図面 (/)

技術 露光装置及び方法、算出装置及び方法、並びにそのプログラム

出願人 株式会社ニコン
発明者 上條康一尾形太郎平山亨
出願日 2017年12月15日 (2年0ヶ月経過) 出願番号 2017-240414
公開日 2018年3月15日 (1年9ヶ月経過) 公開番号 2018-041115
状態 特許登録済
技術分野
  • -
主要キーワード 温度変動量 露光継続 積算照射エネルギー 温度平均 計算単位 回折強度分布 エンコーダ方式 マスク特性
関連する未来課題
重要な関連分野

この項目の情報は公開日時点(2018年3月15日)のものです。
また、この項目は機械的に抽出しているため、正しく解析できていない場合があります

図面 (14)

課題

マスクから投影光学系の開口絞りを通過できない程度に大きい回折角射出される回折光の状態を、照明条件に応じて正確に推定する。

解決手段

レチクルパターンから発生する回折光の状態を推定する方法であって、照明瞳光強度分布を設定するステップ102と、レチクルのパターンの像を形成する投影光学系の投影瞳内回折強度分布計測するステップ108と、照明瞳の光強度分布に対応する0次強度分布シフトさせて得られる複数の光強度分布と回折強度分布との相関度がそれぞれ高くなるときの複数の光強度分布の重み係数を求めるステップ110,112と、複数の光強度分布の加重和によって得られる光強度分布のうち、投影瞳外の光強度分布に基づいて、投影瞳に入らない開口外回折光の状態を推定するステップ116と、を有する。

概要

背景

半導体デバイス等の電子デバイスマイクロデバイス)を製造するためのリソグラフィ工程中で使用されるステッパー又はスキャニングステッパー等の露光装置投影露光装置)において、レチクルマスク)のパターンを高精度にウエハ等の基板露光するためには、投影光学系の光学特性(例えば収差)を目標とする範囲内に維持する必要がある。また、露光を継続すると、積算照射エネルギーによって投影光学系の光学特性は次第に変動する。

そこで、従来、露光中に例えば積算照射エネルギーに応じて投影光学系の光学特性の変動量を予測し、例えば投影光学系内の所定の光学部材の位置や角度等を補正する結像特性補正系を用いてその予測される光学特性の変動量を補正することが行われている(例えば、特許文献1を参照)。この場合、レチクルから射出される回折光(0次光を含む)のうち、投影光学系の入射瞳入射する回折光に関しては、例えば投影光学系の像面側にステージに設けられて、投影光学系の射出瞳光強度分布計測する計測装置によってその光強度分布を計測できる。そして、この計測結果と積算照射エネルギーとに基づいて投影光学系の光学特性の変動量を予測することが可能である。

概要

マスクから投影光学系の開口絞りを通過できない程度に大きい回折角で射出される回折光の状態を、照明条件に応じて正確に推定する。レチクルのパターンから発生する回折光の状態を推定する方法であって、照明瞳の光強度分布を設定するステップ102と、レチクルのパターンの像を形成する投影光学系の投影瞳内回折強度分布を計測するステップ108と、照明瞳の光強度分布に対応する0次強度分布シフトさせて得られる複数の光強度分布と回折強度分布との相関度がそれぞれ高くなるときの複数の光強度分布の重み係数を求めるステップ110,112と、複数の光強度分布の加重和によって得られる光強度分布のうち、投影瞳外の光強度分布に基づいて、投影瞳に入らない開口外回折光の状態を推定するステップ116と、を有する。

目的

本発明の態様は、このような事情に鑑み、マスクから投影光学系の入射瞳に入射できない程度に大きい角度(回折角)で射出される回折光の光強度分布又は方向等の状態を、照明条件に応じて正確に推定することを目的とする

効果

実績

技術文献被引用数
0件
牽制数
0件

この技術が所属する分野

(分野番号表示ON)※整理標準化データをもとに当社作成

該当するデータがありません

ライセンス契約や譲渡などの可能性がある特許掲載中! 開放特許随時追加・更新中 詳しくはこちら

請求項1

照明光マスクパターン照明する照明光学系と、前記パターンを介した前記照明光を用いて、前記パターンの像を基板投影する投影光学系と、前記照明光学系及び前記投影光学系を通過した光を用いて前記投影光学系の射出瞳における第1光強度分布計測し、前記照明光学系、前記マスク及び前記投影光学系を通過した光を用いて前記投影光学系の射出瞳における第2光強度分布を計測する計測部と、前記計測部からの前記第1光強度分布に関する第1情報と前記第2光強度分布に関する第2情報とを、前記第1及び第2情報を用いて前記マスクから発生して前記投影光学系に入射し且つ前記投影光学系から射出されない光を推定する推定部と、前記光の推定結果を用いて前記投影光学系を構成する少なくとも一つの光学部材温度変動量を求め、求められた前記温度変動量から前記投影光学系の光学特性を算出する算出部とを備える算出装置に出力する出力部とを備える露光装置

請求項2

前記算出された前記投影光学系の前記光学特性を、所定の光学特性にするための補正量を算出する補正部をさらに備える請求項1に記載の露光装置。

請求項3

前記光は、前記マスクの前記パターンから発生する回折光である、請求項1又は2に記載の露光装置。

請求項4

前記推定部は、前記第1光強度分布と、前記第2光強度分布とを用いて、前記回折光の状態を推定する、請求項3に記載の露光装置。

請求項5

照明光学系からの照明光でマスクのパターンを照明し、前記照明光で前記パターン及び投影光学系を介して基板を露光する露光装置における前記投影光学系の光学特性を算出する算出装置において、前記照明光学系及び前記投影光学系を通過した光を用いて計測された前記投影光学系の射出瞳における第1光強度分布と、前記照明光学系、前記マスク及び前記投影光学系を通過した光を用いて計測された前記投影光学系の射出瞳における第2光強度分布とを記憶する記憶部と、記憶された前記第1及び第2光強度分布を用いて、前記マスクから発生して前記投影光学系に入射し且つ前記投影光学系から射出されない光を推定する推定部と、前記光の推定結果を用いて前記投影光学系を構成する少なくとも一つの光学部材の温度変動量を求め、求められた前記温度変動量から前記投影光学系の光学特性を算出する算出部とを備える算出装置。

請求項6

前記算出された前記投影光学系の前記光学特性を、所定の光学特性にするための補正量を算出する補正部をさらに備える請求項5に記載の算出装置。

請求項7

前記光は、前記マスクの前記パターンから発生する回折光である、請求項5又は6に記載の算出装置。

請求項8

前記推定部は、前記第1光強度分布と、前記第2光強度分布とを用いて、前記回折光の状態を推定する、請求項7に記載の算出装置。

請求項9

照明光学系からの照明光でマスクのパターンを照明し、前記照明光で前記パターン及び投影光学系を介して基板を露光する露光装置における前記投影光学系の光学特性を算出する算出方法において、前記照明光学系及び前記投影光学系を通過した光を用いて計測された前記投影光学系の射出瞳における第1光強度分布と、前記照明光学系、前記マスク及び前記投影光学系を通過した光を用いて形成された前記投影光学系の射出瞳における第2光強度分布とを記憶することと、記憶された前記第1及び第2光強度分布を用いて、前記マスクから発生して前記投影光学系に入射し且つ前記投影光学系から射出されない光を推定することと、前記光の推定結果を用いて前記投影光学系を構成する少なくとも一つの光学部材の温度変動量を求め、求められた前記温度変動量から前記投影光学系の光学特性を算出することとを含む算出方法。

請求項10

前記算出された前記投影光学系の光学特性を、所定の光学特性にするための補正量を算出することを含む請求項9に記載の算出方法。

請求項11

前記光は、前記マスクの前記パターンから発生する回折光である、請求項9又は10に記載の算出方法。

請求項12

前記推定することは、前記第1光強度分布と、前記第2光強度分布とを用いて、前記回折光の状態を推定する、請求項11に記載の算出方法。

請求項13

照明光学系からの照明光でマスクのパターンを照明し、前記照明光で前記パターン及び投影光学系を介して基板を露光する露光装置内コンピュータ又は前記露光装置に接続されるコンピュータに、前記照明光学系及び前記投影光学系を通過した光を用いて計測された前記投影光学系の射出瞳における第1光強度分布と、前記照明光学系、前記マスク及び前記投影光学系を通過した光を用いて形成された前記投影光学系の射出瞳における第2光強度分布とを記憶する手順と、記憶された前記第1及び第2光強度分布を用いて、前記マスクから発生して前記投影光学系に入射し且つ前記投影光学系から射出されない光を推定する手順と、前記光の推定結果を用いて前記投影光学系を構成する少なくとも一つの光学部材の温度変動量を求め、求められた前記温度変動量から前記投影光学系の光学特性を算出する手順とを実行させるためのプログラム

請求項14

前記コンピュータは、前記算出された前記投影光学系の前記光学特性を、所定の光学特性にするための補正量を算出する手順をさらに実行する請求項13に記載のプログラム。

請求項15

前記光は、前記マスクの前記パターンから発生する回折光である、請求項13又は14に記載のプログラム。

請求項16

前記推定する手順では、前記第1光強度分布と、前記第2光強度分布とを用いて、前記回折光の状態を推定する、請求項15に記載のプログラム。

請求項17

照明光学系からの照明光でマスクのパターンを照明することと、前記照明光で前記パターン及び投影光学系を介して基板を露光することと、請求項9乃至12の何れか一項に記載の算出方法を用いて、前記投影光学系の光学特性を算出することとを含む露光方法

技術分野

0001

本発明は、マスクから発生する回折光の状態を推定するマスク特性の推定技術、この推定技術を用いる露光技術、及びこの露光技術を用いるデバイス製造技術に関する。

背景技術

0002

半導体デバイス等の電子デバイスマイクロデバイス)を製造するためのリソグラフィ工程中で使用されるステッパー又はスキャニングステッパー等の露光装置投影露光装置)において、レチクル(マスク)のパターンを高精度にウエハ等の基板露光するためには、投影光学系の光学特性(例えば収差)を目標とする範囲内に維持する必要がある。また、露光を継続すると、積算照射エネルギーによって投影光学系の光学特性は次第に変動する。

0003

そこで、従来、露光中に例えば積算照射エネルギーに応じて投影光学系の光学特性の変動量を予測し、例えば投影光学系内の所定の光学部材の位置や角度等を補正する結像特性補正系を用いてその予測される光学特性の変動量を補正することが行われている(例えば、特許文献1を参照)。この場合、レチクルから射出される回折光(0次光を含む)のうち、投影光学系の入射瞳入射する回折光に関しては、例えば投影光学系の像面側にステージに設けられて、投影光学系の射出瞳光強度分布計測する計測装置によってその光強度分布を計測できる。そして、この計測結果と積算照射エネルギーとに基づいて投影光学系の光学特性の変動量を予測することが可能である。

先行技術

0004

米国特許出願公開第2006/244940号明細書

発明が解決しようとする課題

0005

実際には、レチクルからは投影光学系を介して像面に達する回折光、すなわち投影光学系の入射瞳に入射する回折光の外に、その入射瞳に入射できない程度に大きい回折角を持つ回折光、すなわち投影光学系の入射側の開口半角よりも大きい回折角を持つ回折光(以下、開口外回折光という。)も射出される。このような開口外回折光は基板には入射しないが、投影光学系の鏡筒に入射して鏡筒の温度分布、ひいては鏡筒内の光学素子の温度分布に影響を与える恐れがある。

0006

しかしながら、開口外回折光は、投影光学系の像面側のステージに設けられて、投影光学系の射出瞳の光強度分布を計測する計測装置では計測できないという問題がある。さらに、開口外回折光の方向、強度、又はある領域での光強度分布等の状態は、そのレチクルの照明条件照明光学系の射出瞳の光強度分布等)に応じて複雑に変化するため、開口外回折光の状態を推定するためには照明条件を考慮する必要がある。

0007

本発明の態様は、このような事情に鑑み、マスクから投影光学系の入射瞳に入射できない程度に大きい角度(回折角)で射出される回折光の光強度分布又は方向等の状態を、照明条件に応じて正確に推定することを目的とする。

課題を解決するための手段

0008

本発明による露光装置は、照明光でマスクのパターンを照明する照明光学系と、そのパターンを介したその照明光を用いて、そのパターンの像を基板に投影する投影光学系と、その照明光学系及びその投影光学系を通過した光を用いてその投影光学系の射出瞳における第1光強度分布を計測し、その照明光学系、そのマスク及びその投影光学系を通過した光を用いてその投影光学系の射出瞳における第2光強度分布を計測する計測部と、その計測部からのその第1光強度分布に関する第1情報とその第2光強度分布に関する第2情報とを、その第1及び第2情報を用いてそのマスクから発生してその投影光学系に入射し且つその投影光学系から射出されない光を推定する推定部と、その光の推定結果を用いてその投影光学系を構成する少なくとも一つの光学部材の温度変動量を求め、求められたその温度変動量からその投影光学系の光学特性を算出する算出部とを備える算出装置に出力する出力部とを備えるものである。
本発明による算出装置は、照明光学系からの照明光でマスクのパターンを照明し、その照明光でそのパターン及び投影光学系を介して基板を露光する露光装置におけるその投影光学系の光学特性を算出する算出装置において、その照明光学系及びその投影光学系を通過した光を用いて計測されたその投影光学系の射出瞳における第1光強度分布と、その照明光学系、そのマスク及びその投影光学系を通過した光を用いて計測されたその投影光学系の射出瞳における第2光強度分布とを記憶する記憶部と、記憶されたその第1及び第2光強度分布を用いて、そのマスクから発生してその投影光学系に入射し且つその投影光学系から射出されない光を推定する推定部と、その光の推定結果を用いてその投影光学系を構成する少なくとも一つの光学部材の温度変動量を求め、求められたその温度変動量からその投影光学系の光学特性を算出する算出部とを備えるものである。
本発明による算出方法は、照明光学系からの照明光でマスクのパターンを照明し、その照明光でそのパターン及び投影光学系を介して基板を露光する露光装置におけるその投影光学系の光学特性を算出する算出方法において、その照明光学系及びその投影光学系を通過した光を用いて計測されたその投影光学系の射出瞳における第1光強度分布と、その照明光学系、そのマスク及びその投影光学系を通過した光を用いて形成されたその投影光学系の射出瞳における第2光強度分布とを記憶することと、記憶されたその第1及び第2光強度分布を用いて、そのマスクから発生してその投影光学系に入射し且つその投影光学系から射出されない光を推定することと、その光の推定結果を用いてその投影光学系を構成する少なくとも一つの光学部材の温度変動量を求め、求められたその温度変動量からその投影光学系の光学特性を算出することとを含むものである。
本発明によるプログラムは、照明光学系からの照明光でマスクのパターンを照明し、その照明光でそのパターン及び投影光学系を介して基板を露光する露光装置内コンピュータ又はその露光装置に接続されるコンピュータに、その照明光学系及びその投影光学系を通過した光を用いて計測されたその投影光学系の射出瞳における第1光強度分布と、その照明光学系、そのマスク及びその投影光学系を通過した光を用いて形成されたその投影光学系の射出瞳における第2光強度分布とを記憶する手順と、記憶されたその第1及び第2光強度分布を用いて、そのマスクから発生してその投影光学系に入射し且つその投影光学系から射出されない光を推定する手順と、その光の推定結果を用いてその投影光学系を構成する少なくとも一つの光学部材の温度変動量を求め、求められたその温度変動量からその投影光学系の光学特性を算出する手順とを実行させるためのプログラムである。
本発明による露光方法は、照明光学系からの照明光でマスクのパターンを照明することと、その照明光でそのパターン及び投影光学系を介して基板を露光することと、本発明の算出方法を用いて、その投影光学系の光学特性を算出することとを含む露光方法である。
また、本発明の第1の態様によれば、マスクのパターンから発生する回折光の状態を推定するマスク特性の推定方法が提供される。この推定方法は、そのマスクのパターンを照明する照明光学系の射出瞳における第1光強度分布を設定することと、その照明光学系によって照明されたそのマスクのパターンの像を形成する投影光学系の射出瞳における第2光強度分布を求めることと、その投影光学系の射出瞳内でその第1光強度分布に対応する対応分布を互いに異なる量だけシフトさせて得られる複数の第3光強度分布とその第2光強度分布との相関度がそれぞれ高くなるときの複数のその第3光強度分布を求めることと、その投影光学系の射出瞳内で複数のその第3光強度分布の加重和とその第2光強度分布との相関度が高くなるように複数のその第3光強度分布の個別の係数を求めることと、その個別の係数を用いた複数のその第3光強度分布の加重和によって得られる第4光強度分布のうち、その投影光学系の射出瞳外の光強度分布に基づいて、そのマスクのパターンから発生してその投影光学系の入射瞳に入らない回折光の状態を推定することと、を含むものである。

0009

また、第2の態様によれば、マスクのパターンから発生する回折光の状態を推定するマスク特性の推定方法が提供される。この推定方法は、そのマスクのパターンを照明する照明光学系の射出瞳の第1光強度分布を記憶することと、その照明光学系の射出瞳における互いに異なる複数の位置の制限された領域からの光でそのマスクのパターンを順次照明することと、その制限された領域が互いに異なる複数の位置にあるときに、それぞれその照明光学系によって照明されたそのマスクのパターンの像を形成する投影光学系の射出瞳におけるそのマスクのパターンからの光による第2光強度分布を求めることと、求められたその第2光強度分布に基づいて、そのマスクのパターンからの0次光及び1次以上の回折光を含む第3光強度分布を求めることと、その第3光強度分布に基づいてその投影光学系の射出瞳内でその第1光強度分布に対応する対応分布及びこの対応分布をシフトした光強度分布を重ね合わせることによって、第4光強度分布を求めることと、その第4光強度分布のうち、その投影光学系の射出瞳外の光強度分布に基づいて、そのマスクのパターンから発生してその投影光学系の入射瞳に入らない回折光の状態を推定することと、を含むものである。
なお、第1及び第2の態様において、第2光強度分布を求めることは、投影光学系の射出瞳における第2光強度分布を計測することであっても良い。

0010

また、第3の態様によれば、照明光学系からの照明光でマスクのパターンを照明し、その照明光でそのパターン及び投影光学系を介して基板を露光する露光方法が提供される。この露光方法は、本発明の態様の推定方法を用いて、そのマスクのパターンから発生してその投影光学系の入射瞳に入らない回折光の状態を推定することと、推定されるその投影光学系の入射瞳に入らない回折光の状態に基づいて、その投影光学系を構成する少なくとも一つの光学部材の温度変動量を求めることと、その光学部材の温度変動量に基づくその投影光学系の光学特性の変動量を補正することと、を含むものである。

0011

また、第4の態様によれば、マスクのパターンから発生する回折光の状態を推定するマスク特性の推定装置が提供される。この推定装置は、そのマスクのパターンを照明する照明光学系の射出瞳における第1光強度分布の情報を記憶する記憶部と、その照明光学系によって照明されたそのマスクのパターンの像を形成する投影光学系の射出瞳における第2光強度分布を計測する光強度分布計測部と、その記憶部に記憶されているその第1光強度分布及びその光強度分布計測部で計測されたその第2光強度分布に基づいてそのマスクのパターンから発生してその投影光学系の入射瞳に入らない回折光の状態を推定する演算部と、を備え、その演算部は、その投影光学系の射出瞳内でその第1光強度分布に対応する対応分布を互いに異なる量だけシフトさせて得られる複数の第3光強度分布とその第2光強度分布との相関度がそれぞれ高くなるときの複数のその第3光強度分布を求め、その投影光学系の射出瞳内で複数のその第3光強度分布の加重和とその第2光強度分布との相関度が高くなるように複数のその第3光強度分布の個別の係数を求め、その個別の係数を用いた複数のその第3光強度分布の加重和によって得られる光強度分布のうち、その投影光
学系の射出瞳外の光強度分布に基づいて、そのマスクのパターンから発生してその投影光学系の入射瞳に入らない回折光の状態を推定するものである。

0012

また、第5の態様によれば、マスクのパターンから発生する回折光の状態を推定するマスク特性の推定装置が提供される。この推定装置は、そのマスクのパターンを照明する照明光学系の射出瞳における第1光強度分布の情報を記憶する記憶部と、その照明光学系の射出瞳における互いに異なる複数の位置の制限された領域からの光でそのマスクのパターンを順次照明させる照明制御部と、その制限された領域が互いに異なる複数の位置にあるときに、それぞれその照明光学系によって照明されたそのマスクのパターンの像を形成する投影光学系の射出瞳におけるそのマスクのパターンからの光による第2光強度分布を計測する光強度分布計測部と、その記憶部に記憶されているその第1光強度分布及びその光強度分布計測部で計測されたその第2光強度分布に基づいてそのマスクのパターンから発生してその投影光学系の入射瞳に入らない回折光の状態を推定する演算部と、を備え、その演算部は、計測されたその第2光強度分布に基づいて、そのマスクのパターンからの0次光及び1次以上の回折光を含む第3光強度分布を求め、その第3光強度分布に基づいてその投影光学系の射出瞳内でその第1光強度分布に対応する対応分布及びこの対応分布をシフトした光強度分布を重ね合わせることによって、第4光強度分布を求め、その第4光強度分布のうち、その投影光学系の射出瞳外の光強度分布に基づいて、そのマスクのパターンから発生してその投影光学系の入射瞳に入らない回折光の状態を推定するものである。

0013

また、第6の態様によれば、照明光学系からの照明光でマスクのパターンを照明し、その照明光でそのパターン及び投影光学系を介して基板を露光する露光装置が提供される。この露光装置は、そのマスクのパターンから発生してその投影光学系の入射瞳に入らない回折光の状態を推定するための、本発明の態様の推定装置と、その推定装置によって推定されるその投影光学系の入射瞳に入らない回折光の状態に基づいて、その投影光学系を構成する少なくとも一つの光学部材の温度変動量を求める温度演算部と、その温度演算部によって求められるその光学部材の温度変動量に基づいてその投影光学系の光学特性の変動量を補正する補正部と、を備えるものである。

0014

また、第7の態様によれば、照明光学系からの照明光でマスクのパターンを照明し、その照明光でそのパターン及び投影光学系を介して基板を露光する露光装置が提供される。この露光装置は、そのマスクのパターンから発生してその投影光学系の入射瞳に入らない回折光の状態を推定する推定装置と、その推定装置によって推定されるその投影光学系の入射瞳に入らない回折光の状態に基づいて、その投影光学系を構成する少なくとも一つの光学部材の温度変動量を求める温度演算部と、その温度演算部によって求められるその光学部材の温度変動量に基づいてその投影光学系の光学特性の変動量を補正する補正部と、を備えるものである。

0015

また、第8の態様によれば、本発明の態様の露光方法又は露光装置を用いて基板上に感光層のパターンを形成することと、そのパターンが形成されたその基板を処理することと、を含むデバイス製造方法が提供される。

発明の効果

0016

本発明の態様によれば、照明光学系の射出瞳に設定される光強度分布の情報と、投影光学系の射出瞳における光強度分布の計測結果とを用いることによって、マスクから投影光学系の入射瞳に入射できない程度に大きい角度(回折角)で射出される回折光の光強度分布又は方向等の状態を、照明条件に応じて正確に推定できる。

図面の簡単な説明

0017

第1の実施形態に係る露光装置の概略構成を示す一部を断面とした図である。
図1の露光装置の制御系等を示すブロック図である。
(A)はレチクルのパターンの一部を示す拡大平面図、(B)は他のレチクルのパターンの一部を示す拡大平面図、(C)は照明光学系の瞳面(照明瞳面)における光強度分布の一例を示す図である。
開口外回折光の状態の推定方法及び露光方法の一例を示すフローチャートである。
投影光学系の瞳面(投影瞳面)における光強度分布を計測中の露光装置を示す図である。
(A)は投影瞳面における0次回折光の光強度分布の一例を示す図、(B)は投影瞳面における0次及び1次の回折光の光強度分布の一例を示す図、(C)は0次回折光の光強度分布のシフト方向及びシフト量を示す図である。
投影瞳面の計算領域内で推定される回折光の光強度分布の一例を示す図である。
(A)は第2の実施形態の照明瞳面における光強度分布の一例を示す図、(B)及び(C)は照明瞳面上の互いに異なる位置から射出される照明光によって投影瞳面に形成される光強度分布を示す図、(D)は垂直入射時にレチクルからの回折光によって投影瞳面に形成される光強度分布を示す図である。
第2の実施形態に係る開口外回折光の状態の推定方法の一例を示すフローチャートである。
第2の実施形態において、投影瞳面の光強度分布を計測中の露光装置を示す図である。
第2の実施形態において投影瞳面の計算領域内で推定される回折光の光強度分布の一例を示す図である。
変形例のレチクルのパターンの一部を示す拡大平面図である。
電子デバイスの製造工程の一例を示すフローチャートである。

実施例

0018

本発明の実施形態につき説明する。まず、本明細書において、ある光学系の入射瞳と光学的に共役な領域とは、その光学系の入射瞳が設定される面又はこの近傍の面と光学的に共役な面上の領域を含む。また、ある光学系の射出瞳と光学的に共役な領域とは、その光学系の射出瞳が設定される面又はこの近傍の面と光学的に共役な面上の領域を含む。
また、ある光学系の射出瞳における光強度分布を設定するか、又は計測するか若しくは求めることは、それぞれその光学系の射出瞳と光学的に共役な領域における光強度分布を設定するか、又は計測するか若しくは求めることを含む。同様に、ある光学系の射出瞳における光強度分布を記憶することは、その光学系の射出瞳と光学的に共役な領域における光強度分布を記憶することを含む。また、ある光学系の入射瞳に入射しない光の状態とは、この光学系の入射瞳と光学的に共役な領域に入射しない光の状態を含む。同様に、ある光学系の射出瞳外の光強度分布に基づいてある処理を行うことは、この光学系の射出瞳と光学的に共役な領域の外側の領域の光強度分布に基づいてその処理を行うことを含む。

0019

また、ある光学系(複数の光学系を含む場合を含む)のある射出瞳内の光強度分布に対して、その射出瞳と光学的に共役な領域内で対応する分布(以下、対応分布ともいう)とは、その光学系のその射出瞳内にその光強度分布を形成した光が、その射出瞳と光学的に共役な領域内に形成する光強度分布を含む。さらに、ある光学系の射出瞳内における一の光強度分布と他の光強度分布との相関度とは、この光学系の射出瞳と光学系に共役な領域におけるその一の光強度分布に対応する分布とその他の光強度分布に対応する分布との相関度を含む。

0020

[第1の実施形態]
第1の実施形態につき図1図7を参照して説明する。図1は、本実施形態に係る露光装置EXの全体構成を概略的に示す。露光装置EXは、一例としてスキャニングステッパー(スキャナー)よりなる走査露光型の投影露光装置である。露光装置EXは、投影光学系PLを備えている。以下、投影光学系PLの光軸AXと平行にZ軸を取り、これに直交する面(本実施形態ではほぼ水平面に平行な面)内でレチクルRと半導体ウエハ(以下、ウエハという。)Wとが相対走査される方向にX軸を、Z軸及びX軸に直交する方向にY軸を取って説明する。また、X軸、Y軸、及びZ軸に平行な軸の回りの回転方向をθx、θy、及びθz方向とも称する。

0021

露光装置EXは、露光用の照明光(露光光ILを発生する露光用の光源30、光源30からの照明光ILを用いてレチクルR(マスク)を照明する照明光学系ILS、及びレチクルRを保持して移動するレチクルステージRSTを備えている。さらに、露光装置EXは、レチクルRから射出された照明光ILでウエハW(基板)を露光する投影光学系PL、ウエハWを保持して移動するウエハステージWST、レチクルRの特性(マスク特性)を推定する推定装置10(図2参照)、及び装置全体の動作を統括的に制御するコンピュータよりなる主制御装置14等(図2参照)を備えている。露光装置EXの露光本体部(照明光学系ILS、レチクルステージRST、投影光学系PL、及びウエハステージWSTを含む部分)は、温度制御された清浄気体が供給されている環境チャンバ(不図示)内に設置されている。

0022

照明光ILとしては、一例としてArFエキシマレーザ光(波長193nm)が用いられている。なお、照明光としては、KrFエキシマレーザ光(波長248nm)、YAGレーザ若しくは固体レーザ半導体レーザなど)の高調波、又は水銀ランプ輝線(i線等)なども使用できる。照明光学系ILSは、点線で概略構成を示すように、また、例えば米国特許出願公開第2003/0025890号明細書などに開示されているように、光源30から供給される所定方向直線偏光又は非偏光等の露光用の照明光ILを反射するミラーMR1、その反射光を多数の傾斜角可変ミラー要素アレイで反射する空間光変調器32、そのミラー要素のアレイからの光を集光及び反射する集光光学系33及びミラーMR2、並びにその反射された光からその射出面に面光源二次光源)を形成するフライアイレンズ34(オプティカルインテグレータ)を有する。本実施形態では、フライアイレンズ34の射出面又はこの近傍の面が照明光学系ILSの瞳面(以下、照明瞳面という。)IPPである。

0023

主制御装置14の制御のもとで照明制御部46(図2参照)が空間光変調器32の各ミラー要素の傾斜角を制御することで、照明瞳面IPPの光強度分布(光量分布)を円形領域、複数極領域、又は輪帯状の領域等で光強度(光量)が大きくなる種々の照明条件に対応する分布に設定できる。必要に応じて照明瞳面IPP又はこの近傍に、可変開口絞り35が設置される。一例として、照明瞳面IPP又はこの近傍に、円形開口を持つ可変開口絞り35が設置される場合、その円形開口内の領域を照明瞳37と称する。なお、照明瞳面IPP又はこの近傍に可変開口絞り35が設置されていない場合には、空間光変調器32の各ミラー要素からの反射光によって照明瞳面IPPにおける光強度分布の輪郭部(この光強度分布が所定レベル以上になる領域の輪郭部)が規定される。この場合には、一例として、この光強度分布が所定レベル以上になる領域に外接する円形の領域を照明瞳37と称する。照明瞳37は、通常は、コヒーレンスファクタ(いわゆるσ値)が1になる円周71I(図3(C)参照)で囲まれた領域のうち一部の領域である。照明瞳37は、照明光学系ILSの射出瞳と光学的に共役な領域である。

0024

照明光学系ILSは、さらにその二次光源からの照明光ILでレチクルRのパターン面(下面)RaのX方向に細長スリット状の照明領域IARを重畳して照明するコンデン
サ光学系36、及び照明領域IARの形状を規定する可変視野絞り(不図示)等を有する。なお、空間光変調器32の代わりに交換可能に照明光路に配置される複数の回折光学素子等も使用可能である。

0025

さらに、照明光学系ILSには、照明光ILから分岐した光の光量を計測する光電センサインテグレータセンサ)(不図示)が設けられ、このインテグレータセンサの計測値が主制御装置14に供給されている。主制御装置14ではその計測値から投影光学系PLの積算照射エネルギーをモニタできる。なお、積算照射エネルギーの代替情報として、露光継続時間を使用することも可能である。

0026

レチクルRはレチクルステージRSTの上面に真空吸着等により保持され、レチクルRのパターン面Raには、回路パターン等のデバイスパターン及びアライメントマーク(不図示)などが形成されている。レチクルステージRSTは、例えばリニアモータ等を含む図2のレチクルステージ駆動系41によって、XY平面内で微少駆動可能であると共に、走査方向(X方向)に指定された走査速度で駆動可能である。

0027

レチクルステージRSTの移動面内の位置情報(X方向、Y方向の位置、及びθz方向の回転角を含む)は、レーザ干渉計よりなるレチクル干渉計24によって、移動鏡22(又は鏡面加工されたステージ端面)を介して例えば0.5〜0.1nm程度の分解能で常時検出される。レチクル干渉計24の計測値は、図2の主制御装置14に送られる。主制御装置14は、その計測値に基づいてレチクルステージ駆動系41を制御することで、レチクルステージRSTの位置及び速度を制御する。

0028

投影光学系PLは、例えば両側テレセントリックで所定の投影倍率β(例えば1/4倍、1/5倍などの縮小倍率)を有する。投影光学系PLは、円筒状の鏡筒17内に複数の光学素子(不図示)を所定の位置関係で保持して構成されている。鏡筒17は、複数の環状の分割鏡筒を連結したものでもよい。投影光学系PLの瞳面(以下、投影瞳面という。)PLP開口絞りASが設置されている。本実施形態では、開口絞りASの開口ASaで囲まれた領域を投影瞳71Aと称する。投影瞳71Aは、投影光学系PLの入射瞳及び射出瞳と光学的に共役である。投影瞳71Aの輪郭(円周)と光学的に共役な照明瞳面IPP上の円周が、σ値が1になる円周である。

0029

また、投影瞳面PLPは照明瞳面IPPと光学的に共役であり、投影瞳面PLPは、レチクルRのパターン面Ra(投影光学系PLの物体面)に対して光学的なフーリエ変換面でもある。なお、投影光学系PLは中間像を形成するタイプでもよく、開口絞りASは投影瞳面PLPの近傍の位置、投影瞳面PLPと光学的に共役な位置、又はこの近傍の位置に設置されていてもよい。さらに、投影光学系PLは、屈折系でもよいが、反射屈折系であってもよい。

0030

図1において、照明光学系ILSからの照明光ILによってレチクルRのパターン面Raの照明領域IARが照明されると、レチクルRを通過した照明光ILにより、投影光学系PLを介して照明領域IAR内のデバイスパターンの像が、ウエハWの一つのショット領域の露光領域IA(照明領域IARと光学的に共役な領域)に形成される。ウエハWは、一例としてシリコン等の半導体よりなる直径が200〜450mm程度の円板状の基材フォトレジスト感光材料)を数10〜200nm程度の厚さで塗布したものを含む。

0031

また、露光装置EXにおいて、液浸法を適用した露光を行うため、投影光学系PLを構成する最も像面側(ウエハW側)の光学素子の下端部の周囲を取り囲むように、局所液浸装置の一部を構成して、露光領域IAを含む液浸領域で露光用の液体Lq(例えば純水)の供給及び回収を行うノズルユニット18が設けられている。ノズルユニット18は、液
体Lqを供給するための配管(不図示)を介して、液体供給装置43及び液体回収装置44(図2参照)に接続されている。なお、液浸タイプの露光装置としない場合には、上記の局所液浸装置は設けなくともよい。

0032

また、投影光学系PL内の複数の光学素子の保持機構に接触するように設置された配管(不図示)には、温度制御部28から供給用の配管29Aを介して温度制御された液体Co(例えば純水、フッ素系液体、又は冷媒等)が供給され、その投影光学系PL内の配管を流れた液体Coは回収用の配管29Bを介して温度制御部28に回収されている。温度制御部28で温度制御された液体Coを投影光学系PL内に循環させることで、照明光ILの積算照射エネルギーに起因する投影光学系PL内の複数の光学素子の温度上昇が抑制される。

0033

さらに、投影光学系PLには、内部の所定の複数の光学素子(例えばレンズ)の姿勢を制御してディストーション及び球面収差等の波面収差で表される結像特性を補正する結像特性補正系16が設けられている。そのような結像特性補正系は、例えば米国特許出願公開第2006/244940号明細書に開示されている。
また、露光装置EXは、レチクルRのアライメントを行うためにレチクルRのアライメントマークの投影光学系PLによる像の位置を計測する空間像計測系(不図示)と、ウエハWのアライメントを行うために使用される例えば画像処理方式(FIA系)のアライメント系ALと、照射系45a及び受光系45bよりなりウエハWの表面の複数箇所のZ位置を計測する斜入射方式の多点オートフォーカスセンサ(以下、多点AF系という)45(図2参照)と、を備えている。

0034

ウエハステージWSTは、不図示の複数のエアパッド(不図示)を介して、ベース盤WBのXY面に平行な上面に非接触で支持されている。ウエハステージWSTは、例えば平面モータ、又は直交する2組のリニアモータを含むステージ駆動系42(図2参照)によってX方向及びY方向に駆動可能である。ウエハステージWSTは、X方向、Y方向に駆動されるステージ本体と、ステージ本体に設けられてウエハWを真空吸着等で保持するウエハホルダWHと、ウエハWのZ位置、及びθx方向、θy方向のチルト角を制御するZステージ機構(不図示)とを備えている。

0035

また、ウエハステージWSTの位置情報を計測するためにレーザ干渉計よりなるウエハ干渉計26が配置されている。なお、ウエハ干渉計26の代わりに、回折格子検出器とを組み合わせたエンコーダ方式位置計測システムを使用してもよい。ウエハステージWSTの移動面内の位置情報(X方向、Y方向の位置、及びθz方向の回転角を含む)は、ウエハ干渉計26によって例えば0.5〜0.1nm程度の分解能で常時検出され、その計測値は主制御装置14に送られる。主制御装置14は、その計測値に基づいてステージ駆動系42を制御することで、ウエハステージWSTの位置及び速度を制御する。

0036

また、ウエハステージWSTに投影瞳71A内の光強度分布(光量分布)を計測できる計測部20が組み込まれている。計測部20は、ウエハWの表面と同じ高さの表面を有し、その表面にピンホール21Aaが形成された平板状のガラス基板21Aと、ピンホール21Aaを通過した照明光を集光する受光光学系21Bと、受光光学系21Bで集光された照明光を受光するCCD又はCMOS型の二次元撮像素子21Cと、これらの部材を保持する筐体21Dとを有する。ピンホール21Aaを露光領域IA内に移動した状態で、受光光学系21Bによって、投影瞳面PLPに対して撮像素子21Cの受光面は光学的に共役になる。ただし、計測部20に入射する光束は開口絞りASを通過した光束だけであるため、撮像素子21Cの検出信号画像処理部(不図示)で処理することによって、投影瞳面PLP上の投影瞳71Aの光強度分布を計測できる。計測された光強度分布は主制御装置14に供給される。なお、計測部20は、投影光学系PLの射出瞳の光強度分布を計測するとみなすこともできる。

0037

コンピュータよりなる主制御装置14は、複数の演算プロセッサメモリ記憶装置等を備えている。また、主制御装置14には、入出力部48、DVD(digital versatile disk)、CD−ROM、又はフラッシュメモリ等の記録媒体51のデータの記録及び再生を行う記録再生部50、磁気ディスク装置又は半導体の不揮発性メモリ等の記憶部52、演算プロセッサ及びメモリ等を含む演算部54、及び複数の露光装置及び複数のリソグラフィ装置制御情報等を供給するホストコンピュータ12との間でデータの授受を行うインターフェース部(不図示)が接続されている。照明制御部46、光強度分布の計測部20、記憶部52、及び演算部54を含んで、レチクルRの特性を推定する推定装置10が構成されている。なお、演算部54は、主制御装置14を構成するコンピュータのソフトウェア上の一つの機能であってもよい。主制御装置14及び演算部54で実行されるプログラムは例えば記録媒体51に記録されており、記録媒体51から記録再生部50によって読み取ることができる。

0038

ウエハWの露光時に、基本的な動作として、レチクルR及びウエハWのアライメントが行われた後、ウエハステージWSTのX方向、Y方向への移動(ステップ移動)によって、ウエハWの露光対象のショット領域が投影光学系PLの露光領域の手前に移動する。そして、主制御装置14の制御のもとで、レチクルRのパターンの一部の投影光学系PLによる像でウエハWの当該ショット領域を露光しつつ、レチクルステージRST及びウエハステージWSTを同期駆動して、投影光学系PLに対してレチクルR及びウエハWを例えば投影倍率を速度比としてX方向に走査することによって、当該ショット領域の全面にレチクルRのパターンの像が走査露光される。このようにステップ移動と走査露光とを繰り返すことによって、ステップアンドスキャン方式でウエハWの複数のショット領域に対して順次レチクルRのパターンの像が露光される。

0039

このような露光を継続すると、レチクルRのパターンから発生する回折光(0次光を含む)よりなる照明光ILが投影光学系PLを通過する際の積算照射エネルギーによって投影光学系PL内の複数の光学素子の温度が次第に上昇し、投影光学系PLの結像特性(例えば波面収差)が変動する。なお、本実施形態では、温度制御部28から投影光学系PL内に温度制御された冷却用の液体Coが供給されているため、それらの光学素子の温度分布は次第に飽和して、レチクルRから発生する回折光の光強度分布に応じたある温度分布に収束していく。また、各光学素子熱膨張率が極めて小さいため、変形量は小さいが、屈折率分布がその温度分布に応じてわずかに変化する。そのため、回折光の光強度分布及び照明光ILの積算照射エネルギーに基づいて、各光学素子(又は光学特性の変動に最も大きく寄与する部分の光学素子)の温度分布の変動量及び収束したときの温度分布を計算によって求め、求められた温度分布から当該光学素子の屈折率分布を求めることで、露光中の各時点での投影光学系PLの結像特性の変動量が計算できる。

0040

本実施形態では、レチクルRのパターンから発生する回折光のうち、投影光学系PLの投影瞳71A(開口絞りAS)を通過して像面に達する回折光による投影光学系PLの波面収差の変動量(以下、第1収差変動量という)と、投影光学系PLの入射瞳に入射できない程度に大きい回折角を持つ回折光、すなわち投影光学系PLの入射側の開口半角よりも大きい回折角を持つ回折光である開口外回折光による投影光学系PLの波面収差の変動量(以下、第2収差変動量という)とを求めるものとする。この場合、第1収差変動量は、投影光学系PL中の光学素子を回折光が通過することによる温度分布の変動に起因する。一方、第2収差変動量は、投影光学系PLの光学素子を保持する鏡筒17に開口外回折光が入射して、鏡筒17の温度分布が変動し、この温度分布の変動に伴って光学素子の温度分布が変動することに起因する。

0041

なお、投影光学系PLの入射瞳に入射する回折光、すなわち投影瞳71A(開口絞りAS)を通過する回折光の光強度分布は計測部20によって計測可能であるが、開口絞りASを通過できない開口外回折光の光強度分布は計測部20では計測できない。このため、本実施形態では、仮想的に、投影光学系PLの投影瞳面PLPにおいて投影瞳71Aの外側の領域にその開口外回折光が入射するものとして、推定装置10によってその開口外回折光の仮想的な光強度分布、その開口外回折光が投影光学系PLに入射する方向、及び/又はその開口外回折光の光強度等の状態を推定する。以下、推定装置10を用いてレチクルRから発生する開口外回折光の状態を推定する方法、及びこの推定方法により得られた結果を用いて投影光学系PLの光学特性としての結像特性を補正しながらウエハを露光する方法の一例につき、図4のフローチャートを参照して説明する。この動作は主制御装置14によって制御される。

0042

本実施形態では、一例として、レチクルRには、図3(A)に示すように、X方向に投影光学系PLの解像限界傾斜照明をした場合を含む)に近いピッチ周期)pxのライン・アンド・スペースパターン(以下、L&Sパターンという)60Xを含むデバイスパターンが形成されているものとする。L&Sパターン60Xは、光透過性のガラス基板56のパターン面の遮光膜59中に、X方向の幅px/2の開口部よりなるラインパターン60Xaと、X方向の幅px/2の遮光部よりなるスペースパターン60Xbとを交互に配列したものである。さらに、レチクルRを使用する場合の照明条件は一例として4極照明とする。

0043

この場合、図1の照明光学系ILSの照明瞳面IPP上の照明瞳37の光強度分布70は、図3(C)に示すように、照明光学系ILSの光軸AXをX方向に挟むように配置された1対の領域70A,70B、及び光軸AXをY方向に挟むように配置された1対の領域70C,70Dにおいて光強度が大きくなる。なお、図3(C)の光強度分布70を用いる照明条件は、図3(B)に示すように、Y方向に投影光学系PLの解像限界に近いピッチpyのL&Sパターン60Y(ラインパターン60Ya及びスペースパターン60Yb)を含むデバイスパターンが形成されているレチクルR1の照明条件としても使用できる。

0044

まず、図4のステップ102において、主制御装置14は、記憶部52に記憶されている露光データファイルからレチクルRの照明条件を読み出し、この照明条件に対応する光強度分布70が設定されるように、照明制御部46を介して照明光学系ILSの空間光変調器32を駆動する。ただし、この段階ではレチクルステージRSTにはレチクルRはロードされていない。そして、図5に示すように、一例としてレチクルステージRSTに例えば素通しのガラス基板GPが載置されている状態で、ウエハステージWSTを駆動して計測部20の受光部を投影光学系PLの露光領域に移動し、照明光学系ILSからの照明光ILでガラス基板GPを照明し(又は素通しの状態で照明してもよい)、計測部20によって投影瞳71A内の光強度分布(以下、0次強度分布という)72(図6(A)参照)を計測する(ステップ104)。なお、計測部20を用いた計測時に、投影光学系PLと計測部20との間に液浸露光用の液体Lqは供給されていてもよいが、その液体Lqがない状態で計測を行ってもよい(以下、同様)。

0045

このように計測される0次強度分布72は、照明瞳37内の光強度分布70を照明瞳面IPPと投影瞳面PLPとの間の倍率伸縮した分布(光強度分布70に対応する分布)である。このため、図6(A)に示すように、0次強度分布72は、図3(C)の4つの領域70A〜70Dと共役な投影瞳面PLP上の領域70AP〜70DPで光強度が大きくなる。また、投影瞳面PLPで投影瞳71Aを含む正方形の領域をX方向、Y方向に所定幅で複数の画素に分割し、X方向にi番目でY方向にj番目の画素G(xi,yj)の光強度を関数org[i][j]の値とする。画素G(xi,yj)は、計測部20の撮像素子2
1Dの各画素に対応している。画素G(xi,yj)は、中心のX方向、Y方向の座標が(xi,yj)であることを意味している。なお、iは0〜I(Iは例えば数100〜数1000の整数)の整数、jは0〜J(Jは例えば数100〜数1000の整数)の整数である。このとき、計測された0次強度分布72は関数org[i][j]で表され、投影瞳71
Aの外側の領域では関数org[i][j]の値は0である。

0046

次に、ガラス基板GPをレチクルステージRSTからアンロードし、レチクルRをレチクルステージRSTにロードして、アライメントを行う(ステップ106)。そして、照明光学系ILSからの照明光ILでレチクルRを照明し、レチクルRからの回折光による投影瞳71A内の光強度分布(以下、回折強度分布という)74(図6(B)参照)を計測部20によって計測する(ステップ108)。計測された回折強度分布74の情報は記憶部52に記憶される。

0047

図5において、レチクルRのL&Sパターン60Xからは、投影光学系PLの入射瞳(ひいては投影瞳71A)に入射する回折光DL(0次光を含む)の外に、θx方向の回折角が大きいためにその入射瞳に入射しない開口外回折光HDA,HDBも射出される。ステップ108で計測される回折強度分布74は、回折光DLによって形成される分布である。図6(B)に示すように、投影瞳71A内の回折強度分布74は、0次光が入射する領域70AP〜70DP、及びX方向の±1次回折光が入射する領域70BD1,70AD2で光強度が大きくなる。この場合、図6(B)のX方向にi番目でY方向にj番目の画素G(xi,yj)の平均的な光強度を関数dif[i][j]の値とすると、計測された回折強度分布74は関数dif[i][j]で表される。投影瞳71Aの外側の領域では関数dif[i][j]の値は0である。計測された強度分布72,74の情報は演算部54に供給され、演算部54は以下のステップ110〜116の演算処理を行う。

0048

まず、ステップ110において、仮想的に投影瞳面PLP上で、0次強度分布72をX方向及び/又はY方向にシフトさせては回折強度分布74と重ね合わせて、以下の式で定義される相関関数v[p][q] を計算する。この場合、整数pはX方向のシフト量を画素単位で表し、整数qはY方向のシフト量を画素単位で表している。

0049

そして、相関関数vが極値ピーク値)を取るときの0次強度分布72のX方向、Y方向のシフト量を求める。この結果求められた相関関数vが極値を取る回数を(K+1)回(Kは1以上の整数)とする。このとき、相関関数vがk番目(kは0〜Kの整数)の極値を取るときの0次強度分布72のX方向、Y方向のシフト量を表す整数(p,q)の組を(p[k], q[k])で表す。ただし、k=0は、X方向、Y方向のシフト量が0の場合(p[k]=0, q[k]=0)(シフト前の0次光の分布)であるとする。

0050

図6(C)は、シフト量の組(p,q)に対して相関関数vの値の分布(値が大きいほど濃度が高く表されている)の一例を概念的に示す。原点(p,q)のピーク76Aは0次光と相関が高い部分であり、ピーク76Aの周囲の部分76Aa、さらにその周囲の部分76Abと次第に値が小さくなっている。同様に、ピーク76B及び76Cは、それぞれX方向の±1次回折光と相関が高い部分であり、図6(C)では、相関関数vの極値は3つあることになる。

0051

次に、ステップ112において、相関関数vがk番目の極値を取るときの、X方向、Y方向にシフトされた0次強度分布72(関数org[i+p[k]][j+q[k]])にそれぞれ重み係数
a[k](k=0〜K)を与え、K個の極値を取ったときのX方向、Y方向にシフトされた0次強度分布72の加重和の分布関数res[i][j]を以下のように計算する。

0052

そして、その加重和の分布関数res[i][j]と、回折強度分布74を表す関数dif[i][j]との差分の二乗和が最小になるように、最小二乗法で係数a[k](k=0〜K)の値を決定する。具体的に、最尤関数Sを以下のように定義する。

0053

そして、この最尤関数Sの係数a[k]による偏微分次式のように0になるときの係数a[k]を決定する(k=0〜K)。
∂S/∂a[k]=0 …(7)
次に、ステップ114において、ステップ112で決定された係数a[k](k=0〜K)、及びこのときのシフト量の組(p[k], q[k])を用いて0次強度分布72の関数org[i][j]をシフトした関数を用いて、上記の式(4)の加重和の分布関数res[i][j]の値を画素単位で計算する。ただし、この場合の計算は、図7に示すように、投影瞳面PLPにおいて、光軸AXを中心とする円形の投影瞳71A(この半径をrとする)を囲むように、光軸AXを中心として設定される半径が3rの領域(以下、計算領域という)71Bで行われる。このように計算領域71Bの半径が投影瞳71Aの半径の3倍になるのは、ステップ110で0次強度分布72をX方向、Y方向にシフトさせるときに、0次強度分布72と回折強度分布74とが重なる可能性のあるシフト量の絶対値は、最大で投影瞳71Aの直径(2r)であり、式(4)で規定される関数の値は、計算領域71Bの外部では0になるからである。

0054

ステップ112で決定された係数a[k]を用いて計算される式(4)の加重和の分布関数res[i][j]は、図7の計算領域71B内の光強度分布78を表す。一例として図6
C)に示すように、式(2)の相関関数v[p][q] の極値が、原点(k=0)、pがある正の値を取るとき(k=1とする)、及びpがある負の値を取るとき(k=2とする)であるとすると、係数a[0],a[1],a[2]がある値に決定される。これらの係数a[0]〜a[2]を用いて計算される光強度分布78は、投影瞳71A内の領域70AP〜70DPで光強度が大きくなる0次光の光強度分布と、領域70AP〜70DPを+X方向に移動した領域70AD1〜70DD1の+1次回折光の光強度分布と、領域70AP〜70DPを−X方向に移動した領域70AD2〜70DD2の−1次回折光の光強度分布と、を含んでいる。一例として、+1次回折光の分布のうち領域70BD1が投影瞳71A内にあり、−1次回折光の分布のうち領域70AD2が投影瞳71A内にある。

0055

この場合、投影瞳71A内の領域70AD1〜70DD1,70BD1,70AD2に入射する回折光(0次光を含む)が、図5のレチクルRのL&Sパターン60Xから発生して投影光学系PLの入射瞳に入射する光である。一方、計算領域71B内で投影瞳71Aの外側の輪帯状の領域にある領域70AD1,70CD1,70DD1及び70BD2,70CD2,70DD2に仮想的に入射する±1次回折光が、レチクルRのL&Sパターン60Xから発生して投影光学系PLの入射瞳に入射しない開口外回折光HDA及びHDBである。言い換えると、投影瞳71A内の光強度分布78aが、投影光学系PLの入射瞳に入射する回折光の分布であり、計算領域71B内で投影瞳71Aの外側の光強度分布78bが開口外回折光の分布を表している。従って、投影瞳面PLPにおける開口外回折光の仮想的な光強度分布78bが推定できた(計算によって求められた)ことになる。

0056

次のステップ116において、ステップ114で得られた開口外回折光HDA,HDBの仮想的な光強度分布78bより、レチクルRを用いた露光時に図1の投影光学系PLの鏡筒17に対する開口外回折光HDA,HDBの入射位置及び強度を推定する。一例として、図7において、計算領域71Bの内部で投影瞳71A外の領域をX方向、Y方向に所定幅の複数の単位領域H(xi,yj)に分割し、光強度分布78bから各単位領域(xi,yj)内の平均的な光強度を仮想的に単位領域H(xi,yj)に入射する開口外回折光の光強度として求める。なお、単位領域H(xi,yj)は、中心のX方向、Y方向の座標が(xi,yj)であることを意味している。単位領域H(xi,yj)は、投影瞳71A内の一つの画素の整数倍の大きさでもよい。

0057

また、図7の投影瞳面PLPにおいて、光軸AXから単位領域H(xi,yj)の中心までの距離rh(i,j)、及び光軸AXを通りX軸に平行な直線に対して、光軸AXと単位領域H(xi,yj)の中心とを結ぶ直線がなす角度φ(i,j)を求める。このとき、仮想的に単位領域H(xi,yj)に入射する開口外回折光を図1の開口外回折光HDAとすると、開口外回折光HDAの鏡筒17に対するXY平面内での入射方向は角度φ(i,j)である。さらに、その入射方向における開口外回折光HDAの回折角をhφAとして、投影光学系PLの前群光学系(開口絞りASと物体面との間の光学系)の焦点距離をfaとすると、図7の単位領域H(xi,yj)の距離rh(i,j)を用いてほぼ次の関係がある。

0058

fa・sin(hφA)=rh(i,j) …(8)
従って、式(8)から投影瞳71A外の領域にある単位領域H(xi,yj)に入射する開口外回折光HDAの回折角hφAを求めることができる。同様に、図1の−X方向に射出される開口外回折光HDBに関しても、XY平面内での入射方向、この方向での回折角hφB、及び光強度を求めることができる。このようにして、計算領域71B内で投影瞳71A外の領域に入射する全部の開口外回折光の入射方向、回折角、及び光強度を単位領域H(xi,yj)を単位として推定できる(計算によって求めることができる)。

0059

なお、以下では説明の便宜上、レチクルRから発生する開口外回折光は開口外回折光HDA,HDBのみであるとする。また、レチクルRと投影光学系PLとの位置関係(例えば走査露光時の平均的な位置関係でもよい)は既知であり、投影光学系PLの鏡筒17の形状、及び鏡筒17と鏡筒17内の複数の光学素子との位置関係も既知である。これらの位置関係及び形状の情報と、上記の開口外回折光HDA,HDBの入射方向及び回折角とから、これらの開口外回折光HDA,HDBの鏡筒17に対する入射位置を計算できる。さらに、開口外回折光HDA,HDBの光強度も単位領域H(xi,yj)の光強度として求められている。このようにして求められた開口外回折光の鏡筒17に対する入射位置及び光強度の情報は記憶部52に記憶される。

0060

次のステップ118で、ウエハステージWSTにフォトレジストが塗布された未露光のウエハWをロードしてアライメントを行う。そして、主制御装置14内の第1収差計算部は、ステップ108で計測された図6(B)の投影瞳71A内の回折強度分布74及び照明光学系ILS内のインテグレータセンサ(不図示)を介して検出される積算照射エネルギーより、投影光学系PLの第1収差変動量(投影瞳71Aを通過する回折光による投影光学系PLの波面収差の変動量)を計算する(ステップ120)。

0061

さらに、主制御装置14内の温度演算部は、ステップ116で求められた開口外回折光HDA,HDBの鏡筒17に対する入射位置及び光強度、並びにインテグレータセンサ(
不図示)を介して検出される積算照射エネルギーより、例えば有限要素法によって鏡筒17の温度分布の変動量、ひいては鏡筒17内の光学素子、例えば開口外回折光HDA,HDBが鏡筒17に入射する位置に近い光学素子の温度分布の変動量(又はこの光学素子の温度平均値の変動量)を計算する。さらに、主制御装置14内の第2収差計算部は、その光学素子の温度分布(又は温度の平均値)の変動量より、投影光学系PLの第2収差変動量(開口外回折光HDA,HDBによる投影光学系PLの波面収差の変動量)を計算する(ステップ122)。そして、その第2収差計算部は、計算されたその第1収差変動量と第2収差変動量とを加算して得られる合計収差変動量の情報を結像特性補正系16の制御部に出力する。これに応じて、結像特性補正系16がその合計収差変動量を相殺するように投影光学系PLの結像特性を補正する(ステップ124)。これによって、投影光学系PLの結像特性は良好な状態に維持される。なお、主制御装置14内の第1収差計算部、温度演算部、及び第2収差演算部は、コンピュータのソフトウェア上の機能であるが、これらの機能をハードウェアで実現してもよい。

0062

この状態で、レチクルRのパターンの投影光学系PLによる像でウエハWを走査露光する(ステップ126)。露光済みのウエハWをアンロードした後(ステップ128)、次のウエハに露光する場合に(ステップ130)、動作はステップ118に戻り、次のウエハのロード、投影光学系PLの結像特性の変動量の計算及び補正、並びにウエハの露光が繰り返される。

0063

このように本実施形態によれば、0次強度分布72をシフトさせて回折強度分布74との相関度が高いときのシフト量及びシフト方向を求め、この相関度が高いときのシフト量及びシフト方向で0次強度分布72をシフトさせて得られる分布の係数a[k]の値を決定し、そのシフトさせて得られる分布の加重和により、計算領域71B内で投影瞳71A外の領域に仮想的に入射する開口外回折光の光強度分布を推定している。従って、0次強度分布72と回折強度分布74とを求めるだけで、計算によって開口外回折光の光強度分布を正確にかつ効率的に推定できる。

0064

さらに、その光強度分布からその開口外回折光が投影光学系PLの鏡筒17に入射する位置及びその入射するときの光強度を求めて鏡筒17の温度分布、ひいては鏡筒17内の光学素子の温度分布を求めているため、開口外回折光に起因する投影光学系PLの結像特性の変動量を求めることができる。従って、この結像特性の変動量を結像特性補正系16によって補正することにより、開口外回折光が鏡筒17に入射する場合でも、投影光学系PLの結像特性を良好な状態に維持して、高精度に露光を行うことができる。

0065

上述のように、本実施形態の露光装置EXは、レチクルのパターンから発生する回折光の状態(レチクル特性)を推定する推定装置10を備えている。そして、推定装置10は、レチクルRのパターンを照明する照明光学系ILSの照明瞳37(射出瞳と光学的に共役な領域)における光強度分布70(第1光強度分布)の情報を記憶する記憶部52と、照明光学系ILSによって照明されたレチクルRのパターンの像を形成する投影光学系PLの投影瞳71A(射出瞳と光学的に共役な領域)における回折強度分布74(第2光強度分布)を計測する計測部20と、光強度分布70及び回折強度分布74に基づいてレチクルRのパターンから発生して投影光学系PLの入射瞳に入射しない開口外回折光HDA,HDBの状態を推定する演算部54と、を備えている。そして、演算部54は、上記のステップ110、112、114、116の処理を行って開口外回折光HDA,HDBの投影瞳面PLPの投影瞳71A外の領域における光強度分布等の状態を推定している。

0066

また、本実施形態のレチクル特性の推定方法は、推定装置10を用いてレチクルRのパターンから発生する回折光の状態を推定する方法である。この推定方法は、レチクルRのパターンを照明する照明光学系ILSの照明瞳37における光強度分布70(第1光強度
分布)を設定するステップ102と、照明光学系ILSによって照明されたレチクルRのパターンの像を形成する投影光学系PLの投影瞳71Aにおける回折強度分布74(第2光強度分布)を計測するステップ108と、を有する。さらに、この推定方法は、光強度分布70に対応する投影瞳71A内の0次強度分布72(対応分布)をシフトさせて得られる複数の光強度分布(org[i+p][j+q]:第3光強度分布)と回折強度分布74との相関
度がそれぞれ高くなるときの複数の光強度分布(org[i+p][j+q])を求めるステップ11
0と、投影瞳71A内で複数の光強度分布(org[i+p][j+q])の重み係数a[k]を用い
た加重和(res[i][j])と回折強度分布74との相関度が高くなるようにその個別の係数
a[k]を求めるステップ112と、その係数a[k]を用いた複数の光強度分布(org[i+p][j+q])の加重和によって得られる光強度分布78(第4光強度分布)のうち、投影
瞳71A外の光強度分布78bに基づいて、レチクルRのパターンから発生して投影瞳71Aに入らない開口外回折光HDA,HDBの鏡筒17に対する入射方向及び光強度を推定するステップ114,116と、を有する。

0067

本発明の態様によれば、照明瞳37に設定される光強度分布70の情報と、投影瞳71Aの光強度分布(回折強度分布74)の計測結果とを用いて、レチクルRから投影光学系PLの入射瞳に入射できない(投影瞳71Aに入射できない)程度に大きい回折角で射出される開口外回折光HDA,HDBの光強度分布、方向及び強度の状態を照明条件に応じて正確に推定できる。

0068

また、本実施形態の露光装置EXは、照明光学系ILSからの照明光ILでレチクルRのパターンを照明し、照明光ILでそのパターン及び投影光学系PLを介してウエハW(基板)を露光する露光装置である。露光装置EXは、レチクルRのパターンから発生して投影光学系PLの入射瞳に入らない開口外回折光HDA,HDBの状態を推定する処理(ステップ102〜116)を行う推定装置10と、推定装置10によって推定される開口外回折光HDA,HDBの状態に基づいて、投影光学系PLを構成する少なくとも一つの光学素子(光学部材)の温度変動量を求める処理(ステップ122)を行う主制御装置14内の温度演算部と、この温度演算部によって求められるその光学素子の温度変動量に基づいて投影光学系PLの結像特性(光学特性)の変動量を補正する処理(ステップ124)を行う結像特性補正系16と、を備えている。

0069

この露光装置EX又は露光装置EXを用いる露光方法によれば、レチクルRから発生する開口外回折光HDA,HDBに起因する投影光学系PLの結像特性の変動量をも補正できるため、投影光学系PLの結像特性をより高精度に目標とする状態に維持して、レチクルRのパターンの像をより高精度にウエハに露光できる。
なお、本実施形態では、ステップ104において、レチクルステージRSTにガラス基板GPを載置して(又は素通しの状態で)、計測部20を用いて図6(A)の0次強度分布72を計測している。しかしながら、本実施形態では、照明瞳37と投影瞳71Aとの間の倍率は既知であり、照明瞳37における光強度分布70は空間光変調器32によって目標とする分布を正確に設定できるため、照明瞳37に設定される光強度分布70の設計上の分布をその既知の倍率で伸縮した分布を0次強度分布72として使用してもよい。この場合には、ステップ104の計測工程を省略できる。

0070

[第2の実施形態]
本発明の第2の実施形態につき図8(A)〜図11を参照して説明する。本実施形態においても第1の実施形態の図1及び図2に示す露光装置EXを使用する。露光装置EXは、レチクルRから発生する回折光の状態(レチクル特性)を推定する推定装置10を備えている。以下、図8(A)〜(D)及び図11において図3(C)、図6(A)、及び図7に対応する部分には同一の符号を付してその詳細な説明を省略する。また、図10において、図5に対応する部分には同一の符号を付してその詳細な説明を省略する。

0071

以下、本実施形態において、推定装置10を用いてレチクルRから発生する開口外回折光の状態を推定する方法、及びこの推定方法により得られた結果を用いて投影光学系PLの結像特性(光学特性)を補正しながら露光装置EXを用いてウエハを露光する方法の一例につき、図9のフローチャートを参照して説明する。この動作は図2の主制御装置14によって制御される。

0072

本実施形態でも、一例として、レチクルRには、X方向に投影光学系PLの解像限界(傾斜照明をした場合を含む)に近いピッチpxのL&Sパターン60X(図3(A)参照)を含むデバイスパターンが形成されているものとする。
まず、図9のステップ132において、図2の主制御装置14は、一例としてホストコンピュータ12からレチクルR用の照明条件を入力し、入力された照明条件のデータを記憶部52に記憶する。ただし、本実施形態では、説明の便宜上、レチクルRを使用する場合の照明条件は一例として輪帯照明(照明瞳37内の輪帯状の領域で光強度が大きくなる光強度分布を用いる条件)とする。

0073

次に、図10に示すように、レチクルRをレチクルステージRSTにロードしてアライメントを行う(ステップ134)。そして、ステップ136において、ウエハステージWSTを駆動して計測部20の受光部を投影光学系PLの露光領域に移動する。さらに、空間光変調器32の多数のミラー要素からの反射光が、照明光学系ILSの照明瞳面IPP上で光軸AXを通りL&Sパターン60Xの周期方向に平行な直線に沿った領域であって、σ値が1の円周に近い一方(ここでは+X方向とする)の小さい円形の領域(以下、第1瞳点という)B1に集光されるように、照明制御部46を介して空間光変調器32の複数のミラー要素の傾斜角を制御する。第1瞳点B1の形状は正方形又は矩形等でもよい。また、照明瞳37(例えば可変開口絞り35の開口)は、ほぼσ値が1の円周で囲まれた領域と同じ大きさに設定されている。

0074

後述のように、投影瞳面PLPにおいてできるだけ広い範囲で開口外回折光の光強度分布を推定するためには、第1瞳点B1の大きさ(幅)をできるだけ小さくして、かつ第1瞳点B1の中心をできるだけσ値が1の円周に近づけることが好ましい。一例として、第1瞳点B1の大きさ(幅)は、σ値が1の領域の半径の1/10以下であることが好ましい。ただし、実際には第1瞳点B1からの光は計測部20によって検出されるため、第1瞳点B1の大きさは、計測部20の画素と照明瞳面IPP上で共役な領域(計測分解能)より小さくする必要はない。

0075

なお、第1瞳点B1の光強度が大きくなり過ぎる場合には、空間光変調器32の多数のミラー要素のうち一部のミラー要素からの光を可変開口絞り35の開口の外部の領域(又はフライアイレンズ34に入射しない部分)に捨ててもよい。
そして、光源30の発光を開始させて、第1瞳点B1からの照明光IL1でレチクルRのL&Sパターン60Xを照明する。第1瞳点B1は、照明瞳面IPP上で+X方向にシフトした位置にあるため、照明光IL1は、全体としてY軸に平行な軸の回りに右回りに傾斜したほぼ平行な光束としてレチクルRに入射する。レチクルRのL&Sパターン60Xからは、0次光DL0、+1次回折光DL1A、及び−1次回折光DL1Bが発生する。これらの回折光のうち、0次光DL0及び+1次回折光DL1Aは投影光学系PLの入射瞳に入射して投影瞳71Aに達するが、−1次回折光DL1Bは投影光学系PLの入射瞳に入射できない。

0076

次のステップ138において、計測部20によって投影瞳面PLPの投影瞳71A内の光強度分布を計測し、照明光ILの発光を停止する。この際に計測されるのは、図8(B)に示すように、投影瞳71A内の0次光DL0及び+1次回折光DL1Aの位置及び光強度である。計測結果は記憶部52に記憶される。
次のステップ140において、空間光変調器32からの反射光が、照明瞳面IPP上で光軸AXを通りL&Sパターン60Xの周期方向に平行な直線に沿った領域であって、σ値が1の円周に近い他方(ここでは−X方向)の小さい円形の領域(以下、第2瞳点という)B2に集光されるように、照明制御部46を介して空間光変調器32の複数のミラー要素の傾斜角を制御する。一例として第2瞳点B2の形状は第1瞳点B1と同じである。

0077

そして、光源30の発光を開始させて、第2瞳点B2からの照明光(Y軸に平行な軸の回りに左回りに傾斜したほぼ平行な光束)でレチクルRのL&Sパターン60Xを照明する。この際にも、レチクルRのL&Sパターン60Xからは、0次光DL0、+1次回折光DL1A、及び−1次回折光DL1Bが発生するが、今回は0次光DL0及び−1次回折光DL1Bは投影光学系PLの入射瞳に入射して投影瞳71Aに達するが、+1次回折光DL1Aは投影光学系PLの入射瞳に入射できない。次のステップ142において、計測部20によって投影瞳71A内の光強度分布を計測し、照明光ILの発光を停止する。この際に計測されるのは、図8(C)に示すように、投影瞳71A内の0次光DL0及び−1次回折光DL1Bの位置及び光強度である。計測結果は記憶部52に記憶される。

0078

次に、照明光学系ILSの照明条件をレチクルR用の輪帯照明に設定する(ステップ146)。このため、照明瞳37内の輪帯状の領域で光強度が大きくなるように、照明制御部46が空間光変調器32を駆動する。次に、一例として、演算部54は、照明瞳37内の光強度分布に対応する図8(A)の投影瞳71A内の光強度分布(以下、0次強度分布という)72Aを計算によって求める(ステップ148)。0次強度分布72Aは、照明瞳37内の輪帯状の領域(不図示)と相似な輪帯状の領域73Pで光強度が大きくなる。

0079

次のステップ150において、演算部54は、ステップ138,142の計測結果を合成することによって、投影瞳面PLPの投影瞳71Aの半径rの2倍の半径(2r)の領域71C(図8(D)参照)内におけるレチクルRのL&Sパターン60Xの仮想的なフーリエ変換パターン79を計算する。このフーリエ変換パターン79は、レチクルRをZ軸に平行な平行光束(レチクルRのパターン面Raに対する垂直入射光)で照明した場合に、レチクルRのL&Sパターン60Xから発生する0次光及び±1次回折光によって領域71C内に仮想的に形成される光強度分布である。垂直入射光による照明であるため、0次光DL0が光軸AX上にある。

0080

本実施形態において、図8(B)、(C)に示すように、ステップ138,142で計測される1次回折光DL1A,DL1Bと0次光DL0との間隔は投影瞳71Aの直径(2r)以下である。このため、図8(D)において、0次光DL0の位置を投影瞳71Aの中心(光軸AX)におくと、1次回折光DL1A,DL1Bの位置は、確実に半径が2rの領域71C内に収まることになる。

0081

図8(D)に示すように、計算されたレチクルRのフーリエ変換パターン79は、投影瞳71A内の0次光DL0、及び領域71C内で投影瞳71Aの外側の領域内の±1次回折光DL1A,DL1Bの光強度分布を含んでいる。フーリエ変換パターン79における0次光DL0と±1次回折光DL1A,DL1Bとの相対位置は、それぞれ図8(B)及び(C)の場合の相対位置と同じである。また、垂直入射では、レチクルRからの±1次回折光DL1A,DL1Bは投影光学系PLの入射瞳に入射することがなく投影瞳面PLPには達することがない。しかしながら、本実施形態の方法によって、垂直入射の際に、レチクルRからの±1次回折光DL1A,DL1Bが投影瞳面PLPに形成する仮想的な光強度分布が求められたことになる。

0082

図8(D)のフーリエ変換パターン79が求められれば、レチクルRの照明条件がどの
ような照明条件であっても、投影瞳面PLP上の光強度分布は、その照明条件の0次強度分布(照明瞳37の光強度分布に対応する投影瞳71Aにおける光強度分布)とフーリエ変換パターン79とのコンボリューション演算によって容易に求めることができる。そこで、演算部54は、図8(A)のレチクルR用の輪帯照明の0次強度分布72Aと、図8(D)のレチクルRのフーリエ変換パターン79とのコンボリューション演算を行って、図11に示す投影瞳面PLPの半径が3rの計算領域71B内の光強度分布78Aを求める。0次強度分布72Aは半径がrの投影瞳71A内に設定され、フーリエ変換パターン79は半径が2rの領域71C内にあるため、それらのコンボリューションによって求められる光強度分布78Aは、確実に計算領域71B内に収まっている。

0083

計算された光強度分布78Aは、投影瞳71A内の領域73Pで光強度が大きくなる0次光の分布と、領域73Pを+X方向に移動した領域73PD1で光強度が大きくなる+1次回折光の分布と、領域73Pを−X方向に移動した領域73PD2で光強度が大きくなる−1次回折光の分布と、を含んでいる。一例として、±1次回折光の分布である領域73PD1,73PD2のうち光軸AX側の一部の領域が投影瞳71A内にある。この場合、図11の投影瞳71A内の領域(領域73P及び領域73PD1,73PD2の一部)に入射する回折光(0次光を含む)が、図10の照明光学系ILSの照明条件を輪帯照明に設定したときに、レチクルRのL&Sパターン60Xから発生して投影光学系PLの入射瞳に入射する光である。一方、計算領域71B内で投影瞳71Aの外側の輪帯状の領域(領域73PD1,73PD2の大部分)に仮想的に入射する±1次回折光が、図10の照明光学系ILSの照明条件を輪帯照明に設定したときに、レチクルRのL&Sパターン60Xから発生して投影光学系PLの入射瞳に入射しない開口外回折光HDC及びHDDである。言い換えると、投影瞳71A内の光強度分布78Aaが、投影光学系PLの入射瞳に入射する回折光の分布であり、計算領域71B内で投影瞳71Aの外側の光強度分布78Abが開口外回折光の分布を表している。従って、投影瞳面PLPにおける開口外回折光の仮想的な光強度分布78Abが推定できた(計算によって求められた)ことになる。

0084

次のステップ152において、ステップ150で得られた開口外回折光HDC,HDDの仮想的な光強度分布78Abより、図4のステップ116と同様に、図7の単位領域H(xi,yj)を計算単位として、レチクルRを用いて輪帯照明を行いながら露光するときに、図10の投影光学系PLの鏡筒17に対する開口外回折光HDC,HDDの入射位置及び強度を推定する。このようにして求められた開口外回折光の鏡筒17に対する入射位置及び光強度の情報は記憶部52に記憶される。

0085

これ以降の動作は、図4のステップ118〜130と同様であり、主制御装置14内の温度演算部は、ステップ152で求められた開口外回折光の鏡筒17に対する入射位置及び光強度と、インテグレータセンサ(不図示)を介して検出される積算照射エネルギーとを用いて、鏡筒17の温度分布の変動量、ひいては鏡筒17内の光学素子の温度分布の変動量(又は温度平均値の変動量)を計算する。さらに、主制御装置14内の第2収差計算部は、その光学素子の温度分布(又は温度の平均値)の変動量より、投影光学系PLの第2収差変動量(開口外回折光HDC,HDDによる投影光学系PLの波面収差の変動量)を計算し、第1収差変動量(投影瞳71A内の光強度分布に起因する収差変動量)とその第2収差変動量とを加算して得られる合計収差変動量が結像特性補正系16によって補正される。この状態で露光を行うことによって、開口外回折光が鏡筒17に入射する場合でも、投影光学系PLの結像特性を良好な状態に維持して、高精度に露光を行うことができる。

0086

上述のように本実施形態の露光装置EXは、レチクルのパターンから発生する回折光の状態(レチクル特性)を推定するレチクル特性の推定装置10を備えている。そして、推
定装置10は、レチクルRのパターンを照明する照明光学系ILSの照明瞳37(射出瞳と光学的に共役な領域)における光強度分布(第1光強度分布)の情報を記憶する記憶部52と、照明瞳37における互いに異なる位置の第1瞳点B1及び第2瞳点B2(制限された領域)からの光でレチクルRのパターンを順次照明させる照明制御部46と、を備えている。さらに、推定装置10は、第1瞳点B1及び第2瞳点B2が互いに異なる位置にあるときに、それぞれ照明光学系ILSによって照明されたレチクルRのパターンの像を形成する投影光学系PLの投影瞳71A(射出瞳と光学的に共役な領域)におけるレチクルRのパターンからの光による図8(B)及び(C)の光強度分布(第2光強度分布)を計測する計測部20と(ステップ138,142)、記憶部54に記憶されているその光強度分布及び計測部20で計測された光強度分布に基づいてレチクルRのパターンから発生してその投影光学系PLの入射瞳に入らない開口外回折光HDC,HDDの状態(方向及び光強度)を推定する演算部54と、を備えている。

0087

その演算部54は、その計測された光強度分布に基づいて、レチクルRのパターンからの0次光及び1次以上の回折光を含む投影瞳面PLPにおけるフーリエ変換パターン79(第3光強度分布)を求め(ステップ144)、そのフーリエ変換パターン79に基づいて投影瞳71A内で照明瞳37における光強度分布に対応する0次強度分布72A(対応分布)及びこの0次強度分布72Aをシフトした光強度分布を重ね合わせることによって、光強度分布78A(第4光強度分布)を求め(ステップ150)、この光強度分布78Aのうち、投影瞳71A外の光強度分布78Abに基づいて、レチクルRのパターンから発生して投影光学系PLの入射瞳に入らない開口外回折光HDC,HDDの状態(光強度分布、方向、及び/又は光強度)を推定している(ステップ152)。

0088

本実施形態の推定装置10又は推定方法によれば、照明瞳37に設定される光強度分布の情報と、投影瞳71AにおけるレチクルRからの0次光及び1次回折光の光強度分布の計測結果とを用いることによって、レチクルRから投影光学系PLの入射瞳に入射できない程度に大きい角度(回折角)で射出される開口外回折光HDC,HDDの光強度分布、方向、又は光強度の状態を、照明条件に応じて正確に推定できる。

0089

また、本実施形態の露光装置EX又は露光方法によれば、レチクルRから発生する開口外回折光HDC,HDDに起因する投影光学系PLの結像特性の変動量をも補正できるため、投影光学系PLの結像特性をより高精度に目標とする状態に維持して、レチクルRのパターンの像をより高精度にウエハに露光できる。
なお、本実施形態では以下のような変形が可能である。

0090

本実施形態では、ステップ136,140で空間光変調器32を用いて第1瞳点B1、第2瞳点B2に照明光ILを集光している。これとは別に、ステップ136において、図10の可変開口絞り35の代わりに、第1瞳点B1の部分に小さい開口が形成された開口絞り板35Aを設置し、空間光変調器32からはその開口絞り35Aを均一な光強度分布の照明光ILで照明してもよい。そして、ステップ140では、その開口絞り35Aの小さい開口の位置を第2瞳点B2の位置に移動してもよい。

0091

また、本実施形態では、ステップ148で、計算によって0次強度分布72Aを求めている。この代わりに、レチクルステージRSTからレチクルRを取り外した状態で、照明光学系ILSから照明光ILを投影光学系PLに照射して、計測部20によって投影瞳71Aの光強度分布を直接に計測してもよい。この計測結果が0次強度分布72Aとなる。
また、レチクルRのデバイスパターンがX方向以外の周期方向を持つパターンを含む場合(例えば図3(B)のL&Sパターン60Yを含む場合)には、照明瞳面IPPにおいて瞳点B1,B2と同様の瞳点をその周期方向の端部でσ値が1に近い領域に設定して、ステップ136,138と同様の工程(照明及び計測)を繰り返す必要がある。この場合
には、ステップ144でレチクルRからの光のフーリエ変換パターン79を求める際に、追加して計測して得られた1次以上の回折光の光強度分布も加算する必要がある。

0092

本実施形態では、レチクルRからの±1次回折光のうちの開口外回折光の状態を推定したが、レチクルRからの2次以上の回折光のうちの開口外回折光の状態を推定してもよい。
また、上記の各実施形態のレチクルからの開口外回折光の状態を推定する推定装置10及び推定方法は、レチクルのパターンが図12のレチクルR2のデバイスパターンDP2で示すように、L&Sパターン62X等の他にピッチp3,p4等の二次元のコンタクトホールパターン63A,63B等を含む場合にも適用できる。

0093

また、上記の実施形態の露光装置EX又は露光方法を用いて半導体デバイス等の電子デバイス(マイクロデバイス)を製造する場合、この電子デバイスは、図13に示すように、デバイスの機能・性能設計を行うステップ221、この設計ステップに基づいたマスク(レチクル)を製作するステップ222、デバイスの基材である基板(ウエハ)を製造するステップ223、前述した実施形態の露光装置EXは露光方法によりマスクのパターンを基板に露光する工程、露光した基板を現像する工程、現像した基板の加熱(キュア)及びエッチング工程などを含む基板処理ステップ224、デバイス組み立てステップダイシング工程、ボンディング工程、パッケージ工程などの加工プロセスを含む)225、並びに検査ステップ226等を経て製造される。

0094

言い替えると、上記のデバイスの製造方法は、上記の実施形態の露光装置EX又は露光方法を用いて、マスクのパターンを介して基板(ウエハW)を露光する工程と、その露光された基板を処理する工程(即ち、基板のレジストを現像し、そのマスクのパターンに対応するマスク層をその基板の表面に形成する現像工程、及びそのマスク層を介してその基板の表面を加工(加熱及びエッチング等)する加工工程)と、を含んでいる。

0095

このデバイス製造方法によれば、露光装置又は露光方法においてレチクルのパターンの像を高精度でウエハに露光できるようになるため、電子デバイスを効率的に高精度に製造できる。
なお、上記の実施形態のレチクル特性の推定方法及び推定装置は、ステッパー型の露光装置等にも適用できる。

0096

また、本実施形態のデバイス製造方法では、特に半導体デバイスの製造方法について説明したが、本実施形態のデバイス製造方法は、半導体材料を使用したデバイスの他、例えば液晶パネル磁気ディスクなどの半導体材料以外の材料を使用したデバイスの製造にも適用することができる。
なお、本発明は上述の実施形態に限定されず、本発明の要旨を逸脱しない範囲で種々の構成を取り得る。

0097

EX…露光装置、ILS…照明光学系、R…レチクル、PL…投影光学系、W…ウエハ、IPP…照明瞳面、PLP…投影瞳面、10…レチクル特性の推定装置、14…主制御装置、20…光強度分布の計測部、37…照明瞳、52…記憶部、54…演算部、71A…投影瞳、71B…計算領域

ページトップへ

この技術を出願した法人

この技術を発明した人物

ページトップへ

関連する挑戦したい社会課題

該当するデータがありません

関連する公募課題

該当するデータがありません

ページトップへ

技術視点だけで見ていませんか?

この技術の活用可能性がある分野

分野別動向を把握したい方- 事業化視点で見る -

(分野番号表示ON)※整理標準化データをもとに当社作成

該当するデータがありません

ページトップへ

おススメ サービス

おススメ astavisionコンテンツ

この 技術と関連性が強い技術

該当するデータがありません

この 技術と関連性が強い法人

該当するデータがありません

この 技術と関連性が強い人物

該当するデータがありません

この 技術と関連する社会課題

該当するデータがありません

この 技術と関連する公募課題

該当するデータがありません

astavision 新着記事

サイト情報について

本サービスは、国が公開している情報(公開特許公報、特許整理標準化データ等)を元に構成されています。出典元のデータには一部間違いやノイズがあり、情報の正確さについては保証致しかねます。また一時的に、各データの収録範囲や更新周期によって、一部の情報が正しく表示されないことがございます。当サイトの情報を元にした諸問題、不利益等について当方は何ら責任を負いかねることを予めご承知おきのほど宜しくお願い申し上げます。

主たる情報の出典

特許情報…特許整理標準化データ(XML編)、公開特許公報、特許公報、審決公報、Patent Map Guidance System データ