図面 (/)

技術 ミトコンドリア機能向上と、神経変性疾患および認知障害治療とのための組成物および方法

出願人 アマゼンティスエスアー
発明者 クリストファーエルリンシュウィリアムブランコ-ボスベルナールシュネデールシャルレトーマカルメンサンディジョアンオウェールペネロプアンドルリシャルドゥフートコーペールエジャピリネンロレンムーシローダヴィジェヌー
出願日 2017年11月30日 (2年11ヶ月経過) 出願番号 2017-230245
公開日 2018年3月22日 (2年7ヶ月経過) 公開番号 2018-043994
状態 特許登録済
技術分野 突然変異または遺伝子工学 他の有機化合物及び無機化合物含有医薬 食品の着色及び栄養改善 化合物または医薬の治療活性 植物物質含有医薬
主要キーワード 円形プラットフォーム 開放区画 純生産 CPC装置 開放区域 上昇モード 空間定位 記憶貯蔵
関連する未来課題
重要な関連分野

この項目の情報は公開日時点(2018年3月22日)のものです。
また、この項目は機械的に抽出しているため、正しく解析できていない場合があります

図面 (20)

課題

例えば、老化またはストレスと、糖尿病と、肥満と、神経変性疾患とを含む、ミトコンドリア活性低下また不足に関連する疾患または障害治療および/または予防することを含む、様々な治療的適応に使用され得る化合物か、該化合物の前駆体かを含む組成物を提供する。

解決手段

前記化合物は、一般的に、エラジタンニンおよびウロリチンAを含むが、これらに限られない、ウロリチンおよびその前駆体に関する。一部の実施形態において、前記組成物は、食品または栄養サプリメント中で提供されるかまたは食品または栄養サプリメントとして提供される。これらの前記化合物および組成物は、新陳代謝速度を向上させるかまたは維持し、体脂肪百分率を低下させ、筋肉量を増加させるかまたは維持し、体重を管理し、(記憶を含む)精神能力を改善もしくは維持し、筋機能を改善させるかまたは維持し、気分を改善させるかまたは維持し、ストレスを管理するために、全般的に健康な個体においても有利に使用することができる。

概要

背景

エラジタンニンは、一部の果実液果類およびナッツ類、例えばザクロラズベリーイチゴブラックラズベリー、クルミおよびアーモンドに多く存在するモノマーオリゴマーおよびポリマー性ポリフェノールである。果実および液果類は、生で、および例えばジュースなどの飲料として広く摂取されており、これらは、健康を増進することが報告されている。

市販の果汁加工法において、一部の果実皮に特に多く存在するエラジタンニンが果汁中に大量に抽出される。エラジタンニンは、加水分解時にエラグ酸を放出する加水分解性タンニン化学クラスに属する。インビトロの研究から、エラジタンニンは、10から100マイクロモラー(μM)の範囲の濃度で、抗酸化抗動脈硬化抗血栓症、抗炎症および抗血管形成効果を有する可能性があることが示唆されている。果実は、優占的な異なるエラジタンニンを有する場合があり、例えばザクロから調製された果汁中では、優占的なエラジタンニンはプニカラギン[2,3ヘキサヒドロキシジフノイル−4,6−ガラギルグルコース]で、これは異性体の混合物として存在する。果汁1Lあたり>2gのレベルに達する場合がある高含量のプニカラギン異性体に起因するザクロ果汁の強力な抗酸化特性が報告されている。エラジタンニンは、ザクロ果汁中で、活性のある抗動脈硬化化合物としても同定されている。ザクロエラジタンニンおよびザクロ果実抽出物が、ヒト癌細胞の増殖を阻害し、炎症性細胞シグナル伝達経路およびアポトーシスを調節することも示唆されている。例えば、非特許文献1−5参照。ザクロ果実抽出物は、CWR22Rv1前立腺細胞移植した無胸腺ヌードマウスにおいて、前立腺腫瘍成長を抑制し、前立腺血清抗原(PSA)レベルを低下させることも報告されている(非特許文献5)。

残念なことに、大部分、エラジタンニンはヒトの消化管での吸収性が悪い。しかし、片利共生微生物(すなわち腸管微生物叢)により最終的に消化管で生成されるある種の代謝産物を含め、エラジタンニン由来の多くの代謝産物は、ヒト消化管により吸収される。

エラジタンニンは、インビボ生理的条件下でエラグ酸を放出し、次にエラグ酸が徐々に腸において消化管微生物叢により代謝され、ウロリチンD、ウロリチンC、ウロリチンA(UA)およびウロリチンB(UB)が生じる。代謝産物が吸収されると、これらはグルクロン酸抱合され、肝臓に行くと、これらはさらに代謝されて、グルクロニドおよび/または硫酸化物が生成され、代謝産物の組み合わせが胆管において分泌される。

ウロリチンは、エラグ酸、プニカラギン(PA)、プニカリン(PB)、テリマグランジンTL)その他のエラジタンニンの代謝産物である(非特許文献6及び7)。エラグ酸(EA)は、ザクロ果汁において豊富である(非特許文献8)。エラジタンニンのテリマグランジン(TL)は、ザクロその他の植物由来のものから以前に単離され、既に特徴が調べられている(非特許文献9−11)。UA、PA、PB、EAおよびTLの構造式を図1で示す。

天然産物に基づくものを含む治療様式をより良好に設計できるように、代謝性疾患神経変性および認知低下機序を理解するために多大な努力積み重ねられてきた。中心的な観察の1つは、ミトコンドリアエネルギー産生を低下させる役割であり、これは酸化ストレスおよびアポトーシス増加と対応しており、変性疾患および老化過程において重要な役割を果たす。現在、様々な変性疾患が、ミトコンドリアDNAmtDNA)または核DNA(nDNA)によりコードされるミトコンドリア遺伝子突然変異により引き起こされることが示されている。重要なこととして、体細胞mtDNA突然変異は、老化によるミトコンドリア機能低下と関連して有糸分裂後組織において年齢とともに蓄積し、加齢および老化における重要な因子と考えられる。遺伝性疾患が、mtDNA塩基置換および再編成突然変異の結果として起こり得、CNS心臓および骨格筋および腎臓内分泌および血液系に影響を及ぼす場合がある。

ミトコンドリアは、酸化的リン酸化(OXPHOS)により細胞エネルギーのほとんどを産生し、副産物として毒性のある活性酸素種(ROS)のほとんどを産生する。OXPHOSを阻害する遺伝子異常は、ROS産生へのOXPHOS電子方向転換も引き起こし、したがって、酸化ストレスを増加させる。ミトコンドリアエネルギー産生の低下および酸化ストレス増加は、ミトコンドリアの膜透過性遷移孔(mtPTP)に影響を与え、プログラムされた細胞死(アポトーシス)を開始させ得る。これらの3つの因子の相互作用は、身体の全組織に影響を与える、変性疾患および老化過程の病態生理学において主要な役割を果たすと考えられている。

正常な脳において、最適な認知機能は主に、電気シグナルを伝達し、化学的神経伝達を誘発することができる非常に複雑な細胞であるニューロン活動およびニューロン間通信に依存する。ニューロン機能は、ニューロンまたは標的細胞を連結するためにセンチメートル単位またはさらにメートル単位にわたり伸び得る長く複雑な細胞突起に依存し、100,000個を超えるシナプス接触をなす場合がある。そのようなものとして、ニューロンはエネルギー供給に大きく依存しており、したがって、酸化ストレス損傷に曝される。認知機能は、複雑なニューロンネットワーク内で起こる細胞内シグナル伝達の微妙なバランスに依存している。最適な認知機能は、老化、細胞ストレス慢性ストレスおよび神経変性障害などの多くの因子により損なわれ得る。認知低下は、思考、学習、記憶、注意力における能力の低下ならびにおよび/または心理学的スキル低下、ならびにうつおよび不安を特徴とする場合がある。

ミトコンドリア機能は、代謝性疾患においても重要であることが示されている。糖尿病および肥満は、ミトコンドリア機能不全と関連付けられてきた。ミトコンドリアにおける共役効率またはATPを生成させるのに必要な酸素消費の割合は肥満レベルと関連があり、共役効率が高い結果、脂肪蓄積がより多く重ねられる可能性があることが示唆されている(非特許文献12)。糖尿病において、最近の研究から、エネルギー供給が不十分であるかまたはインスリンシグナル伝達経路障害が起こる結果として、ミトコンドリア機能不全が、筋細胞および脂肪細胞におけるインスリン非感受性の原因となることが示唆された(非特許文献13)。

概要

例えば、老化またはストレスと、糖尿病と、肥満と、神経変性疾患とを含む、ミトコンドリアの活性低下また不足に関連する疾患または障害を治療および/または予防することを含む、様々な治療的適応に使用され得る化合物か、該化合物の前駆体かを含む組成物を提供する。前記化合物は、一般的に、エラジタンニンおよびウロリチンAを含むが、これらに限られない、ウロリチンおよびその前駆体に関する。一部の実施形態において、前記組成物は、食品または栄養サプリメント中で提供されるかまたは食品または栄養サプリメントとして提供される。これらの前記化合物および組成物は、新陳代謝速度を向上させるかまたは維持し、体脂肪百分率を低下させ、筋肉量を増加させるかまたは維持し、体重を管理し、(記憶を含む)精神能力を改善もしくは維持し、筋機能を改善させるかまたは維持し、気分を改善させるかまたは維持し、ストレスを管理するために、全般的に健康な個体においても有利に使用することができる。なし

目的

本発明は、例えば、老化またはストレス、糖尿病、肥満および神経変性疾患を含め、ミトコンドリア活性の低下または不足に関連する疾患または障害を治療および/または予防することを含む、様々な治療的適応に対して使用され得る化合物または該化合物の前駆体を含む組成物を提供する

効果

実績

技術文献被引用数
0件
牽制数
0件

この技術が所属する分野

(分野番号表示ON)※整理標準化データをもとに当社作成

ライセンス契約や譲渡などの可能性がある特許掲載中! 開放特許随時追加・更新中 詳しくはこちら

請求項1

肥満新陳代謝速度低下、メタボリックシンドローム糖尿病心血管疾患高脂血症神経変性疾患認知障害気分障害ストレスおよび不安障害からなる群から選択される症状の治療または予防と、体重管理と、筋機能または精神能力の向上とのための、有効量のザクロ抽出物を含む食品または栄養サプリメント

関連出願の相互参照

0001

本願は、2010年12月23日出願の米国特許仮出願第61/426,957号に基づく米国特許法第119条(e)による優先権を主張する。

技術分野

0002

本発明は、ミトコンドリア機能向上と、神経変性疾患および認知障害治療とのための組成物および方法に関する。

背景技術

0003

エラジタンニンは、一部の果実液果類およびナッツ類、例えばザクロラズベリーイチゴブラックラズベリー、クルミおよびアーモンドに多く存在するモノマーオリゴマーおよびポリマー性ポリフェノールである。果実および液果類は、生で、および例えばジュースなどの飲料として広く摂取されており、これらは、健康を増進することが報告されている。

0004

市販の果汁加工法において、一部の果実皮に特に多く存在するエラジタンニンが果汁中に大量に抽出される。エラジタンニンは、加水分解時にエラグ酸を放出する加水分解性タンニン化学クラスに属する。インビトロの研究から、エラジタンニンは、10から100マイクロモラー(μM)の範囲の濃度で、抗酸化抗動脈硬化抗血栓症、抗炎症および抗血管形成効果を有する可能性があることが示唆されている。果実は、優占的な異なるエラジタンニンを有する場合があり、例えばザクロから調製された果汁中では、優占的なエラジタンニンはプニカラギン[2,3ヘキサヒドロキシジフノイル−4,6−ガラギルグルコース]で、これは異性体の混合物として存在する。果汁1Lあたり>2gのレベルに達する場合がある高含量のプニカラギン異性体に起因するザクロ果汁の強力な抗酸化特性が報告されている。エラジタンニンは、ザクロ果汁中で、活性のある抗動脈硬化化合物としても同定されている。ザクロエラジタンニンおよびザクロ果実抽出物が、ヒト癌細胞の増殖を阻害し、炎症性細胞シグナル伝達経路およびアポトーシスを調節することも示唆されている。例えば、非特許文献1−5参照。ザクロ果実抽出物は、CWR22Rv1前立腺細胞移植した無胸腺ヌードマウスにおいて、前立腺腫瘍成長を抑制し、前立腺血清抗原(PSA)レベルを低下させることも報告されている(非特許文献5)。

0005

残念なことに、大部分、エラジタンニンはヒトの消化管での吸収性が悪い。しかし、片利共生微生物(すなわち腸管微生物叢)により最終的に消化管で生成されるある種の代謝産物を含め、エラジタンニン由来の多くの代謝産物は、ヒト消化管により吸収される。

0006

エラジタンニンは、インビボ生理的条件下でエラグ酸を放出し、次にエラグ酸が徐々に腸において消化管微生物叢により代謝され、ウロリチンD、ウロリチンC、ウロリチンA(UA)およびウロリチンB(UB)が生じる。代謝産物が吸収されると、これらはグルクロン酸抱合され、肝臓に行くと、これらはさらに代謝されて、グルクロニドおよび/または硫酸化物が生成され、代謝産物の組み合わせが胆管において分泌される。

0007

ウロリチンは、エラグ酸、プニカラギン(PA)、プニカリン(PB)、テリマグランジンTL)その他のエラジタンニンの代謝産物である(非特許文献6及び7)。エラグ酸(EA)は、ザクロ果汁において豊富である(非特許文献8)。エラジタンニンのテリマグランジン(TL)は、ザクロその他の植物由来のものから以前に単離され、既に特徴が調べられている(非特許文献9−11)。UA、PA、PB、EAおよびTLの構造式図1で示す。

0008

天然産物に基づくものを含む治療様式をより良好に設計できるように、代謝性疾患神経変性および認知低下機序を理解するために多大な努力積み重ねられてきた。中心的な観察の1つは、ミトコンドリアエネルギー産生を低下させる役割であり、これは酸化ストレスおよびアポトーシス増加と対応しており、変性疾患および老化過程において重要な役割を果たす。現在、様々な変性疾患が、ミトコンドリアDNAmtDNA)または核DNA(nDNA)によりコードされるミトコンドリア遺伝子突然変異により引き起こされることが示されている。重要なこととして、体細胞mtDNA突然変異は、老化によるミトコンドリア機能低下と関連して有糸分裂後組織において年齢とともに蓄積し、加齢および老化における重要な因子と考えられる。遺伝性疾患が、mtDNA塩基置換および再編成突然変異の結果として起こり得、CNS心臓および骨格筋および腎臓内分泌および血液系に影響を及ぼす場合がある。

0009

ミトコンドリアは、酸化的リン酸化(OXPHOS)により細胞エネルギーのほとんどを産生し、副産物として毒性のある活性酸素種(ROS)のほとんどを産生する。OXPHOSを阻害する遺伝子異常は、ROS産生へのOXPHOS電子方向転換も引き起こし、したがって、酸化ストレスを増加させる。ミトコンドリアエネルギー産生の低下および酸化ストレス増加は、ミトコンドリアの膜透過性遷移孔(mtPTP)に影響を与え、プログラムされた細胞死(アポトーシス)を開始させ得る。これらの3つの因子の相互作用は、身体の全組織に影響を与える、変性疾患および老化過程の病態生理学において主要な役割を果たすと考えられている。

0010

正常な脳において、最適な認知機能は主に、電気シグナルを伝達し、化学的神経伝達を誘発することができる非常に複雑な細胞であるニューロン活動およびニューロン間通信に依存する。ニューロン機能は、ニューロンまたは標的細胞を連結するためにセンチメートル単位またはさらにメートル単位にわたり伸び得る長く複雑な細胞突起に依存し、100,000個を超えるシナプス接触をなす場合がある。そのようなものとして、ニューロンはエネルギー供給に大きく依存しており、したがって、酸化ストレス損傷に曝される。認知機能は、複雑なニューロンネットワーク内で起こる細胞内シグナル伝達の微妙なバランスに依存している。最適な認知機能は、老化、細胞ストレス慢性ストレスおよび神経変性障害などの多くの因子により損なわれ得る。認知低下は、思考、学習、記憶、注意力における能力の低下ならびにおよび/または心理学的スキル低下、ならびにうつおよび不安を特徴とする場合がある。

0011

ミトコンドリア機能は、代謝性疾患においても重要であることが示されている。糖尿病および肥満は、ミトコンドリア機能不全と関連付けられてきた。ミトコンドリアにおける共役効率またはATPを生成させるのに必要な酸素消費の割合は肥満レベルと関連があり、共役効率が高い結果、脂肪蓄積がより多く重ねられる可能性があることが示唆されている(非特許文献12)。糖尿病において、最近の研究から、エネルギー供給が不十分であるかまたはインスリンシグナル伝達経路障害が起こる結果として、ミトコンドリア機能不全が、筋細胞および脂肪細胞におけるインスリン非感受性の原因となることが示唆された(非特許文献13)。

先行技術

0012

Seeram et al.(2005)J.Nutr.Biochem.16:360−7
Adams et al.(2006)J.Agric.Food Chem.54:980−85
Afaq et al.(2005)Photochem.Photobiol.81:38−45
Afaq et al.(2005)Int.J.Cancer.113:423−33
Malik et al.(2005)Proc.Natl.Acad.Sci.102:14813−8
Cerda,Espin et al.(2004)Eur.J.Nutr.43:205−20
Cerda,Periago et al.(2005)J.Agric.Food Chem.53:5571−6
Gil,Tomas−Barberan et al.(2000)J.Agric.Food Chem.48:4581−9
Tanaka,Nonaka et al.(1986)Chem.Pharm.Bull.34:650−655
Tanaka,Nonaka et al.(1986)Chem.Pharm.Bull.34:656−663
Satomi,Umemura et al.(1993)Biol.Pharm.Bull.16:787−90
Harper,Green et al.(2008)Annu.Rev.Nutr.28:13−33
Wang,Wang et al.(2010)Ann.N.Y.Acad.Sci.1201:157−65

0013

本発明は、例えば、老化またはストレス、糖尿病、肥満および神経変性疾患を含め、ミトコンドリア活性の低下または不足に関連する疾患または障害を治療および/または予防することを含む、様々な治療的適応に対して使用され得る化合物または該化合物の前駆体を含む組成物を提供する。これらの上記の化合物および組成物は、新陳代謝速度を向上させるかまたは維持し、体脂肪百分率を低下させ、筋肉量を増加させるかまたは維持し、体重を管理し、(記憶を含む)精神能力を向上させるかもしくは維持し、筋機能を向上させるかまたは維持し、気分を上昇させるかまたは維持し、ストレスを管理するために、全般的に健康な人においても有利に使用される場合がある。

0014

本発明の目的は、(i)不十分なミトコンドリア活性;(ii)糖尿病および肥満などの代謝性疾患;(iii)認知機能の低下;または(iv)気分障害により惹起されるかまたはこれらを特徴とする疾患症状の予防または治療における使用のための、植物抽出物か、それらの活性画分か、それらから単離可能なまたは合成される1種類以上の活性成分又は代謝産物かを提供する。

0015

したがって、第1の局面において、本発明は、ミトコンドリア機能の誘導物質としての使用のための、果実抽出物か、それらの活性画分か、それらから単離可能な1種類以上の活性成分かを提供する。

0016

明細書中で使用されるところの「画分」という用語は、精製または部分精製抽出物を指す。

0017

別の局面において、本発明は、ミトコンドリア機能低下により発症するかまたはそれを特徴とする疾患症状の予防または治療における使用のための、果実抽出物、それらの活性画分またはそれらから単離可能な1種類以上の活性成分を提供する。

0018

別の局面において、本発明は、(i)ミトコンドリア機能低下により発症するかまたはそれを特徴とする疾患症状の予防または治療か;(ii)認知または筋肉機能の向上かにおける使用のための薬剤の製造のために本明細書中で以下に定義されるところの、果実か、抽出物か、それらの活性画分か、それらから単離可能な1種類以上の活性成分かの使用を提供する。このような疾患症状は、神経変性疾患、認知障害、気分障害、不安障害、代謝性疾患、糖尿病および肥満を含み得るが、これらに限られない。

0019

別の局面において、本発明は、(i)ミトコンドリア機能低下により発症するかまたはそれを特徴とする疾患症状の予防または治療か;(ii)認知または筋肉機能の向上かにおける使用のための薬剤の製造のための方法を提供し、この方法は、本明細書中で以上に定義されるところの、薬剤の必須成分としての、果実か、その抽出物か、活性画分か、それらから単離可能な1種類以上の活性成分かの使用を特徴とする。

0020

またさらなる局面において、本発明は、本明細書中で既に定義されるところの、果実か、抽出物か、活性画分由来の活性成分か、それらから単離可能な1種類以上の活性成分かと、薬学的に許容可能な担体とを含む、医薬組成物を提供する。

0021

本発明の目的は、(i)脳機能、(ii)糖尿病または肥満を含む代謝機能、(iii)筋機能および(iv)組織ATPレベル上昇を改善するための、ミトコンドリア活性の上昇から利益を得る対象において疾患または障害を治療することにおける使用のための、植物抽出物か、それらの活性画分か、それらから単離可能であるかまたは合成される1種類以上の活性成分または代謝産物かを提供することである。

0022

本発明の目的は、神経保護的で、神経栄養的で、および/または、神経突起伸長を促進し、結果として認知機能を改善する、抽出物、組成物および化合物と、これらの化合物および組成物の使用方法とを提供することである。

0023

本発明の目的は、脳機能および認知を改善し、保護し、維持する化合物および組成物を提供することである。本発明の別の目的は、気分障害を改善し、予防し、管理することである。本発明の別の目的は、ストレスで誘発されるか、あるいは、ストレスと関連する、障害または症状を予防することである。

0024

本発明の目的は、損傷から脳を保護し、ならびに健常な成人において認知能力および記憶を改善するための、神経保護化合物を提供することである。本発明の別の目的は、神経可塑性刺激する新規化合物を提供することである。神経可塑性は、記憶および認知機能に必要な中心的過程であることがよく知られている。このような化合物は、神経突起伸長と、細胞あたりの分枝数と、細胞あたりの平均突起と、さらに、形成されるシナプス数とにも影響を与え得る。

0025

本発明はまた、ザクロその他の果実で見出される生物活性天然化合物としての、エラジタンニンに関連する、複数のポリフェノール化合物およびそれらの誘導体と、これらの化合物を含有する生物活性天然抽出物とにも関する。これらの化合物は、全てザクロ中で見出されるが、他の果実および液果類からも単離され得る、エラジタンニン、プニカラギンおよびエラグ酸と、これらの化合物の代謝産物とを含む。本明細書中で開示されるように、これらの化合物は現在、(i)ミトコンドリア機能、(ii)細胞代謝産物および(iii)神経可塑性に有益な効果を有することが示されている。

0026

神経細胞培養および初代培養細胞における神経突起伸長および突起形成のインビトロモデルを使用して、様々な化合物の有益な効果について調べた。上述のように、老化、神経変性および慢性ストレスは、神経突起伸長に負の影響がある。注目すべきことに、本発明の化合物が神経保護特性を有し、PC−12細胞および初代培養中脳ニューロンにおいて強い刺激活性を示し、動物モデルにおいて認知機能および記憶を改善することが分かった。

0027

ある局面において、本発明は、本発明の化合物またはそれらの混合物を含む、医薬品、病人食、機能性食品食品添加物または栄養補助食品などの組成物に関する。本組成物は、任意的に、さらなる治療剤も含有する場合があるか、または、別の治療用化合物と組み合わせて投与する場合がある。記憶および認識能力を改善させることにおける使用のための、および/または、老齢者で見られる状態にとって典型的な脳への障害を伴う疾患または症状の治療のための、上述の組成物および標識および/または説明書を含有する包装製品も提供される。

0028

本発明の1つの局面は、肥満、新陳代謝速度低下、メタボリックシンドローム、糖尿病、心血管疾患高脂血症、神経変性疾患、認知障害、気分障害、ストレスおよび不安障害からなる群から選択される症状の治療または予防か;体重管理か;筋機能もしくは精神能力を改善させるかのための、有効量のザクロ抽出物を含む食品または栄養サプリメントである。

0029

本発明の1つの局面は、肥満、新陳代謝速度低下、メタボリックシンドローム、糖尿病、心血管疾患、高脂血症、神経変性疾患、認知障害、気分障害、ストレスおよび不安障害からなる群から選択される症状の治療または予防か;体重管理か;筋機能もしくは精神能力を向上させるかのための、有効量のエラジタンニンを含む、食品または栄養サプリメントである。

0030

本発明の1つの局面は、肥満、新陳代謝速度低下、メタボリックシンドローム、糖尿病、心血管疾患、高脂血症、神経変性疾患、認知障害、気分障害、ストレスおよび不安障害からなる群から選択される症状の治療または予防か;体重管理か;筋機能もしくは精神能力を向上させるかのための、有効量のプニカラギンを含む、食品または栄養サプリメントである。

0031

本発明の1つの局面は、肥満、新陳代謝速度低下、メタボリックシンドローム、糖尿病、心血管疾患、高脂血症、神経変性疾患、認知障害、気分障害、ストレスおよび不安障害からなる群から選択される症状の治療または予防か;体重管理か;筋機能もしくは精神能力を向上させるかのための、有効量のエラグ酸を含む、食品または栄養サプリメントである。

0032

本発明の1つの局面は、肥満、新陳代謝速度低下、メタボリックシンドローム、糖尿病、心血管疾患、高脂血症、神経変性疾患、認知障害、気分障害、ストレスおよび不安障害からなる群から選択される症状の治療または予防か;体重管理か;筋機能もしくは精神能力を向上させるかのための、有効量のウロリチンを含む、食品または栄養サプリメントである。

0033

前述のそれぞれにおいて、1つの実施形態では前記症状は肥満である。

0034

前述のそれぞれにおいて、1つの実施形態では前記症状は新陳代謝速度低下である。

0035

前述のそれぞれにおいて、1つの実施形態では前記症状はメタボリックシンドロームである。

0036

前述のそれぞれにおいて、1つの実施形態では前記症状は糖尿病である。

0037

前述のそれぞれにおいて、1つの実施形態では前記症状は心血管疾患である。

0038

前述のそれぞれにおいて、1つの実施形態では前記症状は高脂血症である。

0039

前述のそれぞれにおいて、1つの実施形態では前記症状は神経変性疾患である。

0040

前述のそれぞれにおいて、1つの実施形態では前記症状は認知障害である。

0041

前述のそれぞれにおいて、1つの実施形態では前記症状は気分障害である。

0042

前述のそれぞれにおいて、1つの実施形態では前記症状はストレスである。

0043

前述のそれぞれにおいて、1つの実施形態では前記症状は不安障害である。

0044

前述のそれぞれにおいて、1つの実施形態では前記食品または栄養サプリメントは体重管理用である。

0045

前述のそれぞれにおいて、1つの実施形態では前記食品または栄養サプリメントは筋機能を向上させるためのものである。

0046

前述のそれぞれにおいて、1つの実施形態では前記食品または栄養サプリメントは精神能力を向上させるためのものである。

0047

本発明の1つの局面は、ミトコンドリア機能を向上させるかまたは維持する方法である。該方法は、ミトコンドリアの機能を向上させるために、有効量のウロリチンまたはその前駆体と細胞を接触させるステップを含む。

0048

本発明の1つの局面は、ミトコンドリア機能の変化またはミトコンドリア密度の低下を伴うミトコンドリア関連疾患または症状を、治療、予防または管理する方法である。該方法は、ミトコンドリア機能の変化またはミトコンドリア密度の低下を伴う疾患または症状を治療するために、必要とする対象に治療的有効量のウロリチンまたはその前駆体を投与するステップを含む。

0049

本発明の1つの局面は、新陳代謝速度を向上させる方法である。該方法は、新陳代謝速度を向上させるために、必要とする対象に有効量のウロリチンまたはその前駆体を投与するステップを含む。

0050

本発明の1つの局面は、メタボリックシンドロームを予防または治療する方法である。該方法は、メタボリックシンドロームを予防または治療するために、必要とする対象に有効量のウロリチンまたはその前駆体を投与するステップを含む。

0051

本発明の1つの局面は、肥満を予防または治療する方法である。該方法は、肥満を予防または治療するために、必要とする対象に有効量のウロリチンまたはその前駆体を投与するステップを含む。

0052

本発明の1つの局面は、心血管疾患を予防または治療する方法である。該方法は、心血管疾患を予防または治療するために、必要とする対象に有効量のウロリチンまたはその前駆体を投与するステップを含む。

0053

本発明の1つの局面は、高脂血症を治療する方法である。該方法は、高脂血症を治療するために、必要とする対象に有効量のウロリチンまたはその前駆体を投与するステップを含む。1つの実施形態では、前記高脂血症は高トリグリセリド血症である。1つの実施形態では、前記高脂血症は遊離脂肪酸の増加である。

0054

本発明の1つの局面は、代謝性疾患を治療する方法である。該方法は、代謝性疾患を治療するために、必要とする対象に治療的有効量のウロリチンまたはその前駆体を投与するステップを含む。1つの実施形態では、前記代謝性疾患は糖尿病である。1つの実施形態では、前記代謝性疾患は肥満である。

0055

本発明の1つの局面は、神経変性疾患を治療する方法である。該方法は、神経変性疾患を治療するために、必要とする対象に治療的有効量のウロリチンまたはその前駆体を投与するステップを含む。1つの実施形態では、前記神経変性疾患は、AIDSによる認知症アルツハイマー病筋萎縮性側索硬化症副腎白質ジストロフィー、アレキサンダー病、アルパース病、毛細血管拡張性運動失調バッテン病、牛海綿状脳症BSE)、カナバン病、大脳皮質基礎変性症クロイツフェルトヤコブ病レビー小体型認知症致死性家族性不眠症前頭側頭葉変性症、ハンチントン病、ケネディー病、クラッベ病ライム病マシャド・ジョセフ病、多発性硬化症多系統萎縮症、神経有棘赤血球症、ニーマンピック病パーキンソン病ピック病原発性側索硬化症進行性核上まひレフサム病サンドホフ病、ミエリン破壊広汎性硬化症脊髄小脳失調亜急性脊髄連合変性症、脊髄癆テイサックス病、中毒性脳症感染性海綿状脳症およびハリネズミふらつき症候群からなる群から選択される。1つの実施形態では、前記神経変性疾患は、アルツハイマー病、筋萎縮性側索硬化症、ハンチントン病およびパーキンソン病からなる群から選択される。1つの実施形態では、前記神経変性疾患はアルツハイマー病である。

0056

本発明の1つの局面は、認知機能を向上させる方法である。該方法は、認知機能を向上させるために、必要とする対象に有効量のウロリチンまたはその前駆体を投与するステップを含む。1つの実施形態では、前記認知機能は、知覚、記憶、注意会話の理解、発話生成(speech generation)、読解力、心象生成、学習および論理的思考からなる群から選択される。1つの実施形態では、前記認知機能は、知覚、記憶、注意および論理的思考からなる群から選択される。1つの実施形態では、前記認知機能は記憶である。

0057

本発明の1つの局面は、認知障害を治療する方法である。該方法は、認知障害を治療するために、必要とする対象に治療的有効量のウロリチンまたはその前駆体を投与するステップを含む。1つの実施形態では、前記認知障害は、せん妄、認知症、学習障害注意欠陥障害(ADD)および注意欠陥多動性障害ADHD)からなる群から選択される。1つの実施形態では、前記認知障害は学習障害である。1つの実施形態では、前記認知障害は注意欠陥障害(ADD)である。1つの実施形態では、前記認知障害は注意欠陥多動性障害(ADHD)である。

0058

本発明の1つの局面は、ストレスで誘発されるか、あるいは、ストレスと関連する、認知障害を治療する方法である。該方法は、ストレスで誘発されるか、あるいは、ストレスと関連する、障害を治療するために、必要とする対象に治療的有効量のウロリチンまたはその前駆体を投与するステップを含む。

0059

本発明の1つの局面は、気分障害を治療する方法である。該方法は、気分障害を治療するために、必要とする対象に治療的有効量のウロリチンまたはその前駆体を投与するステップを含む。1つの実施形態では、前記気分障害は、うつ、産後うつ、気分変調および双極性障害からなる群から選択される。1つの実施形態では、前記気分障害はうつである。1つの実施形態では、前記気分障害は気分変調である。

0060

本発明の1つの局面は、ストレスで誘発されるか、あるいは、ストレスと関連する、気分障害、例えば気分変調を治療する方法である。該方法は、ストレスで誘発されるか、あるいは、ストレスと関連する、気分障害を治療するために、必要とする対象に治療的有効量のウロリチンまたはその前駆体を投与するステップを含む。

0061

本発明の1つの局面は、不安障害を治療する方法である。該方法は、不安障害を治療するために、必要とする対象に治療的有効量のウロリチンまたはその前駆体を投与するステップを含む。1つの実施形態では、前記不安障害は、全般性不安障害、パニック障害広場恐怖症を伴うパニック障害、広場恐怖症、社会不安障害、強迫神経症および外傷後ストレス障害からなる群から選択される。1つの実施形態では、前記不安障害は全般性不安障害である。1つの実施形態では、前記不安障害は外傷後ストレス障害である。

0062

本発明の1つの局面は、ストレスで誘発されるか、あるいは、ストレスと関連する、不安を治療する方法である。該方法は、ストレスで誘発されるか、あるいは、ストレスと関連する、不安を治療するために、必要とする対象に治療的有効量のウロリチンまたはその前駆体を投与するステップを含む。

0063

本発明の1つの局面は、筋機能を増強させる方法である。該方法は、筋機能を向上させるために、必要とする対象に治療的有効量のウロリチンまたはその前駆体を投与するステップを含む。1つの実施形態では、前記筋機能は、強度、速度および持久力からなる群から選択される。

0064

本発明の1つの局面は、筋肉または神経筋疾患を治療する方法である。該方法は、筋肉または神経筋疾患を治療するために、必要とする対象に治療的有効量のウロリチンまたはその前駆体を投与するステップを含む。1つの実施形態では、前記筋肉または神経筋疾患はミオパチーである。1つの実施形態では、前記筋肉または神経筋疾患は筋ジストロフィーである。1つの実施形態では、前記筋肉または神経筋疾患はデュシェンヌ型筋ジストロフィーである。

0065

本発明の1つの局面は、神経突起伸長を促進する方法である。該方法は、神経突起伸長を促進するために、有効量のウロリチンまたはその前駆体と神経細胞を接触させるステップを含む。1つの実施形態では、前記接触は、神経突起伸長を促進するために、その治療を必要とする対象に治療的有効量のウロリチンまたはその前駆体を投与することを含む。

0066

以下の実施形態は、本明細書に説明される発明の局面および実施形態のそれぞれに関連する場合があり、適切な場合には相互に関連する場合がある。

0067

1つの実施形態では、前記ウロリチンまたはその前駆体は単離ウロリチンである。

0068

1つの実施形態では、前記ウロリチンまたはその前駆体は単離ウロリチン前駆体である。

0069

1つの実施形態では、前記ウロリチンは、ウロリチンAと、ウロリチンBと、ウロリチンCと、ウロリチンDと、例えば、これらのグルクロン酸抱合型、メチル化型および硫酸化型を含むこれらの代謝産物と、これらのウロリチンの組み合わせとからなる群から選択される。

0070

1つの実施形態では、前記ウロリチンまたはその前駆体は、液果類、ブドウ、ザクロ、ローズヒップおよびナッツ類からなる群から選択される自然食品として投与される。

0071

1つの実施形態では、前記ウロリチンまたはその前駆体は、液果類、ブドウ、ザクロ、ローズヒップおよびナッツ類からなる群から選択される自然食品に基づく、例えば、果汁、濃縮液または抽出物を含む加工食品として投与される。

0072

1つの実施形態では、前記ウロリチンまたはその前駆体は、ザクロ果汁、濃縮液または抽出物として投与される。

0073

1つの実施形態では、前記ウロリチンまたはその前駆体はエラジタンニンとして投与される。

0074

1つの実施形態では、前記ウロリチンまたはその前駆体はプニカラギンとして投与される。

0075

1つの実施形態では、前記ウロリチンまたはその前駆体はエラグ酸として投与される。

0076

1つの実施形態では、前記ウロリチンまたはその前駆体はウロリチンとして投与される。

0077

1つの実施形態では、前記ウロリチンまたはその前駆体は経口投与される。

0078

1つの実施形態では、前記ウロリチンまたはその前駆体は非経口投与される。

0079

1つの実施形態では、前記ウロリチンまたはその前駆体は、少なくとも週に1回投与される。様々な実施形態において、前記ウロリチンまたはその前駆体は、週に1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27または28回投与される。

0080

1つの実施形態では、前記ウロリチンまたはその前駆体は、少なくとも1日1回投与される。様々な実施形態において、前記ウロリチンまたはその前駆体は、1日に1、2、3、4、5、6、7または8回投与される。

0081

1つの実施形態では、前記ウロリチンまたはその前駆体は、ウロリチン0.1−150ミリグラム(mg)/キログラム(kg)体重に等しいかまたはこれと同等な用量で投与される。1つの実施形態では、前記ウロリチンまたはその前駆体は、2−120mgウロリチン/kg体重に等しいかまたはこれと同等な用量で投与される。1つの実施形態では、前記ウロリチンまたはその前駆体は、4−90mgウロリチン/kg体重に等しいかまたはこれと同等な用量で投与される。1つの実施形態では、前記ウロリチンまたはその前駆体は、8−30mgウロリチン/kg体重に等しいかまたはこれと同等な用量で投与される。

0082

1つの実施形態では、前記ウロリチンまたはその前駆体は少なくとも0.001マイクロモラー(μM)のピーク血清レベルを達成するのに十分な用量で投与される。1つの実施形態では、前記ウロリチンまたはその前駆体は少なくとも0.01μMのピーク血清レベルを達成するのに十分な用量で投与される。1つの実施形態では、前記ウロリチンまたはその前駆体は少なくとも0.1μMのピーク血清レベルを達成するのに十分な用量で投与される。1つの実施形態では、前記ウロリチンまたはその前駆体は少なくとも1μMのピーク血清レベルを達成するのに十分な用量で投与される。1つの実施形態では、前記ウロリチンまたはその前駆体は少なくとも10μMのピーク血清レベルを達成するのに十分な用量で投与される。

0083

1つの実施形態では、前記ウロリチンまたはその前駆体は少なくとも、0.001マイクロモラー(μM)の持続的血清レベルを達成するのに十分な用量で投与される。1つの実施形態では、前記ウロリチンまたはその前駆体は少なくとも0.01μMの持続的血清レベルを達成するのに十分な用量で投与される。1つの実施形態では、前記ウロリチンまたはその前駆体は少なくとも0.1μMの持続的血清レベルを達成するのに十分な用量で投与される。1つの実施形態では、前記ウロリチンまたはその前駆体は少なくとも1μMの持続的血清レベルを達成するのに十分な用量で投与される。1つの実施形態では、前記ウロリチンまたはその前駆体は少なくとも10μMの持続的血清レベルを達成するのに十分な用量で投与される。

0084

1つの実施形態では、対象は、アテローム性動脈硬化症血栓症、癌、不要な血管形成、感染および炎症からなる群から選択される、ウロリチンまたはその前駆体もしくは代謝産物の投与を必要とする別の症状を治療するために、ウロリチンまたはその前駆体を投与されていない。

図面の簡単な説明

0085

ウロリチンA(UA)、エラグ酸(EA)、テリマグランジン(TL)、プニカラギン(PA)およびプニカリン(PB)の構造式。
エラグ酸(EA)と、ヒトを含む動物の腸管微生物叢により産生される代謝産物である、ウロリチンD(UD)、ウロリチンC(UC)、ウロリチンA(UA)およびウロリチンB(UB)とを示す。
表示された濃度のエラグ酸(上パネル)およびウロリチンA(下パネル)に応答する、ミトコンドリア遺伝子発現レベルを示す、1対の棒グラフ
表示された濃度のプニカラギン、エラグ酸、ウロリチンAまたは陰性対照の存在下、インビトロで測定されたクエン酸シンターゼ(CS)活性を示す棒グラフ。
(A)AMP活性化タンパク質キナーゼ(AMPK)および活性化されたリン酸化AMPK(P−AMPK)のレベルに対する、表示された濃度のエラグ酸(EA)およびウロリチンA(UA)の効果を示す免疫ブロット(IB)の組合せ。P−AMPK:リン酸化AMPK。対照:陰性対照;RSVレスべラトロール陽性対照。(B)対照処理細胞と比較した処理後の活性化P−AMPKの相対レベルを示す、(A)におけるバンドデンシトメトリー分析を示す棒グラフ。
表示された化合物0.5μM処理後のPC−12細胞の培養に対する細胞総数を示す棒グラフ。PA、プニカラギン;PB、プニカリン;UA、ウロリチンA;EA、エラグ酸;Tl、テリマグランジン。
表示された化合物0.5μM処理後のPC−12細胞における平均神経突起伸長(μm)を示す棒グラフ。伸長は細胞あたりで表示される。SP、SP600125;dbcAMPジブチリル環状AMP;PA、プニカラギン;PB、プニカリン;UA、ウロリチンA;EA、エラグ酸;Tl、テリマグランジン。
表示された化合物0.5μM処理後の広範囲の神経突起伸長(>20μM)を示すPC−12細胞の百分率を示す棒グラフ。SP、SP600125;dbcAMP、ジブチリル環状AMP;PA、プニカラギン;PB、プニカリン;UA、ウロリチンA;EA、エラグ酸;Tl、テリマグランジン。
表示された化合物0.5μM処理後のPC−12細胞での平均突起形成を示す棒グラフ。SP、SP600125;dbcAMP、ジブチリル環状AMP;PA、プニカラギン;PB、プニカリン;UA、ウロリチンA;EA、エラグ酸;Tl、テリマグランジン。
表示された化合物0.1μM処理後のドーパミン作動性チロシンヒドロキシラーゼ(TH)−陽性初代培養ニューロンの細胞あたりの平均伸長を示す棒グラフ。SP、SP600125;dbcAMP、ジブチリル環状AMP;UA、ウロリチンA;EA、エラグ酸;Tl、テリマグランジン。
表示された化合物0.1μM処理後の広範囲の神経突起伸長(>20μM)を示すドーパミン作動性TH−陽性初代培養ニューロンの%を示す棒グラフ。SP、SP600125;dbcAMP、ジブチリル環状AMP;UA、ウロリチンA;EA、エラグ酸;Tl、テリマグランジン。
表示された化合物0.1μM処理後の、ドーパミン作動性TH−陽性初代培養ニューロンで形成される突起の数の平均を示す棒グラフ。SP、SP600125;dbcAMP、ジブチリル環状AMP;UA、ウロリチンA;EA、エラグ酸;Tl、テリマグランジン。
表示された化合物0.1μM処理後のドーパミン作動性TH−陽性初代培養ニューロンにおける最大突起長を示す棒グラフ。SP、SP600125;dbcAMP、ジブチリル環状AMP;UA、ウロリチンA;EA、エラグ酸;Tl、テリマグランジン。
表示された化合物0.1μM処理後の、ドーパミン作動性TH−陽性初代培養ニューロンあたりの平均分枝数を示す棒グラフ。SP、SP600125;dbcAMP、ジブチリル環状AMP;UA、ウロリチンA;EA、エラグ酸;Tl、テリマグランジン。
表示された化合物0.1μM処理後の、ドーパミン作動性TH−陽性初代培養ニューロンあたりの樹状突起の数の平均を示す棒グラフ。SP、SP600125;dbcAMP、ジブチリル環状AMP;UA、ウロリチンA;EA、エラグ酸;Tl、テリマグランジン。
表示された化合物0.1μM処理後のドーパミン作動性TH−陽性初代培養ニューロンあたりの樹状突起の長さの平均を示す棒グラフ。SP、SP600125;dbcAMP、ジブチリル環状AMP;UA、ウロリチンA;EA、エラグ酸;Tl、テリマグランジン。
高脂肪餌付与(HFDマウスにおける肥満発症時のウロリチンA、プニカラギンおよびザクロ抽出物(PE)処理の効果を示す、3連の棒グラフ。ウロリチンAは混合物として投与され;PEおよびプニカラギンは強制経口投与された。体重フォローアップは、最初の体重と比較した増加の百分率として表された。群組成:HFD対照(餌混合物):n=10;HFD対照(強制投与):n=10;HFD+ウロリチンA(餌混合物):n=9;HFD+プニカラギン(強制投与):n=8;HFD+PE(強制投与):n=7。結果は平均±SEMとして表される。パネルAについては、結果は2元配置ANOVAで分析された。p値は表示のとおり。
高脂肪餌付与(HFD)マウスにおける肥満発症時のウロリチンA、プニカラギンおよびザクロ抽出物(PE)処理の効果を示す、3連の棒グラフ。ウロリチンAは餌混合物として投与され;PEおよびプニカラギンは強制経口投与された。処置5週間後のEchoMRIにより測定された脂肪量の百分率。群組成:HFD対照(餌混合物):n=10;HFD対照(強制投与):n=10;HFD+ウロリチンA(餌混合物):n=9;HFD+プニカラギン(強制投与):n=8;HFD+PE(強制投与):n=7。結果は平均±SEMとして表される。*p<0.05(スチューデントt検定)。
高脂肪餌付与(HFD)マウスにおける肥満発症時のウロリチンA、プニカラギンおよびザクロ抽出物(PE)処理の効果を示す、3連の棒グラフ。ウロリチンAは餌混合物として投与され;PEおよびプニカラギンは強制経口投与された。処置5週間後にEchoMRIにより測定した除脂肪部分量の百分率。群組成:HFD対照(餌混合物):n=10;HFD対照(強制投与):n=10;HFD+ウロリチンA(餌混合物):n=9;HFD+プニカラギン(強制投与):n=8;HFD+PE(強制投与):n=7。結果は平均±SEMとして表される。*p<0.05(スチューデントのt検定)。
標準的な飼料を与えたマウスの除脂肪部分量および脂肪量に対するエラグ酸およびウロリチンAの効果を示す2対の棒グラフ。(A)処置2週間後の、EchoMRIにより測定した除脂肪部分量(筋肉)の百分率。(B)処置2週間後の、EchoMRIにより測定した脂肪量(筋肉)の百分率。群組成:飼料対照(餌混合物):n=8;飼料+エラグ酸(餌混合物):n=7;飼料+ウロリチンA(餌混合物):n=7。結果は、平均±SEMとして表される。*p<0.05(スチューデントのt検定)。
標準的飼料を与えた標準的マウスにおける酸素消費に対するエラグ酸およびウロリチンAの効果を示す、1対の線グラフおよび対応する1対の棒グラフ。(A)20時間にわたる酸素消費のフォローアップ。黒い帯は暗期(午前7時から午後7時)に対応する。残りは明期に対応する。(B)酸素消費は、曲線下面積(AUC)として表した。群組成:飼料対照(餌混合物):n=8;飼料+エラグ酸(餌混合物):n=7;飼料+ウロリチンA(餌混合物):n=7。結果は、平均±SEMとして表される。*p<0.05(スチューデントのt検定)。パネルAについては、結果は2元配置ANOVAで分析された。p値を示す(飼料対照vs.飼料+処置)。
高脂肪餌(HFD)付与マウスにおける酸素消費に対する、ウロリチンA、プニカラギンおよびザクロ抽出物(PE)の効果を示す、一連グラフおよび対応する一連の棒グラフ。20時間にわたる酸素消費のフォローアップ。黒い帯は暗期(午前7時から午後7時)に対応する。残りは明期に対応する。(B)酸素消費は、曲線下面積(AUC)として表した。群組成:HFD対照(餌混合物):n=10;HFD対照(強制投与):n=10;HFD+ウロリチンA(餌混合物):n=9;HFD+プニカラギン(強制投与):n=8;HFD+PE(強制投与):n=7。結果は、平均±SEMとして表される。*p<0.05(スチューデントのt検定)。パネルAについては、結果は2元配置ANOVAで分析された。
標準的飼料を与えたマウスにおける呼吸交換比(RER)に対する、エラグ酸およびウロリチンAの効果を示す1対のグラフおよび対応する1対の棒グラフ。(A)20時間にわたるRERのフォローアップ。黒い帯は暗期(午前7時から午後7時)に対応する。残りは明期に対応する。(B)RERは平均RERとして表された。群組成:飼料対照(餌混合物):n=8;飼料+エラグ酸(餌混合物):n=7;飼料+ウロリチンA(餌混合物):n=7。結果は、平均±SEMとして表わされる。*p<0.05(スチューデントのt検定)。パネルAについては、結果を2元配置ANOVAで分析された。p値は、(飼料対照vs飼料+処置)で示される。
高脂肪餌(HFD)付与マウスの呼吸交換比(RER)に対する、ウロリチンA、プニカラギンおよびザクロ抽出物(PE)の効果を示す一連のグラフおよび対応する一連の棒グラフ。(A)20時間にわたるRERのフォローアップ。(B)RERは平均RERとして表された。群組成:HFD対照(餌混合物):n=10;HFD+ウロリチンA(餌混合物):n=9;HFD+プニカラギン(餌混合物):n=10;HFD+PE(餌混合物):n=10。結果は、平均±SEMとして表される。*p<0.05(スチューデントのt検定)。パネルAについては、結果は2元配置ANOVAで分析された。
高脂肪餌(HFD)付与マウスのトリグリセリドおよび遊離脂肪酸に対するウロリチンA、プニカラギンおよびザクロ抽出物(PE)の効果を示す、2組の一連のグラフ。(A)14週間処置したHFD餌付与マウスにおけるトリグリセリドの血漿レベル。(B)14週間処置したHFD餌付与マウスにおける遊離脂肪酸の血漿レベル。群組成:HFD対照(餌混合物):n=10;HFD対照(強制投与):n=10;HFD+ウロリチンA(餌混合物):n=9;HFD+プニカラギン(強制投与):n=8;HFD+PE(強制投与):n=7。結果は、平均±SEMとして表される。*p<0.05(スチューデントのt検定)。
高脂肪餌(HFD)付与マウスの血糖に対する、ウロリチンA、エラグ酸およびプニカラギンの効果を示す一連のグラフ。(A)ウロリチンA入りの餌混合物により10週間処置したHFD付与マウスにおけるブドウ糖負荷試験。(B)エラグ酸入りの餌混合物により10週間処置したHFD付与マウスにおけるブドウ糖負荷試験。(C)プニカラギン入りの餌混合物により10週間処置したHFD付与マウスにおけるブドウ糖負荷試験。群組成:HFD対照(餌混合物):n=10;HFD+ウロリチンA(餌混合物):n=9;HFD+プニカラギン(餌混合物):n=10。結果は、平均±SEMとして表される。*p<0.05(スチューデントのt検定)。
老齢(10日齢線虫(C.elegans)の基礎および脱共役呼吸(酸素消費)に対するウロリチンA(UA)の効果を示す、線グラフおよび棒グラフ。(A)0.1%DMSOで処理した10日齢対照虫および0.1%DMSO中30μMウロリチンAで処理された10日齢虫における基礎および脱共役呼吸(FCCP)。(B)ビヒクル(0.1%DMSO)または0.1%DMSO中30μMウロリチンAで処理された10日齢対照虫における脱共役(FCCP)呼吸の代表的な曲線下面積(AUC)。結果は、平均±SEMとして表される。*p<0.05(スチューデントのt検定)。OCR酸素消費速度
線虫(C.elegans)の筋肉のミトコンドリアに対するウロリチンAの効果を示す棒グラフ。トランスジェニック線虫(C.elegans)株SJ4103は、ミトコンドリア膜に標的化される緑色蛍光タンパク質(GFP)の筋肉特異発現による蛍光を示す。線虫(C.elegans)筋肉におけるミトコンドリアの有無は、蛍光の増強により示される。結果は、平均±SEMとして表される。*p=0.0014(スチューデントのt検定)。
ザクロ抽出物での処置を行ったかまたは行わなかった慢性ストレスに曝されたマウスの運動性を示す棒グラフ。
ザクロ抽出物での処置を行ったかまたは行わなかった、不安誘発文脈でのマウスの「すくみ」反応の程度を示す棒グラフ。
不安誘発性立ち上がり抑制度に対する、マウスにおけるザクロ抽出物投与の効果を示す棒グラフ。
マウスにおける不安誘発性のグルーミング抑制度に対する、ザクロ抽出物投与の効果を示す棒グラフ。
有害な影響がない状況に繰り返し曝した場合の、特定の有害な状況に対する記憶消滅を示す線グラフ。データは、若年期ストレスを受けたマウス、正常に飼育された対照マウスおよび若年期(early−life)ストレスを受けたがエラジタンニン・プニカラギンでの処置を受けるマウスについて示される。すくみ(%)は、最初にこの状況に曝した間のすくみ時間の百分率として表される。
リス水迷路における効果的な学習にに対する、マウスに対する慢性ストレスの影響を示すグラフ。
モリス水迷路における学習能力に対する、慢性的ストレス負荷マウスにおけるザクロ抽出物投与の効果を示す棒グラフ。
認知学習の目安である、モリス水迷路での訓練期間中の数回の試行にわたる、隠しプラットフォームからの累積距離を示すグラフ。データは、若年期ストレスを受けたマウス、通常どおり飼育された対照マウス,若年期ストレスを受けたがエラジタンニン・プニカラギンでの処置を受けたマウスについて示される。プラットフォームまでの距離は、観察時間(60秒)中の、測定した全間隔に対する(間隔25回/秒)、マウスと隠しプラットフォームとの間の累積距離の合計である。
ザクロ抽出物1108または対照(Ctrl)のいずれかで処置した場合のソーシャルレコニション・テストにおける老齢ラットの記憶を示す棒グラフである。
ザクロ抽出物1108または対照で処置された老齢ラットについてのモリス水迷路試験の結果を示す棒グラフ。
処置および非処置の両方のアルツハイマー病マウスモデル5XFADならびに正常対照マウスに対するY迷路における的確な交替反応の百分率を示す棒グラフ。有意性:**p<0.01、*p<0.05、1元配置ANOVA。
ザクロ由来抽出物31008、61109、71109または対照(ビヒクル)で処置されたアルツハイマー病モデルのトランスジェニックマウス(hAPP−Tg)についてのモリス水迷路試験の結果を示す棒グラフ。対照(ビヒクル)で処置された野生型マウス(Non−Tg)についての結果も示される。
若年期ストレスを受けたマウスに対して、通常どおり飼育された対照マウスと、若年期ストレスを受け、エラジタンニン・プニカラギンで処置されたマウスとについての明/暗ボックスの結果を示す棒グラフ。結果は、平均±SEMとして表される。有意性:*p<0.05(スチューデントのt検定)。
若年期ストレスを受けたマウスに対して、通常どおり飼育された対照マウスと、若年期ストレスを受け、エラジタンニン・プニカラギンで処置されたマウスとについての高架式O−迷路に対する結果を示す棒グラフ。結果は、平均±SEMとして表される。有意性:*p<0.05(スチューデントのt検定)。
若年期ストレスを受けたマウスに対して、通常どおり飼育された対照マウスと、若年期ストレスを受け、エラジタンニン・プニカラギンで処置されたマウスとについての強制水泳試験に対する結果を示す棒グラフ。結果は、平均±SEMとして表される。有意性:*p<0.05、**p<0.01(スチューデントのt検定)。
4分経過時に行われる最初の軽度ショック中の、文脈的恐怖条件付けパラダイムにおける訓練についての結果を示す棒グラフ。結果は、若年期ストレスを受けたマウスに対して、通常どおり飼育された対照マウスと、若年期ストレスを受け、エラジタンニンのプニカラギンで処置したマウスとについて示される。結果は平均±SEMとして表される。
有害な効果なしで特定の有害な文脈に繰り返し曝されたとき、該有害状況に対する記憶消滅を示す棒グラフ。データは、若年期ストレスを受けたマウスと、正常に飼育された非ストレス負荷対照マウスと、若年期ストレスを受け、エラジタンニンのプニカラギンで処置したマウスとについて示される。結果は、平均±SEMとして表される。有意性:*p<0.05、#p=0.05(スチューデントのt検定)。正常な非ストレス負荷動物を若年期ストレス負荷マウス(すなわち母子分離)と比較した。プニカラギン処置した若年期ストレス負荷動物が未処置若年期ストレス負荷動物と比較された。
回転ロッドから落下するまでの時間を秒単位で測定したときの運動性学習のレベルを示す線グラフ。データは、若年期ストレスを受けたマウスと、通常どおり飼育された対照マウスと、若年期ストレスを受け、エラジタンニンのプニカラギンで処置されたマウスとについて示される。結果は、平均±SEMとして表される。
認知学習の目安である、訓練期間中のモリス水迷路からの秒単位での逃避潜時を示すグラフ。データは、若年期ストレスを受けたマウスと、通常どおり飼育された対照マウスと、若年期ストレスを受け、エラジタンニンのプニカラギンで処置されたマウスについて示される。結果は、平均±SEMとして表される。有意性:*p<0.05(スチューデントのt検定)。
未処置か、プニカラギン又はウロリチンAで処置されたかのいずれかの正常マウスでの文脈認知に対するザクロ由来化合物の効果を示す棒グラフ。結果は、平均±SEMとして表される。有意性:*p<0.05(スチューデントのt検定)。
未処置か、プニカラギン又はウロリチンAで処置したかのいずれかの正常マウスにおける特定の文脈についての記憶保持に対する、ザクロ由来化合物の効果を示す棒グラフ。結果は、平均±SEMとして表される。有意性:データは、一元配置ANOVAまたは反復測定ANOVAのいずれかを用い、続いてフィッシャー事後LSD多重比較検定により分析された。*p<0.05。
回転するロータロッドから落下するまでの時間が秒単位で測定される筋機能および運動スキルを示す線グラフ。データは、正常に飼育された未処置対照マウスと、エラジタンニン・プニカラギン処置マウスとについて示される。有意性:ANOVA分析により*p<0.05。
速度を上昇させていったトレッドミル上でのマウスの走行能力により測定される筋機能および持久力のレベルを示す線グラフ。データは、通常どおり飼育された未処置対照マウスと、ウロリチンA処置マウスとについて示される。有意性:*p<0.05、**p<0.01(スチューデントのt検定)。

0086

生物学および心理学において、「ストレス」という用語は、ヒトまたは他の動物が、現実又は想像の、心理学的、感情的または身体的脅威に適切に反応できなかった結果を指す。「ストレス」という用語は、最初、生物学的文脈において、内分泌学者Hans Selyeにより1930年代に使用された。Hans Selyeは後に、あらゆる要求に対する不適切生理学的反応を含むように、その概念を広げ、普及させた。これは、軽度の焦燥から、重篤な健康破綻を引き起こし得る劇的な機能不全まで、多岐にわたる現象包含する。

0087

これらの心理生物学的なストレス特性は全て、酸化ストレス、すなわち、反応性酸素種の産生および出現と、反応性中間体を容易に無毒化するかまたは生じた損傷を修復する生体システムの能力との間の不均衡徴候を表す場合がある。組織の正常なレドックス状態撹乱は、タンパク質、脂質およびDNAを含む細胞の全成分に損傷を与える過酸化物およびフリーラジカルの産生を通じて有毒な効果を起こす場合がある。「レドックスシグナル伝達」と呼ばれる現象を通じて、一部の反応性酸化種は、メッセンジャーとしても作用する場合がある。

0088

ヒトにおいて酸化ストレスは多くの疾患に関与する。具体例は、アテローム性動脈硬化症、パーキンソン病、心不全心筋梗塞、アルツハイマー病、統合失調症、双極性障害、脆弱性X症候群および慢性疲労性症候群を含む。

0089

ヒトにおける正常状態下での反応性酸素のある1つの発生源は、酸化的リン酸化中のミトコンドリアからの活性化酸素漏洩である。

0090

超酸化物(O2−)を産生可能な他の酵素は、キサンチンオキシダーゼNADPHオキシダーゼおよびチトクロムP450である。別の強力な酸化剤である過酸化水素は、複数のオキシダーゼを含む広範な酵素により産生される。反応性酸素種は、レドックスシグナル伝達と呼ばれる過程の細胞シグナル伝達において重要な役割を果たす。したがって、的確な細胞ホメオスタシスを維持するために、反応性酸素産生と消費とのバランスをうまくとらなければならない。

0091

最もよく研究されている細胞の抗酸化物質は、スーパーオキシドジスムターゼ(SOD)、カタラーゼおよびグルタチオンペルオキシダーゼの酵素である。あまりよく調べられていない酵素性抗酸化物質は、ペルオキシレドキシンと、最近発見されたスルフィレドキシンとを含む。(この役割が主ではないものの)抗酸化物質特性を有する他の酵素は、パラオキソナーゼグルタチオン−Sトランスフェラーゼおよびアルデヒドデヒドロゲナーゼを含む。

0092

酸化ストレスは、照射および酸素過剰後の組織損傷に関与する。これは、アルツハイマー病、パーキンソン病、筋萎縮性側索硬化症(ALS)およびハンチントン病を含む神経変性疾患において重要であることが疑われている。血管内皮における低密度リポタンパク質(LDL)の酸化がプラーク形成の前駆状態であるので、酸化ストレスはある種の心血管系疾患につながるとも考えられている。酸化ストレスは低酸素症後の酸素再潅流傷害に起因する虚血カスケードにも関与する。このカスケードは脳卒中および心臓発作の両方を含む。酸化ストレスはまた慢性疲労性症候群に関係すると推測されてきた。

0093

注目すべきことに、発明者らは、エラジタンニン由来のある種の化合物が、酸化ストレスを含む、ストレスの生理学的および心理学的症状の治療および予防において有用であることを発見した。何らかの特定の作用機序と結びつけられることは意味しないが、前記化合物は、非常に重要なミトコンドリア機能を促進し、回復させ、ストレス誘発性のミトコンドリア機能不全を解消するという、ミトコンドリアにおいて有益な効果を発揮すると考えられる。これら前記化合物は、本発明によると、神経変性疾患および認知障害と、インスリン抵抗性を含むがこれに限られない代謝性疾患と、気分障害と、不安障害とを含むがこれらに限られない、ミトコンドリア機能不全に関する様々な症状、疾患および障害のいずれかの治療および予防に有用であることが発見された。

0094

エラジタンニン(ET)は、ヘキサヒドロキシジフェン酸が糖(最も多くの場合はβ−D−グルコース)とともにジエステルを形成する、いわゆる「加水分解性のタンニン」に含まれるポリフェノールである。ETは、分子量が4000以上に達する複合高分子として存在する場合がある。これらのポリマーは、酸または塩基により加水分解され、エラグ酸(EA)が回収される場合があるが、これは間接的にETを定量するために使用することができる。同様に、EAは、ウロリチンを含むさらなる代謝産物の供給源である。

0095

特にアジアにおいて疾患の治療に対して、エラジタンニンを含む多くの植物種が使用されてきた(Okuda et al.,2009)。これらには、とりわけ、アグリニアピロサ(Agrimonia pilosa)(アグリモニイン)、カメリアジャポニカ(Camelia japonica)(ツバキタンニンA)、コルヌスオフィシナリス(Cornus officinalis)(コルヌシン(cornussin)A)、ゲラニウム・チュベルギイ(Geranium thunbergii)(ゲラニイン)、ゲウム・ジャポニクム(Geum japonicum)(ゲミン−A)、リクイダンバル・フォルモサナ(Liquidambar formosana)(カスアリクチン)、マロタス・ジャポニカス(Mallotus japonicus)(マロツシニン酸)、オエノセラエリスロセパラ(Oenothera erythrosepala)(エノテインB)、プニカグラナツム(Punica granatum)(ザクロ)(グラナチンB)、ロサ・ルゴサ(Rosa rugosa)(ルゴシン)およびテルミナリア・ケブラ(Terminalia chebula)(ケブリン酸)が含まれる。これらの薬草の主要な使用は、それらの抗酸化、下痢止め、抗菌および免疫調節活性に関連するものである。

0096

エラジタンニンは、イチゴ、レッドおよびブラックラズベリー(Zafrilla et al.,2001)、ブルーベリーおよびブラックベリーを含め、多くの液果類にも非常に大量に存在する。エラジタンニンはまた、リンゴサクランボクラウドベリー、クランベリーカラント、ブドウ、ライムマンゴパイナップル、ザクロ、プルーンルバーブにも存在する。Serrano et al.(2009)Mol Nutr Food Res.53:S310−29。エラジタンニン ルブスアビインCを甜葉ルブス・スワビシウム・エス・リー(Rubus suavissimus S.Lee)の葉から単離することができる。エラジタンニンは、クルミ(Fukuda et al.,2003)、ピスチオカシューナッツクリドングリ(Cantos et al.,2003)ピーカン(Villarreal−Lozoya et al.,2007)およびピーナツを含むナッツ類においても相当量が同定されている。

0097

これらは、ザクロ(Gil et al.,2000)およびマスカディンブドウ(Lee and Talcott,2002)においても大量に存在し、樹木、特にオークの重要な構成成分である(Glabasnia and Hofmann,2006)。エラジタンニンは、様々な熟成過程中の樹木から食物マトリクスへの移動を通じて、ワインおよびウイスキーなどの食品中に取り込まれる場合がある。エラグ酸はいくつかのタイプの蜂蜜でも見出されており、より健康によい蜂蜜のための花のマーカーとして提案されている(Ferreres et al.,1996)。グルコシドラムノシドアラビノシドおよび対応するアセチルエステルを含む、遊離エラグ酸および様々なグリコシド誘導体もこれらの食品中に存在する(Zafrilla et al.,2001)。

0098

多くの研究から、いくつかの食品のエラジタンニン含量が非常に高い場合があることが示されてきた(表1)。例えば、ザクロ果汁一杯(200mL)から、エラジタンニンおよびエラグ酸を合わせて1g程度提供でき、ラズベリー(100g)から300mg前後、イチゴから70mg、クルミ4個から約400mg提供できる。

0099

代表的な食物エラジタンニンは、ザクロのプニカラギン、イチゴおよびラズベリーのサングイインH−6およびクルミのペドゥンクラジン(pedunculagin)を含む。他の代謝産物も産生され、個々のエラジタンニン(例えばガラギン酸およびter−ガラギン酸(ter−gallagic acids))は独特である場合もあるものの、これら全てがエラグ酸を加水分解で放出する。

0100

0101

エラジタンニンは、2量体およびオリゴマー誘導体を形成する、膨大な構造多様性を有する。これらはまたガロタンニンよりも広く分布している。さらなるエラジタンニンと、報告されているその供給源とを表2に示す。

0102

0103

0104

ターミナリア属植物の様々な種から、活性があるかもしれない多くのエラジタンニンが単離できる。特に、プニカラギンおよびプニカリンの両方とも、例えばT.カタッパ(T.catappa)、T.ケブラ・レツ(T.chebula Retz)、T.ミリオカルパ(T.myriocarpa)およびT.シトリン(T.citrine)を含むいくつかのターミナリア属の種において同定されている。プニカラギンは、シスタスサルビフォリウスCistus salvifolius)(地中海沿岸低木)およびコンブレタム・モレ(Combretum molle)(アフリカの低木)からも単離されている。

0105

通常、エラグ酸は植物組織中で比較的少量見出される。エラグ酸は、エラジタンニンに由来すると考えられており、エラジタンニンがヘキサヒドロキシジフェン酸から分解されるときに自然にエラグ酸に変換される。エラグ酸のさらなる供給源の一部が表3に示される。

0106

0107

ザクロ(プニカ・グラナツム(Punica granatum))果実は、民間療法において何世紀にもわたり使用されてきた古代薬用食物である。これらは、新鮮なままおよび果汁として摂取され、エラジタンニンおよびエラグ酸の優れた供給源である。ザクロ果実殻および果汁中のエラジタンニンは、プニカリン、プニカラギン、コリラジンカスアリニンテルミナリン/ガラギルジラクトン、ペドゥンクラジン(pedunculagin)、テリマグランジン、グラナチンAおよびグラナチンBを含む。ザクロ植物の他の部分は、プニカホリン、プニカコルテインA、プニカコルテインB、プニカコルテインC、プニカコルテインDおよびプニグルコニンを含むさらなるエラジタンニンを含有する。市販の果汁は、プニカラギン異性体(1500−1900mg/L)、特定されていない加水分解性のタンニン(400−500mg/L)およびエラグ酸およびそのグリコシド(120−260mg/L)(Gil et al.,2000)を含む、ガラギン型のエラジタンニンを含有する。ガラギン酸およびエラグ酸がグルコース分子に連結しているエラジタンニンであるプニカラギンは、ザクロ果皮に豊富に存在する。プニカラギン異性体およびエラグ酸誘導体仮種皮には存在しないが、工業的な果汁製造過程でこれらは外皮および仮種皮周囲の膜から抽出され、果汁中に大量に放出される。

0108

本発明の抽出物は、最初に果実の汁を搾ることによって調製することができ、例えば、果実全体加圧するか、あるいは、最初にザクロの外殻を剥き、次いで、仮種皮、仮種皮を閉じ込め膜性物質および外殻をはずす際に生成した外皮物質から構成される残りの部分に加圧するかにより、果実を丸ごと搾ることを含む場合がある、当技術分野で知られた標準的な工業的果汁搾取法を用いてザクロを搾り得る。代替的には、エラジタンニン、特にプニカラギンに富む供給源である外皮を水抽出を含む果汁搾取過程に供される場合がある。代替的な非水抽出法は、例えばエタノールアセトンまたはメタノールなどの他の溶媒を利用する場合がある。

0109

通常、抽出物は水性抽出物であり、これは、基本的に果汁からなり得、場合によってはさらなる水が追加される。このような水性抽出物は、例えば標準的技術、例えば減圧蒸発およびろ過法によって、濃縮するか、濃厚化するか凝縮することができる。濃縮物の例は、少なくとも2倍濃縮、より一般的には少なくとも4倍、例えば、少なくとも8倍か、少なくとも40倍か、少なくとも100倍か、少なくとも200倍か、少なくとも1000倍かに濃縮されるものである。

0110

例えば、分子量ろ過か、セファロースゲルサイズ排除クロマトグラフィー用)などの適切な固体支持体上でのクロマトグラフィーか、適切に処理されたシリカまたはアルミナ、例えばODSコーティングシリカ上でのHPLCを用いるイオン交換カラムか、溶媒抽出かによって、抽出物中の1種類以上の活性成分を単離するために抽出物を分画することができる。

0111

インビトロ消化模倣実験から、一般的に、エラジタンニンはの生理的条件下で非常に安定であることが示されている。酸性条件(HCl、pH1.8−2.0)および胃の酵素は、元のエラジタンニンを加水分解して遊離エラグ酸(EA)を放出させず、エラジタンニンの分解は観察されていない(Tomas−Barberan et al.,2009)。胃は遊離EAの吸収に対して最初の重要な場所であると思われるが、一方で、エラジタンニンは吸収されない。しかし小腸の生理的条件下では、エラジタンニンから遊離EAが放出がされる。この加水分解は、膵臓酵素および胆汁塩の影響というよりpH条件(中性からややアルカリ性pH、7.0−7.3)によるものと思われる(Larrosa et al.,2006)。

0112

EAおよびエラジタンニンのバイオアベイラビリティーおよび代謝を評価するために、動物実験も使用されてきた。DoyleおよびGriffiths(1980)により、ラットにおけるEAの迅速な吸収および代謝が報告された。これらの著者は、糞便および尿においてウロリチンA(UA)および別の代謝産物(ほぼ確実にウロリチンB(UB))を検出した。UAおよびUBの両者とも、無菌動物では見られなかったので、微生物叢起源のものであることが分かった。尿または糞便中に変化しないEAは検出されなかった。これらのウロリチンは、腸細胞により大量に吸収され、グルクロン酸抱合される。この場合、UAおよびUBはその分子中にオルトジヒドロキシ基を有さないので、メチルエーテルは生成されず、したがってカテコール−O−メチルトランスフェラーゼ(COMT)に対する基質ではない。UBの場合、チトクロムP450によってさらなるヒドロキシが導入され得、これは、グルクロン酸化の可能性を高め、代謝産物の排出を促進する。TeelおよびMartin(1988)は、遊離EAおよびいくつかの抱合体硫酸エステル、グルクロニドおよびグルタチオン抱合体)の両方が、マウス尿、胆汁および血液中で検出されることを見出した。3H−EAの吸収は、ほとんどが経口投与の2時間以内に起こった。血液、胆汁および組織中のレベルは低く、吸収された化合物は尿中に排出された。投与された3H−EAの半分超が24時間後、消化管に留まっていた。

0113

様々な食物性ETおよびEA誘導体の代謝がヒトで評価されてきた。40名の健常ボランティアを含む試験において、4群に分け、イチゴ(250g)、レッドラズベリー(225g)、クルミ(35g)およびオーク樽熟成赤ワイン(300mL)を含む様々なET含有食品を与えた。イチゴおよびラズベリーの両者とも、ETサングイインH−6を含有し;クルミはETペドゥンクラジン(pedunculagin)を含有し;オーク樽熟成ワインはETべスカラギンを含有した。摂取後、8、16、32、40および56時間の5回、尿画分を回収した。ETもEAも、LC−MS/MS分析を用いて尿中では検出されなかった。しかし、摂取した食品にかかわらず、グルクロン酸抱合された細菌代謝産物3,8−ジヒドロキシ−6H−ジベンゾ[b,d]ピラン−6−オン(ウロリチンB)が、全被験者において、32時間から始まり、56時間まで、画分中で検出された。得られた結果によれば、摂取したETとは独立に、ウロリチンB誘導体が排出された。摂取したET中の一般的な単量体部分はEA(301でm/z−)であり、つまり、ET分子に属するこのサブユニットがウロリチンB誘導体を生成させるのに非常に重要な分子であったことが示され得る。ザクロ果汁を摂取したヒトにおいて、エラグ酸およびウロリチンへの同様の代謝変換がエラジタンニンに対して観察された(Cerda,Espin et al.2004;Cerda,Periago et al.2005)。

0114

エラジタンニンの代謝およびバイオアベイラビリティーにおける主要な因子の1つは、一連のウロリチン誘導体を与えるためのそれらの微生物による変換である(図2)。中でも、最もよく特徴が調べられており、知られているものはウロリチンAおよびBであるが、3および4個のヒドロキシルを有する中間体も小腸において生成され、吸収されて、メチルエーテルおよびグルクロニドとの共役後、胆汁において排出される(Esp▲iにアクサン記号▼n et al.,2007)。動物実験から、これらの代謝産物が、小腸において形成され始めることが示されており、このことから、嫌気性細菌がこれに関与する場合があることが示唆される。代謝は胃腸管に沿って継続し、ウロリチンDおよびCで開始し、ウロリチンAおよびBの産生で終わる。ヒトボランティアによるこれらの代謝産物生成の相違から、これらの代謝産物が、消化管に存在する特異的な微生物の活性により産生されるかもしれないことが示される。

0115

消化管その他の組織において(主に肝臓)、EAおよびエラジタンニン微生物代謝産物は、フェーズI(ヒドロキシル化)およびフェーズII(メチル化、グルクロン酸抱合および硫酸化)酵素のいずれかによってさらに代謝され、組織中に分布し、次いで尿中で排出され得る、より可溶性の高い代謝産物となる。

0116

したがって、UBはヒドロキシル化されてUAを生成し、これはさらにヒドロキシル化されて、トリヒドロキシ誘導体を生成する場合がある。

0117

フェーズII産物もまた生成し、メチルエーテル(COMTの産物)ならびに様々なグルクロニド抱合体が様々な組織および尿中で検出される。エラジタンニン代謝産物の硫酸抱合体は、動物およびヒトにおいてグルクロニド抱合体よりも少ない。これらの抱合体は、最初に腸細胞で産生され、尿または胆汁中で排出される前に肝臓でさらに代謝される。

0118

まとめると、エラジタンニンは一般に、消化管で吸収されない。むしろ、これらは、消化管中でEAを放出するが、これは胃および小腸では僅かしか吸収されない。EAは、腸内腔の未確認の細菌により主として代謝され、ウロリチンが生成する。細菌による代謝は小腸で開始され、生成する第一の代謝産物は、4個のフェノール性ヒドロキシル基(ウロリチンD、4個のヒドロキシル基)を保持し、これらは腸管に沿ってさらに代謝され、ヒドロキシ単位が除去され、ウロリチンC(ヒドロキシル基3個)、ウロリチンA(ヒドロキシル基2個)および、結腸末端部でB(ヒドロキシル基1個)となる(図2)。吸収された代謝産物は、グルクロン酸(1または2単位)および/またはメチルエーテル(オルト−ジヒドロキシル基が存在する場合)と抱合化される。ウロリチンAおよびB抱合体は、血漿および尿中で検出される主要な代謝産物であるが、一部のトリヒドロキシ誘導体(ヒドロキシ−UA)またはEA−ジメチルエーテルグルクロニドも少量検出されている。テトラヒドロキシ−ウロリチン、トリヒドロキシ−ウロリチンおよびEA誘導体は、一般的に末梢血漿中では検出されないが、これらは小腸で吸収され、肝臓に運ばれ、ここでさらに代謝されて、胆汁とともに小腸に排出され、血漿および尿中の比較的寿命が長いウロリチンに関与する腸肝循環確立する。

0119

自然食品からの供給源に加えて、この20年間、タンニン、特にエラジタンニンの生合成、単離および生物学的活性についての多くの論文が現れた(例えば、Xie et al.,1995,Yoshida et al.,1982,1984,1985,1986,1989,1990a/b,1991a−d,1992a/b,1995,Nonaka et al.,1980,1984,1989a−c,1990,Tanaka et al.,1986a/b,1990,1992a/b,2001,Hatano et al.,1988,1989,1990a−c,1991,1995,Lin et al.,1990,Nishizawa et al.,1982,1983,Haddock et al.,1982a/b,Kashiwada et al.,1992a/b,1993,Kadota et al.,1990,Okuda et al.,1982a−e,1983a/b,El−Mekkawy et al.,Chemistry and Biology of Ellagitannins 154 1995,Tsai et al.,1992,Han et al.,1995,Chen et al.,1995,Morimoto et al.,1986a/b,Saijo et al.,1989)。天然の供給源からの単離による純粋なエラジタンニンの入手は煩雑で、純粋な天然産物は比較的少量しか回収され得ない。例えば、Okuda et al.,(1982)Chem Pharm Bull.30:4230−4233;Okuda et al.(1982)Chem Pharm Bull.30:234−4236参照。したがって、多くのエラジタンニンの全合成のための方法が公知であることは注目に値する。例えば、エラジタンニンの合成については、Khanbabaee,K.Strategies for the synthesis of ellagitannins,In:Chemistry and Biology of Ellagitannins,Ed.S.Quideau,World Scientific Publishing,Singapore,2009,pp.152−202(そこで引用される参考文献を含む。)を参照。

0120

様々なインビトロアッセイを使用することにより、エラジタンニンが豊富な食物抽出物の抗酸化活性が調べられており、イチゴ(Meyers et al.,2003,Aaby et al.,2005,2007)、ラズベリー(Liu et al.,2002,Beekwilder et al.,2005)、クラウドベリー(K▲aにウムラウト記号▼hk▲oにウムラウト記号▼nen et al.,2001)その他のキイチゴ属の液果類(Wada and Ou,2002)、ザクロ(Gil et al.,2000)およびクルミ(Anderson et al.,2001)およびそれらのエラジタンニンが高活性であることが広く報告されている。これらの食品はまた、他の植物に基づく食品と比較した場合、上位を占める。

0121

インビボでの抗酸化状態において、エラジタンニンに富む食品の摂取の影響についてはあまり分かっていない。高齢女性において、240gのイチゴの摂取後、4時間の間約10%、血清の総抗酸化能が上昇した(Cao et al.,1998)。標準ザクロ抽出物の単回投与(Mertens−Talcott et al.,2006)およびザクロ果汁の長期摂取(Rosenblat et al.,2006)もヒトボランティアにおいて一部の抗酸化パラメータが改善した。しかし、3週間にわたりクルミを毎日摂取しても、メタボリックシンドロームの被験者の抗酸化状態に対する効果はなかった(Davis et al.,2007)。

0122

癌細胞成長は、増殖とアポトーシスとの間の均衡に依存する。無秩序細胞増殖およびアポトーシスの抑制は、癌の発生および進行における重要な段階である。エラジタンニンに富む食物の抽出物は、細胞増殖を阻害し、アポトーシス細胞死を誘導し、細胞周期キネティクスおよびシグナル伝達経路を調節することによって、インビトロで癌細胞の成長を抑えることについて、多くの証拠がある。

0123

癌細胞株を用いて行われたインビトロ試験から、ヒト結腸癌、肝臓癌肺癌乳癌または子宮頸部癌細胞において、イチゴ(Meyers et al.,2003,Olsson et al.,2004,Ramos et al.,2005,Wang et al.,2005,Wu et al.,2007)、ラズベリー(Liu et al.,2002,Olsson et al.,2004,Wu et al.,2007)、クラウドベリー(Wu et al.,2007)およびローズヒップ(Olsson et al.,2004)が細胞増殖を阻害し、アポトーシスを誘導し、細胞周期停止を引き起こすことが示された。これらの実験において、液果抽出物の活性におけるエラジタンニンの関与は評価されなかった。しかし、最近の実験(Ross et al.,2007)から、ラズベリーの抗増殖活性が主にエラジタンニンに関与することが示唆される。

0124

ザクロ果汁およびそのエラジタンニンが、結腸癌細胞株において、増殖を阻害し、アポトーシスを誘導し、炎症性細胞シグナル伝達を抑制することも報告されている(Seeram et al.,2005,Adams et al.,2006,Larrosa et al.,2006)。同様に、マスカディングレープ皮中のポリフェノールは、結腸癌細胞の成長を阻害し、アポトーシスを誘導する(Yi et al.,2005)。赤マスカディングレープから分離し、エラグ酸、エラグ酸グリコシドおよびエラジタンニンに富む画分は、結腸癌腫細胞において、アポトーシスを誘導し、細胞数を減少させ、細胞周期カイネティクスの変化を引き起こす(Mertens−Talcott et al.,2006)。

0125

ザクロ果汁は、インビトロで前立腺癌細胞に対して有効であるが、正常な前立腺上皮細胞に対しては影響はない。ザクロ果実抽出物による、侵襲性が高いヒト前立腺癌細胞の治療の結果、細胞成長および生存能が阻害され、アポトーシスが誘導された(Malik et al.,2005,Malik and Mukhtar,2006)。

0126

本発明によれば、今回、エラジタンニンならびに、エラグ酸および、特にウロリチンを含むそれらの代謝産物が、予想外に、ミトコンドリアにおいて保護および回復効果を示すことが発見された。何らかの特定の機序に限定される意味ではないが、様々なタイプのストレスの結果、ミトコンドリアに対してストレス障害が生じ、それによって細胞機能全体に必須である多くの機能を遂行するそれらの能力が低下すると考えられる。本発明の方法は、ミトコンドリアに対するストレス障害を含む状態を治療するのに有用であり、これらの障害は、ミトコンドリア病を含むが限られない多くの点のいずれかにおいて明らかになり得る。

0127

ミトコンドリアは細胞の「発電所」である。これらの二重膜細胞小器官は、酸化的リン酸化を介した細胞エネルギー(ATP)の大部分を産生するうえで重要な役割を果たす。ミトコンドリアは、重要なシグナル伝達機能およびカルシウムホメオスタシスの調整とともに、脂肪酸β−酸化、アミノ酸異化ケトン生成および反応性酸素種(ROS)生成など、他の重要な代謝機能に対しても必須である。

0128

ミトコンドリアのマトリクスは、アシル鎖からアセチル−CoAを生成させる、脂肪酸β−酸化と、この過程における還元型ニコチンアミドアデニンジヌクレオチドNADH)および還元型フラビンアデニンジヌクレオチド(FADH2)の形態の等価物還元するためとの酵素的機構を含有する。アセチル−CoAは、クエン酸回路またはクレブス回路としても知られるトリカルボン酸(TCA)回路を促進し、これによってNADHおよびFADH2も生成する。これらの生成物は、電子伝達系ETC)に電子を付与し、これによりミトコンドリア内膜を挟むプロトン勾配が生じる。ミトコンドリアのATPシンターゼを通じたこの勾配の解消によってATP型のエネルギーが生じる。

0129

ETCは、4個の大型の複数サブユニット複合体(複合体IからIV)から構成され、これらは、TCA回路により生成された電子を最終的な受容体である分子酸素(O2)に輸送し、複合体IVにおいてH2Oが形成される。電子の輸送には、大量の自由エネルギーの放出が伴い、このほとんどが、マトリクスから膜間腔へのプロトン(H+)の転位プロトン駆動力)を利用しており、残りは熱とし散逸する。次に、ETCにより生じるH+電気化学勾配に含有されるエネルギーが、ミトコンドリアATPシンターゼを通じてマトリクスにH+が逆流する際にATP産生と共役する。したがって、電子輸送、プロトン勾配生成および、続いて、ミトコンドリアATPシンターゼと共役したプロトン流動の結果、酸化的リン酸化が起こる。

0130

ROSは、ATPを産生させずにプロトン勾配を解消させる脱共役タンパク質(UCP)も活性化する場合がある。UCPは、大きなプロトン勾配の形成を軽減することによりROS産生に反応してこれを制御するこの過程の天然の制御因子と考えられる。さらに、UCPおよび呼吸脱共役は、適応熱発生脂肪酸酸化の制御、炎症への関与、ROS生成の阻止、グルコースホメオスタシス、体重制御および老化など、多くの重要な生理学的および病理学的過程に関与する。

0131

クエン酸シンターゼは、ミトコンドリアTCA回路の最初の酵素である。この酵素は、アセチルコエンザイムAアセチルCoA)とオキサロ酢酸との間の反応を触媒し、クエン酸を生成させる。この酵素の活性は、ミトコンドリア密度(細胞あたりのミトコンドリア数)およびミトコンドリア呼吸活性に比例してその活性が向上するので、ミトコンドリア生合成およびミトコンドリアの酸化的リン酸化の両方を反映する。結果として、クエン酸シンターゼの測定により、ミトコンドリア機能状態の全体的評価が可能となり、活性が高いほど酸化的リン酸化およびATP合成の向上を示し、活性が低いと逆を示す。

0132

ミトコンドリア機能の改善につながる基本的な分子機序をより詳細に理解するために、酸化的リン酸化、ミトコンドリア鎖複合体(mitochondrial chain complex)、TCA回路、脱共役タンパク質、転写因子補因子およびROS除去タンパク質を包含する(ミトコンドリアDNAおよびゲノムDNAをコード化する)重要なミトコンドリア遺伝子のプロフィールが調べられる場合がある。

0133

生物学および医学での従来の教示は、ミトコンドリアは細胞のための「エネルギー工場」としてのみの機能することである。しかし、ミトコンドリアタンパク質をコードする95%を超える(3000個のうち2900個の)遺伝子が、それらが存在する分化した細胞の特別な役割とつながりのある他の機能に関与する。これらの役割は、から成体への発生過程発達し、組織が成長するにつれて、成熟し、生後の環境に適応する。これらの他の非ATP関連機能は、その分子構成要素構築し、分解し、再利用するために細胞により使用される主要な代謝経路のほとんどと密接に関与する。細胞は、ミトコンドリアなしでは、それらが成長および機能するために必要なRNAおよびDNAさえ生成させることができない。RNAおよびDNAの構成要素は、プリン類およびピリミジン類である。ミトコンドリアは、ヘモグロビン産生に必要とされるピリミジン生合成ジヒドロオロト酸デヒドロゲナーゼ)およびヘム合成(d−アミノレブリン酸シンテターゼ)に対する律速酵素を含有する。肝臓において、ミトコンドリアは、尿素回路アンモニア解毒するように特殊化されている。ミトコンドリアはまた、コレステロール代謝エストロゲンおよびテストステロン合成神経伝達物質代謝、およびフリーラジカル生成および解毒にも必要とされる。ミトコンドリアは、食事中に摂取された脂肪、タンパク質および炭水化物を酸化することに加えて、これを全て行う。

0134

ミトコンドリア病は、通常はミトコンドリアに存在するタンパク質またはRNA分子機能変化につながる、ミトコンドリアDNAまたは核DNA中の遺伝性または自然発生突然変異のいずれかの結果である。しかし、ミトコンドリア機能に伴う問題は、完全には理解されていない発生および成長中に生じる因子の結果としてある種の組織にしか影響を与え得ない。ミトコンドリアタンパク質の組織特異的なアイソフォームを考慮しても、臨床で見られるミトコンドリア病症候群における罹患臓器系の多様なパターンを説明するのは困難である。

0135

ミトコンドリア病は、赤血球細胞を除く身体の全ての細胞に存在する特殊化した区画であるミトコンドリアの機能不全が原因である。ミトコンドリアは、生命を維持し、成長を支持するために身体により必要とされるエネルギーの90%をこえる量を生成する責を担っている。ミトコンドリアが故障すると、細胞内で産生されるエネルギーが非常に少なくなる。細胞損傷および細胞死にさえもつながる。全身でこの過程が繰り返されると、系全体が機能不全となり始め、これが起こると生命が非常に脅かされる。ミトコンドリア病は主に小児で起こるが、成人での発症がより認識され始めている。

0136

ミトコンドリアの疾患は、脳、心臓、肝臓、骨格筋、腎臓および内分泌および呼吸器系の細胞に最も重い障害を引き起こすと思われる。

0137

ミトコンドリア障害における多くの症状は非特異的である。該症状は、周期的な増悪を伴うエピソード的経過も示す場合がある。ミトコンドリア医学に関する総説論文では、ミトコンドリア障害の様々な現象の中でも、偏頭痛エピソード症状と、筋肉痛胃腸症状耳鳴り、うつ、慢性疲労および糖尿病とに言及されている(Chinnery and Turnbull(1997)QJM 90:657−67;Finsterer(2004)Eur J Neurol.11:163−86)。ミトコンドリア障害がある患者において、臨床症状は通常、疾病飢餓、過剰な運動および極度環境温度など、生理学的ストレス因子と関連するより高いエネルギー要求時に起こる。さらに、心理学的ストレス因子もしばしば症候を誘発するが、これは、おそらく、より高い脳エネルギー要求に対して患者が十分にATP産生できないためである。

0138

どの細胞が影響を受けるかに応じて、症状は、運動制御喪失、筋肉衰弱および疼痛胃腸障害および嚥下困難、成長不良、心臓病肝臓病、糖尿病、呼吸合併症発作視覚聴覚問題、乳酸アシドーシス発育遅延および易感染性を含む場合がある。

0139

ミトコンドリア病は、アルパース病;バース症候群;β酸化不全カルニチン欠損症;カルニチン−アシル−カルニチン欠損症;慢性進行性外眼筋まひ症候群;コエンザイムQ10欠損症;複合体I欠損症;複合体II不全;複合体III欠損症;複合体IV欠損症;複合体V欠損症;CPT I欠損症;CPT II欠損症;クレアチン欠損症候群;チトクロムcオキシダーゼ欠損症;II型グルタル酸尿症カーンズ・セイヤー症候群;乳酸アシドーシス;LCHAD(長鎖アシル−CoAデヒドロゲナーゼ欠損症);レーバー遺伝性視神経萎縮症;リー病致死性小児心筋ミオパチー;ルフト病;MAD(中鎖アシル−CoAデヒドロゲナーゼ欠損症);ミトコンドリアの細胞障害;ミトコンドリアDNA欠乏ミトコンドリア脳筋症、乳酸アシドーシスおよび脳卒中様症状;ミトコンドリア脳障害;ミトコンドリア筋症;ミトコンドリア劣性運動失調症候群;筋ジストロフィー、ミオクローヌス癲癇および赤色ぼろ線維病;筋神経胃腸脳症;ニューロパチー運動失調網膜色素変性および下垂ピアソン症候群;POLG突然変異;ピルビン酸カルボキシラーゼ欠損症;ピルビン酸デヒドロゲナーゼ欠損症;SCHAD(短鎖アシル−CoAデヒドロゲナーゼ欠損症);および超長鎖アシル−CoAデヒドロゲナーゼ欠損症を含むが、これらに限られない。

0140

本発明の1つの局面は、肥満、新陳代謝速度低下、メタボリックシンドローム、糖尿病、心血管疾患、高脂血症、神経変性疾患、認知障害、気分障害、ストレスおよび不安障害からなる群から選択される症状の治療または予防のためか;体重管理のためか;筋機能または精神能力を向上させるためかの有効量のザクロ抽出物を含む食品または栄養サプリメントである。

0141

本明細書中で使用されるところの「食品」とは、自然食品から調製される製品を指す。食品の非限定例は、ジュース、ワイン、濃縮物、ジャムゼリー保存料ペーストおよび抽出物を含む。本明細書中で使用されるところの「栄養サプリメント」とは、そのカロリー含量よりも主にその健康増進特性のために摂取または他の投与に適する製品を指す。

0142

本明細書中で使用されるところの「メタボリックシンドローム」という用語は、同時に発症するとき、心血管疾患および糖尿病を発症するリスクを高める医学的障害の組み合わせを指す。米国では5人に1人が罹患しており、年齢とともに罹患率が上昇する。一部の研究から、米国での罹患率は、人口の25%と推定されることが示されている。International Diabetes Foundation consensus worldwide definition(2006)によれば、メタボリックシンドロームとは中心性肥満に加えて次のいずれか2つがあてはまるものを指す:
高トリグリセリド:>150mg/dL(1.7mmol/L)またはこの脂質異常に対する具体的な治療;
男性の場合、低HDLコレステロール:<40mg/dL(1.03mmol/L)、女性の場合<50mg/dL(1.29mmol/L)またはこの脂質異常に対する治療;
高血圧収縮期BP>130または拡張期BP>85mmHgまたは既に診断が下っている高血圧の治療;および
高空腹時血糖値:(FPG)>100mg/dL(5.6mmol/L)または既に診断が下っている2型糖尿病。

0143

本発明の1つの局面は、肥満、新陳代謝速度低下、メタボリックシンドローム、糖尿病、心血管疾患、高脂血症、神経変性疾患、認知障害、気分障害、ストレスおよび不安障害からなる群から選択される症状の治療または予防のための;体重管理のための;または筋機能もしくは精神能力を向上させるための、有効量のエラジタンニンを含む、食品または栄養サプリメントである。

0144

一部の実施形態において、本発明のこの局面およびその他の局面によれば、エラジタンニンは、2−O−ガロイル−プニカリン、カサウリクチン(Casaurictin)、カスタラギンおよびベカラギン(vecalagin)、カスタリン、カスアリクチン、カスアリイン、カスアリニン、ケブラジン酸、ケブリン酸、コリラジン、コルヌシインE、エピプニカコルテインA、フロシンB、ゲミンD、グラナチンA、グラナチンB、グランジニン、ラゲルストロエミン、ランベルチアニンC、ペドゥンクラジン(pedunculagin)、プニカコルテインA、プニカコルテインB、プニカコルテインC、プニカコルテインC、プニカコルテインD、プニカホリン、プニカラギン、プニカリン、プニグルコニン、ロブリンA、ロブリンB、ロブリンC、ロブリンD、ロブリンE、ルブスアビインC、サングイインH−4、サングイインH−5、サングイインH−6、サングイインH−10、スタキウリン、ストリクチニン、テリマグランジンI、テリミグランジン(Tellimigrandin)II、テルケブリン、テルフラビンA、テルフラビンB、テルガラギンおよびテルミナリン/ガラギルジラクトンからなる群から選択される。言うまでもなく、さらなるエラジタンニンも本発明により意図される。

0145

本発明の1つの局面は、肥満、新陳代謝速度低下、メタボリックシンドローム、糖尿病、心血管疾患、高脂血症、神経変性疾患、認知障害、気分障害、ストレスおよび不安障害からなる群から選択される症状の治療または予防のためか;体重管理のためか;筋機能または精神能力を向上させるためかの有効量のプニカラギンを含む、食品または栄養サプリメントである。

0146

本発明の1つの局面は、肥満、新陳代謝速度低下、メタボリックシンドローム、糖尿病、心血管疾患、高脂血症、神経変性疾患、認知障害、気分障害、ストレスおよび不安障害からなる群から選択される症状の治療または予防のための;体重管理のための;または筋機能もしくは精神能力を向上させるための、有効量のエラグ酸を含む、食品または栄養サプリメントである。

0147

本発明の1つの局面は、肥満、新陳代謝速度低下、メタボリックシンドローム、糖尿病、心血管疾患、高脂血症、神経変性疾患、認知障害、気分障害、ストレスおよび不安障害からなる群から選択される症状の治療または予防のためか;体重管理のためか;筋機能もしくは精神能力を向上させるためかの有効量のウロリチンを含む食品または栄養サプリメントである。

0148

一部の実施形態において、本発明のこの局面およびその他の局面によれば、ウロリチンはウロリチンAである。一部の実施形態において、本発明のこの局面およびその他の局面によれば、ウロリチンはウロリチンBである。一部の実施形態において、本発明のこの局面およびその他の局面によれば、ウロリチンはウロリチンCである。一部の実施形態において、本発明のこの局面およびその他の局面によれば、ウロリチンはウロリチンDである。

0149

前述のそれぞれにおいて、1つの実施形態では、前記症状は肥満である。

0150

前述のそれぞれにおいて、1つの実施形態では、前記症状は新陳代謝速度低下である。

0151

前述のそれぞれにおいて、1つの実施形態では、前記症状はメタボリックシンドロームである。

0152

前述のそれぞれにおいて、1つの実施形態では、前記症状は糖尿病である。

0153

前述のそれぞれにおいて、1つの実施形態では、前記症状は心血管疾患である。

0154

前述のそれぞれにおいて、1つの実施形態では、前記症状は高脂血症である。

0155

前述のそれぞれにおいて、1つの実施形態では、前記症状は神経変性疾患である。

0156

前述のそれぞれにおいて、1つの実施形態では、前記症状は認知障害である。

0157

前述のそれぞれにおいて、1つの実施形態では、前記症状は気分障害である。

0158

前述のそれぞれにおいて、1つの実施形態では、前記症状はストレスである。

0159

前述のそれぞれにおいて、1つの実施形態では、前記症状は不安障害である。

0160

前述のそれぞれにおいて、1つの実施形態では、前記食品または栄養サプリメントは体重管理用である。

0161

前述のそれぞれにおいて、1つの実施形態では、前記食品または栄養サプリメントは、筋機能を向上させるためである。

0162

前述のそれぞれにおいて、1つの実施形態では、前記食品または栄養サプリメントは精神能力を向上させるためである。

0163

本発明の1つの局面は、ミトコンドリア機能を向上させるかまたは維持する方法である。該方法は、ミトコンドリアの機能を向上させるために、有効量のウロリチンまたはその前駆体と細胞を接触させるステップを含む。

0164

本発明の1つの局面は、ミトコンドリア機能の変化またはミトコンドリア密度の低下を伴うミトコンドリア関連疾患または症状を、治療、予防または管理する方法である。該方法は、ミトコンドリア機能の変化またはミトコンドリア密度の低下を伴う疾患または症状を治療するために、必要とする対象に治療的有効量のウロリチンまたはその前駆体を投与するステップを含む。

0165

本発明の1つの局面は、新陳代謝速度を向上させる方法である。該方法は、新陳代謝速度を向上させるために、必要とする対象に有効量のウロリチンまたはその前駆体を投与するステップを含む。本明細書中の他所で記載したとおり、ウロリチンの前駆体は、エラジタンニン、プニカラギンおよびエラグ酸を含む場合があるが、これらに限られない。

0166

本発明の1つの局面は、メタボリックシンドロームを予防または治療する方法である。該方法は、メタボリックシンドロームを予防または治療するために、必要とする対象に有効量のウロリチンまたはその前駆体を投与するステップを含む。

0167

本発明の1つの局面は、肥満を予防または治療する方法である。該方法は、肥満を予防または治療するために、必要とする対象に有効量のウロリチンまたはその前駆体を投与するステップを含む。

0168

本発明の1つの局面は、心血管疾患を予防または治療する方法である。該方法は、心血管疾患を予防または治療するために、必要とする対象に有効量のウロリチンまたはその前駆体を投与するステップを含む。

0169

本発明の1つの局面は、高脂血症を治療する方法である。該方法は、高脂血症を治療するために、必要とする対象に有効量のウロリチンまたはその前駆体を投与するステップを含む。1つの実施形態では、高脂血症とは高トリグリセリド血症である。1つの実施形態では、高脂血症とは遊離脂肪酸の増加である。

0170

本発明の1つの局面は、代謝性疾患を治療する方法である。該方法は、代謝性疾患を治療するために、必要とする対象に治療的有効量のウロリチンまたはその前駆体を投与するステップを含む。1つの実施形態では、代謝性疾患とは糖尿病である。1つの実施形態では、代謝性疾患とは肥満である。

0171

老化
アルツハイマー病(AD)、パーキンソン病(PD)および筋萎縮性側索硬化症(ALS)などの神経変性疾患に対する圧倒的に大きなリスク因子は老化である。ミトコンドリアは、ミトコンドリアDNA(mtDNA)突然変異の蓄積および反応性酸素種(ROS)の純生産を通じて老化に関与していると考えられている。ほとんどのミトコンドリアタンパク質が核ゲノムによりコードされているものの、ミトコンドリアは、ミトコンドリア自身のDNAの多くのコピーを含む。ヒトmtDNAは、呼吸鎖の13種類のポリペプチド成分と、ミトコンドリア自身の遺伝子コードを用いてミトコンドリア内タンパク質合成を支持するために必要なrRNAおよびtRNAとをコードする、16,569塩基対環状分子である。mtDNA中の遺伝性突然変異は、様々な疾患を引き起こすことが知られており、これらの疾患のほとんどは、高エネルギーを必要とする組織である、脳および筋肉に影響を与える。加齢とともに獲得された体細胞mtDNA突然変異は、老化とともに生じる生理的低下と、老化が関連する神経変性とに寄与するという仮説が立てられている。mtDNAが、老化とともに突然変異、特に、大規模欠失および点突然変異を蓄積することは十分に確立している。mtDNA調節領域において、培養繊維芽細胞でのT414G、筋肉でのA189GおよびT408Aおよび白血球細胞でのC150Tのように、特異的な部位での点突然変異が、一部の組織において高レベルで蓄積する場合がある。しかし、これらの調節領域「ホットスポット」は、脳では観察されていない。全体的レベルは高い場合があるが、個々のヌクレオチドでの点突然変異の発生は脳では低レベルのようである。ポリメラーゼ連鎖反応PCR)−クローニング配列決定ストラテジーを用いたところ、高齢被験者からの脳mtDNAの2つのタンパク質−コード領域における点突然変異の平均レベルは、10kbあたり〜2個の突然変異であったことが分かった。より低い選択圧下にあり得る非コード領域は、2倍から4倍と多く蓄積する可能性がある。老化に伴うこれらの欠失および点突然変異の蓄積は、ミトコンドリア機能低下と相関がある。例えば、脳チトクロムオキシダーゼ活性とチトクロムオキシダーゼ遺伝子(CO1)の点突然変異レベルの上昇との間で逆相関が見出された。

0172

ROSの純生産は、ミトコンドリアが老化に関与すると考えられる別の重要な機序である。ミトコンドリアは、ROSを産生することができる複数の電子伝達体ならびに抗酸化防御の広範囲に及ぶネットワークを含む。酸化的損傷自体を含むミトコンドリアの損傷は、ROS産生と除去との間で不均衡を引き起こして、その結果、正味のROSが生成する場合がある。純ミトコンドリアROS生成の老化に対する重要性は、ミトコンドリアの抗酸化防御の促進により寿命が延長され得るという観察により裏付けられる。ショウジョウバエにおいて、ミトコンドリアの抗酸化酵素マンガンスーパーオキシドジスムターゼ(MnSOD)およびメチオニンスルホキシドレダクターゼ過剰発現により寿命が延長される。このストラテジーは、ショウジョウバエの短命系統において最大の効果が発揮され、既に長寿の系統では効果がない。しかし、最近、実験的にミトコンドリアに標的化されたカタラーゼの過剰発現によって、既に長寿であるマウス系統において寿命が延びたことが示されている。

0173

老化過程での認知低下は、老齢動物で起こることが観察されており、老化ニューロンのシナプス生理の変化の結果として起こると考えられている。これらの変化は、脳における神経シグナル伝達の統合的機能の総合的な全体的喪失(Bishop,Lu et al.2010)および酸化ストレスおよび炎症の長期にわたる影響を受け易くなること(Joseph,Shukitt−Hale et al.2005)につながると考えられている。通常の老化過程で起こる細胞喪失は、主に、非効率的および部分的な脱共役酸化経路により産生されるフリーラジカルによる酸化ストレスゆえに起こると考えられる。実際に、様々な種(線虫(C.elegans)、ショウジョウバエ、マウス、ラット、チンパンジーおよびヒト)の中で共通する老化の特徴が、ミトコンドリア機能低下の証拠であるということが示されている。この解釈は、ミトコンドリア機能の顕著な障害が線虫(C.elegans)(Rea,Ventura et al.2007)およびマウス(Trifunovic,Wredenberg et al.2004;Kujoth,Hiona et al.2005)の両方で寿命を短縮させるという観察によりさらに確認される。マウスでのカタラーゼの過剰発現を通じたミトコンドリア機能の向上の結果、寿命が延びた(Schriner,Linford et al.2005)。

0174

老化およびミトコンドリア機能低下に伴い、脳のニューロンが年齢による病態ならびに細胞死をより起こし易くなる。この結果、ニューロン間の結合がなくなり、ニューロンの機能が低下する(神経伝達物質の喪失、発火欠如)。後成的機構を通じて遺伝子発現を停止させることによって、ニューロンが未修復のDNA損傷に反応し、これが細胞機能のさらなる抑制につながるという証拠も増えている。さらに、老化した神経細胞は、全ての生物種で、ストレス応答経路に関与する遺伝子発現の増加を示す。

0175

これらの変化の多くの特質は、老化神経細胞のインビトロ培養で観察され、これらは、神経突起伸長および突起形成の減少を示す。この減少は神経成長因子により逆転させることができる(Rozovsky,Wei et al.2005)。

0176

神経変性障害
神経変性疾患は、解剖学的または生理学的に関連のある神経系の、徐々に進行する選択的喪失を特徴とする障害の不均質グループである。原型的な例は、アルツハイマー病(AD)、パーキンソン病(PD)、筋萎縮性側索硬化症(ALS)およびハンチントン病(HD)を含む。

0177

神経変性の初期段階は、老化で見られる衰退と同じ多くの特質を共有する。興味深いことに、アルツハイマー病などの疾患は、老化に伴い発症率が上昇し、85を超える成人の50%超がこの疾患に罹患している(Hebert,Scherr et al.2003)。以上に説明したとおり、ミトコンドリア機能の低下は、老化の特質であると思われる。この神経機能の低下は、大きな生体エネルギー要求がある神経集団に顕著な影響を有すると思われ、このようなある一連のニューロンとしては、アルツハイマー病で変性する大型錐体ニューロンがある(Bishop,Lu et al.2010)。ミトコンドリア機能低下に応答したこれらのクラスのニューロンの機能低下は、神経変性疾患の発症に関与する場合がある。神経生存に対する神経変性障害の影響をインビトロで模倣することができる。アルツハイマー病の原因物質と考えられているA−β(Aβ)ペプチドとN2神経細胞とをインキュベーションすると、神経突起伸長に顕著な影響が見られ、これは抗酸化物質によって逆転させることができる。Manczak et al.(2010)J Alzheimers Dis.20 Suppl 2:S609−31。

0178

神経変性における細胞死の最も一般的な様態内在性ミトコンドリアアポトーシス経路を介する。この経路は、ミトコンドリアの膜間腔からのチトクロムcの放出を制御することによって、カスパーゼ−9の活性化を調節する。ミトコンドリアの呼吸鎖活性の正常な副産物であるROSの濃度は、マンガンスーパーオキシドジスムターゼ(SOD2)およびグルタチオンペルオキシダーゼなどのミトコンドリアの抗酸化物質によって部分的に媒介される。ROS(酸化ストレス)の過剰産生は、全神経変性障害の主要な特色である。ROS生成に加えて、ミトコンドリアはまた、カルシウムホメオスタシス、ミトコンドリアの分裂および融合、ミトコンドリア膜の脂質濃度およびミトコンドリア透過性転移(MPT)を含め、生命維持機能とも関与する。神経変性へとつながるミトコンドリア病は、少なくともあるレベルで、これらの機能全てを含む可能性がある(DiMauro and Schon,2008)。

0179

ミトコンドリア機能不全および酸化ストレスは、アルツハイマー病、パーキンソン病、ハンチントン病および筋萎縮性側索硬化症(ルー・ゲーリック病とも呼ばれる。)といった比較的よく知られている4種類の疾患を含む、神経変性疾患の病態と因果関係があるという証拠がある。

0180

アルツハイマー病(AD)は、臨床的には進行性の認知低下および病理学的には、主にアミロイド−βペプチド(Aβ)から構成される老人斑と、主に過リン酸化タウからなる神経原線維もつれとの存在を特徴とする。約5−10%の症例が家族性であり、早期に発症し、常染色体優性遺伝性である。このような家族性の症例に関連する3種類のタンパク質が知られている:アミロイド前駆体タンパク質(APP)−−これは順次β−およびγ−セクレターゼにより切断されてAβを生成させる−−およびプレセニリン1および2(PS1およびPS2)、これらのどちらか一方が各γ−セクレターゼ複合体の成分である。ADの病態におけるミトコンドリア機能不全および酸化的損傷に対する役割が、広範な文献から裏付けられる。AD脳において、顕著な病態の発生前に酸化的損傷が早期に起こる。酸化的損傷は、トランスジェニックAPPマウスにおいてAβ沈着にも先行し、さらにより早期に起こり、酸化的損傷を受けるニューロンと共局在するミトコンドリアの代謝およびアポトーシスに関連する遺伝子の上向き調節を伴う。

0181

酸化ストレスおよびAD病態を結び付ける複数の経路が最近明らかになった。酸化ストレスは、APPまたはタウプロセシングを変化させるシグナル伝達経路を活性化する場合がある。例えば、酸化ストレスは、c−Junアミノ末端キナーゼおよびp38マイトジェン活性タンパク質キナーゼMAPK)の活性化を通じてβ−セクレターゼの発現を上昇させ、グリコーゲンシンターゼキナーゼ3の活性化によって、異常なタウのリン酸化を増大させる。酸化物で誘発される重要分子の不活性化も重要な場合がある。プロテオミクス研究において、プロリルイソメラーゼPIN1が、酸化的損傷に特に感受性が強いことが分かった。PIN1は、APPおよびタウプロセシングの両方に影響を与えるタンパク質立体配座変化を触媒する。Pin1のノックアウトでは、マウスにおけるアミロイド形成性のAPPプロセシングおよび細胞内Aβレベルを増大する。Pin1−ノックアウトマウスはまた、タウの過リン酸化、運動および行動障害および神経変性も示す。したがって、PIN1および同様に感受性の高いタンパク質の酸化で誘発される損傷は、神経変性過程を促進する上で重要な場合がある。

0182

臨床的には進行性の硬直、動作緩慢および振戦を、病理学的には、黒質における色素性ニューロンの喪失およびレビー小体(α−シヌクレインおよびユビキチンに対して免疫染色される特徴的な細胞質封入体)の存在を特徴とするパーキンソン病(PD)においても、ミトコンドリアは重要な役割を果たす。

0183

ミトコンドリアは、最初、MPTP(1−メチル4−フェニル−1,2,3,6−テトラヒドロピリジン)(その代謝産物MPP+は、ミトコンドリアの電子伝達鎖の複合体Iを阻害する。)が合成麻薬乱用者においてパーキンソニズムを引き起こしたことから、PDとの関係が推測された。このモデルは、実験動物において洗練されてきており、ロテノン−−別の複合体−I阻害剤−−またはMPTPの持続性点滴の結果、臨床的にはパーキンソン病様表現型が現れ、病理学的には、α−シヌクレインおよびユビキチンに対して免疫反応性のある細胞質内封入体を伴う黒質変性が起こる。これらの複合体−I阻害モデルにおける毒性機序にはおそらく酸化ストレスが関与する。複合体−I阻害および酸化ストレスは、複合体−I欠損およびグルタチオン欠乏が、特発性PDの患者およびPD発症前の患者の黒質で見られたとき、自然発症するPDに関連することが示された。

0184

PDに関連する遺伝子の多くもまた、ミトコンドリアの疾病病因との関係を推測させる。今までのところ、mtDNAおよび少なくとも9個の名前のついた核遺伝子における突然変異または多型が、PDを引き起こすかPDリスクに影響を与えるかするものとして同定されている:α−シヌクレイン、パーキン、ユビキチンカルボキシ末端ヒドロラーゼL1、DJ−1、ホスファターゼテンシンホモローグ(PTEN)−誘導性キナーゼ1(PINK1)、ロイシンリッチリピートキナーゼ2(LRRK2)、核受容体NURR1、HTRA2およびタウ。核遺伝子のうち、α−シヌクレイン、パーキン、DJ−1、PINK1、LRRK2およびHTRA2は、直接または間接的に、ミトコンドリアと関連がある。少数の症例では、遺伝性mtDNA突然変異の結果、通常、より大きな症候群の1つの特性としてパーキンソニズムが起こる。ある家族では、レーバー視神経萎縮症G11778A突然変異は、1−DOPA反応性パーキンソニズムを伴い、これは、一定しないが、認知症、ジストニア眼筋まひおよび運動失調と同時に発症した。特に、この突然変異は、複合体Iのサブユニットにある。核でコードされるmtDNAポリメラーゼγ(POLG)遺伝子の突然変異は、mtDNA複製を損ない、その結果、複数のmtDNA欠失が起こり、通常、慢性的な進行性の外眼筋まひおよびミオパチーが引き起こされる。このような家族において、POLG突然変異もパーキンソニズムと同時分離する。

0185

筋萎縮性側索硬化症(ALS)は、臨床的には筋肉組織の進行性衰弱、萎縮および痙性を特徴とし、これは、皮質脳幹および脊髄における上位および下位運動ニューロンの変性を反映する。およそ90%の症例が散発性(SALS)であり、10%が家族性(FALS)である。家族性の症例の約20%がCu/Zn−スーパーオキシドジスムターゼ(SOD1)における突然変異により引き起こされる。SALSおよびFALSの両方で、脊髄、神経および筋肉からの死後および生検試料において、ミトコンドリア構造、数および局在の異常が示される。筋肉および脊髄において、呼吸鎖複合体の活性不全も検出されている。

0186

ハンチントン病(HD)は、臨床的には、舞踏病精神障害および認知症を特徴とし、病理学的には、皮質および線条体における長い突起ニューロンの喪失を特徴とする。HDは、常染色体優性の遺伝性であり、ハンチンチン(HTT)遺伝子におけるCAGトリヌクレオチドリピートの拡大によるものであり、対応するタンパク質におけるポリグルタミンストレッチ拡張が起こる。通常のCAG(Q)リピート数は36未満であり、40を超えるリピート数はヒト疾患と関連する。様々な系列の証拠から、HDにおけるミトコンドリア機能不全の関与が明らかになる。核磁気共鳴スペクトロスコピーから、皮質および大脳基礎核での乳酸増加が明らかとなる。生化学的研究から、ヒトHD脳における電子伝達鎖の複合体IIおよびIIIの活性低下が示される。突然変異Htt−ノックインマウス胚由来の線条体細胞において、ミトコンドリアの呼吸およびATP産生が顕著に損なわれている。

0187

本発明の1つの局面は、神経変性疾患、加齢性神経細胞死または機能不全を治療する方法である。本明細書中で使用されるところの「神経変性疾患」または、同等に「神経変性障害」とは、中枢神経系における機能性ニューロンの進行性の喪失を含む何らかの症状を指す。1つの実施形態では、神経変性疾患は、加齢性の細胞死と関連がある。代表的な神経変性疾患は、アルツハイマー病、パーキンソン病、ハンチントン病、筋萎縮性側索硬化症(ALSおよびルー・ゲーリック病とも呼ばれる。)ならびにAIDSによる認知症、副腎白質ジストロフィー、アレキサンダー病、アルパース病、毛細血管拡張性運動失調、バッテン病、牛海綿状脳症(BSE)、カナバン病、大脳皮質基礎核変性症、クロイツフェルト・ヤコブ病、レビー小体型認知症、致死性家族性不眠症、前頭側頭葉変性症、ケネディー病、クラッベ病、ライム病、マシャド・ジョセフ病、多発性硬化症、多系統萎縮症、神経有棘赤血球症、ニーマンピック病、ピック病、原発性側索硬化症、進行性核上まひ、レフサム病、サンドホフ病、ミエリン破壊性広汎性硬化症、脊髄小脳失調、亜急性脊髄連合変性症、脊髄癆、テイ・サックス病、中毒性脳症、感染性海綿状脳症およびハリネズミふらつき症候群を含むがこれらに限られない。

0188

1つの実施形態では、本方法は、加齢性神経細胞死または機能不全を治療するために使用される。このような方法は、特異的な神経変性疾患、例えばアルツハイマー病、筋萎縮性側索硬化症、ハンチントン病およびパーキンソン病の原因ではない神経変性に向けられる。

0189

1つの実施形態では、神経変性疾患は、アルツハイマー病、筋萎縮性側索硬化症、ハンチントン病およびパーキンソン病からなる群から選択される。

0190

1つの実施形態では、神経変性疾患はアルツハイマー病である。

0191

前記方法は、神経変性疾患の治療を必要とする対象に、治療的有効量のウロリチンまたはその前駆体を投与し、それにより神経変性疾患を治療するステップを含む。

0192

本発明のこの方法および他の方法によれば、本明細書中で使用されるところの「ウロリチン」とは、ウロリチンA、ウロリチンB、ウロリチンCおよびウロリチンDのいずれか1つまたはこれらの組み合わせを指す(例えば、図1および図2参照)。1つの実施形態では、ウロリチンは、ウロリチンA、ウロリチンB、ウロリチンC、ウロリチンDまたはウロリチンA、ウロリチンB、ウロリチンCおよびウロリチンDのいずれかの組み合わせである。1つの実施形態では、ウロリチンは、ウロリチンA、ウロリチンBまたはウロリチンAおよびウロリチンBの組み合わせである。1つの実施形態では、ウロリチンはウロリチンAである。1つの実施形態では、ウロリチンは、例えば天然源から単離されるかまたは全合成により調製される、単離ウロリチンとして提供される。単離ウロリチンは、デノボ合成され得る。例えば全内容が引用により本明細書に取り込まれるGhosalによる米国特許出願公開第2008/0031862号明細書を参照のこと。

0193

1つの実施形態では、次のように2段階合成でウロリチンA(3,8−ジヒドロキシジベンゾ−α−ピロン)を合成した。第1段階は、出発物質2−ブロモ−5−メトキシ安息香酸およびレゾルシノール一緒に反応させて、ジヒドロ−ジベンゾピロン骨格を生成させる、塩基存在下で起こる銅触媒反応(ハートレー反応)である。第2段階において、BBr3を用いたベンゾピロン脱メチル化から、3,8−ジヒドロキシジベンゾ−α−ピロン(ウロリチンA)が生じる。

0194

水(120mL)中の、2−ブロモ−5−メトキシ安息香酸1(27.6g)、レゾルシノール2(26.3g)および水酸化ナトリウム(10.5g)の混合物を1時間加熱還流する。次に、硫酸銅の5%水溶液(50mL水中、3.88gのCuSO4、5H2O)を添加し、混合物をさらに30分間還流させた。混合物を室温まで冷まし、固形物ブフナー漏斗上でろ過した。残渣を冷水(50mL)で洗浄し、淡赤色の固形物(38.0g)を得て、これを熱MeOH(200mL)中で粉砕した。縣濁液を4℃で一晩静置した。得られた薄赤色の沈殿物をろ過し、冷MeOH(75mL)で洗浄し、表題化合物3を薄茶色固形物として得た。1H NMRは、3の構造による。

0195

乾燥ジクロロメタン(100mL)中の3(10.0g;41mmol;1.0eq.)の縣濁液に、乾燥ジクロロメタン中の三臭化ホウ素の1M溶液(110mL無水ジクロロメタン中、11.93mLの純粋BBr3)を0℃で添加した。混合物を0℃で1時間静置し、次いで室温まで温めた。溶液をその温度で17時間撹拌した。黄色の沈殿物をろ過し、冷水(50mL)で洗浄し、黄色の固形物を得て、これを酢酸(400mL)中で3時間加熱還流した。熱溶液を素早くろ過し、沈殿物を酢酸(50mL)で洗浄し、次いでジエチルエーテル(100mL)で洗浄して、黄色固形物として表題化合物4を得た。1Hおよび13C−NMRにより構造および純度を調べた。

0196

0197

1つの実施形態では、本明細書中で使用されるところの「ウロリチン」は、グルクロン酸抱合、メチル化または硫酸化ウロリチンであるか、またはこれらを含み得る。

0198

本発明のこの方法および他の方法によれば、「ウロリチン前駆体」とは、本明細書中で使用されるところのエラジタンニンまたは、エラグ酸(EA)を含むが限られないエラジタンニン代謝産物を指す。1つの実施形態では、ウロリチン前駆体はプニカラギン(PA)である。1つの実施形態では、ウロリチン前駆体はプニカリン(PB)である。例えば、図1参照。1つの実施形態では、ウロリチン前駆体はエラグ酸(EA)である。1つの実施形態では、ウロリチン前駆体は、例えば自然食品源から単離されるか全合成により調製されるかの単離ウロリチン前駆体として提供される。単離ウロリチン前駆体は、通常、天然源からの精製またはデノボ合成され;EAを含むいくつかのウロリチン前駆体はSigma Aldrichなどの供給業者から市販されている。

0199

また本発明のこの方法および他の方法によれば、ウロリチンの前駆体も、エラジタンニンおよびエラグ酸を含有する自然食品、特に、エラジタンニン、エラグ酸またはエラジタンニンおよびエラグ酸の両方が豊富な自然食品を含む。このような食品は、一部の液果類、ブドウ、ザクロ、ローズヒップおよびナッツ類を含む。1つの実施形態では、前記自然食品はザクロである。

0200

さらに、ウロリチンの前駆体は、このような自然食品から調製される加工食品および飲料を含む。前記加工食品は、例えば、ジャム、ゼリー、保存料、ペースト、スプレッド、ジュース、ワイン、抽出物、濃縮物などを含む、あらゆる形態をとり得る。1つの実施形態では、前記加工食品はザクロ果汁である。

0201

1つの実施形態では、ウロリチン前駆体は、抽出物、例えば、果実抽出物として提供される。

0202

1つの実施形態では、ウロリチン前駆体は、濃縮物、例えば、果実濃縮物または果汁濃縮物として提供される。

0203

本発明の方法は、単独で、または、神経変性疾患を治療するのに有用であることが知られているいずれかの方法または化合物と組み合わせて使用される場合がある。例えば、1つの実施形態では、本発明の方法は、ドネゼピルアリセプト登録商標))、ガランタミン(ラザダイン(登録商標))およびリバスチグミン(エクセロン(登録商標))のようなアセチルコリンエステラーゼ阻害剤と、メマンチンナメンダ(登録商標))のようなN−メチルD−アスパルテートNMDA受容体アンタゴニストとのうちいずれか1種類以上の使用と組合せることができる。

0204

本発明の1つの局面は、認知機能を改善させる方法である。本明細書中で使用されるところの「認知機能」とは、象徴的操作(symbolic operations)、例えば知覚、記憶、注意、会話に関する理解、発話生成(speech generation)、読解力、心象生成、学習および論理的思考を含む、いずれかの精神機能を指す。1つの実施形態では、「認知機能」は、知覚、記憶、注意および論理的思考のいずれか1種類以上を指す。1つの実施形態では、「認知機能」は記憶を指す。

0205

前記方法は、認知の改善を必要とする対象に治療的有効量のウロリチンまたはその前駆体を投与し、それにより認知機能を改善するステップを含む。

0206

認知機能を測定するための方法は周知であり、例えば認知機能のいずれかの局面に対する個別のまたは総合テストを含み得る。このような試験の1つは、プルドー認知機能試験である。Margallo−Lana et al.(2003)J Intellect Disability Res.47:488−492。別のこのような試験は、ミニメンタル・ステート検査(Mini Mental State Exam、MMSE)であり、これは、時間および場所に対する見当識、登録、注意および計算、想起、言語使用および理解、反復および複雑な運用能力を評価するように設計されている。Folstein et al.(1975)J Psych Res.12:189−198。認知機能を測定するために有用な他の試験は、アルツハイマー病評価スケール−認知サブスケール(Alzheimer Disease Assessment Scale−Cognitive,ADAS−Cog)(Rosen et al.(1984)Am J Psychiatry.141(11):1356−64)およびケンブリッジ神経心理学自動検査バッテリー(Cambridge Neuropsychological Test Automated Battery、CANTAB)(Robbins et al.(1994)Dementia.5(5):266−81)を含む。このような試験は、認知機能、例えば、本発明の方法による治療に応答した認知機能の変化の測定及び比較をすることができるように、客観的やり方で認知機能を評価するために使用することができる。

0207

本発明の方法は、単独で、または認知機能を改善させることが知られているいずれかの方法または化合物と組み合わせて、使用することができる。例えば、1つの実施形態では、本発明の方法は、カフェインか、ニコチンか、両方かの使用と組み合わせられる。

0208

1つの実施形態では、対象は認知障害がない。例えば、本方法は、認知機能が正常である対象において認知機能を増強させるために使用することができる。

0209

本発明の1つの局面は、認知障害を治療する方法である。本明細書中で使用されるところの認知障害とは、認知機能が損なわれている何らかの症状を指す。1つの実施形態では、「認知障害」は、せん妄、認知症、学習障害、注意欠陥障害(ADD)および注意欠陥多動性障害(ADHD)のいずれか1種類以上を指す。1つの実施形態では、認知障害とは学習障害である。1つの実施形態では、認知障害とは注意欠陥障害(ADD)である。1つの実施形態では、認知障害とは注意欠陥多動性障害(ADHD)である。

0210

本方法は、認知障害を治療するために、認知障害の治療を必要とする対象に治療的有効量のウロリチンまたはその前駆体を投与するステップを含む。

0211

本発明の方法は、単独で、または認知障害を治療するのに有用であることが知られているいずれかの方法または化合物と組み合わせて、使用することができる。例えば、1つの実施形態では、本発明の方法は、メチルフェニデート(例えばリタリン(登録商標))、デキストロアンフェタミン(デキセドリン(登録商標))、混合アンフェタミン塩(アデロール(登録商標))、デキストロメタンフェタミンデソキシン(登録商標))およびリスデキサンフェタミン(ビバナセ(Vybanase)(登録商標))のような興奮剤の使用と組み合わせられる。

0212

本発明の1つの局面は、ストレスで誘発されるか、あるいは、ストレスと関連する、認知機能不全を治療または予防する方法である。本明細書中で使用されるところの「ストレスで誘発されるか、あるいは、ストレスと関連する、認知機能不全」は、ストレスにより誘導されるかまたはストレスに関連する、認知機能の撹乱を指す。前記方法は、ストレスで誘発されるか、あるいは、ストレスと関連する、認知機能不全を治療または予防するために、ストレスで誘発されるか、あるいは、ストレスと関連する、認知機能不全の治療または予防を必要とする対象に治療的有効量のウロリチンまたはその前駆体を投与するステップを含む。

0213

気分障害
脳組織は、膜電位の維持、シグナル伝達およびシナプスリモデリングを含む、脳組織の代謝のために高レベルのエネルギーを必要とする。ミトコンドリア障害がある患者において、精神科的症状および障害、特にうつ、の増悪が存在すると思われる。

0214

様々な異なる技術により測定されるミトコンドリアの構造および機能は、大うつを含む気分障害のある患者と、他の情動スペクトル障害とにおいて異常であることが示されている。

0215

2つの研究から、うつ発症の可能性が数倍上昇することは、mtDNAと一緒に母性遺伝し得、これは、mtDNA配列変異型がミトコンドリア機能不全を誘導し、これにより人がうつを発症し易くなり得ることを強く示している(Boles et al.,2005;Burnett et al.,2005)。

ページトップへ

この技術を出願した法人

この技術を発明した人物

ページトップへ

関連する挑戦したい社会課題

関連する公募課題

該当するデータがありません

ページトップへ

技術視点だけで見ていませんか?

この技術の活用可能性がある分野

分野別動向を把握したい方- 事業化視点で見る -

(分野番号表示ON)※整理標準化データをもとに当社作成

ページトップへ

おススメ サービス

おススメ astavisionコンテンツ

新着 最近 公開された関連が強い技術

  • イーライリリーアンドカンパニーの「 抗CD137抗体」が 公開されました。( 2020/09/10)

    【課題・解決手段】本発明は、ヒトCD137に結合し、アゴニスト活性を示し、固形腫瘍および血液腫瘍を単独で、ならびに化学療法および電離放射線と組み合わせて治療するのに有用であり得る、抗体に関する。... 詳細

  • 日本臓器製薬株式会社の「 経皮投与製剤」が 公開されました。( 2020/09/10)

    【課題】貼付から3日目に発生する鎮痛効果の低下を低減することが可能なフェンタニル含有経皮投与製剤を提供する。【解決手段】本発明は、支持体と、当該支持体上に積層された薬剤含有層と、当該薬剤含有層上に積層... 詳細

  • 株式会社エム・ティー・スリーの「 放射線増感剤」が 公開されました。( 2020/09/10)

    【課題】放射線療法の効果を向上させる、放射線増感剤の提供。【解決手段】1回あたり8mg/kg以下の一般式(I)で表される化合物が患者に投与されるように用いられることを特徴とする、一般式(I)で表される... 詳細

この 技術と関連性が強い技術

関連性が強い 技術一覧

この 技術と関連性が強い人物

関連性が強い人物一覧

この 技術と関連する社会課題

関連する挑戦したい社会課題一覧

この 技術と関連する公募課題

該当するデータがありません

astavision 新着記事

サイト情報について

本サービスは、国が公開している情報(公開特許公報、特許整理標準化データ等)を元に構成されています。出典元のデータには一部間違いやノイズがあり、情報の正確さについては保証致しかねます。また一時的に、各データの収録範囲や更新周期によって、一部の情報が正しく表示されないことがございます。当サイトの情報を元にした諸問題、不利益等について当方は何ら責任を負いかねることを予めご承知おきのほど宜しくお願い申し上げます。

主たる情報の出典

特許情報…特許整理標準化データ(XML編)、公開特許公報、特許公報、審決公報、Patent Map Guidance System データ