油)、日清オイリオグループ株式会社製)を定法により完全水素添加処理を行い水素添加物(XXX型:83.9質量%)を得た。得られたハイオレイックヒマワリ油極度硬化油25gを80℃にて0.5時間維持して完全に融解し、55℃恒温槽にて12時間冷却し、体積が増加した空隙を有する固形物を形成させ結晶化を完了させた後、室温(25℃)状態まで冷却した。得られた固形物をほぐすことで粉末状の結晶組成物(ゆるめ嵩密度:0.2g/cm3、アスペクト比1.6、平均粒径48μm、X線回折測定回析ピーク:4.6Å、ピーク強度比:0.89)を得た。

0072

(製造実施例10):x=18
1位〜3位にステアリン酸残基(炭素数18)を有するトリグリセリド(XXX型:66.7質量%、大豆極度硬化油、横関油脂工業株式会社製)18.75gと、別の1位〜3位にステアリン酸残基(炭素数18)を有するトリグリセリド(XXX型:11.1質量%、パーム極度硬化油、横関油脂工業株式会社製)6.25gを混合し、原料油脂とした(XXX型:53.6質量%)。原料油脂を80℃にて0.5時間維持して完全に融解し、55℃恒温槽にて12時間冷却し、体積が増加した空隙を有する固形物を形成させ、結晶化を完了させた後、室温(25℃)状態まで冷却した。得られた固形物をほぐすことで粉末状の結晶組成物(ゆるめ嵩密度:0.3g/cm3、アスペクト比1.4、平均粒径63μm、X線回折測定回析ピーク:4.6Å、ピーク強度比:0.78)を得た。なお、パーム極度硬化油は、XXX型トリグリセリドの含量が極めて少ないので、希釈成分として使用した(以下、同様)。

0073

(製造実施例11):x=18、(c1)シーディング法
1位〜3位にステアリン酸残基(炭素数18)を有するトリグリセリド(XXX型:96.0質量%、トリステアリン、東京化成工業株式会社製)25gを80℃にて0.5時間維持して完全に融解し、70℃恒温槽にて品温が70℃になるまで冷却した後、トリステアリン油脂粉末を原料油脂に対して、0.1質量%添加し、70℃恒温槽にて12時間静置し、体積が増加した空隙を有する固形物を形成させ、結晶化を完了させた後、室温(25℃)状態まで冷却した。得られた固形物をほぐすことで粉末状の結晶組成物(ゆるめ嵩密度:0.2g/cm3、アスペクト比2.0、平均粒径36μm、X線回折測定回析ピーク:4.6Å、ピーク強度比:0.88)を得た。

0074

(製造実施例12):x=18、(c2)テンパリング法
1位〜3位にステアリン酸残基(炭素数18)を有するトリグリセリド(XXX型:79.1質量%、菜種極度硬化油、横関油脂工業株式会社製)15gを80℃にて0.5時間維持して完全に融解し、50℃恒温槽にて0.1時間冷却した後、65℃恒温槽にて6時間静置し、体積が増加した空隙を有する固形物を形成させ、結晶化を完了させた後、室温(25℃)状態まで冷却した。得られた固形物をほぐすことで粉末状の結晶組成物(ゆるめ嵩密度:0.2g/cm3、アスペクト比1.6、平均粒径50μm、X線回折測定回析ピーク:4.6Å、ピーク強度比:0.90)を得た。

0075

(製造実施例13):x=18、(c2)テンパリング法
1位〜3位にステアリン酸残基(炭素数18)を有するトリグリセリド(XXX型:79.1質量%、菜種極度硬化油、横関油脂工業株式会社製)15gを、80℃にて0.5時間維持して完全に融解し、40℃恒温槽にて0.01時間冷却した後、65℃恒温槽にて2時間静置し、体積が増加した空隙を有する固形物を形成させ、結晶化を完了させた後、室温(25℃)状態まで冷却した。得られた固形物をほぐすことで粉末状の結晶組成物(ゆるめ嵩密度:0.2g/cm3、アスペクト比1.6、平均粒径52μm、X線回折測定回析ピーク:4.6Å、ピーク強度比:0.89)を得た。

0076

(製造実施例14):x=18、(c3)予備冷却法
1位〜3位にステアリン酸残基(炭素数18)を有するトリグリセリド(XXX型:79.1質量%、菜種極度硬化油、横関油脂工業株式会社製)25gを80℃にて0.5時間維持して完全に融解し、原料油脂を70℃になるまで70℃の恒温槽で保持し、65℃恒温槽にて8時間冷却し、体積が増加した空隙を有する固形物を形成させ、結晶化を完了させた後、室温(25℃)状態まで冷却した。得られた固形物をほぐすことで粉末状の結晶組成物(ゆるめ嵩密度:0.2g/cm3、アスペクト比1.6、平均粒径60μm、X線回折測定回析ピーク:4.6Å、ピーク強度比:0.89)を得た。

0077

(製造実施例15):x=20
1位〜3位にアラキジン酸残基(炭素数20)を有するトリグリセリド(XXX型:99.5質量%、トリアラキジン、東京化成工業株式会社製)10gを90℃にて0.5時間維持して完全に融解し、72℃恒温槽にて12時間冷却し、体積が増加した空隙を有する固形物を形成させ、結晶化を完了させた後、室温(25℃)状態まで冷却した。得られた固形物をほぐすことで粉末状の結晶組成物(ゆるめ嵩密度:0.2g/cm3、アスペクト比2.0、平均粒径42μm、X線回折測定回析ピーク:4.6Å、ピーク強度比:0.92)を得た。

0078

(製造実施例16):x=22
1位〜3位にベヘン酸残基(炭素数22)を有するトリグリセリド(XXX型:97.4質量%、トリベヘニン、東京化成工業株式会社製)10gを90℃にて0.5時間維持して完全に融解し、79℃恒温槽にて12時間冷却し、体積が増加した空隙を有する固形物を形成させ、結晶化を完了させた後、室温(25℃)状態まで冷却した。得られた固形物をほぐすことで粉末状の結晶組成物(ゆるめ嵩密度:0.2g/cm3、アスペクト比2.0、平均粒径52μm、X線回折測定回析ピーク:4.6Å、ピーク強度比:0.93)を得た。

0079

(製造実施例17):x=16、18
1位〜3位にパルミチン酸残基(炭素数16)を有するトリグリセリド(XXX型:89.7質量%、トリパルミチン、東京化成工業株式会社製)12.5gと、1位〜3位にステアリン酸残基(炭素数18)を有するトリグリセリド(XXX型:96.0質量%、トリステアリン、東京化成工業株式会社)12.5gを混合し、原料油脂とした(XXX型:93.8%)。原料油脂を80℃にて0.5時間維持して完全に融解し、55℃恒温槽にて16時間冷却し、体積が増加した空隙を有する固形物を形成させた後、ほぐすことで粉末状の結晶組成物(ゆるめ嵩密度:0.2g/cm3、アスペクト比1.6、平均粒径74μm、X線回折測定回析ピーク:4.6Å、ピーク強度比:0.90)を得た。

0080

(製造実施例18):x=16、18
1位〜3位にパルミチン酸残基(炭素数16)を有するトリグリセリド(XXX型:69.9質量%、ハードパームステアリン、日清オイリオグループ株式会社製)12.5gと、1位〜3位にステアリン酸残基(炭素数18)を有するトリグリセリド(XXX型:79.1質量%、菜種極度硬化油、横関油脂工業株式会社製)12.5gを混合し、原料油脂とした(XXX型:75.3%)。原料油脂を80℃にて0.5時間維持して完全に融解し、55℃恒温槽にて16時間冷却し、体積が増加した空隙を有する固形物を形成させた後、ほぐすことで粉末状の結晶組成物(ゆるめ嵩密度:0.3g/cm3、アスペクト比1.4、平均粒径77μm、X線回折測定回析ピーク:4.6Å、ピーク強度比:0.88)を得た。

0081

(製造比較例1):x=16
1位〜3位にパルミチン酸残基(炭素数16)を有するトリグリセリド(XXX型:89.7質量%、トリパルミチン、東京化成工業株式会社製)25gを80℃にて0.5時間維持して完全に融解し、25℃恒温槽にて4時間冷却したところ、完全に固化し(X線回折測定回析ピーク:4.1Å、ピーク強度比:0.10)、粉末状の結晶組成物には至らなかった。

0082

(製造比較例2):x=16、18
1位〜3位にパルミチン酸残基(炭素数16)を有するトリグリセリド(XXX型:69.9質量%、ハードパームステアリン、日清オイリオグループ株式会社製)12.5gと、1位〜3位にステアリン酸残基(炭素数18)を有するトリグリセリド(XXX型:11.1質量%、パーム極度硬化油、横関油脂工業株式会社製)12.5gを混合し、原料油脂とした(XXX型:39.6質量%)。原料油脂を80℃にて0.5時間維持して完全に融解し、40℃恒温槽にて12時間冷却したところ、完全に固化し(X線回折測定回析ピーク:4.2Å、ピーク強度比:0.12)、粉末状の結晶組成物には至らなかった。

0083

(製造比較例3):x=18
1位〜3位にステアリン酸残基(炭素数18)を有するトリグリセリド(XXX型:79.1質量%、菜種極度硬化油、横関油脂工業株式会社製)25gを80℃にて0.5時間維持して完全に融解し、40℃恒温槽にて3時間冷却したところ、完全に固化し(X線回折測定回析ピーク:4.1Å、ピーク強度比:0.11)、粉末状の結晶組成物には至らなかった。

0084

(製造比較例4):x=18
1位〜3位にステアリン酸残基(炭素数18)を有するトリグリセリド(XXX型:66.7質量%、大豆極度硬化油、横関油脂工業株式会社製)12.5gと、別の1位〜3位にステアリン酸残基(炭素数18)を有するトリグリセリド(XXX型:11.1質量%、パーム極度硬化油、横関油脂工業株式会社製)12.5gを混合し、原料油脂とした(XXX型:39.7質量%)。原料油脂を80℃にて0.5時間維持して完全に融解し、55℃恒温槽にて12時間冷却したところ、完全に固化し(X線回折測定回析ピーク:4.2Å、ピーク強度比:0.12)、粉末状の結晶組成物には至らなかった。

0085

上記製造実施例及び製造比較例の結果を表4にまとめる。

実施例

0086

ページトップへ

この技術を出願した法人

この技術を発明した人物

ページトップへ

関連する挑戦したい社会課題

関連する公募課題

該当するデータがありません

ページトップへ

おススメ サービス

おススメ astavisionコンテンツ

新着 最近 公開された関連が強い技術

この 技術と関連性が強い法人

関連性が強い法人一覧

この 技術と関連性が強い人物

関連性が強い人物一覧

この 技術と関連する社会課題

関連する挑戦したい社会課題一覧

この 技術と関連する公募課題

該当するデータがありません

astavision 新着記事

サイト情報について

本サービスは、国が公開している情報(公開特許公報、特許整理標準化データ等)を元に構成されています。出典元のデータには一部間違いやノイズがあり、情報の正確さについては保証致しかねます。また一時的に、各データの収録範囲や更新周期によって、一部の情報が正しく表示されないことがございます。当サイトの情報を元にした諸問題、不利益等について当方は何ら責任を負いかねることを予めご承知おきのほど宜しくお願い申し上げます。

主たる情報の出典

特許情報…特許整理標準化データ(XML編)、公開特許公報、特許公報、審決公報、Patent Map Guidance System データ