図面 (/)

技術 回転機異常検出装置および該方法ならびに回転機

出願人 株式会社神戸製鋼所
発明者 荒木要高橋英二高木秀剛林雅人
出願日 2016年10月6日 (4年2ヶ月経過) 出願番号 2016-197684
公開日 2018年4月12日 (2年8ヶ月経過) 公開番号 2018-059821
状態 特許登録済
技術分野 機械的振動・音波の測定
主要キーワード 非高調波 総和処理 サブスペクトル 接触発生 断面長円形 最大一致度 モデル値 接触検出装置
関連する未来課題
重要な関連分野

この項目の情報は公開日時点(2018年4月12日)のものです。
また、この項目は機械的に抽出しているため、正しく解析できていない場合があります

図面 (17)

課題

本発明は、異常をより高い信頼度で判定できる回転機異常検出装置、該方法およびこれを備える回転機を提供する。

解決手段

本発明の回転機異常検出装置ADは、第1および第2回転体を少なくとも備える回転機Mにおける異常を、その振動の測定データにおける周波数スペクトルに基づく所定の特徴量から検出する装置であって、前記異常が有ると判定された場合に、周波数スペクトルに基づいて前記異常の判定がノイズに因るか否かを判定し、この判定によって前記ノイズに因らないと判定した場合に、前記異常を最終的に異常とする。

概要

背景

例えば、電動機、発電機、圧縮機およびポンプ等の回転機は、所定の軸に対し軸回りに回転する回転体を備えている。このような回転機は、様々なプラントで利用されており、その正常な稼働状態を確保するために、その異常が検出されている。その異常を検出するために、例えば、特許文献1に開示された診断装置や特許文献2に開示された異常接触検出装置がある。

概要

本発明は、異常をより高い信頼度で判定できる回転機異常検出装置、該方法およびこれを備える回転機を提供する。本発明の回転機異常検出装置ADは、第1および第2回転体を少なくとも備える回転機Mにおける異常を、その振動の測定データにおける周波数スペクトルに基づく所定の特徴量から検出する装置であって、前記異常が有ると判定された場合に、周波数スペクトルに基づいて前記異常の判定がノイズに因るか否かを判定し、この判定によって前記ノイズに因らないと判定した場合に、前記異常を最終的に異常とする。

目的

本発明は、上述の事情に鑑みて為された発明であり、その目的は、異常をより高い信頼度で判定できる回転機異常検出装置および回転機異常検出方法ならびに前記回転機異常検出装置を備える回転機を提供する

効果

実績

技術文献被引用数
0件
牽制数
0件

この技術が所属する分野

ライセンス契約や譲渡などの可能性がある特許掲載中! 開放特許随時追加・更新中 詳しくはこちら

請求項1

正常状態において互いに所定の間隔を空けて係合しつつ所定の各軸に対し軸回りに回転する第1および第2回転体を少なくとも備える回転機における異常を検出する回転機異常検出装置であって、前記第1および第2回転体のうちの少なくとも一方に起因して生じた振動を測定する振動測定部と、前記振動測定部で測定した測定データの周波数スペクトルを求めるスペクトル処理部と、前記スペクトル処理部で求めた周波数スペクトルに基づいて所定の周波数成分に関わる所定の特徴量を求める特徴量処理部と、前記特徴量処理部で求めた所定の特徴量に基づいて前記回転機における異常の有無を判定する異常判定部と、前記異常判定部によって異常が有ると判定された場合に、前記スペクトル処理部で求めた周波数スペクトルに基づいて前記異常の判定がノイズに因るか否かを判定するノイズ判定部とを備え、前記異常判定部は、さらに、前記ノイズ判定部が前記ノイズに因らないと判定した場合に、前記判定した異常を最終的に異常とすることを特徴とする回転機異常検出装置。

請求項2

前記異常判定部によって異常が無いと判定された場合において前記振動測定部で測定した測定データの周波数スペクトルを正常時周波数スペクトルとして記憶する記憶部をさらに備え、前記ノイズ判定部は、前記スペクトル処理部で求めた周波数スペクトルと前記記憶部に記憶された正常時周波数スペクトルと差に基づいて前記異常の判定がノイズに因るか否かを判定することを特徴とする請求項1に記載の回転機異常検出装置。

請求項3

前記ノイズ判定部は、前記差における最大値から前記差における平均値を減算した減算結果に基づいて前記異常の判定がノイズに因るか否かを判定することを特徴とする請求項2に記載の回転機異常検出装置。

請求項4

前記ノイズ判定部は、前記差における最大値から前記差における中間値を減算した減算結果に基づいて前記異常の判定がノイズに因るか否かを判定することを特徴とする請求項2に記載の回転機異常検出装置。

請求項5

前記特徴量処理部は、前記第1回転体の第1歯数および第1回転周波数それぞれをMA[個]およびVA[Hz]とし、前記第2回転体の第2歯数をMB[個]とし、前記第1歯数MAと前記第2歯数MBとの最小公倍数をXABとし、前記第1回転周波数VAを前記第1歯数MAで除した基本波歯合周波数VA/MAをf1[Hz]とし、前記基本波歯合周波数f1に対するn次高調波歯合周波数(nは2以上の整数)をfn[Hz]とする場合に、前記周波数スペクトルから、前記基本波歯合周波数f1の基本波成分F1および前記最小公倍数XABまでのn次高調波歯合周波数fn(n=2〜XAB)のn次高調波成分Fnを求め、前記求めた基本波成分F1およびn次高調波成分Fnに基づいて前記所定の特徴量を求めることを特徴とする請求項1ないし請求項4のいずれか1項に記載の回転機異常検出装置。

請求項6

前記スペクトル処理部は、互いに異なる第1および第2期間それぞれで測定された第1および第2測定データの第1および第2周波数スペクトルそれぞれを求め、前記特徴量処理部は、前記第1および第2周波数スペクトルそれぞれから、前記第1および第2期間それぞれの前記基本波成分F1および前記n次高調波成分Fnを求め、これら求めた前記第1および第2期間それぞれの前記基本波成分F1および前記n次高調波成分Fnにおける変化量を前記所定の特徴量として求めることを特徴とする請求項5に記載の回転機異常検出装置。

請求項7

前記特徴量処理部は、これら求めた前記第1および第2期間それぞれの前記基本波成分F1および前記n次高調波成分Fnにおける各成分ごとの差分の2乗和を前記変化量として求めることを特徴とする請求項6に記載の回転機異常検出装置。

請求項8

前記特徴量処理部は、前記周波数スペクトルから、前記基本波歯合周波数f1および前記最小公倍数XABまでのn次高調波歯合周波数fn(n=2〜XAB)における互いに隣接した周波数間に在る所定の周波数gの非高調波成分Gをさらに求め、前記求めた基本波成分F1、n次高調波成分Fnおよび非高調波成分Gに基づいて前記所定の特徴量を求めることを特徴とする請求項5に記載の回転機異常検出装置。

請求項9

前記第1および第2回転体における異常の態様ごとに、前記異常の態様に対応した前記基本波成分F1および前記n次高調波成分Fnの各モデル値モデル情報として予め記憶するモデル情報記憶部をさらに備え、前記特徴量処理部は、前記異常の態様ごとに、前記求めた基本波成分F1およびn次高調波成分Fnと前記モデル情報との一致の程度を表す一致度を求め、前記異常の態様ごとに求めた一致度の中から最大の一致度を前記所定の特徴量として求めることを特徴とする請求項5に記載の回転機異常検出装置。

請求項10

前記異常判定部は、前記特徴量処理部で前記異常の態様ごとに求めた一致度の中から最大の一致度を持つ異常の態様で前記回転機における異常が有ると判定することを特徴とする請求項9に記載の回転機異常検出装置。

請求項11

前記第1および第2回転体における異常の態様ごとに、前記異常の態様に対応した前記基本波成分F1および前記n次高調波成分Fnの各モデル値をモデル情報として予め記憶するモデル情報記憶部をさらに備え、前記スペクトル処理部は、互いに異なる第1および第2期間それぞれで測定された第1および第2測定データの第1および第2周波数スペクトルそれぞれを求め、前記特徴量処理部は、前記求めた基本波成分F1およびn次高調波成分Fnの総和を求める総和処理、前記第1および第2周波数スペクトルそれぞれから、前記第1および第2期間それぞれの前記基本波成分F1および前記n次高調波成分Fnを求め、これら求めた前記第1および第2期間それぞれの前記基本波成分F1および前記n次高調波成分Fnにおける変化量を求める変化量処理、前記周波数スペクトルから、前記基本波歯合周波数f1および前記最小公倍数XABまでのn次高調波歯合周波数fn(n=2〜XAB)における互いに隣接した各周波数間に在る所定の各周波数giの各非高調波成分Gi(iは1から(n−1)までの範囲内の整数)をさらに求め、前記求めた基本波成分F1および前記n次高調波成分Fnの総和を前記求めた非高調波成分Giの総和で除した成分総和比を求める成分総和比処理、前記異常の態様ごとに、前記求めた基本波成分F1およびn次高調波成分Fnと前記モデル情報との一致の程度を表す一致度を求め、前記異常の態様ごとに求めた一致度の中から最大の一致度を求める最大一致度処理のうちの複数の処理を行い、前記行った複数の処理の処理結果に基づいて前記所定の特徴量を求めることを特徴とする請求項5に記載の回転機異常検出装置。

請求項12

前記スペクトル処理部は、ノイズを除去するためのハイパスフィルタと、前記振動測定部で測定した、前記ハイパスフィルタを介した測定データの周波数スペクトルを求めるサブスペクトル処理部とを備えることを特徴とする請求項1ないし請求項11のいずれか1項に記載の回転機異常検出装置。

請求項13

正常状態において互いに所定の間隔を空けて係合しつつ所定の各軸に対し軸回りに回転する第1および第2回転体を備える回転機における異常を検出する回転機異常検出方法であって、前記第1および第2回転体のうちの少なくとも一方に起因して生じた振動を測定する振動測定工程と、前記振動測定工程で測定した測定データの周波数スペクトルを求めるスペクトル処理工程と、前記スペクトル処理工程で求めた周波数スペクトルに基づいて所定の周波数成分に関わる所定の特徴量を求める特徴量処理工程と、前記特徴量処理工程で求めた特徴量に基づいて前記回転機における異常の有無を判定する異常判定工程と、前記スペクトル処理工程で求めた周波数スペクトルに基づいて前記振動測定工程で測定した測定データに重畳するノイズの有無を判定するノイズ判定工程とを備え、前記ノイズ判定工程は、前記異常判定工程によって異常が有ると判定された場合に実施され、前記異常判定工程は、さらに、前記ノイズ判定工程によって前記ノイズが無いと判定された場合に、前記判定した異常を最終的に異常とすることを特徴とする回転機異常検出方法。

請求項14

請求項1ないし請求項13のいずれか1項に記載の回転機異常検出装置を備える回転機。

技術分野

0001

本発明は、回転機の異常を検出する回転機異常検出装置および回転機異常検出方法ならびに前記回転機異常検出装置を備える回転機に関する。

背景技術

0002

例えば、電動機、発電機、圧縮機およびポンプ等の回転機は、所定の軸に対し軸回りに回転する回転体を備えている。このような回転機は、様々なプラントで利用されており、その正常な稼働状態を確保するために、その異常が検出されている。その異常を検出するために、例えば、特許文献1に開示された診断装置や特許文献2に開示された異常接触検出装置がある。

先行技術

0003

特開平5−231361号公報
特開平9−133577号公報

発明が解決しようとする課題

0004

ところで、センサの出力に基づいて回転機の異常を検出する場合、前記センサの出力にノイズ混入すると、誤検出してしまう虞がある。前記センサの出力に常時に重畳するノイズの場合には、前記ノイズの特徴がその調査によって判明できるので、その判明した前記ノイズの特徴に応じたフィルタによって前記センサの出力をフィルタリング濾波)することで前記ノイズを除去できる。しかしながら、常時ではないときどき生じるノイズは、必ずしも再現性が無く、その特徴が掴み難く、したがって、このようなノイズを除去することが難しい。この結果、誤検出してしまう虞がある。

0005

本発明は、上述の事情に鑑みて為された発明であり、その目的は、異常をより高い信頼度で判定できる回転機異常検出装置および回転機異常検出方法ならびに前記回転機異常検出装置を備える回転機を提供することである。

課題を解決するための手段

0006

本発明者は、種々検討した結果、上記目的は、以下の本発明により達成されることを見出した。すなわち、本発明の一態様にかかる回転機異常検出装置は、正常状態において互いに所定の間隔を空けて係合しつつ所定の各軸に対し軸回りに回転する第1および第2回転体を少なくとも備える回転機における異常を検出する回転機異常検出装置であって、前記第1および第2回転体のうちの少なくとも一方に起因して生じた振動を測定する振動測定部と、前記振動測定部で測定した測定データの周波数スペクトルを求めるスペクトル処理部と、前記スペクトル処理部で求めた周波数スペクトルに基づいて所定の周波数成分に関わる所定の特徴量を求める特徴量処理部と、前記特徴量処理部で求めた所定の特徴量に基づいて前記回転機における異常の有無を判定する異常判定部と、前記異常判定部によって異常が有ると判定された場合に、前記スペクトル処理部で求めた周波数スペクトルに基づいて前記異常の判定がノイズに因るか否かを判定するノイズ判定部とを備え、前記異常判定部は、さらに、前記ノイズ判定部が前記ノイズに因らないと判定した場合に、前記判定した異常を最終的に異常とすることを特徴とする。好ましくは、上述の回転機異常検出装置において、前記スペクトル処理部は、前記振動測定部で測定した測定データのRMS(Root Mean Square、二乗平均平方根)を求め、この求めた測定データのRMSをフーリエ変換(好ましくは高速フーリエ変換)することによって前記測定データのA−周波数スペクトル(A−パワースペクトル)を求めるA−サブスペクトル処理部と、前記振動測定部で測定した測定データをそのままフーリエ変換(好ましくは高速フーリエ変換)することによって前記測定データのB−周波数スペクトル(B−パワースペクトル)を求めるB−サブスペクトル処理部とを備え、前記特徴量処理部は、前記A−サブスペクトル処理部で求めたA−周波数スペクトルに基づいて前記所定の特徴量を求め、前記ノイズ判定部は、前記B−サブスペクトル処理部で求めたB−周波数スペクトルに基づいて前記異常の判定がノイズに因るか否かを判定する。好ましくは、上述の回転機異常検出装置において、前記スペクトル処理部は、前記振動測定部で測定した測定データのエンベロープ包絡線)を求め、この求めた測定データのエンベロープをフーリエ変換(好ましくは高速フーリエ変換)することによって前記測定データのC−周波数スペクトル(C−パワースペクトル)を求めるC−サブスペクトル処理部と、前記振動測定部で測定した測定データをそのままフーリエ変換(好ましくは高速フーリエ変換)することによって前記測定データのB−周波数スペクトル(B−パワースペクトル)を求めるB−サブスペクトル処理部とを備え、前記特徴量処理部は、前記C−サブスペクトル処理部で求めたC−周波数スペクトルに基づいて前記所定の特徴量を求め、前記ノイズ判定部は、前記B−サブスペクトル処理部で求めたB−周波数スペクトルに基づいて前記異常の判定がノイズに因るか否かを判定する。

0007

このような回転機異常検出装置は、前記ノイズ判定部によって前記ノイズに因らないと判定された場合に、前記異常判定部によって判定された異常を最終的に異常とするので、前記ノイズに因る異常の判定と前記ノイズに因らない異常の判定とを弁別でき、異常をより高い信頼度で判定できる。そして、上記回転機異常検出装置は、前記異常判定部によって異常が有ると判定された場合に、前記ノイズ判定部が判定の処理を実施するので、したがって、前記異常判定部によって異常が無いと判定された場合には、前記ノイズ判定部が判定の処理を実施しないから、その分のデータ処理量を低減できる。

0008

また、他の一態様では、上述の回転機異常検出装置において、前記異常判定部によって異常が無いと判定された場合において前記振動測定部で測定した測定データの周波数スペクトルを正常時周波数スペクトルとして記憶する記憶部をさらに備え、前記ノイズ判定部は、前記スペクトル処理部で求めた周波数スペクトルと前記記憶部に記憶された正常時周波数スペクトルと差に基づいて前記異常の判定がノイズに因るか否かを判定することを特徴とする。好ましくは、上述の回転機異常検出装置において、前記振動測定部は、予め設定された所定のサンプリング間隔で前記振動を測定し、前記振動測定部で前記所定のサンプリング間隔で測定した各測定データに対し、前記スペクトル処理部は、前記周波数スペクトルを求め、前記特徴量処理部は、前記所定の特徴量を求め、前記異常判定部は、前記異常の有無を判定し、前記記憶部は、前記異常判定部によって前記異常が無いと直近に判定された場合において前記振動測定部で測定した測定データの周波数スペクトルを正常時周波数スペクトルとして記憶(更新して記憶)する。

0009

このような回転機異常検出装置は、正常時周波数スペクトルを基準に前記異常の判定がノイズに因るか否かを判定するので、常時ではなくときどき生じるノイズをより的確に捉えることができ、異常をより高い信頼度で判定できる。特に、直近の正常時周波数スペクトルを基準に前記異常の判定がノイズに因るか否かを判定することで、正常時周波数スペクトルが変化する場合でも、常時ではなくときどき生じるノイズをさらにより的確に捉えることができる。

0010

また、他の一態様では、上述の回転機異常検出装置において、前記ノイズ判定部は、前記差における最大値から前記差における平均値を減算した減算結果(第1減算結果)に基づいて前記異常の判定がノイズに因るか否かを判定することを特徴とする。好ましくは、上述の回転機異常検出装置において、前記ノイズ判定部は、前記第1減算結果と予め設定した閾値(第1判定閾値)とを比較し、前記第1減算結果が前記第1判定閾値より大きい場合(または前記第1減算結果が前記第1判定閾値以上である場合)には前記異常の判定がノイズに因ると判定し、前記第1減算結果が前記第1判定閾値以下である場合(または前記第1減算結果が前記第1判定閾値未満である場合)には前記異常の判定がノイズに因らないと判定する。

0011

上記回転機異常検出装置は、前記第1減算結果に基づいて前記異常の判定がノイズに因るか否かを判定するので、図6図7図8Aおよび図9を用いて後述する特性を利用でき、異常をより高い信頼度で判定できる。

0012

また、他の一態様では、上述の回転機異常検出装置において、前記ノイズ判定部は、前記差における最大値から前記差における中間値メディアン)を減算した減算結果(第2減算結果)に基づいて前記異常の判定がノイズに因るか否かを判定することを特徴とする。好ましくは、上述の回転機異常検出装置において、前記ノイズ判定部は、前記第2減算結果と予め設定した閾値(第2判定閾値)とを比較し、前記第2減算結果が前記第2判定閾値より大きい場合(または前記第2減算結果が前記第2判定閾値以上である場合)には前記異常の判定がノイズに因ると判定し、前記第2減算結果が前記第2判定閾値以下である場合(または前記第2減算結果が前記第2判定閾値未満である場合)には前記異常の判定がノイズに因らないと判定する。

0013

上記回転機異常検出装置は、前記第2減算結果に基づいて前記異常の判定がノイズに因るか否かを判定するので、図6図7および図8Bを用いて後述する特性を利用でき、異常をより高い信頼度で判定できる。

0014

また、他の一態様では、これら上述の回転機異常検出装置において、前記特徴量処理部は、前記第1回転体の第1歯数および第1回転周波数それぞれをMA[個]およびVA[Hz]とし、前記第2回転体の第2歯数をMB[個]とし、前記第1歯数MAと前記第2歯数MBとの最小公倍数をXABとし、前記第1回転周波数VAを前記第1歯数MAで除した基本波歯合周波数VA/MAをf1[Hz]とし、前記基本波歯合周波数f1に対するn次高調波歯合周波数(nは2以上の整数)をfn[Hz]とする場合に、前記周波数スペクトルから、前記基本波歯合周波数f1の基本波成分F1および前記最小公倍数XABまでのn次高調波歯合周波数fn(n=2〜XAB)のn次高調波成分Fnを求め、前記求めた基本波成分F1およびn次高調波成分Fnに基づいて前記所定の特徴量を求めることを特徴とする。好ましくは、上述の回転機異常検出装置において、前記振動測定部は、可聴帯域の振動および超音波帯域の振動のうちの少なくとも一方の振動を測定する。好ましくは、上述の回転機異常検出装置において、前記特徴量処理部は、前記求めた基本波成分F1およびn次高調波成分Fnの総和を前記所定の特徴量として求める。好ましくは、上述の回転機異常検出装置において、前記異常判定部は、前記特徴量処理部で求めた特徴量が予め設定された所定の閾値以上か否かに応じて前記回転機における異常の有無を判定する。

0015

このような回転機異常検出装置は、第1回転周波数VAを第1歯数MAで除した周波数VA/MAを基本波歯合周波数f1[Hz]とし、第1歯数MAと第2歯数MBとの最小公倍数をXABとし、前記基本波歯合周波数f1の基本波成分F1および前記最小公倍数XABまでの、前記基本波歯合周波数f1に対するn次高調波歯合周波数fn(n=2〜XAB)のn次高調波成分Fnを周波数スペクトルから求めるので、第1および第2回転体における接触の全ての組合せにかかる周波数成分F1、Fnを求めることができる。そして、上記回転機異常検出装置は、これら接触の全ての組合せにかかる周波数成分F1、Fnに基づいて接触の有無を判定するので、より高精度に異常を判定できる。

0016

また、他の一態様では、上述の回転機異常検出装置において、前記スペクトル処理部は、互いに異なる第1および第2期間それぞれで測定された第1および第2測定データの第1および第2周波数スペクトルそれぞれを求め、前記特徴量処理部は、前記第1および第2周波数スペクトルそれぞれから、前記第1および第2期間それぞれの前記基本波成分F1および前記n次高調波成分Fnを求め、これら求めた前記第1および第2期間それぞれの前記基本波成分F1および前記n次高調波成分Fnにおける変化量を前記所定の特徴量として求めることを特徴とする。好ましくは、上述の回転機異常検出装置において、前記特徴量処理部は、これら求めた前記第1および第2期間それぞれの前記基本波成分F1および前記n次高調波成分Fnにおける各成分ごとの差分の2乗和を前記変化量として求める。

0017

異常として接触が発生した時点の前後では、振動測定部の出力は、比較的大きく変化するが、非接触の場合でも例えば回転機の運転条件が変化すると、振動測定部の出力は、徐々に変化する場合がある。前記第1および第2期間それぞれの前記基本波成分F1および前記n次高調波成分Fnにおける変化量、特にそれらにおける各成分ごとの差分の2乗和は、接触の周期性の変化を表すことから、非接触の状態から接触が発生した時点や、接触の状態自体が変化した時点で比較的大きくなる特徴を持っている。上記回転機異常検出装置は、このような前記変化量を前記所定の特徴量として求めているので、非接触の状態から接触が発生した時点や、接触の状態自体が変化した時点を、より高精度に検出できる。また、バックグラウンドノイズが比較的大きい場合でも、そのトレンド(傾向)に変化が無い場合には、前記変化量も大きくならないので、上記回転機異常検出装置は、過検出を少なくできる。

0018

また、他の一態様では、上述の回転機異常検出装置において、前記特徴量処理部は、前記周波数スペクトルから、前記基本波歯合周波数f1および前記最小公倍数XABまでのn次高調波歯合周波数fn(n=2〜XAB)における互いに隣接した周波数間に在る所定の周波数gの非高調波成分Gをさらに求め、前記求めた基本波成分F1、n次高調波成分Fnおよび非高調波成分Gに基づいて前記所定の特徴量を求めることを特徴とする。好ましくは、上述の回転機異常検出装置において、前記基本波歯合周波数f1および前記n次高調波歯合周波数fnから最も離れた周波数を求める観点から、前記非高調波成分Gは、前記周波数間の中央に当たる周波数の成分である(Gk=(Fk+Fk+1)/2、k=1〜XAB−1の整数)。好ましくは、上述の回転機異常検出装置において、前記特徴量処理部は、前記周波数スペクトルから、前記基本波歯合周波数f1および前記最小公倍数XABまでのn次高調波歯合周波数fn(n=2〜XAB)における互いに隣接した各周波数間に在る所定の各周波数gkの各非高調波成分Gk(kは1から(XAB−1)までの範囲内の整数)をさらに求め、前記求めた基本波成分F1および前記n次高調波成分Fnの総和を前記求めた非高調波成分Gkの総和で除した成分総和比を前記所定の特徴量として求める。

0019

振動測定部の出力には、単発電気ノイズ等が重畳する場合がある。上記回転機異常検出装置は、前記非高調波成分Gもさらに考慮して前記所定の特徴量を求めるので、このような単発の電気ノイズ等の重畳が異常の検出に与える影響を回避でき、周期性の無いノイズを低減できる。

0020

また、他の一態様では、上述の回転機異常検出装置において、前記第1および第2回転体における異常の態様ごとに、前記異常の態様に対応した前記基本波成分F1および前記n次高調波成分Fnの各モデル値モデル情報として予め記憶するモデル情報記憶部をさらに備え、前記特徴量処理部は、前記異常の態様ごとに、前記求めた基本波成分F1およびn次高調波成分Fnと前記モデル情報との一致の程度を表す一致度を求め、前記異常の態様ごとに求めた一致度の中から最大の一致度を前記所定の特徴量として求めることを特徴とする。

0021

このような回転機異常検出装置は、前記異常の態様ごとに求めた一致度の中から最大の一致度を前記所定の特徴量として求めるので、電気的なパスルノイズや、外部からの衝撃による単発で比較的大きな振幅を持つノイズと、例えば接触等の異常とを弁別でき、より高精度に異常を検出できる。

0022

また、他の一態様では、上述の回転機異常検出装置において、前記異常判定部は、前記特徴量処理部で前記異常の態様ごとに求めた一致度の中から最大の一致度を持つ異常の態様で前記回転機における異常が有ると判定することを特徴とする。

0023

このような回転機異常検出装置は、異常の態様を検出できる。

0024

また、他の一態様では、上述の回転機異常検出装置において、前記第1および第2回転体における異常の態様ごとに、前記異常の態様に対応した前記基本波成分F1および前記n次高調波成分Fnの各モデル値をモデル情報として予め記憶するモデル情報記憶部をさらに備え、前記スペクトル処理部は、互いに異なる第1および第2期間それぞれで測定された第1および第2測定データの第1および第2周波数スペクトルそれぞれを求め、前記特徴量処理部は、前記求めた基本波成分F1およびn次高調波成分Fnの総和を求める総和処理、前記第1および第2周波数スペクトルそれぞれから、前記第1および第2期間それぞれの前記基本波成分F1および前記n次高調波成分Fnを求め、これら求めた前記第1および第2期間それぞれの前記基本波成分F1および前記n次高調波成分Fnにおける変化量を求める変化量処理、前記周波数スペクトルから、前記基本波歯合周波数f1および前記最小公倍数XABまでのn次高調波歯合周波数fn(n=2〜XAB)における互いに隣接した各周波数間に在る所定の各周波数giの各非高調波成分Gi(iは1から(n−1)までの範囲内の整数)をさらに求め、前記求めた基本波成分F1および前記n次高調波成分Fnの総和を前記求めた非高調波成分Giの総和で除した成分総和比を求める成分総和比処理、前記異常の態様ごとに、前記求めた基本波成分F1およびn次高調波成分Fnと前記モデル情報との一致の程度を表す一致度を求め、前記異常の態様ごとに求めた一致度の中から最大の一致度を求める最大一致度処理のうちの複数の処理を行い、前記行った複数の処理の処理結果に基づいて前記所定の特徴量を求めることを特徴とする。

0025

このような回転機異常検出装置は、前記行った複数の処理の処理結果に基づいて前記所定の特徴量を求めるので、より高精度に異常を検出できる。

0026

また、他の一態様では、これら上述の回転機異常検出装置において、前記スペクトル処理部は、ノイズを除去するためのハイパスフィルタと、前記振動測定部で測定した、前記ハイパスフィルタを介した測定データの周波数スペクトルを求めるサブスペクトル処理部とを備えることを特徴とする。

0027

このような回転機異常検出装置は、前記ハイパスフィルタを備えるので、比較的低周波数帯域分布するバックグラウンドノイズを除去できる。したがって、上記回転機異常検出装置は、より高精度に異常を検出できる。

0028

また、本発明の他の一態様にかかる回転機異常検出方法において、正常状態において互いに所定の間隔を空けて係合しつつ所定の各軸に対し軸回りに回転する第1および第2回転体を備える回転機における異常を検出する回転機異常検出方法であって、前記第1および第2回転体のうちの少なくとも一方に起因して生じた振動を測定する振動測定工程と、前記振動測定工程で測定した測定データの周波数スペクトルを求めるスペクトル処理工程と、前記スペクトル処理工程で求めた周波数スペクトルに基づいて所定の周波数成分に関わる所定の特徴量を求める特徴量処理工程と、前記特徴量処理工程で求めた特徴量に基づいて前記回転機における異常の有無を判定する異常判定工程と、前記スペクトル処理工程で求めた周波数スペクトルに基づいて前記振動測定工程で測定した測定データに重畳するノイズの有無を判定するノイズ判定工程とを備え、前記ノイズ判定工程は、前記異常判定工程によって異常が有ると判定された場合に実施され、前記異常判定工程は、さらに、前記ノイズ判定工程によって前記ノイズが無いと判定された場合に、前記判定した異常を最終的に異常とすることを特徴とする。

0029

このような回転機異常検出方法は、前記ノイズ判定工程によって前記ノイズが無いと判定された場合に、前記異常判定工程によって判定された異常を最終的に異常とするので、前記ノイズを含む測定データに基づく異常の判定と前記ノイズを含まない測定データに基づく異常の判定とを弁別でき、異常をより高い信頼度で判定できる。そして、上記回転機異常検出方法は、前記異常判定工程によって異常が有ると判定された場合に、前記ノイズ判定工程を実施するので、したがって、前記異常判定工程によって異常が無いと判定された場合には、前記ノイズ判定工程が実施されないから、その分のデータ処理量を低減できる。

0030

また、本発明は、他の一態様では、これら上述のいずれかの回転機異常検出装置を備える回転機である。

0031

これによれば、これら上述のいずれかの回転機異常検出装置を備える回転機が提供され、このような回転機は、これら上述のいずれかの回転機異常検出装置を備えるので、異常をより高い信頼度で判定できる。

発明の効果

0032

本発明にかかる回転機異常検出装置および回転機異常検出方法は、異常をより高い信頼度で判定できる。本発明によれば、このような回転機異常検出装置を備える回転機が提供できる。

図面の簡単な説明

0033

実施形態における回転機およびこれに備えられた回転機異常検出装置の構成を示すブロック図である。
図1に示す回転機における一例の回転体の上面模式図である。
図2に示す回転体の断面模式図である。
比較的小さなバックグラウンドノイズの場合におけるスペクトル処理を説明するための図である。
比較的大きいバックグラウンドノイズの場合におけるスペクトル処理を説明するための図である。
正常時および異常時における各B−周波数スペクトルならびに正常時およびノイズ発生時における各B−周波数スペクトルを示す図である。
正常時および異常時における各B−周波数スペクトルの差ならびに正常時およびノイズ発生時における各B−周波数スペクトルの差を示す図である。
最大値と平均値との差および最大値と中間値との差を示す図である。
異常時およびノイズ発生時における最大値と平均値との各差を示す図である。
実施形態における回転機異常検出装置の動作を示すフローチャートである。
第2態様の特徴量を説明するための図である。
異常発生前後における周波数スペクトルの時間変化を示す図である。
第3態様の特徴量を説明するための図である。
第4態様の特徴量に関し、モデル情報の一例を示す図である。
図14に示すモデル情報の求め方を説明するための図である。
第5態様の特徴量を用いた異常の判定結果の一例を示す図である。

実施例

0034

以下、本発明にかかる実施の一形態を図面に基づいて説明する。なお、各図において同一の符号を付した構成は、同一の構成であることを示し、適宜、その説明を省略する。本明細書において、総称する場合には添え字を省略した参照符号で示し、個別の構成を指す場合には添え字を付した参照符号で示す。

0035

図1は、実施形態における回転機およびこれに備えられた回転機異常検出装置の構成を示すブロック図である。図2は、図1に示す回転機における一例の回転体の上面模式図である。図3は、図2に示す回転体の断面模式図である。図4は、比較的小さいバックグラウンドノイズの場合におけるスペクトル処理を説明するための図である。図4Aは、AEセンサで測定された測定データを示し、図4Bは、そのRMSを示し、図4Cは、その周波数スペクトルを示す。図4Aの横軸は、時間(測定開始からの経過時間)であり、その縦軸は、センサ出力出力レベルである。図4Bの横軸は、時間(測定開始からの経過時間)であり、その縦軸は、RMS値である。図4Cの横軸は、周波数であり、その縦軸は、成分値である。図5は、比較的大きいバックグラウンドノイズの場合におけるスペクトル処理を説明するための図である。図5Aは、AEセンサで測定された測定データを示し、図5Bは、ハイパスフィルタ透過後の測定データを示す。図5AおよびBの各横軸は、時間(測定開始からの経過時間)であり、その各縦軸は、センサ出力の出力レベルである。

0036

実施形態における回転機(回転機械)は、所定の軸に対し軸回りに回転する回転体を備える装置であり、さらに、本実施形態では、前記回転体の異常を検出するための回転機異常検出装置を備える。より具体的には、例えば、図1に示すように、回転機Mは、第1および第2回転体を少なくとも有する回転部RBと、回転機異常検出装置ADとを備え、この回転機異常検出装置ADは、例えば、振動測定部1と、異常検出部22を持つ制御処理部2とを備える。そして、図1に示す例では、前記回転機異常検出装置ADは、さらに、入力部3と、出力部4と、インターフェース部(IF部)5と、記憶部6とを備えている。

0037

本実施形態の回転機異常検出装置ADが組み込まれた回転機Mは、例えば、電動機、発電機、圧縮機およびポンプ等の、回転体RBを含む任意の装置であって良いが、ここでは、一例として、回転機Mが圧縮機である場合について以下に説明する。

0038

この圧縮機としての回転機Mは、前記第1および第2回転体を少なくとも有し、流体を圧送する圧縮機として機能する回転部RBと、前記回転体を回転駆動するための図略の周辺装置とを備える。回転部RBは、例えば、図2および図3に示すように、正常状態において所定のギャップ間隙)Gを空けて互いに咬合するように係合しつつ所定の各軸に対し軸回りに回転する一対の第1および第2回転体81−1、81−2と、これら第1および第2回転体81−1、81−2を収容するケーシング82とを備える。

0039

第1回転体81−1は、圧縮機における雄ロータであり、大略、第1回転体本体811−1と、第1回転体本体の周面に形成された複数の凸部812−1と、この第1回転体本体811−1に同軸で設けられた第1回転軸813−1とを備える。このような第1回転体81−1は、第1回転軸813−1を中心に例えば反時計回り(矢印A方向)に回転駆動される。第2回転体81−2は、圧縮機における雌ロータであり、大略、第2回転体本体811−2と、第2回転体本体の周面に形成された複数の凹部812−2と、この第2回転体本体811−2に同軸で設けられた第2回転軸813−2とを備える。このような第2回転体81−2は、第2回転軸813−2を中心に例えば時計回り(矢印B方向)に回転駆動される。

0040

以下、複数の凸部812−1とは、第1回転体81−1の周面に形成された複数の凸部812−1を意味し、凸部812−1とは、それら複数の凸部812−1のいずれかを意味する。複数の凹部812−2とは、第2回転体81−2の周面に形成された複数の凹部812−2を意味し、凹部812−2とは、それら複数の凹部812−2のいずれかを意味する。

0041

第1回転体81−1が反時計回りに回転し、かつ、第2回転体81−2が時計回りに回転することによって、複数の凸部812−1および複数の凹部812−2の中で、対応する凸部812−1と凹部812−2とが順番に咬合する。すなわち、第1回転体81−1が反時計回りに回転し、かつ、第2回転体81−2が時計回りに回転することによって、或る凸部812−1と或る凹部812−2とが互いに咬合し、さらにそれぞれ回転することによって、それらの咬合いが解消され、次の凸部812−1と次の凹部812−2とが咬合し、さらにそれぞれ回転することによって、それらの咬合いが解消され、その次の凸部812−1と次の凹部812−2とが咬合する。以下、これが繰り返される。そして、これによって流体が圧縮される。

0042

凸部812−1と凹部812−2とが咬合するとは、凸部812−1が凹部812−2に入っているが、正常な状態では、凸部812−1と凹部812−2とが接触せずに、前記所定のギャップGを有していることである。凸部812−1と凹部812−2との接触は、第1回転体81−1と第2回転体81−2との接触を意味し、異常な状態の一態様である。

0043

ケーシング82は、断面長円形であって、各軸が平行となるように並設された第1および第2回転体81−1、81−2を当該ケーシング82の内周面から所定の間隔開けて収容できる空間を有する中空円柱体である。ケーシング82は、第1および第2回転体81−1、81−2における軸方向の一方側に、圧縮するべき流体を取り入れる図略の流入口が設けられ、その他方側に、第1および第2回転体81−1、81−2によって圧縮された流体を取り出す図略の流出口が設けられている。

0044

そして、回転機異常検出装置ADによって回転体の異常を検出するために、本実施形態では、ケーシング82の外壁には、予め設定された所定の位置に振動測定部1が取り付けられる。なお、振動測定部1は、ケーシング82の互いに異なる位置に取り付けられた複数であってよい。図2には、その一例として、前記振動測定部1は、軸方向における略中央位置より一方側に寄った位置であってケーシング82の外側壁に取り付けられている。

0045

振動測定部1は、制御処理部2に接続され、回転機M、特に回転部RBの回転体81に生じた異常を検出するために、回転体81に起因して生じた振動を測定する装置である。本実施形態では、振動測定部1は、第1および第2回転体81−1、81−2のうちの少なくとも一方に起因して生じた振動を測定する。振動測定部1は、好ましくは、可聴帯域の振動および超音波帯域の振動のうちの少なくとも一方の振動を測定する。なお、可聴帯域は、一般的に20Hzないし20kHzの範囲であり、超音波帯域は、一般的に20kHz以上である。このような振動測定部1は、例えばAE(Acoustic Emission)センサ等である。このAEセンサを備える振動測定部1は、例えば接触等の異常により回転体81に起因して生じた所定の波長帯域弾性波観測し、それを測定する。振動測定部1で測定した測定結果は、制御処理部2へ出力される。より具体的には、振動測定部1は、振動を観測し、前記振動の測定結果を制御処理部2へ出力する。制御処理部2は、予め設定された所定の時間間隔(サンプリング間隔)で、振動測定部1から入力された測定結果を測定データとしてサンプリングする。これによって制御処理部2は、サンプリング間隔を空けて連続的した時系列な測定データを取得する。

0046

入力部3は、制御処理部2に接続され、例えば、異常検出の開始を指示するコマンド等の各種コマンド、および、例えば異常検出対象の回転機M(または回転体81)における識別子(ID)の入力等の異常を検出する上で必要な各種データを回転機異常検出装置AD(回転機M)に入力する機器であり、例えば、所定の機能を割り付けられた複数の入力スイッチ等や、キーボードや、マウス等である。出力部4は、制御処理部2に接続され、制御処理部2の制御に従って、入力部3から入力されたコマンドやデータ、および、回転機異常検出装置ADによって検知や測定された各結果を出力する機器であり、例えばCRTディスプレイ、LCD(液晶ディスプレイ)および有機ELディスプレイ等の表示装置プリンタ等の印刷装置等である。

0047

IF部5は、制御処理部2に接続され、制御処理部2の制御に従って外部機器との間でデータの入出力を行う回路であり、例えば、シリアル通信方式であるRS−232Cのインターフェース回路、および、USB(Universal Serial Bus)規格を用いたインターフェース回路等である。

0048

記憶部6は、制御処理部2に接続され、制御処理部2の制御に従って、回転機異常検出装置ADの各部を当該各部の機能に応じて動作させるための制御プログラムや、回転機Mの異常を検出するための異常検出プログラム等の各制御処理プログラム、および、各制御処理プログラムの実行に必要な情報等を記憶する。記憶部6は、制御処理部2に対する所謂ワーキングメモリでもある。記憶部6は、上記各制御処理プログラムやこれに必要な情報等を記憶する、例えばROM(Read Only Memory)等の不揮発性記憶素子、EEPROM(Electrically Erasable Programmable Read Only Memory)等の書換え可能な不揮発性の記憶素子、および、ワーキングメモリとなる例えばRAM(Random Access Memory)等の揮発性の記憶素子およびそれらの周辺回路を備えて構成される。そして、記憶部6は、測定データ一時記憶部61および正常時周波数スペクトル記憶部62を機能的に備える。

0049

測定データ一時記憶部61は、後述するように、振動測定部1で測定した、少なくとも周波数スペクトルを求めるために必要な測定データ(例えば20秒間や、30秒間や、40秒間や、60秒間等の時系列な測定データ)を一時的に記憶するものである。測定データ一時記憶部61は、その記憶容量一杯に測定データを記憶すると、時間的に最も古く記憶した測定データを削除し、最新の測定データを記憶する。測定データ一時記憶部61の記憶容量は、前記少なくとも周波数スペクトルを求めるために必要な測定データの容量以上である。

0050

正常時周波数スペクトル記憶部62は、正常時周波数スペクトルを記憶するものである。前記正常時周波数スペクトルは、異常検出部22における後述の異常判定部223によって異常が無いと判定された場合において振動測定部1で測定した測定データの周波数スペクトルである。好ましくは、正常時周波数スペクトル62は、異常判定部223によって異常が無いと直近に判定された場合において、その判定に用いた、振動測定部1で測定した測定データの周波数スペクトルを正常時周波数スペクトルとして記憶(更新して記憶)する。

0051

なお、記憶部6は、振動測定部1で測定した、周波数スペクトルを求めるために必要な測定データ以上の個数(時間長)の時系列な測定データや、この測定データに所定の各データ処理を施すことによって得られた各種データを記憶するために、例えばハードディスク等の比較的大容量の記憶装置をさらに備えてもよい。

0052

制御処理部2は、回転機Mの異常を検出するべく、回転機異常検出装置ADの各部を当該各部の機能に応じてそれぞれ制御するものであり、例えば、CPU(Central Processing Unit)等のマイクロプロセッサおよびその周辺回路を備えて構成される。そして、制御処理部2には、制御処理プログラムを実行することによって、機能的に、制御部21と、異常検出部22とが構成される。

0053

制御部21は、回転機異常検出装置ADの各部を当該各部の機能に応じてそれぞれ制御し、回転機異常検出装置ADの全体制御を司るものである。

0054

異常検出部22は、振動測定部1で測定された測定結果に基づいて回転機Mにおける異常を検出するものである。より具体的には、本実施形態では、異常検出部22は、前記制御処理プログラムの実行によって、スペクトル処理部221、特徴量処理部222、異常判定部223およびノイズ判定部224を機能的に備える。

0055

スペクトル処理部221は、振動測定部1で測定した測定データの周波数スペクトルを求めるものである。本実施形態では、特徴量処理部222が振動測定部1で測定した測定データのRMSの周波数スペクトル(A−周波数スペクトル)を用いる一方、ノイズ判定部224が振動測定部1で測定した測定データそのものの周波数スペクトル(B−周波数スペクトル)を用いるので、これらに対応してスペクトル処理部221は、特徴量処理部222用のA−周波数スペクトルを求めるA−サブスペクトル処理部2211、および、ノイズ判定部224用のB−周波数スペクトルを求めるB−サブスペクトル処理部2212を機能的に備える。

0056

より具体的には、A−サブスペクトル処理部2211は、振動測定部1で測定した測定データのRMS(Root Mean Square、二乗平均平方根)を求め、この求めた測定データのRMSをフーリエ変換、例えば高速フーリエ変換することによって、前記測定データのA−周波数スペクトル(A−パワースペクトル)を求める。一例では、図4Aに示す測定データから、A−サブスペクトル処理部2211によって、図4Bに示す前記測定データのRMSが求められ、そして、A−サブスペクトル処理部2211によって、図4Cに示す前記測定データのA−周波数スペクトル(A−パワースペクトル)が求められる。なお、RMSの時定数(RMSを求めるための測定データの個数)は、振動測定部1のサンプリングレートと回転体81の回転数とを考慮して適宜に設定される。また、図4は、歯数3個の第1回転体81−1と歯数4個の第2回転体81−2とを備える回転機Mの測定結果であり、図4Cに示す例では、3次高調波成分F3が最も強いことから、歯数4個の第2回転体81−2が1回転ごとに1度接触している。

0057

なお、RMSを求めてA−周波数スペクトルを求めるA−サブスペクトル処理部2211に代え、図1破線で示すエンベロープ(包絡線)を求めて周波数スペクトル(C−周波数スペクトル)を求めるC−サブスペクトル処理部2213が用いられても良い。例えば、C−サブスペクトル処理部2213は、包絡線検波によって、振動測定部1で測定した測定データのエンベロープ(包絡線)を求め、この求めた測定データのエンベロープをフーリエ変換(好ましくは高速フーリエ変換)することによって前記測定データの周波数スペクトル(C−周波数スペクトル、C−パワースペクトル)を求める。

0058

B−サブスペクトル処理部2212は、振動測定部1で測定した測定データをそのままフーリエ変換、例えば高速フーリエ変換することによって前記測定データのB−周波数スペクトル(B−パワースペクトル)を求める。すなわち、B−サブスペクトル処理部2212は、振動測定部1で測定した測定データそのもの(振動測定部1で測定した生の測定データ)をフーリエ変換する。

0059

なお、略常時生じているバックグラウンドノイズが例えば図4Aに示すように比較的小さい場合には、上述のように、振動測定部1の測定データから、前記測定データのRMSや前記測定データのエンベロープが求められて良いが、例えば回転機Mの設置環境等によって前記バックグラウンドノイズが例えば図5Aに示すように比較的大きい場合があり、このような場合では、回転体81の異常を示す信号が前記バックグラウンドノイズに埋もれ明確に現れない場合がある。このような場合に回転体81の異常を示す信号を取り出すために、スペクトル処理部221は、例えば、図1に破線で示すように、前記バックグラウンドノイズ等のノイズを除去するためのハイパスフィルタ2214をさらに備えても良い。ハイパスフィルタ2214のカットオフ周波数は、回転体81の異常を示す信号の周波数を考慮して適宜に設定されて良いが、例えば、100kHz等の値に設定される。これら上述のA−サブスペクトル処理部2211およびC−サブスペクトル処理部2213は、ハイパスフィルタ2214でフィルタリング(濾波)された測定データに対し、そのRMSやそのエンベロープを求め、その周波数スペクトルを求める。同様に、上述のB−サブスペクトル処理部2212は、ハイパスフィルタ2214でフィルタリング(濾波)された測定データに対し、その周波数スペクトルを求める。

0060

特徴量処理部222は、スペクトル処理部221で求めた周波数スペクトルに基づいて所定の周波数成分に関わる所定の特徴量CVを求めるものである。本実施形態では、上述したように、特徴量処理部222は、スペクトル処理部221のA−サブスペクトル処理部2211で求めたA−周波数スペクトルに基づいて所定の周波数成分に関わる所定の特徴量CVを求める。より具体的には、特徴量処理部222は、第1回転体81−1の第1歯数および第1回転周波数それぞれをMA[個]およびVA[Hz]とし、第2回転体81−2の第2歯数および第2回転周波数それぞれをMB[個]およびVB[Hz]とし、第1歯数MAと第2歯数MBとの最小公倍数をXABとし、第1回転周波数VAを第1歯数MAで除した基本波歯合周波数VA/MAをf1[Hz]とし、基本波歯合周波数f1に対するn次高調波歯合周波数(nは2以上の整数)をfn[Hz]とする場合に、スペクトル処理部221で求めた周波数スペクトルから、基本波歯合周波数f1の基本波成分F1および最小公倍数XABまでのn次高調波歯合周波数fn(n=2〜XAB)のn次高調波成分Fnを求め、この求めた基本波成分F1およびn次高調波成分Fnに基づいて前記所定の特徴量CVを求める。

0061

この所定の周波数成分に関わる前記所定の特徴量CVは、振動測定部1の測定データに含まれる、回転体81の異常を示す信号を取り出すためや、振動測定部1の測定データに含まれる種々のノイズを取り除くために、種々適宜な諸量が可能であるが、例えば、第1ないし第5態様の各特徴量CVa〜CVeが挙げられる。ここでは、第1態様の特徴量CVaについて説明し、第2ないし第5態様の各特徴量CVb〜CVeについては、後述する。

0062

この第1態様の特徴量CVaは、次式1に示すように、前記求めた基本波成分F1およびn次高調波成分Fnの総和CVaである。したがって、特徴量処理部222は、スペクトル処理部221で求めたA−周波数スペクトルから、基本波歯合周波数f1の基本波成分F1および最小公倍数XABまでのn次高調波歯合周波数fn(n=2〜XAB)のn次高調波成分Fnを求め、この求めた基本波成分F1およびn次高調波成分Fnの総和を求める特徴量処理部222aを備えて構成される。なお、上述したように、A−周波数スペクトルに代え、C−周波数スペクトルが用いられても良い。以下も同様である。
CVa=ΣFi ・・・(1)
ただし、iは、1〜XABの整数であり、Σは、iについてFの和と求める演算子である。

0063

例えば、第1回転体81−1において、その第1歯数MAが3個であり、その第1回転周波数VAが60Hzであり(MA=3、VA=60)、第2回転体81−2において、その第2歯数MBが4個であり、その第2回転周波数VBが45Hzである(MB=4、VB=45)場合では、これらの最小公倍数XABは、12であり、したがって、歯合の組合せも12通りとなる。ここで、基本波歯合周波数f1は、20(=60/3)Hzとなるから、これら第1および第2回転体81−1、81−2は、基本波歯合周波数f1の20Hzと、40Hz、60Hz、80Hz、・・・、200、220、240のn次高調波歯合周波数fn(n=2〜XAB(=12))との12通りの歯合周波数(f1〜f12)を持つ。このため、このような場合では、特徴量処理部222aは、A−周波数スペクトルから、基本波歯合周波数20Hzの基本波成分F1および最小公倍数12までのn次高調波歯合周波数fn(n=2〜12)のn次高調波成分Fnを求め、これらの総和を第1態様の特徴量CVaとして求める(CVa=ΣFi、i=1〜12、Σはiについて和と求める)。

0064

異常判定部223は、特徴量処理部222で求めた特徴量CVに基づいて回転機Mにおける異常の有無を判定するものである。より具体的には、異常判定部223は、特徴量処理部222で求めた特徴量CVが予め設定された所定の閾値(異常判定閾値)tha以上か否かに応じて回転機Mにおける異常の有無を判定する。より詳しくは、異常判定部223は、特徴量処理部222で求めた特徴量CVが前記異常判定閾値tha以上である場合には回転機Mの異常と判定し、特徴量処理部222で求めた特徴量CVが前記異常判定閾値tha以上ではない場合(前記特徴量CVが前記異常判定閾値tha未満である場合)には回転機Mの異常無しと判定する。前記所定の閾値(異常判定閾値)thaは、正常状態の回転機Mからサンプリングした測定データと異常状態の回転機Mからサンプリングした測定データから、特徴量CVの態様に合わせて適宜に設定される。そして、異常判定部223は、前記判定の結果、異常が無いと判定した場合において、この判定に用いられた測定データの周波数スペクトルを正常時周波数スペクトルとして記憶部6に記憶する。より具体的には、異常判定部223は、前記判定の結果、異常が無いと判定した場合において、この判定に用いられた測定データからB−サブスペクトル処理部2212によってB−周波数スペクトルを求め、この求めたB−周波数スペクトルを正常時周波数スペクトルとして記憶部6の正常時周波数スペクトル記憶部62に記憶する。

0065

ここで、異常判定部223は、前記異常の有無を判定した結果、異常が有ると判定した場合には、この判定した異常を仮の判定とし、ノイズ判定部224によってノイズに因らないと判定された場合に、前記仮の判定とした異常を最終的に異常とする一方、ノイズ判定部224によってノイズに因ると判定された場合に、前記仮の判定とした異常を破棄する。なお、前記破棄に代え、前記ノイズの発生が出力されても良い。

0066

ノイズ判定部224は、異常判定部223によって異常が有ると判定された場合に、スペクトル処理部221で求めた周波数スペクトルに基づいて前記異常の判定がノイズに因るか否かを判定するものである。本実施形態では、上述したように、ノイズ判定部224は、スペクトル処理部221のB−サブスペクトル処理部2212で求めたB−周波数スペクトルに基づいて前記異常の判定がノイズに因るか否かを判定する。したがって、本実施形態では、ノイズ判定部224は、異常判定部223によって異常が無いと判定された場合には、その判定の処理を実施しない。

0067

より具体的には、ノイズ判定部224は、スペクトル処理部221のB−サブスペクトル処理部2212で求めたB−周波数スペクトルと記憶部6の正常時周波数スペクトル記憶部62に記憶された正常時周波数スペクトルと差に基づいて前記異常の判定がノイズに因るか否かを判定する。より詳しくは、ノイズ判定部224は、前記差における最大値から前記差における平均値を減算した減算結果(第1減算結果)に基づいて前記異常の判定がノイズに因るか否かを判定する。好ましくは、ノイズ判定部224は、前記第1減算結果と予め設定した所定の閾値(第1判定閾値)thbとを比較し、前記第1減算結果が前記第1判定閾値thbより大きい場合(または前記第1減算結果が前記第1判定閾値thb以上である場合)には前記異常の判定がノイズに因ると判定し、前記第1減算結果が前記第1判定閾値thb以下である場合(または前記第1減算結果が前記第1判定閾値thb未満である場合)には前記異常の判定がノイズに因らないと判定する。

0068

このようなノイス判定部224のデータ処理によって前記ノイズの有無が判定できる理由について以下に説明する。

0069

図6は、正常時および異常時における各B−周波数スペクトルならびに正常時およびノイズ発生時における各B−周波数スペクトルを示す図である。図6Aは、正常時および異常時における各B−周波数スペクトルを示し、図6Bは、正常時およびノイズ発生時における各B−周波数スペクトルを示す。図6Aおよび図6Bにおいて、その各横軸は、周波数であり、その各縦軸は、スペクトル強度(成分値、スペクトル値)である。なお、図6Aおよび図6Bでは、ハイパスフィルタ2214のカットオフ周波数よりも高い周波数を含む周波数範囲でB−周波数スペクトルが示されている。図7は、正常時および異常時における各B−周波数スペクトルの差ならびに正常時およびノイズ発生時における各B−周波数スペクトルの差を示す図である。図7の横軸は、周波数であり、その縦軸は、差分値である。図8は、最大値と平均値との差および最大値と中間値との差を示す図である。図8Aは、最大値と平均値との差を示し、図8Bは、最大値と中間値との差を示す。図9は、異常時およびノイズ発生時における最大値と平均値との各差を示す図である。図9の横軸は、事例(測定データ名)であり、その縦軸は、指標値αである。◇は、異常時の指標値αを示し、□は、ノイズ発生時の指標値αを示す。

0070

回転機Mに異常が無く振動測定部1によって測定された測定データに前記ノイズが含まれていない場合(正常時)における測定データから求められたB−周波数スペクトル(正常時周波数スペクトル)は、一例では、図6Aおよび図6Bに破線によって示す波形となっている。

0071

これに対し、回転機Mに異常が有り振動測定部1によって測定された測定データに前記ノイズが含まれていない場合における測定データから求められたB−周波数スペクトル(異常発生時周波数スペクトル)は、一例では、図6Aに実線によって示すように、前記異常の発生により、各周波数において、正常時周波数スペクトルより大きな成分値を持つ波形(大略、周波数範囲全体に亘って正常時周波数スペクトルより大きな成分値を持つ波形)となっている。

0072

一方、回転機Mに異常が無く振動測定部1によって測定された測定データに前記ノイズが含まれている場合における測定データから求められたB−周波数スペクトル(ノイズ発生時周波数スペクトル)は、一例では、図6Bに実線によって示すように、大略、全体的には正常時周波数スペクトルと略同一な成分値を持つ波形であるが、前記ノイズの発生により、所々の周波数において、パルス状に正常時周波数スペクトルより大きな成分値を持つ波形となっている。

0073

このような特性のため、各周波数ごとに求められた、異常発生時周波数スペクトルと正常時周波数スペクトルとの差(第1差)は、図7に実線によって示すように、周波数範囲全体に亘って、大略、フラットな波形(全体的な傾向としてフラットな波形)となる。一方、各周波数ごとに求められた、ノイズ発生時周波数スペクトルと正常時周波数スペクトルとの差(第2差)は、図7に破線によって示すように、前記所々の周波数において、パルス状に大きな値を持つ波形となる。

0074

この結果、ノイズ発生時周波数スペクトルと正常時周波数スペクトルとの第2差における最大値から前記第2差における平均値を減算した第1減算結果(ノイズ発生時、図8Aの紙面右側)は、図8Aに示すように、異常発生時周波数スペクトルと正常時周波数スペクトルとの第2差における最大値から前記第2差における平均値を減算した第1減算結果(接触異常時、図8Aの紙面左側)よりも、有意に、大きくなる。他の複数の事例(サンプル)における第1減算結果が図9に示されており、図8Aと同様の結果が得られている。したがって、これらより、第1減算結果は、振動測定部1によって測定された測定データに対し、異常発生時とノイズ発生時とを切り分け得る指標値αとして用いることができる((指標値α)=(第1減算結果)=(前記第2差における最大値)−(前記第2差における平均値))。前記第2差における平均値は、各周波数の各第2差を積算し(全て足し合わせ)、前記各周波数の個数で除算することで求められる。

0075

第1判定閾値thbは、例えば図9に示すように、複数の事例から、異常発生時の指標値α(◇)とノイズ発生時の指標値α(□)とを切り分け得るように、適宜に設定される。

0076

なお、図8Bに示すように、ノイズ発生時周波数スペクトルと正常時周波数スペクトルとの第2差における最大値から前記第2差における中間値(メディアン)を減算した減算結果(第2減算結果)(ノイズ発生時、図8Bの紙面右側)は、異常発生時周波数スペクトルと正常時周波数スペクトルとの第2差における最大値から前記第2差における中間値を減算した第2減算結果(接触異常時、図8Bの紙面左側)よりも、有意に、大きくなる。図示しないが、他の複数の事例(サンプル)における第2減算結果も同様である。このため、前記第2差における平均値に代え、前記第2差における中間値が用いられても良い。すなわち、ノイズ判定部224は、前記第2差における最大値から前記第2差における中間値(メディアン)を減算した減算結果(第2減算結果)に基づいて前記異常の判定がノイズに因るか否かを判定しても良い。この場合において、好ましくは、ノイズ判定部224は、前記第2減算結果と予め設定した閾値(第2判定閾値)thcとを比較し、前記第2減算結果が前記第2判定閾値thcより大きい場合(または前記第2減算結果が前記第2判定閾値thc以上である場合)には前記異常の判定がノイズに因ると判定し、前記第2減算結果が前記第2判定閾値thc以下である場合(または前記第2減算結果が前記第2判定閾値thc未満である場合)には前記異常の判定がノイズに因らないと判定する。

0077

次に、本実施形態の動作について説明する。図10は、実施形態における回転機異常検出装置の動作を示すフローチャートである。

0078

回転機異常検出装置ADは、例えば、ユーザによって図略の起動スイッチが操作されて回転機Mの運転が開始されると、制御処理プログラムを実行する。この制御処理プログラムの実行によって、制御処理部2に制御部21および異常検出部22が機能的に構成され、異常検出部22にスペクトル処理部221、特徴量処理部222(ここでは特徴量処理部222a)、異常判定部223およびノイズ判定部224が機能的に構成され、スペクトル処理部221にA−サブスペクトル処理部2211およびB−サブスペクトル処理部2212が機能的に構成される。そして、回転機異常検出装置ADは、以下の動作によって、回転機Mの異常を検出する。

0079

まず、振動測定部1は、回転機Mにおける振動を観測し、前記振動の測定結果を制御処理部2へ出力する。

0080

図10において、まず、回転機異常検出装置ADは、制御処理部2によって測定データを収集する(S1)。より具体的には、上述の状態において、制御処理部2は、制御部21によって、所定のサンプリング間隔で、振動測定部1から入力された測定結果(振動測定部1の出力)を測定データとしてサンプリングし、これを記憶部6の測定データ一時記憶部61に記憶する。これによって測定結果がサンプリング間隔を空けて連続的に計測され、時系列な複数のデータから成る測定データが測定データ一時記憶部61に記憶される。測定データ一時記憶部61の記憶容量一杯に(記憶部6に測定データ一時記憶部61として確保された記憶領域一杯に)時系列な各測定データが記憶されると、時間的に最も古くサンプリングされて記憶された測定データが測定データ一時記憶部61から削除され、新たにサンプリングした測定データが測定データ一時記憶部61に記憶される。

0081

次に、回転機異常検出装置ADは、異常検出部22におけるスペクトル処理部221のA−サブスペクトル処理部2211(またはC−サブスペクトル処理部2213)によって、記憶部6に記憶された、最新に測定(サンプリング)された測定データを含み、予め設定された所定の時間範囲における測定データ(最新の測定時点から前記所定の時間範囲に対応する時間だけ遡った時点までの間に測定された各測定結果の測定データ)から、前記測定データのRMS(または前記測定データのエンベロープ)を求め、この求めた前記測定データのRMS(または前記測定データのエンベロープ)を高速フーリエ変換(FFT)することによって測定データの第1周波数スペクトル(またはC−周波数スペクトル)を求める(S2)。なお、上述したように、RMSやエンベロープを求める前に、測定データは、ハイパスフィルタ2214でフィルタリングされても良い。

0082

次に、回転機異常検出装置ADは、異常検出部22の特徴量処理部222によって、スペクトル処理部221で求めた周波数スペクトルに基づいて前記所定の特徴量CVを求める(S3)。ここでは、特徴量処理部222aによって、第1態様の特徴量CVa、すなわち、基本波成分F1およびn次高調波成分Fnの総和が求められる(CVa=ΣFi、i=1〜12、Σはiについて和と求める)。なお、回転体81の回転数の誤差を考慮し、基本波成分F1およびn次高調波成分Fnの各成分が含まれるようにするために、基本波成分F1およびn次高調波成分Fnの各成分それぞれにおいて、前後の数データが前記総和に加えられても良い。

0083

次に、回転機異常検出装置ADは、異常検出部22の異常判定部223によって、特徴量処理部222で求めた前記所定の特徴量CVに基づいて回転機Mにおける異常の有無を判定する(S4)。より具体的には、ここでは、異常判定部223は、特徴量処理部222aで求めた第1態様の特徴量CVaが前記所定の閾値(異常判定閾値)tha以上であるか否かを判定することで回転機Mにおける異常の有無を判定する。この判定の結果、異常判定部223は、特徴量処理部222aで求めた第1態様の特徴量CVaが前記異常判定閾値tha以上である場合には回転機Mの異常有りと判定し(Yes)、次に処理S5を実行する。一方、前記判定の結果、異常判定部223は、特徴量処理部222aで求めた第1態様の特徴量CVaが前記異常判定閾値tha以上ではない場合には回転機Mの異常無しと判定し(No)、次に処理S11を実行する。

0084

処理S11では、回転機異常検出装置ADは、異常検出部22の異常判定部223によって、異常が無いと判定した場合において、この判定に用いられた測定データからB−サブスペクトル処理部2212によってB−周波数スペクトルを求め、この求めたB−周波数スペクトルを正常時周波数スペクトルとして記憶部6の正常時周波数スペクトル記憶部62に記憶し、処理を処理S2に戻す。正常時周波数スペクトル記憶部62に正常時周波数スペクトルが記憶されている場合には、この求めたB−周波数スペクトルで正常時周波数スペクトル記憶部62が更新され、この求めたB−周波数スペクトルが正常時周波数スペクトル記憶部62に記憶される。したがって、記憶部6の正常時周波数スペクトル記憶部62には、異常判定部223によって前記異常が無いと直近に判定された場合において振動測定部1で測定した測定データのB−周波数スペクトルが正常時周波数スペクトルとして記憶(更新されて記憶)される。

0085

一方、処理S5では、回転機異常検出装置ADは、異常検出部22のノイズ判定部224によって、スペクトル処理部221で求めた周波数スペクトルに基づいて前記処理S4における異常の判定がノイズに因るか否かを判定する。より具体的には、本実施形態では、ノイズ判定部224は、まず、スペクトル処理部221のB−サブスペクトル処理部2212によって前記測定データのB−周波数スペクトルを求め、この求めたB−周波数スペクトルと記憶部6の正常時周波数スペクトル記憶部62に記憶された正常時周波数スペクトルと差(第2差)を求める。なお、上述したように、B−周波数スペクトルを求める前に、測定データは、ハイパスフィルタ2214でフィルタリングされても良い。次に、ノイズ判定部224は、ノイズ判定部224は、前記第2差における最大値から前記第2差における平均値を減算した減算結果(第1減算結果)を求める。そして、ノイズ判定部224は、前記第1減算結果と予め設定した所定の閾値(第1判定閾値)thbとを比較し、これによって前記第1減算結果に基づいて前記異常の判定がノイズに因るか否かを判定する。この判定の結果、ノイズ判定部224は、前記第1減算結果が前記第1判定閾値thbより大きい場合(または前記第1減算結果が前記第1判定閾値thb以上である場合)には前記異常の判定がノイズに因ると判定し(Yes)、処理を処理S2に戻す。したがって、本実施形態では、処理S4で異常判定部223によって異常が有ると判定された判定結果が破棄される。一方、前記判定の結果、ノイズ判定部224は、前記第1減算結果が前記第1判定閾値thb以下である場合(または前記第1減算結果が前記第1判定閾値thb未満である場合)には前記異常の判定がノイズに因らないと判定し(No)、次に、処理S6を実行する。なお、上述したように、前記平均値に代え前記中間値(メディアン)が用いられても良く、この場合、前記第1判定閾値thbに代え、前記第3判定閾値thcが用いられる。

0086

処理S6では、回転機異常検出装置ADは、異常検出部22の異常判定部223によって、処理S4で異常判定部223によって異常が有ると判定された判定結果を最終的な判定結果とし、制御部21によって、処理S4の判定結果(異常有り)を出力部4に出力する。

0087

次に、回転機異常検出装置ADは、制御処理部2によって、終了か否か、すなわち、次の異常判定が不要か否かを判定する(S7)。この判定の結果、制御処理部2は、終了(不要)である場合(Yes)には本処理を終了し、一方、終了(不要)ではない場合(No)には処理を処理S2に戻す。なお、処理を処理S2に戻す前に所定の時間だけ待機する待機処理(Wait処理)が実施されても良い。これによって所定の時間ごとに異常判定が続けて実施される。

0088

以上説明したように、本実施形態における回転機異常検出装置AD、これに実装された回転機異常検出方法およびこれを備える回転機Mは、ノイズ判定部224によって前記ノイズに因らないとと判定された場合に、異常判定部223によって判定された異常を最終的に異常とするので、前記ノイズに因る異常の判定と前記ノイズに因らない異常の判定とを弁別でき、異常をより高い信頼度で判定できる。そして、上記回転機異常検出装置AD、該方法および回転機Mは、異常判定部223によって異常が有ると判定された場合に、ノイズ判定部224が判定の処理を実施するので、したがって、異常判定部223によって異常が無いと判定された場合には、ノイズ判定部224が判定の処理を実施しないから、その分のデータ処理量を低減できる。

0089

また、上記回転機異常検出装置AD、該方法および回転機Mは、正常時周波数スペクトルを基準に前記異常の判定がノイズに因るか否かを判定するので、常時ではなくときどき生じるノイズをより的確に捉えることができ、異常をより高い信頼度で判定できる。特に、直近の正常時周波数スペクトルを基準に前記異常の判定がノイズに因るか否かを判定することで、正常時周波数スペクトルが変化する場合でも、常時ではなくときどき生じるノイズをさらにより的確に捉えることができる。

0090

また、上記回転機異常検出装置AD、該方法および回転機Mは、前記第1減算結果に基づいて前記異常の判定がノイズに因るか否かを判定するので、図6図7図8Aおよび図9を用いて説明した特性を利用でき、異常をより高い信頼度で判定できる。なお、前記第1減算結果に代え前記第2減算結果が用いられる場合も、上記回転機異常検出装置AD、該方法および回転機Mは、図6図7および図8Bを用いて説明した特性を利用でき、異常をより高い信頼度で判定できる。

0091

また、上記回転機異常検出装置AD、該方法および回転機Mは、第1回転周波数VAを第1歯数MAで除した周波数VA/MAを基本波歯合周波数f1[Hz]とし、第1歯数MAと第2歯数MBとの最小公倍数をXABとし、前記基本波歯合周波数f1の基本波成分F1および前記最小公倍数XABまでの、前記基本波歯合周波数f1に対するn次高調波歯合周波数fn(n=2〜XAB)のn次高調波成分Fnを周波数スペクトルから求めるので、第1および第2回転体81−1、81−2における接触の全ての組合せにかかる周波数成分F1、Fnを求めることができる。そして、上記回転機異常検出装置AD、該方法および回転機Mは、これら接触の全ての組合せにかかる周波数成分F1、Fnに基づいて接触の有無を判定するので、より高精度に異常を判定できる。

0092

また、上述のハイパスフィルタ2214を備える場合には、上記回転機異常検出装置AD、該方法および回転機Mは、比較的低周波数帯域に分布するバックグラウンドノイズを除去でき、より高精度に異常を検出できる。特に、圧縮機におけるバックグラウンドノイズは、主に振動が起因して生じるため、比較的低周波帯域に強く分布する一方、接触による信号は、高周波帯域にも強く発生する。このような特徴の差異から、ハイパスフィルタ2214を備えることで、接触の有無を検出する性能が向上できる。

0093

なお、上述では、振動測定部1は、1個であるが、複数であっても良く、各振動測定部1で測定された各測定データが個別に処理されても良い。

0094

また、上述では、特徴量処理部222は、第1態様の特徴量CVaを求める特徴量処理部222aを備えて構成されたが、第2ないし第5態様の特徴量CVb〜CVeを求める特徴量処理部222b〜222eを備えて構成されても良い。

0095

図11は、第2態様の特徴量を説明するための図である。図11の横軸は、時間であり、その縦軸は、変化量である。図12は、異常発生前後における周波数スペクトルの時間変化を示す図である。図12Aは、接触発生10秒前の周波数スペクトルを示し、図12Bは、接触発生5秒前の周波数スペクトルを示し、図12Cは、接触発生時の周波数スペクトルを示し、図12Dは、接触発生2秒後の周波数スペクトルを示す。図12の各図における各横軸は、周波数であり、それらの縦軸は、成分値(スペクトル強度、スペクトル値)である。図13は、第3態様の特徴量を説明するための図である。図13Aは、基本波歯合周波数f1およびn次高調波歯合周波数fnの各成分を示し、図13Bは、各非高調波成分を示す。図14は、第4態様の特徴量に関し、モデル情報の一例を示す図である。図15は、図14に示すモデル情報の求め方を説明するための図である。図15Aは、12歯合中、1歯合で接触する場合における測定データのRMSを示し、図15Bは、そのフーリエ変換の結果の一部を示す。図16は、第5態様の特徴量を用いた異常の判定結果の一例を示す図である。図16の横軸は、事例であり、その縦軸は、特徴量(指標値β)である。

0096

まず、第2態様の特徴量CVbについて説明する。この第2態様の特徴量CVbは、基本波成分F1およびn次高調波成分Fnにおける変化量、より具体的には、時間経過に対する、基本波成分F1およびn次高調波成分Fnにおける変化量である。異常として接触が発生する前後では、周波数スペクトルは、図12に示すように変化し、これによって、時間経過に対する、基本波成分F1およびn次高調波成分Fnにおける変化量は、図11に示すように変化する。より詳しくは、接触が発生する前は、周波数スペクトルは、図12AおよびBに示すように、ほとんど変化せず、この結果、前記変化量も、図11に示すように、略0である。接触が発生すると、図12Cに示すように、周波数スペクトルが変化し、この変化が図11に示すように、前記変化量として現れる。そして、接触が進むと周波数スペクトルは、図12Dに示すように、さらに変化し、この変化が図11に示すように、より大きな前記変化量として現れる。このため、時間経過に対する、基本波成分F1およびn次高調波成分Fnにおける前記変化量は、異常の有無を評価する指標として利用可能と考えられ、前記所定の特徴量CVの一つとして好適である。

0097

このような第2態様の特徴量CVbが用いられる場合では、特徴量処理部222は、互いに異なる第1および第2期間それぞれで測定された第1および第2測定データの第1および第2周波数スペクトルそれぞれから、前記第1および第2期間それぞれの基本波成分F1およびn次高調波成分Fnを求め、これら求めた前記第1および第2期間それぞれの前記基本波成分F1および前記n次高調波成分Fnにおける変化量を第2態様の特徴量CVbとして求める特徴量処理部222bを備えて構成される。より具体的には、特徴量処理部222bは、これら求めた前記第1および第2期間それぞれの前記基本波成分F1および前記n次高調波成分Fnにおける各成分ごとの差分の2乗和を前記変化量として求める。なお、スペクトル処理部221は、上述したように、処理S6から処理S2に戻される場合では、互いに異なる期間で周波数スペクトルを順次に求めるので、互いに異なる第1および第2期間それぞれで測定された第1および第2測定データの第1およびB−周波数スペクトルそれぞれを求めていることになる。

0098

より詳しくは、今回の期間における基本波成分F1およびn次高調波成分Fn(前記第1期間の前記基本波成分F1および前記n次高調波成分Fnの一例)をFi_now(i=1〜nの整数)とし、今回の期間より以前の各期間で求められた基本波成分F1およびn次高調波成分Fnそれぞれの平均値(前記第2期間の前記基本波成分F1および前記n次高調波成分Fnの一例)をFi_past(i=1〜nの整数)とする場合、特徴量処理部222bは、次式2に示すように、前記変化量、すなわち、第2態様の特徴量CVbを求める。なお、前記平均値Fi_pastを算出するための期間は、対象の回転機Mにおける運転条件を変更する周期等に応じて適宜に設定される。
CVb=Σ(Fi_now−Fi_past)2 ・・・(2)
また、異常として接触が発生した時点の前後では、振動測定部1の出力は、上述のように、比較的大きく変化するが、非接触の場合でも例えば回転機Mの運転条件が変化すると、振動測定部1の出力は、徐々に変化する場合がある。前記第1および第2期間それぞれの基本波成分F1およびn次高調波成分Fnにおける変化量CVb、特に前記式2で示すそれらにおける各成分ごとの差分の2乗和CVbは、接触の周期性の変化を表すことから、非接触の状態から接触が発生した時点や、接触の状態自体が変化した時点で比較的大きくなる特徴を持っている。このため、第2態様の特徴量CVbを求める回転機異常検出装置ADおよびこれに実装された方法ならびにこれを用いた回転機Mは、このような前記変化量CVbを前記所定の特徴量CVとして求めているので、非接触の状態から接触が発生した時点や、接触の状態自体が変化した時点を、より高精度に検出できる。また、バックグラウンドノイズが比較的大きい場合でも、そのトレンド(傾向)に変化が無い場合には、前記変化量も大きくならないので、上記回転機異常検出装置AD、該方法および回転機Mは、過検出を少なくできる。

0099

次に、第3態様の特徴量CVcについて説明する。この第3態様の特徴量CVcは、基本波成分F1およびn次高調波成分Fnだけでなく、基本波歯合周波数f1およびn次高調波歯合周波数fn(n=2〜XAB)における互いに隣接した周波数間に在る所定の周波数gの非高調波成分Gにも基づく量である。

0100

このような第3態様の特徴量CVcが用いられる場合では、特徴量処理部222は、スペクトル処理部221で求めた周波数スペクトルから、基本波歯合周波数f1および最小公倍数XABまでのn次高調波歯合周波数fn(n=2〜XAB)における互いに隣接した周波数間に在る所定の周波数gの非高調波成分Gをさらに求め、前記求めた基本波成分F1、n次高調波成分Fnおよび非高調波成分Gに基づいて第3態様の特徴量CVcを求める特徴量処理部222cを備えて構成される。より具体的には、基本波歯合周波数f1およびn次高調波歯合周波数fnから最も離れた周波数を求める観点から、非高調波成分Gは、図13Bに示すように、前記互いに隣接した周波数間の中央に当たる周波数の成分である(Gk=(Fk+Fk+1)/2、k=1〜XAB−1の整数)。

0101

より詳しくは、特徴量処理部222cは、次式3に示すように、スペクトル処理部221で求めた周波数スペクトルから、基本波歯合周波数f1および最小公倍数XABまでのn次高調波歯合周波数fn(n=2〜XAB)における互いに隣接した各周波数間の中央に在る所定の各周波数gkの各非高調波成分Gk(kは1から(XAB−1)までの範囲内の整数)をさらに求め、これら求めた基本波成分F1およびn次高調波成分Fnの総和(図13A参照)を前記求めた非高調波成分Gkの総和(図13B参照)で除した成分総和比を第3態様の特徴量CVcとして求める。なお、非高調波成分Gkの総和で異常の有無が判定されても良いが、この手法は、バックグラウンドノイズのレベルの変化に弱くなるため、本実施形態では、成分総和比で異常の有無が判定されている。これによって第3態様の特徴量CVc(=成分総和比)が、回転体81に起因して生じる信号とほぼ一致すると判断できる。
CVc=成分総和比=(基本波成分F1およびn次高調波成分Fnの総和)/(非高調波成分Gkの総和)=(ΣFi)/(ΣGk) ・・・(3)
AEセンサ等の振動測定部1の出力には、単発の電気ノイズ等が重畳する場合がある。第3態様の特徴量CVcを求める回転機異常検出装置ADおよびこれに実装された方法ならびにこれを用いた回転機Mは、前記非高調波成分Gもさらに考慮して前記所定の特徴量CVを求めるので、このような単発の電気ノイズ等の重畳が異常の検出に与える影響を回避でき、周期性の無いノイズを低減できる。

0102

次に、第4態様の特徴量CVdについて説明する。この第4態様の特徴量CVdは、第1および第2回転体81−1、81−2における異常の態様ごとに予め生成された複数のモデルそれぞれとの間で求められた一致度の中の最大値である。前記モデルは、前記異常の態様に対応した前記基本波成分F1および前記n次高調波成分Fnの各モデル値で構成される。前記一致度は、振動測定部1で測定された測定データの周波数スペクトルから求めた前記基本波成分F1および前記n次高調波成分Fnと前記モデルとの一致の程度を表す値である。

0103

このような第4態様の特徴量CVdが用いられる場合では、回転機異常検出装置ADは、図1に破線で示すように、記憶部6に、前記異常の態様ごとに、前記異常の態様に対応した前記基本波成分F1および前記n次高調波成分Fnの各モデル値をモデル情報として予め記憶するモデル情報記憶部63をさらに備える。そして、特徴量処理部222は、前記異常の態様ごとに、振動測定部1で測定された測定データの周波数スペクトルから求めた前記基本波成分F1および前記n次高調波成分Fnと前記モデル情報(前記モデル)との前記一致度を求め、前記異常の態様ごとに求めた一致度の中から最大の一致度を第4態様の特徴量CVdとして求める特徴量処理部222dを備えて構成される。

0104

より具体的には、前記モデル情報は、テーブル形式でモデル情報記憶部63に記憶される。このモデル情報テーブルMTは、例えば、図14に示すように、モデル名を登録する接触モデルフィールド631と、接触モデルフィールド631に登録されたモデル名で表されるモデルの各モデル値を登録する係数フィールド632とを備え、モデル名ごとにレコードを備える。係数フィールド632は、各モデル値を登録するために、第1歯数MAと第2歯数MBとの最小公倍数XAB個のサブフィールドを備える。図14に示す例では、上述したように、第1回転体81−1の第1歯数MAが3個であり、第2回転体81−2の第2歯数MBが4個であることから、係数フィールド632は、各モデル値ai(i=1〜12)を登録するために、12個のサブフィールド632−1〜632−12を備える。そして、モデル情報テーブルMTは、接触が周期的に発生する異常をモデル化した6個のモデルを登録しており、これら12通りの組合せのうちの1歯合で接触する異常である12歯合中、1歯合接触の各モデル値aiを登録する1行目のレコードと、前記12通りの組合せのうちの2歯合で接触する異常である12歯合中、2歯合接触の各モデル値aiを登録する2行目のレコードと、前記12通りの組合せのうちの3歯合で接触する異常である12歯合中、3歯合接触の各モデル値aiを登録する3行目のレコードと、前記12通りの組合せのうちの4歯合で接触する異常である12歯合中、4歯合接触の各モデル値aiを登録する4行目のレコードと、前記12通りの組合せのうちの6歯合で接触する異常である12歯合中、6歯合接触の各モデル値aiを登録する5行目のレコードと、前記12通りの組合せのうちの12歯合で接触する異常である12歯合中、12歯合接触の各モデル値aiを登録する6行目のレコードとを備える。各モデルの各モデル値aiは、例えば、実際に接触の異常を生じている回転機Mから複数のサンプルを実測し、これら複数のサンプルから統計処理しつつ基本波成分F1およびn次高調波成分Fnを求めることによって予め求められる。例えば、12歯合中、1歯合接触の場合では、サンプルの測定データからRMSを求めると、図15Aに示す結果が得られ、これを高速フーリエ変換(FFT)することによって、図15Bに示す結果が得られる(図15Bには高速フーリエ変換の結果の一部が図示されている)。この図15Bに示す高速フーリエ変換の各ピーク値が12歯合中、1歯合接触のモデルにおける各モデル値aiとなる。なお、各モデル値aiは、各モデル値aiの総和が1となるように、規格化される(Σai=1)。

0105

特徴量処理部222dは、例えば、各モデルごとに、振動測定部1で測定された測定データの周波数スペクトルから求めた前記基本波成分F1および前記n次高調波成分Fnの各値Fiそれぞれにモデルの各モデル値aiそれぞれを乗算し(Fi×ai)、その総和Smを求める(Sm=Σ(Fi×ai)、i=1〜12、Σはiについて和を求める、この例ではmは1〜6)。特徴量処理部222dは、これら各モデルごとに求めた各総和Smの総和SSを求め(SS=ΣSm、m=1〜6、Σはmについて和を求める)、各モデルごとに、モデルの総和Smをその求めた総和SSで除算(規格化)する(Sm/SS、m=1〜6)。この除算結果が一致度であり、このような算出方法によって前記基本波成分F1および前記n次高調波成分Fnの各成分分布における絶対値の影響を除去できる。そして、特徴量処理部222dは、これら各モデルごとに求めた各除算結果(各一致度)の中の最大値を第4態様の特徴量CVdとして求める。

0106

第4態様の特徴量CVdを求める回転機異常検出装置ADおよびこれに実装された方法ならびにこれを用いた回転機Mは、前記異常の態様(上述では接触の態様)ごとに求めた一致度の中から最大の一致度を前記所定の特徴量として求めるので、電気的なパスルノイズや、外部からの衝撃による単発で比較的大きな振幅を持つノイズと、例えば接触等の異常とを弁別でき、より高精度に異常を検出できる。

0107

なお、この第4態様の特徴量CVdが用いられる場合に、好ましくは、異常判定部223は、特徴量処理部222dで前記異常の態様ごとに求めた一致度の中から最大の一致度を持つ異常の態様で回転機Mにおける異常が有ると判定しても良い。例えば、12歯合中、1歯合接触の一致度、12歯合中、2歯合接触の一致度、12歯合中、3歯合接触の一致度、12歯合中、4歯合接触の一致度、12歯合中、6歯合接触の一致度、および、12歯合中、12歯合接触の一致度のうち、最大の一致度が12歯合中、2歯合接触の一致度であった場合には、異常判定部223は、この12歯合中、2歯合接触の異常が有ると判定する。これによれば、異常の態様が検出できる。

0108

次に、第5態様の特徴量CVeについて説明する。この第5態様の特徴量CVeは、これら上述の総和、変化量、成分総和比、および、最大の一致度のうちの複数に基づく量である。

0109

このような第5態様の特徴量CVeが用いられる場合では、特徴量処理部222は、総和処理、変化量処理、成分総和比処理および最大一致度処理のうちの複数の処理を行い、前記行った複数の処理の処理結果に基づいて第5態様の特徴量CVeを求める特徴量処理部222eを備えて構成される。前記総和処理は、上述のように、基本波成分F1およびn次高調波成分Fnの総和CVaを求める処理である。前記変化量処理は、上述のように、第1および第2周波数スペクトルそれぞれから、第1および第2期間それぞれの基本波成分F1およびn次高調波成分Fnを求め、これら求めた第1および第2期間それぞれの基本波成分F1およびn次高調波成分Fnにおける変化量CVbを求める処理である。前記成分総和比処理は、上述のように、周波数スペクトルから、基本波歯合周波数f1および最小公倍数XABまでのn次高調波歯合周波数fn(n=2〜XAB)における互いに隣接した各周波数間に在る所定の各周波数giの各非高調波成分Gi(iは1から(n−1)までの範囲内の整数)をさらに求め、前記求めた基本波成分F1およびn次高調波成分Fnの総和を前記求めた非高調波成分Giの総和で除した成分総和比CVcを求める処理である。前記最大一致度処理は、異常の態様ごとに、前記求めた基本波成分F1およびn次高調波成分Fnとモデル情報との一致の程度を表す一致度を求め、前記異常の態様ごとに求めた一致度の中から最大の一致度CVdを求める処理である。

0110

より具体的には、特徴量処理部222eは、例えば、次式4によって第5態様の特徴量CVeを求める。
CVe=p1*CVa+p2*CVb+p3*CVc+p4*CVd ・・・(4)
また例えば、特徴量処理部222eは、例えば、次式5によって第5態様の特徴量CVeを求める。
CVe=CVap1*CVbp2*CVcp3*CVdp4 ・・・(5)
ここで、これら式4および式5におけるパラメータp1〜p4(実数)は、接触が生じている場合に実際に振動測定部1で測定された測定データから求められた総和CVa、変化量CVb、成分総和比CVcおよび最大の一致度CVdと、非接触の場合に実際に振動測定部1で測定された測定データから求められた総和CVa、変化量CVb、成分総和比CVcおよび最大の一致度CVdとを用いることによって、接触の有無を好適に弁別し得る値を例えば重回帰分析等の手法で求められる。

0111

一例として、接触が生じている場合に実際に振動測定部1で測定された測定データから式5で求めた特徴量CVe(◆)、および、非接触の場合に実際に振動測定部1で測定された測定データから式5で求めた特徴量CVe(×)の結果が図16に示されている。図16に示すように、接触の場合における特徴量CVe(◆)の分布と、非接触の場合における特徴量CVe(×)の分布とは、略明確に分かれていることから、式5の特徴量CVeによって、接触による異常の有無が弁別可能である。

0112

第5態様の特徴量CVeを求める回転機異常検出装置ADおよびこれに実装された方法ならびにこれを用いた回転機Mは、前記行った複数の処理の処理結果に基づいて第5態様の特徴量CVeを求めるので、より高精度に異常を検出できる。

0113

なお、上述の式4および式5は、総和CVa、変化量CVb、成分総和比CVcおよび最大の一致度CVdの4個全てを用いたが、これら式4および式5は、総和CVa、変化量CVb、成分総和比CVcおよび最大の一致度CVdのうちの任意の組合せの2個を用いて構成されて良く、また、これら式4および式5は、総和CVa、変化量CVb、成分総和比CVcおよび最大の一致度CVdのうちの任意の組合せの3個を用いて構成されて良い。総和CVa、変化量CVb、成分総和比CVcおよび最大の一致度CVdそれぞれは、上述したように、振動測定部1の測定データに含まれる、回転体81の異常を示す信号を取り出すための、あるいは、振動測定部1の測定データに含まれる種々のノイズを取り除くための、適宜な量であるので、好ましくは、これら式4および式5は、総和CVa、変化量CVb、成分総和比CVcおよび最大の一致度CVdのうちの、上記目的に応じた適宜な2個の組合せで構成されて良く、また、好ましくは、これら式4および式5は、総和CVa、変化量CVb、成分総和比CVcおよび最大の一致度CVdのうちの、上記目的に応じた適宜な3個の組合せで構成されて良い。

0114

また、前記特許文献1に開示された診断装置や前記特許文献2に開示された異常接触検出装置は、接触の態様を個々個別に検出しておらず、本実施形態と相違する。

0115

本発明を表現するために、上述において図面を参照しながら実施形態を通して本発明を適切且つ十分に説明したが、当業者であれば上述の実施形態を変更および/または改良することは容易に為し得ることであると認識すべきである。したがって、当業者が実施する変更形態または改良形態が、請求の範囲に記載された請求項の権利範囲離脱するレベルのものでない限り、当該変更形態または当該改良形態は、当該請求項の権利範囲に包括されると解釈される。

0116

M回転機
AD 回転機異常検出装置
RB 回転部
1振動測定部
2制御処理部
6 記憶部
22 異常検出部
61 測定データ一時記憶部
62 正常時周波数スペクトル記憶部
63モデル情報記憶部
221スペクトル処理部
222(222a〜222e) 特徴量処理部
223 異常判定部
224ノイズ判定部
2211 A−サブスペクトル処理部
2212 B−サブスペクトル処理部
2213 C−サブスペクトル処理部
2214 ハイパスフィルタ

ページトップへ

この技術を出願した法人

この技術を発明した人物

ページトップへ

関連する挑戦したい社会課題

関連する公募課題

ページトップへ

おススメ サービス

おススメ astavisionコンテンツ

新着 最近 公開された関連が強い技術

この 技術と関連性が強い技術

関連性が強い 技術一覧

この 技術と関連性が強い人物

関連性が強い人物一覧

この 技術と関連する社会課題

関連する挑戦したい社会課題一覧

この 技術と関連する公募課題

関連する公募課題一覧

astavision 新着記事

サイト情報について

本サービスは、国が公開している情報(公開特許公報、特許整理標準化データ等)を元に構成されています。出典元のデータには一部間違いやノイズがあり、情報の正確さについては保証致しかねます。また一時的に、各データの収録範囲や更新周期によって、一部の情報が正しく表示されないことがございます。当サイトの情報を元にした諸問題、不利益等について当方は何ら責任を負いかねることを予めご承知おきのほど宜しくお願い申し上げます。

主たる情報の出典

特許情報…特許整理標準化データ(XML編)、公開特許公報、特許公報、審決公報、Patent Map Guidance System データ