図面 (/)

技術 流体軸受装置用軸部材及びその製造方法、並びに流体軸受装置

出願人 NTN株式会社
発明者 平出淳山郷正志藤原幹久栗村哲弥
出願日 2016年9月27日 (4年2ヶ月経過) 出願番号 2016-187983
公開日 2018年4月5日 (2年8ヶ月経過) 公開番号 2018-053948
状態 特許登録済
技術分野 すべり軸受 研削盤の構成部分、駆動、検出、制御 旋削加工 円筒・平面研削 鍛造
主要キーワード 高精度領域 潤滑流体膜 微小揺動 擦過痕 ハウジング内側 軸素材 全面接触 端縁位置
関連する未来課題
重要な関連分野

この項目の情報は公開日時点(2018年4月5日)のものです。
また、この項目は機械的に抽出しているため、正しく解析できていない場合があります

図面 (10)

課題

軸受性能を向上させ得る流体軸受装置用軸部材を提供する。

解決手段

流体軸受装置用軸部材は、外周面に、軸方向に離間した二つの軸受面31,32と、軸受面31,32の間に形成された、軸受面よりも小径の中逃げ部33とを有する。中逃げ部33に、研削面からなる円筒面部331と、円筒面部の軸方向両側に配置され、円筒面部に対して径差を有する段差部332とを設ける。

概要

背景

従来から、小型モータ等の軸を支持する軸受装置として、軸部材軸受部材の間に潤滑流体膜を形成することにより、軸部材を回転自在に支持する流体軸受装置が広く使用されている。流体軸受装置の中でも、軸部材の外周面あるいは軸受部材の内周面に形成した動圧発生溝により軸受隙間流体動圧を発生させる流体動圧軸受装置は、高速回転あるいは高回転精度が求められる用途、例えばレーザビームプリンタポリゴンスキャナモータ、小型の冷却用ファンモータハードディスクドライブモータ等における軸受装置として広く使用されている。

流体動圧軸受装置の一例が、例えば特許第4504391号(特許文献1)に開示されている。この種の流体動圧軸受装置で使用される軸部材には、その振れ回りを抑えるため、軸方向に離間した二カ所にラジアル軸受面を設けるのが通例である。二つのラジアル軸受面の間には、軸部材の低トルク化を図るため、外径寸法をラジアル軸受面よりも小さくした中逃げ部が形成される。

以上の形態を有する軸部材は、例えば、金属素材旋削して外周面にラジアル軸受面や中逃げ部を有する軸素材を形成し、その後、図8に示すように、軸素材300のラジアル軸受面310,320に砥石100を押し当てて円筒研削を行うことで製作される。流体動圧軸受装置に軸部材を組み込んだ状態では、中逃げ部330は潤滑油中に浸されており、特にその精度は必要とされない。そのため、中逃げ部330の研削は省略される場合が多い。

ところで、軸素材300を研削する際には、回転する軸素材の軸方向中間部付近を、支持部材としてのシュー120で支持することで、砥石100からの研削荷重Wを受ける必要がある。この際、シュー120による軸素材300の支持精度は研削後の表面精度に大きく影響するため、シュー120による軸素材300の支持は、旋削面である中逃げ部330ではなく、研削面であるラジアル軸受面310で行うのが好ましい(特許文献1の図1参照)。

概要

軸受性能を向上させ得る流体軸受装置用軸部材を提供する。流体軸受装置用軸部材は、外周面に、軸方向に離間した二つの軸受面31,32と、軸受面31,32の間に形成された、軸受面よりも小径の中逃げ部33とを有する。中逃げ部33に、研削面からなる円筒面部331と、円筒面部の軸方向両側に配置され、円筒面部に対して径差を有する段差部332とを設ける。

目的

本発明は、軸受性能を向上させ得る流体軸受装置用軸部材およびその製造方法を提供する

効果

実績

技術文献被引用数
0件
牽制数
0件

この技術が所属する分野

(分野番号表示ON)※整理標準化データをもとに当社作成

ライセンス契約や譲渡などの可能性がある特許掲載中! 開放特許随時追加・更新中 詳しくはこちら

請求項1

外周面に、軸方向に離間した二つの軸受面と、前記二つの軸受面の間に形成された、前記二つの軸受面よりも小径の中逃げ部とを有する流体軸受装置用軸部材において、前記中逃げ部に、研削面からなる円筒面部と、円筒面部の軸方向両側に配置され、前記円筒面部に対して径差を有する段差部とを設けたことを特徴とする流体軸受装置用軸部材。

請求項2

円筒面部にシューマークが形成されている請求項1に記載の流体軸受装置用軸部材。

請求項3

円筒面部と段差部の直径寸法の径差が80μm以下である請求項1または2に記載の流体軸受装置用軸部材。

請求項4

段差部の軸方向長さが4mm以下である請求項1〜3何れか1項に記載の流体軸受装置用軸部材。

請求項5

前記段差部が旋削面である請求項1〜4何れか1項に記載の流体軸受装置用軸部材。

請求項6

前記段差部が研削面である請求項1〜4何れか1項に記載の流体軸受装置用軸部材。

請求項7

請求項1〜6の何れか1項に記載の軸部材と、軸部材の外周に配置した軸受部材とを有し、軸部材の軸受面と軸受部材の内周面との間にラジアル軸受隙間が形成された流体軸受装置

請求項8

軸方向に離間した二つの軸受面と、二つの軸受面の間に形成された、両軸受面よりも小径の中逃げ部とを有する流体軸受装置用軸部材の製造方法であって、中逃げ部をシューで支持しながら、前記中逃げ部および前記軸受面を同時研削することを特徴とする流体軸受装置用軸部材の製造方法。

請求項9

金属素材に対する旋削で前記中逃げ部および軸受面を形成した後、請求項8に記載の同時研削を行う流体軸受装置用軸部材の製造方法。

請求項10

金属素材を鍛造した後、前記中逃げ部および軸受面を研削し、次いで請求項8に記載の同時研削を行う流体軸受装置用軸部材の製造方法。

技術分野

0001

本発明は、流体軸受装置用軸部材及びその製造方法、並びに流体軸受装置に関する。

背景技術

0002

従来から、小型モータ等の軸を支持する軸受装置として、軸部材軸受部材の間に潤滑流体膜を形成することにより、軸部材を回転自在に支持する流体軸受装置が広く使用されている。流体軸受装置の中でも、軸部材の外周面あるいは軸受部材の内周面に形成した動圧発生溝により軸受隙間流体動圧を発生させる流体動圧軸受装置は、高速回転あるいは高回転精度が求められる用途、例えばレーザビームプリンタポリゴンスキャナモータ、小型の冷却用ファンモータハードディスクドライブモータ等における軸受装置として広く使用されている。

0003

流体動圧軸受装置の一例が、例えば特許第4504391号(特許文献1)に開示されている。この種の流体動圧軸受装置で使用される軸部材には、その振れ回りを抑えるため、軸方向に離間した二カ所にラジアル軸受面を設けるのが通例である。二つのラジアル軸受面の間には、軸部材の低トルク化を図るため、外径寸法をラジアル軸受面よりも小さくした中逃げ部が形成される。

0004

以上の形態を有する軸部材は、例えば、金属素材旋削して外周面にラジアル軸受面や中逃げ部を有する軸素材を形成し、その後、図8に示すように、軸素材300のラジアル軸受面310,320に砥石100を押し当てて円筒研削を行うことで製作される。流体動圧軸受装置に軸部材を組み込んだ状態では、中逃げ部330は潤滑油中に浸されており、特にその精度は必要とされない。そのため、中逃げ部330の研削は省略される場合が多い。

0005

ところで、軸素材300を研削する際には、回転する軸素材の軸方向中間部付近を、支持部材としてのシュー120で支持することで、砥石100からの研削荷重Wを受ける必要がある。この際、シュー120による軸素材300の支持精度は研削後の表面精度に大きく影響するため、シュー120による軸素材300の支持は、旋削面である中逃げ部330ではなく、研削面であるラジアル軸受面310で行うのが好ましい(特許文献1の図1参照)。

先行技術

0006

特許第4504391号公報

発明が解決しようとする課題

0007

従来では、軸素材の反フランジ側軸受面310が軸素材の軸方向中間付近に存在しているため、円筒研削に際し、シュー120は研削荷重Wの作用線(研削荷重中心線)付近に配置することができる。そのため、研削中の軸素材の姿勢は安定した状態にあると考えられる。

0008

その一方で、近年では、サーバー等での使用に適合するように、ハードディスクドライブ(HDD)の更なる高容量化要望されている。このような高容量タイプのHDDでは、ディスクの搭載枚数が増えるために軸が振れ回り易く、これを抑制するために流体動圧軸受装置の軸受剛性をより一層高める必要がある。その一方で、消費電力の低減も要望されており、流体動圧軸受装置のさらなる低トルク化も必要とされている。

0009

以上の要望に応えるためには、図9に示すように、中逃げ部330の軸方向寸法を大きくして軸受面310,320間のスパンを拡大する設計を行う必要がある。この場合、反フランジ側の軸受面310が軸部材300の反フランジ側に偏った位置に形成されるため、従来と同様に反フランジ側の軸受面310をシュー120で支持したのでは、研削荷重Wの作用線とシュー120による支持領域との間の軸方向のずれが大きくなる。この場合、二つの軸受面310,320とシュー120による支持領域との間の軸方向距離の差が大きいこともあり、研削中の軸素材300がシュー120で支持された領域を中心として微小揺動する(揺動方向を矢印で示し、揺動中心を符号Oで示している)。そのため、軸素材300の仕上げ精度、特に二つのラジアル軸受面310,320の同軸度が低下し、軸受性能の低下を招くことが明らかになった。

0010

なお、以上の問題の解決手段として、軸部材の軸方向長さの3/4程度の領域をシューで支持する(特許文献1の図4)ことも考えられる。しかしながら、この場合、シューと軸素材を全面接触させることは不可能であり、限定された狭い領域でしか両者を接触させることはできないため、量産時にシューによる支持位置がばらつく問題がある。そのため、却って研削精度の低下を招き、軸受性能を低下させる要因となる。

0011

そこで、本発明は、軸受性能を向上させ得る流体軸受装置用軸部材およびその製造方法を提供することを目的とする。

課題を解決するための手段

0012

以上の目的を達成するため、本発明は、外周面に、軸方向に離間した二つの軸受面と、前記二つの軸受面の間に形成された、前記二つの軸受面よりも小径の中逃げ部とを有する流体軸受装置用軸部材において、前記中逃げ部に、研削面からなる円筒面部と、円筒面部の軸方向両側に配置され、前記円筒面部に対して径差を有する段差部とを設けたことを特徴とするものである。なお、段差部は、旋削面で形成し、あるいは研削面で形成することができる。

0013

このように、本発明では円筒面部を研削面とし、中逃げ部に高精度領域(円筒面部)を形成している。従って、軸受面を研削する際に、この高精度領域をシューで支持することで、軸受面の研削精度を高めることができる。また、中逃げ部の円筒面部をシューで支持することで、軸受面間のスパンを拡大させた長軸タイプの軸部材においても、研削荷重の作用線(研削荷重中心線)をシューで支持された領域と接近させ、好ましくはシューで支持された領域中に配置することができる。この場合、シューで支持された領域と各軸受面との間の軸方向距離の差が小さくなる。従って、研削中の軸素材が振れ回り難くなり、振れ回ったとしても二つの軸受面の研削精度に与える影響を小さくすることができる。以上に述べた作用から、研削後の軸受面の個々の表面精度(真円度等)、さらに二つの軸受面相互間の精度(同軸度等)を高めることが可能となる。

0014

また、中逃げ部に、円筒面部に対して径差を有する段差部を設けているため、中逃げ部と軸受面を研削する際に、径差付きの砥石を使用することで、中逃げ部と軸受面の研削を同時に開始することができる。従って、研削時間の短縮化を図ることができる。また、摩耗した成形工具ドレッサー)で成形された砥石を用いて研削した際にも、軸受面の中逃げ部側の端縁位置が変動することはない。従って、軸受面の軸方向幅を安定させることができる。

0015

さらに、中逃げ部をシューで支持しながら、中逃げ部および軸受面を同時研削することにより、中逃げ部が軸受面を研削する際の加工基準となる。従って、中逃げ部と軸受面の間で高い同軸度を確保することができる。軸受面に対して高精度で同軸に保たれる円筒面部をシューで支持することにより、軸受面の研削精度をさらに高めることができる。

0016

なお、円筒面部は軸受面よりも小径の領域であるから、円筒面部の精度が軸受性能に影響を及ぼすことは殆ど考えられない。従って、中逃げ部に、わざわざコストをかけて研削を施す必要性は乏しい。本願発明は、かかる技術常識とは異なり、中逃げ部に軸受機能上は特に必要のない研削領域(いわゆる捨て研領域)を設けたことを特徴とするものである。

0017

研削中に円筒面部をシューで支持することにより、円筒面部にシューの擦過痕であるシューマークが形成される。シューマークが円筒面部に残っていれば、研削時に円筒面部をシューで支持していたことが理解できる。

0018

中逃げ部と軸受部材の内周面との間に形成される隙間の容積が大きいと、軸受装置内部に封入される潤滑油量が増大する。従って、温度変化による油面レベルの変動量が大きくなり、軸受装置のシール構造が大型化する問題を生じる。この弊害を防止するため、軸部材の円筒面部と段差部の直径寸法の径差は80μm以下とするのが好ましい。また、段差部の軸方向長さは4mm以下とするのが好ましい。

0019

本発明にかかる流体軸受装置は、以上に述べた軸部材と、軸部材の外周に配置した軸受部材とを有し、軸部材の軸受面と軸受部材の内周面との間にラジアル軸受隙間が形成されたものである。上記軸部材を使用することで、振れ回り等の少ない高回転精度の流体軸受装置を得ることができる。

0020

また、本発明は、軸方向に離間した二つの軸受面と、二つの軸受面の間に形成された、両軸受面よりも小径の中逃げ部とを有する流体軸受装置用軸部材の製造方法であって、 中逃げ部をシューで支持しながら、前記中逃げ部および前記軸受面を同時研削することを特徴とするものである。

0021

この場合、金属素材に対する旋削で前記中逃げ部および軸受面を形成した後、上記の同時研削を行うことが考えられる。この他、金属素材を鍛造した後、中逃げ部および軸受面を研削し、次いで上記同時研削を行うようにしてもよい。

発明の効果

0022

本発明にかかる軸部材であれば、流体動圧軸受装置の軸受性能を高めることができる。

図面の簡単な説明

0023

流体動圧軸受装置の全体構成を示す断面図である。
本発明にかかる軸部材を示す正面図である。
旋削工程を含む、軸部材の製造工程を示す断面図である。
軸部材の研削工程の実施形態を示す断面図である。
軸部材の研削工程の比較例を示す断面図である。
軸部材の研削工程の他の実施形態を示す断面図である。
鍛造工程を含む、軸部材の製造工程を示す断面図である。
軸部材の研削工程の従来例を示す断面図である。
従来の軸部材の研削工程における問題点を示す断面図である。

実施例

0024

以下、本発明の実施の形態を図面に基づいて説明する。
図1に流体軸受装置の一例として、汎用HDDに用いられる流体動圧軸受装置を示す。

0025

この流体動圧軸受装置は、有底円筒状のハウジング1と、ハウジング1の内周に固定された円筒状の軸受部材2と、軸受部材の内周に挿入された軸部材3と、ハウジングの開口部に配置されたシール部材4とを有する。

0026

ハウジング1は、円筒状の側部1aと、側部1aの軸方向一端の開口部を閉鎖する底部1bとを有している。ハウジング1の底部1bは、側部1aと別体にする他、側部1aと一体に形成することもできる。軸部材3は、ステンレス鋼等で形成され、軸部3aと軸部3aの軸方向一端に設けられたフランジ部3bとを有する。軸部3aとフランジ部3bは、一体に形成する他、別部材で形成することもできる。ハウジング1の側部1aの内周面に焼結金属等からなる円筒状の軸受部材2が固定され、軸受部材2の内周に軸部材3の軸部3aが挿入される。底部1bのハウジング内側の端面1b1(内底面)と軸受部材2の軸方向一方側の端面2aとの間に、軸部材3のフランジ部3bが配置されている。

0027

ハウジング1の内周には、軸受部材2の軸方向他方側の端面と接するシール部材4が固定されている。ハウジング1の内部空間は、焼結金属からなる軸受部材2の内部気孔も含め、全て潤滑油で満たされる。シール部材4の内周面と軸部3aの外周面との間にテーパ状のシール隙間6が形成され、このシール隙間6内に油面が位置するようにハウジング1内の潤滑油量が設定される。テーパ状のシール隙間6は、潤滑油のハウジング1外への漏れを防止する一方で、温度変化に伴う潤滑油の容積変化を吸収するオイルバッファとしても機能する。

0028

図2に、本発明にかかる軸部材3を示す。この軸部材3の軸部3aは、二つのラジアル軸受面31,32と、中逃げ部33と、ハブ固定部34とを備える。二つの軸受面31,32は、同径寸法を有し、かつ軸方向に離隔して形成されている。二つの軸受面31,32の間に、軸受面31,32よりも小径に形成された中逃げ部33が配置されている。中逃げ部33は、円筒面部331と円筒面部331の軸方向両側に配置された段差部332とを有する。中逃げ部33の段差部332は、円筒面部331に対して径差を有する部分であり、本実施形態では、円筒面部331よりも小径に形成した段差部332を例示している。円筒面部331の軸方向長さL2(図4参照)は、例えば5mmとする。

0029

ハブ固定部34は、軸受面31,32と同径寸法を有しており、軸部3aの反フランジ側の端部に形成されている。このハブ固定部34には、流体軸受装置の組立完了後に、複数の磁気ディスクを保持するディスクハブ圧入等の手段によって固定される。ハブ固定部34と反フランジ側の軸受面31との間に第一ヌスミ部35が形成される。また、フランジ側の軸受面32とフランジ部3bの上端面3b1との間に第二ヌスミ部36が形成されている。

0030

軸部3aの軸受面31,32と、これに対向する軸受部材2の内周面のうち、何れか一方(例えば軸受部材2の内周面)に、ヘリングボーン型等に配列した複数の動圧発生溝が形成される。また、フランジ部3bの上端面3b1と、これに対向する軸受部材2の端面2aの何れか一方(例えば軸受部材2の端面2a)にスパイラル型等に配列した複数の動圧発生溝が形成される。また、フランジ部3bの下端面3b2とハウジング1の内底面1b1のうち、何れか一方(例えばハウジングの内底面1b1)にも、同様にスパイラル型等に配列した複数の動圧発生溝が形成される。

0031

軸部材3と軸受部材2の相対回転時(例えば軸部材3の回転時)には、軸部材3のラジアル軸受面31,32と軸受部材2の内周面との間のラジアル軸受隙間に、動圧発生溝によって潤滑油の動圧効果が発生する。また、フランジ部3bの上端面3b1と軸受部材2の下端面2aとの間に形成されるスラスト軸受隙間、およびフランジ部3bの下端面3b2とハウジング1の内底面1b1との間に形成されるスラスト隙間にも、それぞれ動圧発生溝によって潤滑油の動圧効果が発生する。かかる構成から、軸部材2は、ラジアル方向およびスラスト方向の双方で非接触支持される。

0032

以上に述べた流体動圧軸受装置における軸部材3は、図3(a)に示すように、旋削により金属素材から軸素材38を形成し、次いで図3(b)に示すように、軸素材38に円筒研削を施すことで製作される。

0033

旋削工程では、軸素材38に軸受面31,32、中逃げ部33、ハブ固定部34、第一ヌスミ部35、および第二ヌスミ部36がそれぞれ形成される。この際、中逃げ部33には、円筒面部331と段差部332の双方が形成される。旋削後の軸素材38は、研削工程に移送され、研削工程にて図4に示す円筒状の砥石10を用いた研削加工が行われる。

0034

この研削工程では、円筒研削が行われる。図4に示すように、研削中の軸素材38は、フランジ部3bの下端面と軸部3aの先端面をそれぞれドライビングプレート8,9で挟み込んだ状態で回転駆動される。砥石10は大径部10aと小径部10bを有しており、大径部10aを中逃げ部33に押し当て、小径部10bを軸受面31,32とハブ固定部34に押し当てることにより、軸受面31,32、中逃げ部33の円筒面部331、およびハブ固定部34が同時研削される。砥石10の大径部10aの軸方向長さL1は、円筒面部331の全面が研削されるように円筒面部331の軸方向長さL2よりも長くする。一方、砥石10の大径部10aが軸受面31,32と干渉しないように、大径部10aの軸方向長さL1は、中逃げ部33の軸方向長さL3よりも小さくする。従って、L2<L1<L3となる。なお、各軸方向長さL1,L2,L3は、大径部10a、円筒面部331、および中逃げ部33のそれぞれの軸方向両側に隣接するチャンファを含まない長さを意味する。

0035

以上の研削工程を経ることで、軸受面31,32、円筒面部331、およびハブ固定部34が、研削痕の残る研削面となる。その一方で、段差部332、第一ヌスミ部35、および第二ヌスミ部36は、旋削痕の残る旋削面となる。また、軸受面31,32、円筒面部331、およびハブ固定部34は、段差部332、第一ヌスミ部35、および第二ヌスミ部36よりも表面精度(表面粗さ、真円度等)が良好なものとなる。

0036

研削中の軸素材38は、砥石荷重を支持する支持部材としてのシュー12で支持される。シュー12の軸方向長さは、中逃げ部33の円筒面部331の軸方向長さL2よりも短い。そのため、研削中は、シュー12の全面が中逃げ部33の円筒面部331と摺動する。シュー12を軸方向に大型化して軸部3aの全面をシュー12で支持することも考えられるが、かかる構成では、シュー12と軸素材38の接触箇所一個所に定まらないため、研削中の軸素材38の姿勢が却って不安定化する問題がある。従って、上記のように、シュー12は、円筒面部331のみと接触する軸方向長さに設定するのが好ましい。研削中のシュー12との摺動により、円筒面部331の表面にはシューの擦過痕(シューマーク)が形成される。

0037

軸受面31,32および円筒面部331の研削が完了した後、フランジ部3bの両端面を研削し、さらに必要に応じて軸素材38の全体に最終仕上げバレル研磨等)を行うことで、図2に示す軸部材3が完成する。その後、軸部材3を、フランジ部3bをハウジング底部側に向けてハウジング1内に収容し、さらに軸受部材2およびシール部材4を順次ハウジング1内に収容して、各部材2,4をハウジング1に固定することにより、流体動圧軸受装置が組み立てられる。潤滑油は、上記の組み立て前にハウジング1内に予め注油することにより、あるいは組立完了後に真空含浸等を行うことにより、ハウジング1内に供給される。これにより、少なくともラジアル軸受隙間と、スラスト軸受隙間と、中逃げ部33および軸受部材2の内周面で形成される隙間とが潤滑油で満たされ(好ましくはハウジング1内の全ての空間が潤滑油で満たされ)、図1に示す流体動圧軸受装置が完成する。

0038

ところで、図2に示す軸部材3は、サーバー等での使用に適合する、高容量型HDD用の流体動圧軸受装置に使用されるものである。この種の流体動圧軸受装置では、ディスク枚数が多いことから高い軸受剛性が求められる一方、消費電力の削減のため、軸受トルクを極力低くすることも必要とされる。以上の要請に応えるべく、図2に示す軸部材3は、汎用軸部材との対比で中逃げ部33の軸方向長さを長くすることにより、軸受スパンを長くしている。具体的には、図2の軸部材3における、軸受面中心間距離S(軸受面31,32の軸方向中心間の距離)と中逃げ部33の軸方向長さとの比(S/L3)は、1.1<S/L3<2.5の範囲内にある(この特徴を有する軸部を「長軸タイプ」と呼ぶ)。

0039

本発明では、中逃げ部33の一部を研削することで、中逃げ部33に高精度領域(円筒面部331)を形成している。従って、軸受面31,32を研削する際に、この高精度領域をシューで支持することで、軸受面31,32の研削精度を高めることができる。また、中逃げ部32の円筒面部331をシュー12で支持することで、研削荷重の作用線(研削荷重中心線)をシュー12で支持された領域と接近させ、好ましくはシュー12で支持された領域中に配置することができる。この場合、シュー12で支持された領域と各軸受面31,32との間の軸方向距離の差が小さくなる。従って、研削中の軸素材38が振れ回り難くなり、振れ回ったとしても二つの軸受面31,32の研削精度に与える影響を小さくすることができる。以上に述べた作用から、研削後の軸受面の個々の表面精度(真円度等)、さらに二つの軸受面相互間の精度(同軸度等)を高めることが可能となる。

0040

加えて、中逃げ部33の円筒面部311を軸受面33,32と同時に研削しているため、円筒面部311が軸受面31,32を研削する際の加工基準となる。従って、円筒面部331と軸受面31,32の間で高い同軸度(例えば10μm以下の同軸度)を確保することができる。軸受面31,32に対して高精度に同軸に保たれる円筒面部311をシュー12で支持することにより、軸受面31,32の研削精度をさらに高めることができる。

0041

以上に述べた作用効果は、図5に示す総形砥石13を使用し、軸受面31,32と中逃げ部33を同時研削することでも得ることができる。しかしながら、かかる構成では、中逃げ部33での研削取り代が、軸受面31,32での研削取り代よりも大きくなるため、軸受面31,32の研削に先立って中逃げ部33での研削を開始する必要がある。従って、研削時間が長期化し、製造コストが高騰する問題を生じる。また、ドレッサー等の成形工具による砥石10の成形時に、成形工具の摩耗が進展していると、砥石10の大径部10aと小径部10bの境界角部の位置が変動することになる。これは、研削した軸受面31,32の軸方向長さの変動につながるので、軸受機能上好ましくない。これに対し、本発明のように、中逃げ部33のうち、円筒面部331の軸方向両側に円筒面部331に対して径差を持つ段差部332を形成することにより、かかる不具合を防止することができる。

0042

その一方で、中逃げ部33と軸受部材2の内周面との間の隙間の容積が大きすぎると、その分だけハウジング1内の潤滑油量が増え、温度変化に伴う油面レベルの変動が大きくなるため、シール隙間6を大型化する必要がある。かかる不具合を防止するため、中逃げ部33と軸受部材2の内周面との間の容積は極力小さくするのが好ましい。その一方で、中逃げ部33と軸受部材2の内周面との間の隙間幅が小さすぎると、トルクロスが増大することになる。以上の問題を解決するため、図2に示すように、円筒面部331と段差部332の直径寸法の径差(2×d)や段差部の軸方向長さL4,L5は極力小さくするのが好ましい。具体的には前記直径寸法の径差は、80μm以下、好ましくは50μm以下とする。また、各段差部332の軸方向長さL4、L5は、何れも4mm以下とする。

0043

以上に説明した実施形態では、中逃げ部33において、段差部332の外径寸法を円筒面部331の外径寸法よりも小さくしているが、これとは逆に、図6に示すように段差部332の外径寸法を円筒面部331の外径寸法よりも大きくしてもよい。但し、この場合も段差部332の外径寸法は軸受面31,32の外径寸法よりも小さくする。かかる構成では、砥石で段差部332が僅かに研削されることになるが、研削取り代はごく僅かであるので加工時間が長期化することはない。また、砥石成形工具の摩耗による軸受面31,32の軸方向長さの変動が問題となることもない。

0044

以上の説明では、旋削により中逃げ部33、軸受面31,32、ハブ固定部34等を旋削で粗形成してから、これらの部分を円筒研削により仕上げる場合を説明したが、軸部材3の製作手順はこれには限定されない。例えば、図7(a)に示すように、軸素材38を鍛造成形してから、図7(b)に示すように、総形砥石14によるアンギュラ研削で、中逃げ部33、軸受面31,32、ハブ固定部34、第一ヌスミ部35、および第二ヌスミ部36の各部を形成し、その後、図7(c)に示すように、軸受面31,32やハブ固定部34を円筒研削により仕上げる手順も考えられる。この場合、図7(c)に示す円筒研削として図4図6に示す研削方法を採用することで、上記と同様の作用効果を得ることができる。

0045

この手順で製作された軸部材3では、軸受面31,32、円筒面部331、ハブ固定部34、段差部332、第一ヌスミ部35、および第二ヌスミ部36が何れも研削面となる。但し、段差部332、第一ヌスミ部35、および第二ヌスミ部36の各部がアンギュラ研削による研削面であるのに対し、軸受面31,32、円筒面部331、およびハブ固定部34の各部は、アンギュラ研削に加えて円筒研削が施された研削面である。従って、通常は、前者よりも後者の方が表面精度(表面粗さ、真円度等)は良好となる。

0046

以上の説明では、サーバー用HDDに使用される流体動圧軸受装置を例示したが、本発明にかかる流体軸受装置は、HDDに限定されず、各種用途に広く使用することができる。また、流体動圧軸受装置の構成も図1に示す構成に限定されるものではない。

0047

1ハウジング
2軸受部材
3軸部材
3a 軸部
3bフランジ部
4シール部材
10砥石
12シュー
31軸受面(反フランジ側)
32 軸受面(フランジ側
33 中逃げ部
34 ハブ固定部
331円筒面部
332段差部

ページトップへ

この技術を出願した法人

この技術を発明した人物

ページトップへ

関連する挑戦したい社会課題

関連する公募課題

該当するデータがありません

ページトップへ

技術視点だけで見ていませんか?

この技術の活用可能性がある分野

分野別動向を把握したい方- 事業化視点で見る -

(分野番号表示ON)※整理標準化データをもとに当社作成

ページトップへ

おススメ サービス

おススメ astavisionコンテンツ

新着 最近 公開された関連が強い技術

この 技術と関連性が強い技術

関連性が強い 技術一覧

この 技術と関連性が強い人物

関連性が強い人物一覧

この 技術と関連する社会課題

関連する挑戦したい社会課題一覧

この 技術と関連する公募課題

該当するデータがありません

astavision 新着記事

サイト情報について

本サービスは、国が公開している情報(公開特許公報、特許整理標準化データ等)を元に構成されています。出典元のデータには一部間違いやノイズがあり、情報の正確さについては保証致しかねます。また一時的に、各データの収録範囲や更新周期によって、一部の情報が正しく表示されないことがございます。当サイトの情報を元にした諸問題、不利益等について当方は何ら責任を負いかねることを予めご承知おきのほど宜しくお願い申し上げます。

主たる情報の出典

特許情報…特許整理標準化データ(XML編)、公開特許公報、特許公報、審決公報、Patent Map Guidance System データ