図面 (/)

技術 基地局及び基地局の処理方法

出願人 富士通株式会社
発明者 長谷川剛
出願日 2016年8月30日 (3年8ヶ月経過) 出願番号 2016-167857
公開日 2018年3月8日 (2年1ヶ月経過) 公開番号 2018-037769
状態 未査定
技術分野 移動無線通信システム 有線伝送方式及び無線の等化,エコーの低減
主要キーワード コンテイン 通信ポイント 制限帯域 アナログドメイン ナノセル IC処理 工学部 振幅調整器
関連する未来課題
重要な関連分野

この項目の情報は公開日時点(2018年3月8日)のものです。
また、この項目は機械的に抽出しているため、正しく解析できていない場合があります

図面 (20)

課題

自己干渉抑圧するための処理量を低減する。

解決手段

基地局2は、第1の周波数帯域にて複数の端末宛ダウンリンク信号を送信し、また、前記第1の周波数帯域の一部である第2の周波数帯域にて前記複数の端末からのアップリンク信号を受信してよい。また、基地局2は、前記ダウンリンク信号が前記アップリンク信号に回り込んで干渉する自己干渉の抑圧処理を、前記第2の周波数帯域において実施してよい。

概要

背景

インバンドフルデュプレックス(In-band Full-Duplex)と呼ばれる双方向通信技術が注目されている。インバンドFDでは、同じ周波数を用いて送信と受信とを同時に行なうことで、周波数分割複信(frequency division duplex, FDD)や時分割複信(time division duplex, TDD)よりも通信容量を拡大できる。

概要

自己干渉抑圧するための処理量を低減する。基地局2は、第1の周波数帯域にて複数の端末宛ダウンリンク信号を送信し、また、前記第1の周波数帯域の一部である第2の周波数帯域にて前記複数の端末からのアップリンク信号を受信してよい。また、基地局2は、前記ダウンリンク信号が前記アップリンク信号に回り込んで干渉する自己干渉の抑圧処理を、前記第2の周波数帯域において実施してよい。

目的

1つの側面では、本明細書に記載する技術の目的の1つは、自己干渉を抑圧するための処理量を低減できるようにすることにある

効果

実績

技術文献被引用数
0件
牽制数
0件

この技術が所属する分野

ライセンス契約や譲渡などの可能性がある特許掲載中! 開放特許随時追加・更新中 詳しくはこちら

請求項1

第1の周波数帯域にて複数の端末宛ダウンリンク信号を送信する送信部と、前記第1の周波数帯域の一部である第2の周波数帯域にて前記複数の端末からのアップリンク信号を受信する受信部と、前記ダウンリンク信号が前記アップリンク信号に回り込んで干渉する自己干渉抑圧処理を、前記第2の周波数帯域において実施する自己干渉キャンセラと、を備えた、基地局。

請求項2

前記第2の周波数帯域の前記アップリンク信号をアナログドメイン切り出して前記自己干渉キャンセラへ出力するアナログフィルタを備えた、請求項1に記載の基地局。

請求項3

前記第1の周波数帯域及び前記第2の周波数帯域の割り当てを制御する制御部を備えた、請求項1又は2に記載の基地局。

請求項4

前記制御部は、前記アップリンク信号の受信品質が前記第2の周波数帯域外の前記第1の周波数帯域よりも良い場合であっても、前記アップリンク信号の受信に前記第2の周波数帯域の周波数リソースを割り当てる、請求項3に記載の基地局。

請求項5

前記制御部は、前記アップリンク信号の信号量に応じて前記第2の周波数帯域の帯域幅可変制御する、請求項3又は4に記載の基地局。

請求項6

前記制御部は、前記複数の端末から受信したスケジューリングリクエスト又はバッファステータスレポートに基づいて、前記アップリンク信号の信号量を推定する、請求項5に記載の基地局。

請求項7

前記制御部は、前記第1の周波数帯域において前記第2の周波数帯域と重複しない周波数リソースから優先して前記ダウンリンク信号の送信に割り当てる、請求項3〜6のいずれか1項に記載の基地局。

請求項8

前記制御部は、前記第1の周波数帯域において前記第2の周波数帯域と重複する周波数リソースは前記ダウンリンク信号の送信に割り当てない、請求項3〜7のいずれか1項に記載の基地局。

請求項9

前記ダウンリンク信号と前記アップリンク信号とは、異なる信号パラメータに対応した異なる信号波形を有する、請求項1〜7のいずれか1項に記載の基地局。

請求項10

前記制御部は、前記第2の周波数帯域の一部が、前記第1の周波数帯域の近隣に配置されたチャネル帯域の側に、前記第1の周波数帯域から外れるように、前記第2の周波数帯域を設定する、請求項3に記載の基地局。

請求項11

第1の周波数帯域にて複数の端末宛のダウンリンク信号を送信する一方、前記第1の周波数帯域の一部である第2の周波数帯域にて前記複数の端末からのアップリンク信号を受信し、前記ダウンリンク信号が前記アップリンク信号に回り込んで干渉する自己干渉の抑圧処理を、前記第2の周波数帯域において実施する、基地局の処理方法

技術分野

0001

本明細書に記載する技術は、基地局及び基地局の処理方法に関する。

背景技術

0002

インバンドフルデュプレックス(In-band Full-Duplex)と呼ばれる双方向通信技術が注目されている。インバンドFDでは、同じ周波数を用いて送信と受信とを同時に行なうことで、周波数分割複信(frequency division duplex, FDD)や時分割複信(time division duplex, TDD)よりも通信容量を拡大できる。

0003

特開平5−304492号公報
特表2003−509944号公報
特開2003−179520号公報
特開平7−74531号公報

先行技術

0004

江口拓弥、外1名、「OFDM通信高性能化の検討」、[online]、2005年第38回日本大学生工学部学術講演会、[2016年8月29日検索]、インターネット、<URL: http://www.cit.nihon-u.ac.jp/kouendata/No.38/2_denki/2-020.pdf>

発明が解決しようとする課題

0005

しかし、インバンドFDでは、受信信号電力に比べて極めて大きな電力送信信号が受信系に回り込んで自己干渉が生じるため、何らの対策も行なわないと適切な受信処理が行なえなくなる。

0006

そのため、インバンドFDを実現するにあたって、自己干渉キャンセラ(self-interference canceler, SIC)技術が広く検討されている。SICには、アナログドメインでの処理とデジタルドメインでの処理とがある。デジタルドメインでの処理では、処理対象とする周波数帯域が広くなるほど処理量が増加する傾向にある。

0007

1つの側面では、本明細書に記載する技術の目的の1つは、自己干渉を抑圧するための処理量を低減できるようにすることにある。

課題を解決するための手段

0008

1つの側面において、基地局は、送信部と、受信部と、自己干渉キャンセラと、を備えてよい。送信部は、第1の周波数帯域にて複数の端末宛ダウンリンク信号を送信してよい。受信部は、前記第1の周波数帯域の一部である第2の周波数帯域にて前記複数の端末からのアップリンク信号を受信してよい。自己干渉キャンセラは、前記ダウンリンク信号が前記アップリンク信号に回り込んで干渉する自己干渉の抑圧処理を、前記第2の周波数帯域において実施してよい。

0009

また、1つの側面において、基地局の処理方法は、第1の周波数帯域にて複数の端末宛のダウンリンク信号を送信する一方、前記第1の周波数帯域の一部である第2の周波数帯域にて前記複数の端末からのアップリンク信号を受信し、前記ダウンリンク信号が前記アップリンク信号に回り込んで干渉する自己干渉の抑圧処理を、前記第2の周波数帯域において実施してよい。

発明の効果

0010

1つの側面として、自己干渉を抑圧するための処理量を低減できる。

図面の簡単な説明

0011

一実施形態に係る無線通信システムの構成例を示すブロック図である。
(A)は、周波数分割複信(FDD)での信号フォーマット例を示す図であり、(B)は、時分割複信(TDD)での信号フォーマット例を示す図であり、(C)は、インバンドフルデュプレクスでの信号フォーマット例を示す図である。
自己干渉キャンセル(SIC)技術の一例を説明するためのブロック図である。
一実施形態に係るアナログSICとデジタルSICとを併用した送受信機の構成例を示すブロック図である。
(A)及び(B)は、一実施形態に係る信号フォーマット例を示す図である。
一実施形態に係る送受信機の構成例を示すブロック図である。
FDM(orthogonal frequency-division multiplexing)で使用するサブキャリア数PAPR(peak to average power ratio)との関係の一例を示す図である。
一実施形態の第1変形例に係る送受信機の構成例を示すブロック図である。
図8に例示したバンドパスフィルタ(BPF)の通過帯域特性の一例を示す図である。
図8に例示したバンドパスフィルタ(BPF)の通過帯域特性の他の一例を示す図である。
一実施形態の第2変形例に係る信号フォーマット例を示す図である。
一実施形態の第3変形例に係る信号フォーマット例を示す図である。
一実施形態の第4変形例に係る信号フォーマット例を示す図である。
一実施形態の第5変形例に係る信号フォーマット例を示す図である。
(A)は、セルフコンテインTDDフレームの信号フォーマット例を示す図であり、(B)は、フレキシブルTDDフレームの信号フォーマット例を示す図である。
セルフコンテインドTDDフレームとフレキシブルTDDフレームとを組み合わせた信号フォーマット例を示す図である。
一実施形態の第6変形例に係る、セルフコンテインドTDDフレームとフレキシブルTDDフレームとを組み合わせた信号フォーマット例を示す図である。
一実施形態に係る基地局の構成例を示すブロック図である。
一実施形態に係る無線通信システムのスケジューリングに着目した動作例を示すシーケンス図である。

実施例

0012

以下、図面を参照して実施の形態を説明する。ただし、以下に説明する実施形態は、あくまでも例示であり、以下に明示しない種々の変形や技術の適用を排除する意図はない。また、以下に説明する各種の例示的態様は、適宜に組み合わせて実施しても構わない。なお、以下の実施形態で用いる図面において、同一符号を付した部分は、特に断らない限り、同一若しくは同様の部分を表す。

0013

図1は、一実施形態に係る無線通信システムの構成例を示すブロック図である。図1に示す無線通信システム1は、例示的に、基地局2と、無線端末3と、を備えてよい。基地局2は、例示的に、コアネットワーク4に接続されてよい。なお、図1の例では、1台の基地局2と1台の無線端末3とに着目しているが、基地局2及び無線端末3は、いずれも、無線通信システム1において2台以上存在してよい。

0014

無線端末(以下「端末」と略称することがある。)3は、基地局2が形成又は提供する無線エリアにおいて当該基地局2と無線通信することが可能である。「無線端末」は、「無線デバイス」、「無線装置」、あるいは「端末装置」等と称されてもよい。

0015

端末3は、その位置が変化しない固定端末であってもよいし、その位置が変化する移動端末(「移動機」と称してもよい。)であってもよい。非限定的な一例として、端末3は、携帯電話スマートフォンタブレット端末等の移動可能なUEであってよい。「UE」は、「User Equipment」の略称である。

0016

また、端末3は、IoT(Internet of Things)端末であってもよい。IoTによって、様々な「物」に通信機能が搭載され得る。通信機能を搭載した様々な「物」は、インターネットや無線アクセス網等に接続して通信を行なうことができる。

0017

例えば、IoT端末には、無線通信機能具備したセンサデバイスメータ測定器)等が含まれてよい。センサデバイスやメータを搭載した監視カメラ火災報知器等の何らかの監視装置が端末3に該当してよい。

0018

基地局2と端末3との間の無線通信は、便宜的に、「セルラー通信」と称してよい。「セルラー通信」には、例示的に、LTE準拠した無線通信方式が適用されてよい。

0019

なお、監視装置等のIoT端末である端末3と基地局2との間の無線通信は、MTC(machine type communications)と称されることがあり、当該端末3は「MTCデバイス」と称されることがある。IoT端末やMTCデバイスもUEの一例であると捉えてよい。

0020

基地局2は、無線端末3との無線通信を可能にする無線エリア200を形成又は提供する。「無線エリア」は、「セル」、「カバレッジエリア」、「通信エリア」、「サービスエリア」等と称されてもよい。

0021

基地局2は、例示的に、3rd generation partnership project(3GPP)のlong term evolution(LTE)やLTE−Advanced(以下「LTE」と総称する。)に準拠した「eNB」であってよい。

0022

「eNB」は、「evolved Node B」の略称である。なお、remote radio equipment(RRE)やremote radio head(RRH)等と称される、基地局本体から分離されて配置された通信ポイントが、基地局2に該当してもよい。

0023

基地局2が形成又は提供する「セル」は「セクタセル」に分割されてもよい。「セル」には、マクロセルスモールセルが含まれてよい。スモールセルは、マクロセルよりも電波到達範囲カバレッジ)の小さいセルの一例である。

0024

スモールセルは、カバレッジエリアに応じて呼称が異なってよい。例えば、スモールセルは、「フェムトセル」、「ピコセル」、「マイクロセル」、「ナノセル」、「メトロセル」、「ホームセル」等と称されてもよい。

0025

なお、「セル」という用語は、基地局2が無線サービスを提供する個々の地理的範囲を意味する他、その個々の地理的範囲において端末3と通信を行なうために基地局2が管理する通信機能の一部をも意味してよい。

0026

コアネットワーク4には、図1に例示するように、MME41、PGW42、及び、SGW43が含まれてよい。「MME」は、「mobility management entity」の略称である。「PGW」は、「packet data network gateway」の略称であり、「SGW」は、「serving gateway」の略称である。

0027

コアネットワーク4は、「バックボーンネットワーク4」と称されてもよいし、基地局2に対する「上位ネットワーク4」と称されてもよい。MME41、PGW42、及び、SGW43は、「コアネットワーク」のエレメント(NE)あるいはエンティティに相当すると捉えてよく、「コアノード」と総称してよい。「コアノード」は、基地局2の「上位ノード」に相当すると捉えてもよい。

0028

基地局2は、コアネットワーク4に、有線インタフェースの一例である「S1インタフェース」によって接続されてよい。ただし、基地局2は、無線インタフェースによってコアネットワーク4と通信可能に接続されても構わない。

0029

基地局2とコアネットワーク4とを含むネットワークは、無線アクセスネットワーク(RAN)と称されてもよい。RANの一例は、「Evolved Universal Terrestrial Radio Access Network, E-UTRAN」である。

0030

また、基地局2は、例示的に、MME41及びSGW43と通信可能に接続されてよい。基地局2と、MME41及びSGW43と、の間は、例えば、S1インタフェースと称されるインタフェースによって通信可能に接続されてよい。

0031

SGW43は、S5インタフェースと称されるインタフェースによってPGW42と通信可能に接続されてよい。PGW42は、インターネットやイントラネット等のパケットデータネットワーク(PDN)と通信可能に接続されてよい。

0032

PGW42及びSGW43を介して、UE3とPDNとの間でユーザパケット送受信が可能である。ユーザパケットは、ユーザデータの一例であり、ユーザプレーン信号と称してもよい。

0033

例示的に、SGW43は、ユーザプレーン信号を処理してよい。制御プレーン信号は、MME41が処理してよい。SGW43は、S11インタフェースと称されるインタフェースによってMME41と通信可能に接続されてよい。

0034

MME41は、例示的に、UE3の位置情報を管理する。SGW43は、MME41で管理されている位置情報を基に、例えば、UE3の移動に伴うユーザプレーン信号のパス切り替え等の移動制御を実施してよい。移動制御には、UE3のハンドオーバ(HO)に伴う制御が含まれてよい。

0035

なお、図1には図示を省略しているが、RANに複数の基地局2が存在する場合、基地局2間は、例えば、X2インタフェースと称される基地局間インタフェースによって通信可能に接続されてよい。基地局間インタフェースは、有線インタフェースでもよいし、無線インタフェースでもよい。

0036

基地局2の一例であるeNB2が形成する無線エリア200は、「マクロセル」と称されてよい。マクロセル200を形成するeNB2は、便宜的に、「マクロ基地局」、「マクロeNB」、又は、「MeNB」等と称されてもよい。マクロセルには、マクロセルよりもカバレッジの小さい「スモールセル」がオーバレイ配置されてもよい。

0037

eNB2は、UE3との無線通信に用いる無線リソースの設定(「割当」と称してもよい。)を制御してよい。無線リソース(以下「リソース」と略称することがある。)の割当制御は、「スケジューリング」と称されてもよい。

0038

リソースは、例示的に、周波数領域及び時間領域の2次元で区別されてもよいし、周波数領域及び時間領域に電力領域又は符号領域を加えた3次元で区別されてもよい。

0039

eNB2は、UE3との無線通信に利用可能なリソースを、例えば周波数領域及び時間領域にて区切られる周波数・時間グリッドの単位でリソースの割り当てを実施してよい。LTEにおいて、スケジューリングの単位は、「リソースブロック(RB)」と称される。

0040

RBは、eNB2がUE3との無線通信に利用可能な無線リースを、時間領域におけるスロットと、周波数領域において隣り合う複数のサブキャリア(搬送波)と、を単位に分割した1つのブロックに相当する。

0041

例えば、LTEにおいて、1スロットは、0.5msの時間長を有し、2スロットで1ms長の1サブフレームが構成され、10個のサブフレームで10ms長の無線フレームが構成される。

0042

RBは、例えば、2スロット(=1サブフレーム)×12サブキャリアで表される。なお、LTEでは、1スロット×12サブキャリアを「physical resource block(PRB)」と称し、1サブフレーム内の2個のPRBを「PRBペア」と称することがある。

0043

eNB2とUE3との間の無線通信には、時分割複信(time division duplex:TDD)、及び、周波数分割複信(frequency division duplex:FDD)のいずれが適用されてもよい。

0044

また、eNB2とUE3との間の無線通信には、インバンドフルデュプレックス(In-band Full-Duplex)と呼ばれる双方向の通信技術が適用されてもよい。インバンドフルデュプレックスは、次世代(例えば、第5世代(5G))の無線通信技術の文脈混乱のない場合には、単にフルデュプレックス(FD)と略称されることがある。

0045

図2(A)に例示するように、FDDでは、下りダウンリンク,DL)の通信と、上りアップリンク,UL)の通信と、が異なる周波数(又は周波数帯域)を用いて実施される。

0046

一方、TDDでは、図2(B)に例示するように、1つの周波数(又は周波数帯域)を用いて、DLの通信と、ULの通信と、が異なる時間に実施される。

0047

これらに対し、FDでは、図2(C)に例示するように、同じ周波数(又は周波数帯域)を用いてDLの通信とULの通信とが同時に実施される。したがって、FDでは、FDDやTDDに比して2倍の通信容量を実現可能である。

0048

ただし、FDでは、図3に模式的に例示するように、受信信号の電力に比べて極めて大きな電力の送信信号が自己干渉として受信系に入り込む可能性があり、何らの対策を行なわないと、受信系に備えられた低雑音増幅器(LNA)203が飽和してしまうことがある。LNA203が飽和してしまうと、適切な受信処理が不能になるおそれがある。なお、図3において、101は送信信号を増幅する高出力増幅器(HPA)を示し、102は送信アンテナを示す。また、201は受信アンテナを示す。

0049

そのため、FDを採用するには、自己干渉キャンセラ(self-interference canceler, SIC)技術の適用が重要である。図3には、受信アンテナ201とLNA203との間に、SIC202が備えられた例を示している。301は、位相振幅調整器を示す。

0050

SIC202は、例えば、位相・振幅調整器301で位相及び振幅が調整された送信信号を、受信信号から減じることで、自己干渉をキャンセルする。なお、図3に例示するSIC202は、アナログドメインの処理で自己干渉をキャンセルするアナログSICの一例である。

0051

アナログSIC202にて、送信信号の受信信号への自己干渉を抑圧できることで、LNA203が飽和することを抑止できる。

0052

ただし、アナログSIC202では、送信信号と受信信号との微妙なタイミングや位相のずれによって自己干渉が残留し易い。そこで、例えば、デジタルドメインの処理で自己干渉をキャンセルするデジタルSICを併用することで、残留した自己干渉成分をキャンセルすることが試みられる。

0053

図4に、一実施形態に係るアナログSICとデジタルSICとを併用した送受信機10の構成例を示す。送受信機10は、例示的に、基地局2に備えられてよい。図4において、202がアナログSICを示し、205がデジタルSICを示す。また、204はアナログ−デジタルコンバータADC)を示し、302は干渉推定部を示す。

0054

アナログSIC202でキャンセルしきれずに残留した自己干渉成分を含む受信信号は、LNA203で増幅された後、ADC204にてデジタル信号に変換されて、デジタルSIC205に入力される。

0055

デジタルSIC205は、干渉推定部302にて送信信号を基に推定された自己干渉成分を、ADC204から入力された受信デジタル信号から減じることで、受信デジタル信号に残留している自己干渉成分をキャンセルする。

0056

このように、図4に例示した構成によれば、主要な自己干渉をアナログドメインで抑圧してLNA203の飽和を防ぎ、デジタルドメインで、アナログドメインで抑圧しきれずに残留した自己干渉成分を抑圧する。

0057

しかし、デジタルSIC205を用いると、アナログSIC202を単体で用いる場合に比して、干渉推定のための演算量(「処理量」と言い換えてもよい。)が増加し、また、処理対象の信号帯域が広くなるほど演算量も増加する傾向にある。

0058

そこで、本実施形態では、例えばSIC処理対象の信号帯域を制限することで、演算量を抑制できるようにする。例えば、無線通信システム1では、DLのトラフィック量よりもULのトラフィック量が少ない傾向にある。そのため、ULに割り当て可能な周波数帯域を、DLに割り当て可能な周波数帯域よりも狭い部分的な帯域に制限、集約してよい。

0059

図5(A)及び図5(B)に、一実施形態に係る周波数リソースの割当例(別言すると、信号フォーマット例)を模式的に示す。なお、「周波数リソース」は、周波数又は周波数帯域を意味する。図5(A)は、DL信号に割り当て可能な周波数リソース(例えば、システム帯域)において、複数のUL信号のそれぞれに異なる周波数リソースが分散的に割り当てられた例を示している。

0060

例えば、eNB2が、複数UE3のそれぞれに、ULのトラフィック量が少なくてもできるだけ通信環境の良い周波数を選択して割り当てたとすると、図5(A)のように、システム帯域内の広い帯域にわたって複数のUL信号が分散して分布することがある。

0061

この場合、UL信号が分散して分布する帯域(場合によっては、システム帯域の全部)がSIC処理の対象になるため、SIC処理に関連する演算量を抑制しにくい。

0062

そこで、例えば図5(B)に模式的に例示するように、個々のUE3のUL信号に割り当てる周波数リソースを、DL信号に割り当て可能な周波数帯域(便宜的に「DL帯域」と称してよい。)の一部の帯域に集約又は制限する。

0063

当該一部の帯域は、便宜的に、「UL集約帯域」又は「UL制限帯域」と称してもよい。DL帯域は、第1の周波数帯域の一例であり、UL集約帯域は、第2の周波数帯域の一例である。

0064

UL集約帯域は、例示的に、システム帯域の中心又は中心近傍の周波数帯域であってよい。また、UL集約帯域は、DL帯域において2以上存在してもよい。更に、UL集約帯域は、全部がUL信号に割り当てられてもよいし、一部がDL信号に割り当てられてもよい。別言すると、UL集約帯域は、全部がUL信号の送信に占有されなくてもよい。

0065

DL帯域において1つのUL集約帯域が設定されると仮定した場合、図6に例示するように、UL集約帯域の信号を通過させるバンドパスフィルタ(BPF)206を、例えばアナログSIC202とLNA203との間に備えてよい。

0066

BPF206は、第2の周波数帯域の一例であるUL集約帯域におけるUL信号をアナログドメインで切り出すアナログフィルタの一例である。BPF206によって、LNA203への入力信号ピーク電力を低減できるから、LNA203が飽和しにくくなる。

0067

また、BPF206によってSIC処理対象の信号帯域がUL集約帯域に狭小化されるから、ADC204に求められるダイナミックレンジクロック周波数も低減でき、ひいては、消費電力の低減化を図ることができる。更には、干渉推定部302での演算量も低減できるから、消費電力の更なる低減化を図ることができる。

0068

例えば、BPF206によってULの信号帯域をシステム帯域の1/4に狭小化できたとすると、ADC204のクロックも1/4に低減でき、更には干渉推定部302の演算量も1/4に低減できる。

0069

また、干渉推定部302での干渉推定において、HPA101の2次の非線形性を考慮している場合は、干渉推定のための演算量も2乗のオーダで変動し得るため、演算量を1/4よりも更に低減できる可能性がある。

0070

以上のように、FDにおいて、DL帯域とUL帯域とで同じ帯域幅を用いるのではなく、UL帯域をDL帯域の一部に集約又は制限することで、FDでのSIC処理に関連する演算量や、送受信機10の消費電力ひいては基地局2の消費電力を低減することができる。

0071

図7に、OFDMで使用するサブキャリア数とPAPRとの関係の一例を示す。図7は、非特許文献1のFig. 5の引用である。OFDMは、「orthogonal frequency-division multiplexing」の略称であり、PAPRは、「peak to average power ratio」の略称である。

0072

図7に例示するように、例えばサブキャリア数を512から64に減らすと、CCDF=0.1において、PAPRを1dB強だけ低減できる。CCDFは、振幅が特定の値を超える累積確率を示す相補累積分布関数(complementary cumulative distribution function)である。したがって、UL信号帯域をUL集約帯域に狭小化してサブキャリア数を減らすことで、LNA203のバックオフを低減でき、LNA203の電力増幅効率を向上できる。

0073

(第1変形例)
図6に例示したBPF206の通過帯域が固定であると、BPF206の通過帯域によってULのデータ量(「トラフィック量」と言い換えてもよい。)が制限され得る。

0074

そこで、図8に例示するように、複数のBPF206−1〜206−n(nは2以上の整数)を送受信機10に備え、ULのトラフィック量に応じて、使用するBPF206−i(iは1〜nのいずれか)を選択スイッチ207によって切り替えてよい。

0075

選択スイッチ207の切り替えは、例示的に、図18にて後述するスケジューラ71によって制御されてよい。BPF206−iの切り替えによって、アナログSIC202からLNA203へ通過させる信号の帯域を、ULのトラフィック量に応じて可変できる。

0076

ULのトラフィック量は、例えばeNB2に接続する複数のUE3から受信したスケジューリングリクエスト(SR)やバッファステータスレポートBSR)を集計することで推定できる。

0077

SRは、UE5がULのデータ送信に使用するリソースの割り当てをeNB2に要求する信号の一例であり、BSRは、UE3が保持している送信データ量をeNB2に報告する信号の一例である。

0078

1つのBPF206−iは、例えば図9に示すように、DL帯域(例示的に、システム帯域であってもよい。)を複数のサブバンドに分割した場合の、1つのサブバンドに対応する帯域通過特性を有していてよい。

0079

eNB2は、選択スイッチ207を制御することで、推定したULのトラフィック量に見合う数のBPF206−iを選択してよい。

0080

あるいは、少なくとも2以上のBPF206−iは、図10に例示するように、通過帯域幅が異なっていてよい。eNB2は、推定したULのトラフィック量に見合う通過帯域幅のBPF206−iを、選択スイッチ207を制御することで選択してよい。

0081

また、複数のBPF206−iの一部又は全部は、通過帯域幅が可変の1つの可変BPFによって実現されてもよい。eNB2は、可変BPFの通過帯域幅をULのトラフィック量に見合う帯域幅に制御してよい。この場合、選択スイッチ207は不要でよい。

0082

(第2変形例)
次に、図11を参照して、第2変形例について説明する。図5(B)に例示したように、DL帯域の一部の帯域にUL信号に割り当てる周波数リソースを集約できたと仮定する。

0083

この場合に、eNB2が、DLで送信しようとするトラフィック量がDL帯域の一部で足りるトラフィック量である場合、eNB2は、スケジューリングにおいて、UL信号に未割当の周波数リソースを優先的にDL信号に割り当ててよい。

0084

例えば図11に示すように、eNB2は、スケジューリングに際して、システム帯域においてUL集約帯域に重ならない周波数リソースが存在する限り、当該周波数リソースを優先的にDL信号に割り当ててよい。

0085

これにより、UL集約帯域に重なる周波数リソースが割り当てられるDL信号数を低減することができるから、自己干渉が低減されてeNB2におけるULの受信性能を向上できる。

0086

なお、UL集約帯域に重ならない周波数リソースが存在しない場合には、eNB2は、UL集約帯域に重なる周波数リソースをDL信号に割り当ててよい。別言すると、DL信号に割り当てる周波数リソースとUL集約帯域との少なくとも部分的な重複許容されてよい。

0087

(第3変形例)
次に、図12を参照して、第3変形例について説明する。第2変形例は、UL信号に未割当の周波数リソースをDL信号に優先的に割り当て、UL信号に未割当の周波数リソースが存在しない場合にはUL信号に割り当て済みの周波数リソースと重複する周波数リソースがDL信号に割り当てられることを許容する例である。

0088

これに対し、第3変形例では、図12に模式的に例示するように、eNB2は、DL信号に割り当てる周波数リソースを、UL信号に未割当の周波数リソースに制限してよい。

0089

これにより、UL集約帯域に重なる周波数リソースが割り当てられるDL信号数を無くすことができるから、eNB2における自己干渉が低減されてULの受信性能を向上できる。

0090

第3変形例は、厳密にはFDというよりもFDDに相当するが、FDと同等の側面を有する。例えば、通常のFDDではULの周波数リソースとDLの周波数リソースとが十分に離れるように設定される。

0091

その理由は、通過帯域外を急峻にカット可能な周波数フィルタの実現が難しいため、送信と受信とで周波数が近接していると、不完全フィルタ特性のために、FDと同様に、送信信号が受信系に回り込んで干渉が生じ得るからである。

0092

したがって、ULの周波数リソースとDLの周波数リソースとが近接している場合にはSIC処理が有効であるという意味で、eNB2は、FDと同等の構成を有してよい。ただし、ULの周波数リソースとDLの周波数リソースとが重複しないから、SIC処理の性能は、FDの場合に求められる性能に比して、1/10から1/100以下程度でよい。したがって、SIC処理の実装が容易である。

0093

(第4変形例)
次に、図13を参照して、第4変形例について説明する。第4変形例では、UL及びDLの信号にOFDM信号を適用することを想定する。通常、FDでは、ULとDLとで同じ周波数帯域を使用するため、ULとDLとで異なる信号パラメータ(例えば、サブキャリア数)のOFDM信号を用いることは想定しにくい。

0094

しかし、既述のように、UL信号に割り当てる周波数リソースをDL帯域(例示的に、システム帯域であってよい。)の一部に集約して狭小化できる場合には、ULとDLとで異なる信号パラメータのOFDM信号を用いることで、有利な効果が期待できる。

0095

例えば図13に模式的に示すように、DL帯域の一例であるシステム帯域の一部にUL帯域が集約された場合を想定する。ここで、システム帯域の全部をDL信号の送信に使用する場合のDL信号のサブキャリア数が「2048」であると仮定する。

0096

一方、UL帯域は、システム帯域の1/2に絞られており、当該UL帯域においてDLと同じサブキャリア間隔が用いられていると仮定すると、UL帯域のサブキャリア数は「1024」である。

0097

当該UL帯域のUL信号は、サブキャリア数=「2048」のうち、中央の1024サブキャリア以外は「0」として生成することも可能であるが、元から1/2の帯域幅でサブキャリア数が1/2の「1024」の信号として生成することも可能である。

0098

サブキャリア数が少ない方が、OFDM信号を生成するためのFFT(fast Fourier transform)サイズが小さくて済むから、演算効率が良いと云える。したがって、UL帯域をDL帯域よりも狭小化した場合には、UL帯域及びDL帯域のそれぞれに適した信号パラメータを有する伝送信号波形を用いることで、演算効率を向上できる。

0099

(第5変形例)
次に、図14を参照して、第5変形例について説明する。第5変形例においても、第4変形例と同様に、UL及びDLの信号にOFDM信号を適用することを想定する。OFDM信号を適用する場合、隣接チャネル漏洩電力による干渉を抑制するために、隣接チャネル間にガードバンドが設けられる。

0100

無線通信システム1においては、UE3のUL送信電力よりもeNB2のDL送信電力の方が圧倒的に大きいため、ガードバンドはDL信号の送信電力を基にして決定される。例えば図14に模式的に示すように、DL帯域の端部を基準に、隣接チャネル漏洩電力による干渉が生じない帯域幅のガードバンドが、隣接チャネルの帯域との間に設定される。

0101

ここで、FDの場合に、図14に模式的に例示するように、DL帯域の中央よりも外側の両側(又は隣接チャネルが存在する片側)に、DL帯域と部分的に重複する帯域幅でUL帯域を集約することを想定する。

0102

別言すると、DL帯域の一部が、DL帯域の近隣に配置されたチャネル帯域の側に、DL帯域から外れるように、UL集約帯域が設定されると仮定する。

0103

UL信号は、DL信号よりも送信電力が小さいので、隣接チャネル漏洩電力もDL信号よりも小さい。そのため、図14に模式的に例示するように、DL帯域を基準にした場合よりも、ガードバンドを狭くすることができ、FDを採用した無線通信システム1全体としての周波数リソースの利用効率を向上できる。

0104

(第6変形例)
次に、図15図17を参照して、第6変形例について説明する。
近年、5G無線通信技術の実現に向けて、新たなフレーム構成として、セルフコンテインドTDDフレーム構成及びフレキシブルTDDフレーム(又はダイナミックTDDフレーム)構成が検討されている。

0105

図15(A)に、セルフコンテインドフレーム構成の一例を示し、図15(B)に、フレキシブルフレーム構成の一例を示す。なお、図15(B)において、「#1]〜「#3」は、それぞれ、例えばUE#1〜UE3向けに割り当てられた周波数リソースを示すと捉えてよい。また、図15(A)及び図15(B)において、斜線を付したリソースはDL送信に用いられ、斜線を付していないリソースはUL送信に用いられると捉えてよい。更に、「D1」、「D2」及び「D3」はTDDのDLフレームを示し、「U1」は、TDDのULフレームを示す、と捉えてよい。

0106

#1で示すセルフコンテインドフレーム構成は、低遅延通信向けのTDDフレーム構成の一例であり、図15(A)に例示するように、サブフレーム毎確認応答信号の一例であるAck信号及びNack信号を示すシンボルが挿入される。別言すると、#1で示すセルフコンテインドフレーム構成では、D1、D2及びD3の最後にUL信号が挿入され、U1の最後にDL信号が挿入される。

0107

一方、フレキシブルフレーム構成は、図15(B)に例示するように、1つの周波数帯域(システム帯域の全部でもよいし一部でもよい)において、異なる信号パラメータを有するOFDM信号をフィルタで分離して共存させる構成である。

0108

異なる信号パラメータのOFDM信号をフィルタで分離することから、フレキシブルフレーム構成を用いる無線方式は、「filtered-OFDM(F-OFDM)」と称されることがある。F−OFDMでは、フィルタが適用される帯域(「サブバンド」と称される。)間においては、通常のOFDMとは異なり、サブキャリア間直交性は保たれなくてもよい。

0109

したがって、サブバンド間で、サブキャリア数や、サブキャリア間隔、送信時間間隔(transmission time interval, TTI)等の信号パラメータが異なることも許容される。例えば、サブバンド間では、サブキャリア数、シンボル数シンボル長スロット長無線フレーム長サブフレーム長(別言すると、TTI)等が異なっていてよい。1つのサブバンド内では、これらの信号パラメータは一定でよい。

0110

そのため、或る周波数帯域において、1OFDMシンボルあたりのサブキャリア数及びシンボル長が異なるOFDMシンボルが混在することも許容される。OFDMシンボルは、「OFDM信号」の一例である。

0111

図15(B)の例では、3つのサブバンド#1〜#3のそれぞれにおいて、太枠で囲んだ異なるサイズの周波数・時間グリッドが1つのOFDMシンボルに相当すると捉えてよい。

0112

例示的に、サブバンド#2のOFDMシンボルは、他のサブバンド#1及び#3のOFDMシンボルに比べて、シンボル長が短く、かつ、サブキャリア数が少ない。シンボル長が短いOFDMシンボルは、例えば、eNB2との間の無線伝搬環境が時間的に変化し易いUE3向け、例えば、高速移動するUE3向けに用いられてよい。

0113

これに対して、サブバンド#3のOFDMシンボルは、他のサブバンド#1及び#2のOFDMシンボルに比べて、シンボル長が長く、かつ、サブキャリア数が多い(別言すると、サブキャリア間隔が短い)。

0114

サブバンド#3のOFDMシンボルは、無線伝搬環境が時間的にあまり変化しないUE3向け、例えば、低速移動するUE3や固定のUE3向けに用いられてよい。また、1OFDMシンボルあたりのサブキャリア間隔が他のサブバンド#1及び#2に比べて短いため、より多くのUE3を効率的にサブバンド#3に収容することが可能である。なお、低速移動するUE3や固定のUE3には、例示的に、IoT(Internet of Things)の無線機器が該当してよい。

0115

サブバンド#1のOFDMシンボルは、サブバンド#2及び#3のOFDMシンボルに対して中間的なシンボル長及びサブキャリア数を有する。サブバンド#1のOFDMシンボルは、例えば、平均的な移動速度のUE3向けに用いられてよい。

0116

このように、F−OFDMは、サブバンド毎に、異なる信号パラメータのOFDM信号をフィルタによって分離して連続する周波数帯域において共存させることができる。したがって、複数のUE3に対して、それぞれの通信環境に適した信号パラメータを使用することができる。

0117

なお、シンボル長は、デジタル変調するサブキャリア数を可変することで可変できるから、1シンボルあたりのサブキャリア数やシンボル長が異なることは、送信単位である時間的に連続した信号波形が異なることを意味すると捉えてよい。

0118

ここで、図15(A)及び図15(B)に例示したフレーム構成を組み合わせて、セルフコンテインドかつフレキシブルなフレーム構成の構築試みると、例えば図16に示すようなフレーム構成となる。

0119

図16の例では、サブバンド#1が、セルフコンテインド構成であり、他のサブバンド#2及び#3に比してシンボル長が短く、高速移動するUE3向けの通信に用いられる。

0120

サブバンド#2及び#3は、フレキシブル構成である。サブバンド#2は、他のサブバンド#1及び#3に比してシンボル長が長くサブキャリア間隔が短いため、低速移動するUE3や固定のUE3を他のサブバンド#1及び#3よりも高効率に収容できる。

0121

サブバンド#3は、他のサブバンド#1及び#2に比して中間的なシンボル長及びサブキャリア数を有し、例えば、平均的な移動速度のUE3向けの通信に用いられる。

0122

ここで、SIC処理を用いずに近隣のサブバンド間でUL受信とDL送信とを同時に行なうと干渉が生じるため、図16点線枠で例示するように、UL受信又はDL送信を行なえずに無送信となるリソース(Null)がどうしても生じる。

0123

例えば、サブバンド#1において、UL信号の一例であるAck信号又はNack信号の受信と同時に、近隣のサブバンド#2及び#3でUE3宛のDL送信を行なうと干渉が生じるため、サブバンド#2及び#3に無送信区間を設定せざるを得ない。

0124

そのため、周波数利用効率が低下し、UE3の収容効率も低下する。また、サブバンド#3のシンボル長よりもサブバンド#2のシンボル長が長いため、サブバンド#2に無送信区間が多くなり易くリソースの無駄が多くなり易い。したがって、本来は、他のサブバンド#1及び#3よりもUE3を高効率で収容できるはずのサブバンド#2のメリットが薄れてしまう。

0125

これに対して、既述のFDにおけるSIC処理を用いれば、図17に例示するように、サブバンド間でUL受信とDL送信とを同時に行なうことが許容されるから、図16の例ではNullであったリソースをUE3との通信に使用することが可能となる。

0126

したがって、周波数利用効率の低下を回避又は抑制でき、UE3の収容効率の低下も回避又は抑制できる。この場合は、UL及びDLのリソースが重複することは無いので、隣接帯域への漏洩電力が干渉の主要因になる。この漏洩電力は、多くの場合、信号電力の1/10以下程度となるので、SICの性能としては、通常のFDで用いるSICの1/10程度の性能でもよい。

0127

(eNB2の構成例)
次に、図18を参照して、eNB2の構成例について説明する。図18に示すように、eNB2は、例示的に、送信系の一例として、DLデータ生成部51−1〜51−N、多重部52、変調部53及び送信アンテナ54を備えてよい。

0128

Nは、2以上の整数であり、例示的に、eNB2が提供する無線エリア200内に位置しておりeNB2との通信が可能なUE3の台数(UE#1〜UE#N)に対応してよい。

0129

送信系は、第1の周波数帯域の一例であるDL帯域(例えば、システム帯域)にて複数のUE3宛のDL信号を送信する送信部の一例と捉えてもよい。

0130

また、eNB2は、受信系の一例として、受信アンテナ61、復調部63、分離部64、ULデータ復号部65−1〜65−N、及び、共通チャネルデータ復号部66を備えてよい。

0131

受信系は、第1の周波数帯域の一部である第2の周波数帯域(例えば、UL集約帯域)にて複数のUE3からのUL信号を受信する受信部の一例と捉えてもよい。

0132

更に、eNB2は、制御系の一例として、スケジューラ71と、記憶部72と、を備えてよい。

0133

DLデータ生成部51−j(jは1〜Nのいずれか)は、UE#j宛に送信するDLデータを生成する。UE#j宛のDLデータの送信に使用するリソースは、スケジューラ71によるUE#j毎のスケジューリングによって割り当てられる。

0134

多重部52は、DLデータ生成部51−1〜51−Nで生成されたUE#1〜UE#N宛のDLデータを多重する。

0135

変調部53は、多重部52で多重されたDLデータを変調して送信変調信号を生成する。変調方式には、例示的に、OFDMが適用されてよい。

0136

送信アンテナ54は、変調部53で得られた送信変調信号をeNB2が提供する無線エリア200へ送信する。なお、図18には図示を省略しているが、送信アンテナ54と受信アンテナ61とSIC62とを含むブロックは、より詳しくは図4のように構成されてよい。更に、送信変調信号を無線信号周波数変換アップコンバート)する無線部が、送信アンテナ54の前段に備えられていてよい。無線部に、既述のHPA101が備えられてよい。

0137

受信アンテナ61は、UE#jが送信したULの無線信号を受信する。

0138

SIC62は、既述のとおり、ULの受信信号からDLの送信信号成分をキャンセルすることで自己干渉を抑圧する。SIC62は、既述のアナログドメインのSIC処理とデジタルドメインのSIC処理とを実施してよい。

0139

復調部63は、SIC62によって自己干渉が抑圧された、ULの受信信号を復調する。

0140

分離部64は、スケジューラ71からのスケジューリング情報を基に、復調部63で復調された信号からUE#j毎のUL信号を抽出、分離して、対応するULデータ復号部65−jに出力する。また、分離部64は、復調部63で復調された信号から、ULの共通チャネル信号を抽出、分離して、UL共通チャネルデータ復号部66へ出力する。

0141

ULデータ復号部65−jは、分離部64から入力された、UE#jのUL信号を復号してULの受信データを得る。

0142

UL共通チャネルデータ復号部66は、分離部64から入力された、ULの共通チャネル信号を復号して共通チャネルのデータを得る。

0143

スケジューラ71は、DL及びULの通信に使用するリソースをUE#j毎にスケジューリングする。スケジューラ71は、第1の周波数帯域の一例であるDL帯域、及び、DL帯域の一部である第2の周波数帯域(例えば、UL集約帯域)の割り当てを制御する制御部の一例と捉えてもよい。

0144

記憶部72は、例示的に、eNB2としての動作や機能を実現する各種のプログラムやデータ、情報を記憶する。記憶部72に記憶されるデータには、システム帯域に関する情報を含むシステム情報や、スケジューラ71によるスケジューリング結果、SRやBSRに基づくスケジューラ71によるULトラフィック量の推定結果等が含まれてよい。

0145

以下、図19を参照して、スケジューリングに着目した動作例について説明する。なお、各UE#jは、eNB2とDLが確立済みであると仮定する。

0146

eNB2は、ULの共通チャネルや、いずれかのUE#jと個別的に既に確立しているULのチャネル等によって、UE#jが送信したSR(BSRでもよい。)を受信する(処理P11)。

0147

UE#jから受信したSRは、スケジューラ71に与えられる。スケジューラ71は、例示的に、SRの情報を基に、SR送信元のUE#jが送信しようとしているULデータ量を推定し、当該ULデータ量に見合う周波数帯域(別言すると、サブキャリア)を推定する。そして、スケジューラ71は、推定した周波数帯域を合計して各UE#jのUL送信に割り当てるべき周波数帯域BEを推定する(処理P12)。

0148

合計した周波数帯域BEがBPF206の通過帯域幅BBPFよりも小さい場合、スケジューラ71は、BPF206の通過帯域(別言すると、UL集約帯域)内の周波数リソースが優先的に各UE#jに割り当てられるようにスケジューリングを行なう。

0149

スケジューリング結果(例示的に、UE#jがUL送信に使用すべき周波数リソース)は、必要に応じて、UE#jがUL信号で用いるべき信号パラメータと共に、UE#j宛に送信されてよい(処理P13)。

0150

UE#jは、eNB2から通知(「指定」と言い換えてもよい。)された信号パラメータを用いてUL信号を生成し(処理P14)、eNB2から通知された周波数リソースを使用してUL送信を行なう(処理P15)。

0151

eNB2では、処理P13での各ユーザUE#jのスケジューリング結果を基に、受信UL信号からUE#j毎のULデータを分離して復号する(処理P16)。

0152

以上のようにして、図5(B)や、図8図14図17に例示したように、DL帯域の一部の周波数帯域に各UE#jのUL信号のための周波数リソースを優先的に割り当てる動作が可能となる。

0153

なお、図19の例は、UL及びDLの非対称トラフィックが存在するためにUL及びDLの非対称な帯域の同時送信が生じる例である。これに対し、図17の例は、UE3の異なる環境に基づいて最適パラメータに対応した周波数が選ばれることで非対称なUL及びDLの同時送信が生じる例である。本実施形態は、このようにUL及びDLの非対称な同時送信と、当該非対称な同時送信に関わるSICが存在するような系に適用できる。

0154

例えば図5(B)に例示したように、スケジューラ71は、UL信号の受信品質がUL集約帯域外のDL帯域よりも良い場合であっても、UL信号の受信にUL集約帯域の周波数リソースを割り当ててよい。

0155

また、図8図10に例示したように、スケジューラ71は、UL信号のトラフィック量(別言すると、信号量)に応じて使用するBPF206−iを選択することでUL集約帯域の帯域幅を可変制御してよい。ここで、スケジューラ71は、既述のとおり、複数のUE3から受信したSR(又はBSR)に基づいてUL信号のトラフィック量を推定してよい。

0156

更に、図11に例示したように、スケジューラ71は、DL帯域においてUL集約帯域と重複しない周波数リソースから優先してDL信号の送信に割り当ててよい。

0157

また、図12に例示したように、スケジューラ71は、DL帯域においてUL集約帯域と重複する周波数リソースはDL信号の送信に割り当てなくてよい。

0158

更に、図14に例示したように、スケジューラ71は、DL帯域の一部が、DL帯域の近隣に配置されたチャネル帯域の側に、DL帯域から外れるように、UL集約帯域を設定してよい。

0159

1無線通信システム
2基地局
3無線端末
4コアネットワーク
10送受信機
41 MME
42PGW
43 SGW
51−1〜51−NDLデータ生成部
52多重部
53変調部
54送信アンテナ
61受信アンテナ
62 SIC
63復調部
64 分離部
65−1〜65−NULデータ復号部
66 UL共通チャネルデータ復号部
71スケジューラ
72 記憶部
101高出力増幅器(HPA)
102 送信アンテナ
200無線エリア
201 受信アンテナ
202アナログSIC
203低雑音増幅器(LNA)
204アナログ−デジタルコンバータ(ADC)
205デジタルSIC
206,206−1〜206−nバンドパスフィルタ(BPF)
301位相・振幅調整器
302干渉推定部

ページトップへ

この技術を出願した法人

この技術を発明した人物

ページトップへ

関連する挑戦したい社会課題

関連する公募課題

ページトップへ

おススメ サービス

おススメ astavisionコンテンツ

新着 最近 公開された関連が強い技術

この 技術と関連性が強い人物

関連性が強い人物一覧

この 技術と関連する社会課題

関連する挑戦したい社会課題一覧

この 技術と関連する公募課題

関連する公募課題一覧

astavision 新着記事

サイト情報について

本サービスは、国が公開している情報(公開特許公報、特許整理標準化データ等)を元に構成されています。出典元のデータには一部間違いやノイズがあり、情報の正確さについては保証致しかねます。また一時的に、各データの収録範囲や更新周期によって、一部の情報が正しく表示されないことがございます。当サイトの情報を元にした諸問題、不利益等について当方は何ら責任を負いかねることを予めご承知おきのほど宜しくお願い申し上げます。

主たる情報の出典

特許情報…特許整理標準化データ(XML編)、公開特許公報、特許公報、審決公報、Patent Map Guidance System データ