図面 (/)

技術 圧延機の板厚制御方法および装置

出願人 JFEスチール株式会社
発明者 沼澤義典上原壮一郎岡田一仁
出願日 2016年8月17日 (4年4ヶ月経過) 出願番号 2016-160063
公開日 2018年2月22日 (2年10ヶ月経過) 公開番号 2018-027553
状態 特許登録済
技術分野 圧延の制御
主要キーワード 板厚公差 高品質製品 硬度変動 表裏交互 レベラーロール 当初予定 塑性係数 ロールギャップ制御
関連する未来課題
重要な関連分野

この項目の情報は公開日時点(2018年2月22日)のものです。
また、この項目は機械的に抽出しているため、正しく解析できていない場合があります

図面 (5)

課題

圧延機ロールギャップFF制御するにあたって、高張力鋼板高炭素鋼などの難圧延材に対しても高精度で板厚制御ができる圧延機の板厚制御方法を提供することを目的とする。

解決手段

鋼板を圧延機で圧延するに際し、圧延前の鋼板の板厚を用いて圧延機のロールギャップをフィードフォワード制御して圧延後の鋼板の板厚を制御する圧延機の板厚制御方法において、圧延前の鋼板の表裏を3本以上の小径ロール押さえ小径ロールを設置し、該小径ロールにおける圧延方向の荷重変化に基づいてロールギャップ変更量を求めて、該ロールギャップ変更量にてフィードフォワードするロールギャップ量補正する。

概要

背景

これまでの圧延機板厚制御方法は、圧延機入側に設置した板厚計で測定した板厚当初予定していた板厚との偏差(以下、板厚偏差とも称する)を用いて圧延機のロールギャップFF制御する方法が一般的である。圧延機の出側板厚hは、ロールギャップS、圧延荷重P、およびミル定数Kとすると、以下の式(1)に示すように求めることができる。

図1は、従来の圧延機の板厚制御方法を説明する図である。

入側板厚H1の時、ロールギャップをS1に調整し圧延荷重P1として圧延し、その結果、圧延出側の目標板厚h1を得る。仮に、入側板厚が変動しH2となり、ロールギャップを調整しないでS1のままとすると、出側板厚はh2となってしまう。そこで、圧延後の目標板厚h1を得るために、ロールギャップをS1からS2に調整して出側板厚h1にする制御を行う。

上記、圧延前の被圧延材の板厚偏差を用いてロールギャップをFF制御し圧延出側の板厚偏差を減少させる制御方法では、被圧延材の変形抵抗塑性係数)を考慮していないため誤差が大きくなる場合があり、制御ゲインを上げられず板厚偏差を減少しきれないという問題点があった。

そこで板厚制御精度の向上のため、例えば、特許文献1には、圧延機前方に設置されたブライドルロールの前後における被圧延材の張力と、ブライドルロールを駆動するモータ負荷をそれぞれ計測し塑性係数の変化を考慮して、圧延ロールのロールギャップを補正して、被圧延材の板厚を制御する技術が開示されている。

概要

圧延機のロールギャップをFF制御するにあたって、高張力鋼板高炭素鋼などの難圧延材に対しても高精度で板厚制御ができる圧延機の板厚制御方法を提供することを目的とする。鋼板を圧延機で圧延するに際し、圧延前の鋼板の板厚を用いて圧延機のロールギャップをフィードフォワード制御して圧延後の鋼板の板厚を制御する圧延機の板厚制御方法において、圧延前の鋼板の表裏を3本以上の小径ロール押さえ小径ロールを設置し、該小径ロールにおける圧延方向の荷重変化に基づいてロールギャップ変更量を求めて、該ロールギャップ変更量にてフィードフォワードするロールギャップ量を補正する。

目的

本発明は、このような従来の問題に鑑みてなされたものであり、圧延機のロールギャップをFF制御するにあたって、高張力鋼板や高炭素鋼などの難圧延材に対しても高精度で板厚制御ができる圧延機の板厚制御方法を提供する

効果

実績

技術文献被引用数
0件
牽制数
0件

この技術が所属する分野

ライセンス契約や譲渡などの可能性がある特許掲載中! 開放特許随時追加・更新中 詳しくはこちら

請求項1

鋼板圧延機圧延するに際し、圧延前の鋼板の板厚を用いて圧延機のロールギャップフィードフォワード制御して圧延後の鋼板の板厚を制御する圧延機の板厚制御方法において、圧延前の鋼板の表裏を3本以上の小径ロール押さえ小径ロールを設置し、該小径ロールにおける圧延方向の荷重変化に基づいてロールギャップ変更量を求めて、該ロールギャップ変更量にてフィードフォワードするロールギャップ量補正することを特徴とする圧延機の板厚制御方法。

請求項2

請求項1に記載の圧延機の板厚制御方法において、前記ロールギャップ変更量を求めるにあたっては、対象とする被圧延材と同じまたは類似の被圧延材についての、前記小径ロールにおける圧延方向の荷重変化が圧延機の荷重変化に及ぼす影響係数に基づいて、圧延機の荷重の変化およびロールギャップ変更量を求めることを特徴とする圧延機の板厚制御方法。

請求項3

鋼板を圧延機で圧延するに際し、圧延前の鋼板の板厚を用いて圧延機のロールギャップをフィードフォワード制御して圧延後の鋼板の板厚を制御する圧延機の板厚制御装置において、荷重計を有し、圧延前の鋼板の表裏を3本以上の小径のロールで押さえる小径ロールと、該小径ロールにおける圧延方向の荷重変化が圧延機の荷重変化に及ぼす影響係数を演算し格納する学習用演算器と、該学習用演算器に格納された前記影響係数と前記小径ロールにおける圧延方向の荷重変化に基づいてロールギャップ変更量を求めて、フィードフォワードするロールギャップ量を補正する演算器と、圧延機の圧下装置に補正されたロールギャップ量での圧下を指令するロールギャップ制御装置とを具備することを特徴とする圧延機の板厚制御装置。

技術分野

0001

本発明は、圧延機における鋼板板厚精度向上を目的に、被圧延材板厚を圧延機入側で測定し、これに基づき圧延機のロールギャップ演算フィードフォワード制御(以下、FF制御と称する)する、圧延機の板厚制御方法および装置に関するものである。

0002

本発明は、圧延機における鋼板の板厚精度向上を目的に、被圧延材の圧延方向でバラツキのある板厚、変形抵抗塑性係数)を圧延機入側で測定し、圧延機のロールギャップをフィードフォワード制御(以下、FF制御と称する)する、圧延機の板厚制御方法および装置に関するものである。

背景技術

0003

これまでの圧延機の板厚制御方法は、圧延機入側に設置した板厚計で測定した板厚と当初予定していた板厚との偏差(以下、板厚偏差とも称する)を用いて圧延機のロールギャップをFF制御する方法が一般的である。圧延機の出側板厚hは、ロールギャップS、圧延荷重P、およびミル定数Kとすると、以下の式(1)に示すように求めることができる。

0004

0005

図1は、従来の圧延機の板厚制御方法を説明する図である。

0006

入側板厚H1の時、ロールギャップをS1に調整し圧延荷重P1として圧延し、その結果、圧延出側の目標板厚h1を得る。仮に、入側板厚が変動しH2となり、ロールギャップを調整しないでS1のままとすると、出側板厚はh2となってしまう。そこで、圧延後の目標板厚h1を得るために、ロールギャップをS1からS2に調整して出側板厚h1にする制御を行う。

0007

上記、圧延前の被圧延材の板厚偏差を用いてロールギャップをFF制御し圧延出側の板厚偏差を減少させる制御方法では、被圧延材の変形抵抗(塑性係数)を考慮していないため誤差が大きくなる場合があり、制御ゲインを上げられず板厚偏差を減少しきれないという問題点があった。

0008

そこで板厚制御精度の向上のため、例えば、特許文献1には、圧延機前方に設置されたブライドルロールの前後における被圧延材の張力と、ブライドルロールを駆動するモータ負荷をそれぞれ計測し塑性係数の変化を考慮して、圧延ロールのロールギャップを補正して、被圧延材の板厚を制御する技術が開示されている。

先行技術

0009

特開平1−245908号公報

発明が解決しようとする課題

0010

近年需要が増加している高張力鋼板高炭素鋼などの難圧延材にあっては、従来の被圧延材に比べて、熱延での板厚精度のみでなく巻取り中、巻取り後の冷却時の条件などによる圧延方向での硬度変動(塑性係数の変動)がより大きくなってきている。また、板厚公差の狭い高品質製品の需要も増加しており、難圧延材かつ高品質という高レベルの板厚制御が求められている。

0011

特許文献1に開示の技術では、ブライドルロールの張力とモータ負荷による塑性係数の演算を実施しているものの、圧延方向数mごとに大きく塑性係数が変化するような被圧延材においては必要な板厚制御精度が得られない問題点がある。

0012

本発明は、このような従来の問題に鑑みてなされたものであり、圧延機のロールギャップをFF制御するにあたって、高張力鋼板や高炭素鋼などの難圧延材に対しても高精度で板厚制御ができる圧延機の板厚制御方法を提供することを目的とする。

課題を解決するための手段

0013

上記課題は、以下の発明によって解決できる。

0014

[1]鋼板を圧延機で圧延するに際し、圧延前の鋼板の板厚を用いて圧延機のロールギャップをフィードフォワード制御して圧延後の鋼板の板厚を制御する圧延機の板厚制御方法において、
圧延前の鋼板の表裏を3本以上の小径ロール押さえ小径ロールを設置し、
該小径ロールにおける圧延方向の荷重変化に基づいてロールギャップ変更量を求めて、
該ロールギャップ変更量にてフィードフォワードするロールギャップ量を補正することを特徴とする圧延機の板厚制御方法。

0015

[2] 上記[1]に記載の圧延機の板厚制御方法において、
前記ロールギャップ変更量を求めるにあたっては、
対象とする被圧延材と同じまたは類似の被圧延材についての、前記小径ロールにおける圧延方向の荷重変化が圧延機の荷重変化に及ぼす影響係数に基づいて、圧延機の荷重の変化およびロールギャップ変更量を求めることを特徴とする圧延機の板厚制御方法。

0016

[3]鋼板を圧延機で圧延するに際し、圧延前の鋼板の板厚を用いて圧延機のロールギャップをフィードフォワード制御して圧延後の鋼板の板厚を制御する圧延機の板厚制御装置において、
荷重計を有し、圧延前の鋼板の表裏を3本以上の小径のロールで押さえる小径ロールと、
該小径ロールにおける圧延方向の荷重変化が圧延機の荷重変化に及ぼす影響係数を演算し格納する学習用演算器と、
該学習用演算器に格納された前記影響係数と前記小径ロールにおける圧延方向の荷重変化に基づいてロールギャップ変更量を求めて、フィードフォワードするロールギャップ量を補正する演算器と、
圧延機の圧下装置に補正されたロールギャップ量での圧下を指令するロールギャップ制御装置とを具備することを特徴とする圧延機の板厚制御装置。

発明の効果

0017

本発明によれば、圧延機前に設置した小径ロールにおける圧延方向の荷重変動を用いてロールギャップ変更量を求めて、このロールギャップ変更量にてフィードフォワードするロールギャップ量を補正するようにしたので、高張力鋼板や高炭素鋼などの難圧延材に対しても板厚制御能力が向上しオフゲージの削減(歩留りの向上)、高品質製品の製造が出来るようになった。

図面の簡単な説明

0018

従来の圧延機の板厚制御方法を説明する図である。
本発明における板厚制御と被圧延材の塑性曲線の関係を示す図である。
本発明を実施するための装置構成例を示す図である。
影響係数(ΔP/Δp)の算出例を示す図である。

実施例

0019

以下、図面などを参照しながら、本発明を実施するための形態を説明する。図2は、本発明における板厚制御と被圧延材の塑性曲線の関係を示す図である。

0020

入側板厚H1の時、ロールギャップをS1に調整し圧延荷重P1として圧延し、その結果、圧延出側の目標板厚h1を得る。仮に、入側板厚が変動しH2となり、ロールギャップを調整しないでS1のままとすると、出側板厚はh2となってしまう。そこで、圧延後の目標板厚h1を得るために、ロールギャップをS1からS2に調整して出側板厚h1にする制御を行う。ここまでは、図1で示したFF制御を用いた従来の圧延機の板厚制御方法と同じである。

0021

しかしながら、被圧延材の塑性曲線は、熱延の巻取り温度冷却ムラ等により長手方向で変化するため、板厚制御精度の向上には変形抵抗の補正をする必要がある。

0022

例えば、被圧延材の塑性曲線が図2破線で示すように変化した場合は、ロールギャップがS2のままでは出側板厚h3となってしまい、目標板厚h1を得ることができない。そこで、被圧延材の塑性係数(変形抵抗)を考慮してロールギャップをS2からさらにS3にロールギャップを補正することによって、最終的に目標板厚h1を得る。

0023

図3は、本発明を実施するための装置構成例を示す図である。図中、1は鋼板、2は小径ロール、3は入側板厚計、4は出側板厚計、5は圧延機、6は演算器、7はロールギャップ制御装置、および8は学習用演算器をそれぞれ表す。

0024

鋼板1の通板方向順に、小径ロール2、荷重計21、入側板厚計3、圧延機5、荷重計51、および出側板厚計4が配置されている。なお、小径ロール2および入側板厚計3の配置順は、逆であっても良い。

0025

本発明では圧延出側での板厚を所望の板厚とするために、小径ロール2での測定結果と入側板厚計3での測定結果を用いて、演算器6でロールギャップ変更量を演算し、演算したロールギャップ変更量でフィードフォワードするロールギャップ量を補正してロールギャップ制御装置7に送る。

0026

ロールギャップ制御装置7は、圧延機5の油圧などの圧下装置(図示せず)に搬送トラッキングしたタイミングでロールギャップ指令を送る。

0027

本発明が対象とする圧延方向での硬度変動(塑性係数の変動)を正確に捉えるべく、鋼板1に塑性変形させる。このために、小径ロール2として、レベラーロールのような小径のロールを少なくも3本使用して、鋼板1を表裏から押える。図3では、裏に1本、次に表に1本、さらに裏に1本と、裏表に交互に計3本の小径のロールを配置して、鋼板1を押えている。表裏交互に小径のロールを配置してもよく、このように合計3本以上の小径のロールを表裏いずれの面から交互に配置する。

0028

小径ロール2および圧延機5に、それぞれロードセル等の荷重計21および荷重計51を設置している。荷重計21および荷重計51で測定した荷重値と、入側板厚計3および出側板厚計4で測定した板厚値とを用いて、学習用演算器8では、小径ロール2での荷重の変化Δpと圧延機5の荷重の変化ΔPとの影響係数(ΔP/Δp)を演算し格納する。

0029

この影響係数(ΔP/Δp)は、小径ロール2での荷重の変化Δpが、圧延機5の荷重にどのような荷重の変化を与えるかを示すものである。図4は、影響係数(ΔP/Δp)の算出例を示す図である。

0030

影響係数(ΔP/Δp)は、同じ鋼種では図4に示すようにほぼ一定値を示すが、被圧延材により大きく異なるため、多品種多鋼種の圧延に適用する場合は、鋼種等で細分化して学習した係数を格納しておくことが望ましい。なお、演算器6と学習用演算器8を別にしているが、同じ演算器を用いようにしても良い。

0031

先ず、小径ロールでの荷重を測定し、被圧延材の長手方向(圧延方向)の荷重の変化Δpを演算し、これに学習用演算器8格納された影響係数(ΔP/Δp)を掛けて、圧延機5の荷重の変化ΔPを求める。ここで用いる影響係数(ΔP/Δp)は、対象とする被圧延材と同じまたは類似の被圧延材についての影響係数を用いる。

0032

そして、求めた圧延機の荷重の変化ΔPを用いて、以下の(2)式からロールギャップ変更量ΔSを求める。ここで、ミル定数K、制御ゲインCである。

0033

0034

板厚精度向上を目的に、従来圧延機入側の板厚偏差のみを用いてFF制御していた、またはブライドルロールの張力とモータ負荷を用いて塑性係数を補正しFF制御していたものを、本発明は上述のように、圧延機前に設置した小径ロールにおける圧延方向の荷重変動を用いてロールギャップ変更量を求めて、このロールギャップ変更量にてフィードフォワードするロールギャップ量を補正するようにしたので、高張力鋼板や高炭素鋼などの難圧延材に対しても板厚制御能力が向上しオフゲージの削減(歩留りの向上)、高品質製品の製造が出来るようになった。また、手動での補正が不要になることから、圧延機の能力が向上し各種原単位の削減も出来るようになった。

0035

1鋼板
2小径ロール
21荷重計
3入側板厚計
4出側板厚計
5圧延機
51 荷重計
6演算器
7ロールギャップ調整装置
8学習用演算器

ページトップへ

この技術を出願した法人

この技術を発明した人物

ページトップへ

関連する挑戦したい社会課題

該当するデータがありません

関連する公募課題

該当するデータがありません

ページトップへ

技術視点だけで見ていませんか?

この技術の活用可能性がある分野

分野別動向を把握したい方- 事業化視点で見る -

ページトップへ

おススメ サービス

おススメ astavisionコンテンツ

新着 最近 公開された関連が強い技術

この 技術と関連性が強い技術

関連性が強い 技術一覧

この 技術と関連性が強い人物

関連性が強い人物一覧

この 技術と関連する社会課題

該当するデータがありません

この 技術と関連する公募課題

該当するデータがありません

astavision 新着記事

サイト情報について

本サービスは、国が公開している情報(公開特許公報、特許整理標準化データ等)を元に構成されています。出典元のデータには一部間違いやノイズがあり、情報の正確さについては保証致しかねます。また一時的に、各データの収録範囲や更新周期によって、一部の情報が正しく表示されないことがございます。当サイトの情報を元にした諸問題、不利益等について当方は何ら責任を負いかねることを予めご承知おきのほど宜しくお願い申し上げます。

主たる情報の出典

特許情報…特許整理標準化データ(XML編)、公開特許公報、特許公報、審決公報、Patent Map Guidance System データ