図面 (/)

技術 半導体装置または当該半導体装置を有する表示装置

出願人 株式会社半導体エネルギー研究所
発明者 山崎舜平黒崎大輔中澤安孝岡崎健一
出願日 2017年5月19日 (4年6ヶ月経過) 出願番号 2017-099657
公開日 2018年2月15日 (3年9ヶ月経過) 公開番号 2018-026526
状態 特許登録済
技術分野 液晶5(電極、アクティブマトリックス) 薄膜トランジスタ 物理蒸着
主要キーワード 九角形 FFT像 近接格子点 キャリア供給源 導電体化 光照射環境 スプリット幅 概略平坦
関連する未来課題
重要な関連分野

この項目の情報は公開日時点(2018年2月15日)のものです。
また、この項目は機械的に抽出しているため、正しく解析できていない場合があります

図面 (20)

課題

新規半導体装置作製方法を提供する。または、比較的低温で且つ高い信頼性を有する半導体装置の作製方法を提供する。

解決手段

成膜室で第1の酸化物半導体膜成膜する第1の工程と、成膜室で、第1の酸化物半導体膜上に第2の酸化物半導体膜を成膜する第2の工程と、を有し、成膜室の内部は、水蒸気分圧大気よりも小さい雰囲気であり、第1の酸化物半導体膜及び第2の酸化物半導体膜は、それぞれ結晶性を有するように成膜され、第2の酸化物半導体膜は、第1の酸化物半導体膜よりも結晶性が高く成膜される。

概要

背景

トランジスタに適用可能な半導体材料として、酸化物半導体が注目されている。例えば、特許文献1では、複数の酸化物半導体層を積層し、当該複数の酸化物半導体層の中で、チャネルとなる酸化物半導体層がインジウム及びガリウムを含み、且つインジウムの割合をガリウムの割合よりも大きくすることで、電界効果移動度(単に移動度、またはμFEという場合がある)を高めた半導体装置が開示されている。

また、非特許文献1では、In2O3−Ga2ZnO4−ZnO Systemの中で固溶域(solid solution range)について述べられている。

また、非特許文献2では、トランジスタの活性層として、インジウム亜鉛酸化物と、IGZOとの2層積層の酸化物半導体を有する構造が検討されている。

概要

新規な半導体装置の作製方法を提供する。または、比較的低温で且つ高い信頼性を有する半導体装置の作製方法を提供する。成膜室で第1の酸化物半導体膜成膜する第1の工程と、成膜室で、第1の酸化物半導体膜上に第2の酸化物半導体膜を成膜する第2の工程と、を有し、成膜室の内部は、水蒸気分圧大気よりも小さい雰囲気であり、第1の酸化物半導体膜及び第2の酸化物半導体膜は、それぞれ結晶性を有するように成膜され、第2の酸化物半導体膜は、第1の酸化物半導体膜よりも結晶性が高く成膜される。

目的

本発明の一態様は、比較的低温で且つ高い信頼性を有する半導体装置の作製方法を提供する

効果

実績

技術文献被引用数
0件
牽制数
0件

この技術が所属する分野

(分野番号表示ON)※整理標準化データをもとに当社作成

ライセンス契約や譲渡などの可能性がある特許掲載中! 開放特許随時追加・更新中 詳しくはこちら

請求項1

半導体装置作製方法であって、前記作製方法は、成膜室で第1の酸化物半導体膜成膜する第1の工程と、前記成膜室で、前記第1の酸化物半導体膜上に第2の酸化物半導体膜を成膜する第2の工程と、を有し、前記成膜室の内部は、水蒸気分圧大気よりも小さい雰囲気であり、前記第1の酸化物半導体膜及び前記第2の酸化物半導体膜は、それぞれ結晶性を有するように成膜され、前記第2の酸化物半導体膜は、前記第1の酸化物半導体膜よりも結晶性が高く成膜される、ことを特徴とする半導体装置の作製方法。

請求項2

半導体装置の作製方法であって、前記作製方法は、成膜室で第1の酸化物半導体膜を成膜する第1の工程と、前記成膜室で、前記第1の酸化物半導体膜上に第2の酸化物半導体膜を成膜する第2の工程と、を有し、前記成膜室の内部は、水蒸気分圧が大気よりも小さい雰囲気であり、前記第1の酸化物半導体膜及び前記第2の酸化物半導体膜は、それぞれ、意図的に加熱しない温度で成膜され、且つ結晶性を有するように成膜され、前記第2の酸化物半導体膜は、前記第1の酸化物半導体膜よりも結晶性が高く成膜される、ことを特徴とする半導体装置の作製方法。

請求項3

半導体装置の作製方法であって、前記作製方法は、成膜室で第1の酸化物半導体膜を成膜する第1の工程と、前記成膜室で、前記第1の酸化物半導体膜上に第2の酸化物半導体膜を成膜する第2の工程と、を有し、前記成膜室の内部は、水蒸気分圧が大気よりも小さい雰囲気であり、前記第1の酸化物半導体膜及び前記第2の酸化物半導体膜は、それぞれ、100℃以上200℃以下の温度で成膜され、且つ結晶性を有するように成膜され、前記第2の酸化物半導体膜は、前記第1の酸化物半導体膜よりも結晶性が高く成膜される、ことを特徴とする半導体装置の作製方法。

請求項4

請求項1乃至請求項3のいずれか一項において、前記第1の酸化物半導体膜及び前記第2の酸化物半導体膜は、それぞれ、スパッタリング法により成膜される、ことを特徴とする半導体装置の作製方法。

請求項5

請求項1乃至請求項4のいずれか一項において、前記第2の酸化物半導体膜は、前記第1の酸化物半導体膜よりも酸素分圧が高い雰囲気下で成膜される、ことを特徴とする半導体装置の作製方法。

請求項6

請求項1乃至請求項5のいずれか一項において、前記第1の酸化物半導体膜は、0%以上30%以下の酸素流量比で成膜され、前記第2の酸化物半導体膜は、30%より大きく100%以下の酸素流量比で成膜される、ことを特徴とする半導体装置の作製方法。

請求項7

請求項1乃至請求項6のいずれか一項において、前記第1の酸化物半導体膜は、ナノ結晶を有するように成膜され、前記第2の酸化物半導体膜は、c軸配向性結晶を有するように成膜される、ことを特徴とする半導体装置の作製方法。

請求項8

請求項1乃至請求項7のいずれか一項において、前記第1の酸化物半導体膜及び前記第2の酸化物半導体膜は、それぞれ、In−M−Zn酸化物(MはGa、Al、Y、またはSn)ターゲットを用いて成膜される、ことを特徴とする半導体装置の作製方法。

請求項9

請求項8において、前記In、前記M、及び前記Znの原子数比は、In:M:Zn=4:2:4.1またはその近傍である、ことを特徴とする半導体装置の作製方法。

請求項10

請求項8において、前記In、前記M、及び前記Znの原子数比は、In:M:Zn=5:1:7またはその近傍である、ことを特徴とする半導体装置の作製方法。

請求項11

請求項8において、前記In、前記M、及び前記Znの原子数比は、In:M:Zn=1:1:1.2またはその近傍である、ことを特徴とする半導体装置の作製方法。

技術分野

0001

本発明の一態様は、酸化物半導体膜を有する半導体装置に関する。または、本発明の一態様は、上記半導体装置を有する表示装置に関する。

0002

なお、本発明の一態様は、上記の技術分野に限定されない。本明細書等で開示する発明の一態様の技術分野は、物、方法、または、製造方法に関する。または、本発明の一態様は、プロセス、マシン、マニュファクチャ、または、組成物コンポジションオブマター)に関する。特に、本発明の一態様は、半導体装置、表示装置、発光装置蓄電装置記憶装置、それらの駆動方法、またはそれらの製造方法に関する。

0003

なお、本明細書等において、半導体装置とは、半導体特性を利用することで機能しうる装置全般を指す。トランジスタなどの半導体素子をはじめ、半導体回路演算装置、記憶装置は、半導体装置の一態様である。撮像装置、表示装置、液晶表示装置、発光装置、電気光学装置発電装置薄膜太陽電池有機薄膜太陽電池等を含む)、及び電子機器は、半導体装置を有している場合がある。

背景技術

0004

トランジスタに適用可能な半導体材料として、酸化物半導体が注目されている。例えば、特許文献1では、複数の酸化物半導体層を積層し、当該複数の酸化物半導体層の中で、チャネルとなる酸化物半導体層がインジウム及びガリウムを含み、且つインジウムの割合をガリウムの割合よりも大きくすることで、電界効果移動度(単に移動度、またはμFEという場合がある)を高めた半導体装置が開示されている。

0005

また、非特許文献1では、In2O3−Ga2ZnO4−ZnO Systemの中で固溶域(solid solution range)について述べられている。

0006

また、非特許文献2では、トランジスタの活性層として、インジウム亜鉛酸化物と、IGZOとの2層積層の酸化物半導体を有する構造が検討されている。

0007

特開2014−7399号公報

先行技術

0008

M. Nakamura, N. Kimizuka, and T. Mohri、「The Phase Relations in the In2O3−Ga2ZnO4−ZnO System at 1350℃」、J. Solid State Chem.、1991、Vol.93, pp.298−315
John F. Wager、「Oxide TFTs:A Progress Report」、Information Display 1/16、SID 2016、 Jan/Feb 2016、Vol.32,No.1, p.16−21

発明が解決しようとする課題

0009

非特許文献2では、チャネル保護型のボトムゲート型のトランジスタにおいて、トランジスタの活性層として、インジウム亜鉛酸化物と、IGZOとの2層積層とし、チャネルが形成されるインジウム亜鉛酸化物の膜厚を10nmとすることで、高い電界効果移動度(μ=62cm2V−1s−1)を実現している。一方で、トランジスタ特性の一つであるS値(Subthreshold Swing、SSともいう)が0.41V/decadeと大きい。また、トランジスタ特性の一つである、しきい値電圧(Vthともいう)が−2.9Vであり、所謂ノーマリーオンのトランジスタ特性である。

0010

酸化物半導体膜をチャネル領域に用いるトランジスタとしては、電界効果移動度が高い方が好ましい。しかしながら、トランジスタの電界効果移動度を高めると、トランジスタの特性がノーマリーオンの特性になりやすいといった問題がある。なお、ノーマリーオンとは、ゲート電極電圧印加しなくてもチャネルが存在し、トランジスタに電流が流れてしまう状態のことである。

0011

また、酸化物半導体膜をチャネル領域に用いるトランジスタにおいて、酸化物半導体膜中に形成される酸素欠損は、トランジスタ特性に影響を与えるため問題となる。例えば、酸化物半導体膜中に酸素欠損が形成されると、該酸素欠損に水素が結合し、キャリア供給源となる。酸化物半導体膜中にキャリア供給源が生成されると、酸化物半導体膜を有するトランジスタの電気特性の変動、代表的にはしきい値電圧のシフトが生じる。

0012

例えば、酸化物半導体膜中に酸素欠損が多すぎると、トランジスタのしきい値電圧がマイナス側にシフトしてしまい、ノーマリーオンの特性になる。よって、酸化物半導体膜中、特にチャネル領域においては、酸素欠損が少ない、あるいはノーマリーオンの特性にならない程度の酸素欠損量であることが好ましい。

0013

上記問題に鑑み、本発明の一態様は、酸化物半導体膜を有するトランジスタにおいて、電界効果移動度を向上させると共に信頼性を向上させることを課題の1つとする。または、本発明の一態様は、酸化物半導体膜を有するトランジスタにおいて、電気特性の変動を抑制すると共に、信頼性を向上させることを課題の1つとする。または、本発明の一態様は、消費電力が低減された半導体装置を提供することを課題の1つとする。または、本発明の一態様は、新規な半導体装置を提供することを課題の1つとする。または、本発明の一態様は、新規な半導体装置の作製方法を提供することを課題の1つとする。または、本発明の一態様は、比較的低温で且つ高い信頼性を有する半導体装置の作製方法を提供することを課題の1つとする。

0014

なお、上記の課題の記載は、他の課題の存在を妨げるものではない。なお、本発明の一態様は、必ずしも、これらの課題の全てを解決する必要はない。上記以外の課題は、明細書等の記載から自ずと明らかになるものであり、明細書等の記載から上記以外の課題を抽出することが可能である。

課題を解決するための手段

0015

本発明の一態様は、半導体装置の作製方法であって、作製方法は、成膜室で第1の酸化物半導体膜を成膜する第1の工程と、成膜室で、第1の酸化物半導体膜上に第2の酸化物半導体膜を成膜する第2の工程と、を有し、成膜室の内部は、水蒸気分圧大気よりも小さい雰囲気であり、第1の酸化物半導体膜及び第2の酸化物半導体膜は、それぞれ結晶性を有するように成膜され、第2の酸化物半導体膜は、第1の酸化物半導体膜よりも結晶性が高く成膜される半導体装置の作製方法である。

0016

また、本発明の他の一態様は、半導体装置の作製方法であって、作製方法は、成膜室で第1の酸化物半導体膜を成膜する第1の工程と、成膜室で、第1の酸化物半導体膜上に第2の酸化物半導体膜を成膜する第2の工程と、を有し、成膜室の内部は、水蒸気分圧が大気よりも小さい雰囲気であり、第1の酸化物半導体膜及び第2の酸化物半導体膜は、それぞれ、意図的に加熱しない温度で成膜され、且つ結晶性を有するように成膜され、第2の酸化物半導体膜は、第1の酸化物半導体膜よりも結晶性が高く成膜される半導体装置の作製方法である。

0017

また、本発明の他の一態様は、半導体装置の作製方法であって、作製方法は、成膜室で第1の酸化物半導体膜を成膜する第1の工程と、成膜室で、第1の酸化物半導体膜上に第2の酸化物半導体膜を成膜する第2の工程と、を有し、成膜室の内部は、水蒸気分圧が大気よりも小さい雰囲気であり、第1の酸化物半導体膜及び第2の酸化物半導体膜は、それぞれ、100℃以上200℃以下の温度で成膜され、且つ結晶性を有するように成膜され、第2の酸化物半導体膜は、第1の酸化物半導体膜よりも結晶性が高く成膜される半導体装置の作製方法である。

0018

上記態様において、第1の酸化物半導体膜及び第2の酸化物半導体膜は、それぞれ、スパッタリング法により成膜されると好ましい。

0019

また、上記態様において、第2の酸化物半導体膜は、第1の酸化物半導体膜よりも酸素分圧が高い雰囲気下で成膜されると好ましい。また、上記態様において、第1の酸化物半導体膜は、0%以上30%以下の酸素流量比で成膜され、第2の酸化物半導体膜は、30%より大きく100%以下の酸素流量比で成膜されると好ましい。

0020

また、上記態様において、第1の酸化物半導体膜は、ナノ結晶を有するように成膜され、第2の酸化物半導体膜は、c軸配向性結晶を有するように成膜されると好ましい。

0021

また、上記態様において、第1の酸化物半導体膜及び第2の酸化物半導体膜は、それぞれ、In−M−Zn酸化物(MはGa、Al、Y、またはSn)ターゲットを用いて成膜されると好ましい。

0022

また、上記態様において、In、M、及びZnの原子数比は、In:M:Zn=4:2:4.1またはその近傍であると好ましい。

0023

また、上記態様において、In、M、及びZnの原子数比は、In:M:Zn=5:1:7またはその近傍であると好ましい。

0024

また、上記態様において、In、M、及びZnの原子数比は、In:M:Zn=1:1:1.2またはその近傍であると好ましい。

発明の効果

0025

本発明の一態様により、酸化物半導体膜を有するトランジスタにおいて、電界効果移動度を向上させると共に信頼性を向上させることができる。または、本発明の一態様により、酸化物半導体膜を有するトランジスタにおいて、電気特性の変動を抑制すると共に、信頼性を向上させることができる。または、本発明の一態様により、消費電力が低減された半導体装置を提供することができる。または、本発明の一態様により、新規な半導体装置を提供することができる。または、本発明の一態様により、新規な半導体装置の作製方法を提供することができる。または、本発明の一態様により、比較的低温で且つ高い信頼性を有する半導体装置の作製方法を提供することができる。

0026

なお、これらの効果の記載は、他の効果の存在を妨げるものではない。なお、本発明の一態様は、必ずしも、これらの効果の全てを有する必要はない。なお、これら以外の効果は、明細書、図面、請求項などの記載から、自ずと明らかとなるものであり、明細書、図面、請求項などの記載から、これら以外の効果を抽出することが可能である。

図面の簡単な説明

0027

半導体装置の作製方法を説明するフローチャート
半導体装置の作製方法を説明するフローチャート。
成膜装置を説明する上面図。
成膜装置を説明する断面図。
半導体装置を説明する上面図及び断面図。
半導体装置を説明する上面図及び断面図。
半導体装置を説明する上面図及び断面図。
半導体装置を説明する上面図及び断面図。
半導体装置を説明する上面図及び断面図。
半導体装置を説明する上面図及び断面図。
半導体装置の作製方法を説明する断面図。
半導体装置の作製方法を説明する断面図。
半導体装置の作製方法を説明する断面図。
半導体装置の作製方法を説明する断面図。
酸化物半導体膜中に拡散する酸素または過剰酸素の拡散経路を表す概念図。
XRDスペクトル測定結果を説明する図。
試料TEM像、および電子線回折パターンを説明する図。
試料のEDXマッピングを説明する図。
複合酸化物半導体の断面HADF−STEM像を説明する図。
複合酸化物半導体を説明する断面模式図
複合酸化物半導体の原子数比を説明する図。
スパッタリング装置を説明する図。
複合酸化物半導体の作製方法を説明する工程フロー図
ターゲット近傍の断面を説明する図。
表示装置の一態様を示す上面図。
表示装置の一態様を示す断面図。
表示装置の一態様を示す断面図。
表示パネルの構成例を説明する図。
表示パネルの構成例を説明する図。
表示装置を説明するブロック図及び回路図。
表示モジュールを説明する図。
電子機器を説明する図。
電子機器を説明する図。
六角形回転角導出する方法を説明する図。
試料の平面TEM像を画像解析した像を説明する図。
ボロノイ図作成方法を説明する図。
ボロノイ領域の形状の個数、および割合を説明する図。
実施例における、トランジスタのId−Vg特性を説明する図。
実施例における、トランジスタの信頼性試験の結果を説明する図。
実施例における、トランジスタの断面TEM像を説明する図。
実施例における、試料の水素濃度を説明する図。
実施例における、試料の炭素濃度及び窒素濃度を説明する図。
実施例における、試料の酸素濃度を説明する図。
実施例における、試料のスピン密度を説明する図。

0028

以下、実施の形態について図面を参照しながら説明する。ただし、実施の形態は多くの異なる態様で実施することが可能であり、趣旨及びその範囲から逸脱することなくその形態及び詳細を様々に変更し得ることは当業者であれば容易に理解される。従って、本発明は、以下の実施の形態の記載内容に限定して解釈されるものではない。

0029

また、図面において、大きさ、層の厚さ、又は領域は、明瞭化のために誇張されている場合がある。よって、必ずしもそのスケールに限定されない。なお図面は、理想的な例を模式的に示したものであり、図面に示す形状又は値などに限定されない。

0030

また、本明細書にて用いる「第1」、「第2」、「第3」という序数詞は、構成要素の混同を避けるために付したものであり、数的に限定するものではないことを付記する。

0031

また、本明細書において、「上に」、「下に」などの配置を示す語句は、構成同士の位置関係を、図面を参照して説明するために、便宜上用いている。また、構成同士の位置関係は、各構成を描写する方向に応じて適宜変化するものである。従って、明細書で説明した語句に限定されず、状況に応じて適切に言い換えることができる。

0032

また、本明細書等において、トランジスタとは、ゲートと、ドレインと、ソースとを含む少なくとも三つの端子を有する素子である。そして、ドレイン(ドレイン端子ドレイン領域またはドレイン電極)とソース(ソース端子、ソース領域またはソース電極)の間にチャネル領域を有しており、チャネル領域を介して、ソースとドレインとの間に電流を流すことができるものである。なお、本明細書等において、チャネル領域とは、電流が主として流れる領域をいう。

0033

また、ソースやドレインの機能は、異なる極性のトランジスタを採用する場合や、回路動作において電流の方向が変化する場合などには入れ替わることがある。このため、本明細書等においては、ソースやドレインの用語は、入れ替えて用いることができるものとする。

0034

また、本明細書等において、「電気的に接続」には、「何らかの電気的作用を有するもの」を介して接続されている場合が含まれる。ここで、「何らかの電気的作用を有するもの」は、接続対象間での電気信号の授受を可能とするものであれば、特に制限を受けない。例えば、「何らかの電気的作用を有するもの」には、電極配線をはじめ、トランジスタなどのスイッチング素子抵抗素子インダクタキャパシタ、その他の各種機能を有する素子などが含まれる。

0035

また、本明細書等において、「平行」とは、二つの直線が−10°以上10°以下の角度で配置されている状態をいう。したがって、−5°以上5°以下の場合も含まれる。また、「垂直」とは、二つの直線が80°以上100°以下の角度で配置されている状態をいう。したがって、85°以上95°以下の場合も含まれる。

0036

また、本明細書等において、「膜」という用語と、「層」という用語とは、互いに入れ替えることが可能である。例えば、「導電層」という用語を、「導電膜」という用語に変更することが可能な場合がある。または、例えば、「絶縁膜」という用語を、「絶縁層」という用語に変更することが可能な場合がある。

0037

また、本明細書等において、特に断りがない場合、オフ電流とは、トランジスタがオフ状態非導通状態遮断状態、ともいう)にあるときのドレイン電流をいう。オフ状態とは、特に断りがない場合、nチャネル型トランジスタでは、ゲートとソースの間の電圧Vgsがしきい値電圧Vthよりも低い状態、pチャネル型トランジスタでは、ゲートとソースの間の電圧Vgsがしきい値電圧Vthよりも高い状態をいう。例えば、nチャネル型のトランジスタのオフ電流とは、ゲートとソースの間の電圧Vgsがしきい値電圧Vthよりも低いときのドレイン電流を言う場合がある。

0038

トランジスタのオフ電流は、Vgsに依存する場合がある。従って、トランジスタのオフ電流がI以下である、とは、トランジスタのオフ電流がI以下となるVgsの値が存在することを言う場合がある。トランジスタのオフ電流は、所定のVgsにおけるオフ状態、所定の範囲内のVgsにおけるオフ状態、または、十分に低減されたオフ電流が得られるVgsにおけるオフ状態、等におけるオフ電流を指す場合がある。

0039

一例として、しきい値電圧Vthが0.5Vであり、Vgsが0.5Vにおけるドレイン電流が1×10−9Aであり、Vgsが0.1Vにおけるドレイン電流が1×10−13Aであり、Vgsが−0.5Vにおけるドレイン電流が1×10−19Aであり、Vgsが−0.8Vにおけるドレイン電流が1×10−22Aであるようなnチャネル型トランジスタを想定する。当該トランジスタのドレイン電流は、Vgsが−0.5Vにおいて、または、Vgsが−0.5V乃至−0.8Vの範囲において、1×10−19A以下であるから、当該トランジスタのオフ電流は1×10−19A以下である、と言う場合がある。当該トランジスタのドレイン電流が1×10−22A以下となるVgsが存在するため、当該トランジスタのオフ電流は1×10−22A以下である、と言う場合がある。

0040

また、本明細書等では、チャネル幅Wを有するトランジスタのオフ電流を、チャネル幅Wあたりを流れる電流値で表す場合がある。また、所定のチャネル幅(例えば1μm)あたりを流れる電流値で表す場合がある。後者の場合、オフ電流の単位は、電流/長さの次元を持つ単位(例えば、A/μm)で表される場合がある。

0041

トランジスタのオフ電流は、温度に依存する場合がある。本明細書において、オフ電流は、特に記載がない場合、室温、60℃、85℃、95℃、または125℃におけるオフ電流を表す場合がある。または、当該トランジスタが含まれる半導体装置等の信頼性が保証される温度、または、当該トランジスタが含まれる半導体装置等が使用される温度(例えば、5℃乃至35℃のいずれか一の温度)におけるオフ電流、を表す場合がある。トランジスタのオフ電流がI以下である、とは、室温、60℃、85℃、95℃、125℃、当該トランジスタが含まれる半導体装置の信頼性が保証される温度、または、当該トランジスタが含まれる半導体装置等が使用される温度(例えば、5℃乃至35℃のいずれか一の温度)、におけるトランジスタのオフ電流がI以下となるVgsの値が存在することを指す場合がある。

0042

トランジスタのオフ電流は、ドレインとソースの間の電圧Vdsに依存する場合がある。本明細書において、オフ電流は、特に記載がない場合、Vdsが0.1V、0.8V、1V、1.2V、1.8V、2.5V,3V、3.3V、10V、12V、16V、または20Vにおけるオフ電流を表す場合がある。または、当該トランジスタが含まれる半導体装置等の信頼性が保証されるVds、または、当該トランジスタが含まれる半導体装置等において使用されるVdsにおけるオフ電流、を表す場合がある。トランジスタのオフ電流がI以下である、とは、Vdsが0.1V、0.8V、1V、1.2V、1.8V、2.5V,3V、3.3V、10V、12V、16V、20V、当該トランジスタが含まれる半導体装置の信頼性が保証されるVds、または、当該トランジスタが含まれる半導体装置等において使用されるVds、におけるトランジスタのオフ電流がI以下となるVgsの値が存在することを指す場合がある。

0043

上記オフ電流の説明において、ドレインをソースと読み替えてもよい。つまり、オフ電流は、トランジスタがオフ状態にあるときのソースを流れる電流を言う場合もある。

0044

また、本明細書等では、オフ電流と同じ意味で、リーク電流と記載する場合がある。また、本明細書等において、オフ電流とは、例えば、トランジスタがオフ状態にあるときに、ソースとドレインとの間に流れる電流を指す場合がある。

0045

また、本明細書等において、トランジスタのしきい値電圧とは、トランジスタにチャネルが形成されたときのゲート電圧(Vg)を指す。具体的には、トランジスタのしきい値電圧とは、ゲート電圧(Vg)を横軸に、ドレイン電流(Id)の平方根縦軸プロットした曲線(Vg−√Id特性)において、最大傾きである接線を外挿したときの直線と、ドレイン電流(Id)の平方根が0(Idが0A)との交点におけるゲート電圧(Vg)を指す場合がある。あるいは、トランジスタのしきい値電圧とは、チャネル長をL、チャネル幅をWとし、Id[A]×L[μm]/W[μm]の値が1×10−9[A]となるゲート電圧(Vg)を指す場合がある。

0046

また、本明細書等において、「半導体」と表記した場合であっても、例えば、導電性が十分に低い場合は、「絶縁体」としての特性を有する場合がある。また、「半導体」と「絶縁体」とは境界が曖昧であり、厳密に区別できない場合がある。したがって、本明細書等に記載の「半導体」は、「絶縁体」に言い換えることが可能な場合がある。同様に、本明細書等に記載の「絶縁体」は、「半導体」に言い換えることが可能な場合がある。または、本明細書等に記載の「絶縁体」を「半絶縁体」に言い換えることが可能な場合がある。

0047

また、本明細書等において、「半導体」と表記した場合であっても、例えば、導電性が十分に高い場合は、「導電体」としての特性を有する場合がある。また、「半導体」と「導電体」とは境界が曖昧であり、厳密に区別できない場合がある。したがって、本明細書等に記載の「半導体」は、「導電体」に言い換えることが可能な場合がある。同様に、本明細書等に記載の「導電体」は、「半導体」に言い換えることが可能な場合がある。

0048

また、本明細書等において、半導体の不純物とは、半導体膜を構成する主成分以外をいう。例えば、濃度が0.1原子%未満の元素は不純物である。不純物が含まれることにより、半導体にDOS(Density of States)が形成されることや、キャリア移動度が低下することや、結晶性が低下することなどが起こる場合がある。半導体が酸化物半導体を有する場合、半導体の特性を変化させる不純物としては、例えば、第1族元素、第2族元素、第13族元素、第14族元素、第15族元素、主成分以外の遷移金属などがあり、特に、水素(水にも含まれる)、リチウムナトリウムシリコンホウ素、リン炭素窒素などがある。酸化物半導体の場合、例えば水素などの不純物の混入によって酸素欠損を形成する場合がある。また、半導体がシリコンを有する場合、半導体の特性を変化させる不純物としては、例えば、酸素、水素を除く第1族元素、第2族元素、第13族元素、第15族元素などがある。

0049

また、本明細書等について、In:Ga:Zn=4:2:3またはその近傍とは、原子数の総和に対して、Inが4の場合、Gaが1以上3以下(1≦Ga≦3)であり、Znが2以上4以下(2≦Zn≦4)とする。また、In:Ga:Zn=5:1:6またはその近傍とは、原子数の総和に対して、Inが5の場合、Gaが0.1より大きく2以下(0.1<Ga≦2)であり、Znが5以上7以下(5≦Zn≦7)とする。また、In:Ga:Zn=1:1:1またはその近傍とは、原子数の総和に対して、Inが1の場合、Gaが0.1より大きく2以下(0.1<Ga≦2)であり、Znが0.1より大きく2以下(0.1<Zn≦2)とする。

0050

(実施の形態1)
本実施の形態では、本発明の一態様の半導体装置及び半導体装置の作製方法について、図1乃至図11を参照して説明する。

0051

本発明の一態様は、成膜室で、第1の酸化物半導体膜を成膜する第1の工程と、成膜室で第1の酸化物半導体膜上に第2の酸化物半導体膜を成膜する第2の工程と、を有し、成膜室の内部は、水蒸気分圧が大気よりも小さい雰囲気であり、第1の酸化物半導体膜及び第2の酸化物半導体膜は、それぞれ結晶性を有するように成膜され、第2の酸化物半導体膜は、第1の酸化物半導体膜よりも結晶性が高く成膜される半導体装置の作製方法である。

0052

複数の酸化物半導体膜(ここでは、第1の酸化物半導体膜、及び第2の酸化物半導体膜)を積層して形成する場合、第1の酸化物半導体膜と、第2の酸化物半導体膜との界面における不純物(具体的には、水素、水分など)が問題となる。

0053

第1の酸化物半導体膜と、第2の酸化物半導体膜との界面に不純物が付着または混入することにより、半導体装置の信頼性が悪くなる場合がある。したがって、第1の酸化物半導体膜と、第2の酸化物半導体膜との界面には水素または水分などの不純物が少ないほど好ましい。

0054

そこで、本発明の一態様においては、第1の酸化物半導体膜を成膜する第1の工程と、第2の酸化物半導体膜を成膜する第2の工程と、を同じ成膜室で行い、且つ当該成膜室の内部を水蒸気分圧が大気よりも小さい雰囲気とする。

0055

なお、水蒸気分圧が大気よりも小さい雰囲気とは、少なくとも大気よりも減圧の雰囲気である。具体的には、圧力が低真空または中真空(数100Paから0.1Pa)、または、高真空または超高真空(0.1Paから1×10−7Pa)とすればよい。

0056

上記態様とすることで、第1の酸化物半導体膜と、第2の酸化物半導体膜との界面に不純物が付着または混入することを抑制することができる。

0057

また、第1の酸化物半導体膜及び第2の酸化物半導体膜は、それぞれ結晶性を有するように成膜される。また、第2の酸化物半導体膜は、第1の酸化物半導体膜よりも結晶性が高く成膜される。

0058

第1の酸化物半導体膜及び第2の酸化物半導体膜の結晶性については、実施の形態3または実施の形態4で詳細に説明を行う。

0059

また、第1の酸化物半導体膜及び第2の酸化物半導体膜の成膜後に、第1の酸化物半導体膜及び第2の酸化物半導体膜中に含まれうる水素、水分などを除去する工程を行ってもよい。なお、本明細書等において、酸化物半導体膜中に含まれる水素を取り除く処理を、脱水素化処理呼称する場合がある。同様に、酸化物半導体膜中に含まれる水分を取り除く処理を、脱水化処理と呼称する場合がある。

0060

また、本発明の一態様の半導体装置の作製方法とすることで、複数の酸化物半導体膜のそれぞれを、不純物濃度が低く、欠陥準位密度の低い酸化物半導体膜とすることができる。

0061

なお、酸化物半導体膜としては、不純物濃度が低く、欠陥準位密度の低い酸化物半導体膜を用いることで、優れた電気特性を有するトランジスタを作製することができ好ましい。ここでは、不純物濃度が低く、欠陥準位密度の低い(酸素欠損の少ない)ことを高純度真性または実質的に高純度真性とよぶ。なお、酸化物半導体膜中の不純物としては、代表的には水、水素などが挙げられる。

0062

高純度真性または実質的に高純度真性である酸化物半導体膜は、キャリア発生源が少ないため、キャリア密度を低くすることができる。従って、該酸化物半導体膜にチャネル領域が形成されるトランジスタは、しきい値電圧がマイナスとなる電気特性(ノーマリーオンともいう。)になることが少ない。また、高純度真性または実質的に高純度真性である酸化物半導体膜は、欠陥準位密度が低いため、トラップ準位密度も低くなる場合がある。また、高純度真性または実質的に高純度真性である酸化物半導体膜は、オフ電流が著しく小さく、チャネル幅が1×106μmでチャネル長Lが10μmの素子であっても、ソース電極とドレイン電極間の電圧(ドレイン電圧)が1Vから10Vの範囲において、オフ電流が、半導体パラメータアナライザ測定限界以下、すなわち1×10−13A以下という特性を得ることができる。

0063

<1−1.半導体装置の作製方法>
次に、本発明の一態様の半導体装置の作製方法について、図1及び図2を用いて説明を行う。なお、図1及び図2は、本発明の一態様の半導体装置の作製方法を説明するフローチャートである。

0064

[第1の工程:第1の酸化物半導体膜の成膜]
第1の工程は、成膜室で基板上に第1の酸化物半導体膜を成膜する工程である(図1、ステップS101参照)。

0065

なお、本実施の形態においては、基板上に第1の酸化物半導体膜を成膜する工程を例示するがこれに限定されない。例えば、基板上に絶縁膜、半導体膜、または導電膜等の様々な膜が形成された上に第1の酸化物半導体膜を形成してもよい。

0066

第1の酸化物半導体膜は、Inと、M(MはGa、Al、Y、またはSn)と、Znと、を有すると好ましい。また、第1の酸化物半導体膜は、Inの原子数比がMの原子数比より多い領域を有すると好ましい。一例としては、第1の酸化物半導体膜のIn、M、及びZnの原子数の比を、In:M:Zn=4:2:3またはその近傍、あるいはIn:M:Zn=5:1:7またはその近傍とすると好ましい。

0067

また、第1の酸化物半導体膜の成膜時に用いるガスとしては、不活性ガス(代表的にはアルゴン)、及び酸素ガスの少なくとも一つを用いればよい。

0068

例えば、第1の酸化物半導体膜を成膜する際に、アルゴンガスまたは酸素ガスのいずれか一方を用いる。また、第1の酸化物半導体膜の成膜する際の酸素ガス流量ガス流量全体に占める割合(酸素流量比ともいう)としては、0%以上30%以下、好ましくは5%以上15%以下である。上述の酸素流量比とすることで、第1の酸化物半導体膜の結晶性を低くすることができる。また、上述の酸素流量比とすることで、第1の酸化物半導体膜の材料構成を、後述するCAC−OSとすることができる。

0069

また、第1の酸化物半導体膜の形成時の基板温度としては、室温(25℃)以上200℃以下、好ましくは室温以上130℃以下とすればよい。基板温度を上記範囲とすることで、大面積ガラス基板を用いる場合に、基板の撓みまたは歪みを抑制することができる。

0070

[第2の工程:第2の酸化物半導体膜の成膜]
第2の工程は、第1の酸化物半導体膜上に第2の酸化物半導体膜を成膜する工程である(図1、ステップS201参照)。

0071

第2の酸化物半導体膜は、Inと、M(MはGa、Al、Y、またはSn)と、Znと、を有すると好ましい。また、第2の酸化物半導体膜は、Inの原子数比がMの原子数比より多い領域を有すると好ましい。一例としては、第2の酸化物半導体膜のIn、M、及びZnの原子数の比を、In:M:Zn=4:2:3またはその近傍、あるいはIn:M:Zn=5:1:7またはその近傍とすると好ましい。

0072

また、第2の酸化物半導体膜の成膜時に用いるガスとしては、不活性ガス(代表的にはアルゴン)、及び酸素ガスの少なくとも一つを用いればよい。

0073

例えば、第2の酸化物半導体膜を成膜する際に、アルゴンガスまたは酸素ガスのいずれか一方を用いる。また、第2の酸化物半導体膜の成膜する際の酸素流量比としては、30%より大きく100%以下、好ましくは50%以上100%以下、さらに好ましくは70%以上100%以下である。上述の酸素流量比とすることで、第2の酸化物半導体膜の結晶性を高くすることができる。

0074

また、第2の酸化物半導体膜の形成時の基板温度としては、室温(25℃)以上200℃以下、好ましくは室温以上130℃以下とすればよい。基板温度を上記範囲とすることで、大面積のガラス基板を用いる場合に、基板の撓みまたは歪みを抑制することができる。

0075

また、上述した第1の工程及び第2の工程は、同じ成膜室で行われ、当該成膜室は、水蒸気分圧が大気よりも小さい雰囲気である。よって、第1の酸化物半導体膜と、第2の酸化物半導体膜との界面に水、水素等の不純物が混入することを抑制することができる。また、同じ成膜室にて第1の酸化物半導体膜と、第2の酸化物半導体膜とが成膜されるため、製造コストを抑制することができる。

0076

また、第1の酸化物半導体膜の成膜(ステップS101)の前に、第3の工程として、基板の加熱処理を行ってもよい(図2、ステップS301)。

0077

第3の工程は、基板を加熱する工程である。第3の工程を行うことで、基板上に付着した表面吸着水などを好適に除去することができる。例えば、基板上に表面吸着水などが付着した状態で第1の酸化物半導体膜を成膜すると、第1の酸化物半導体膜中に水分等が取り込まれ、トランジスタ特性などに影響を与える。

0078

第3の工程を行う場合においては、図2に示すように、第3の工程、第1の工程、及び第2の工程の順で一貫して行われる。また、第1乃至第3の工程は、水蒸気分圧が大気よりも小さい雰囲気下で行われると好適である。

0079

<1−2.成膜装置の構成例>
ここで、本発明の一態様の半導体装置の作製方法に用いることができる成膜装置の構成例について、図3及び図4を用いて説明する。

0080

図3及び図4に示す成膜装置を用いることで、酸化物半導体膜中に入り込みうる不純物(特に水素、水)を抑制することができる。

0081

図3は、枚葉マルチチャンバーの成膜装置4000の上面図を模式的に示している。成膜装置4000は、基板を収容するカセットポート4101と、基板のアライメントを行うアライメントポート4102と、を備える大気側基板供給室4001と、大気側基板供給室4001から、基板を搬送する大気側基板搬送室4002と、基板の搬入を行い、且つ室内の圧力を大気圧から減圧、または減圧から大気圧へ切り替えるロードロック室4003aと、基板の搬出を行い、且つ室内の圧力を減圧から大気圧、または大気圧から減圧へ切り替えるアンロードロック室4003bと、真空中の基板の搬送を行う搬送室4004と、基板の加熱を行う基板加熱室4005と、ターゲットが配置され成膜を行う成膜室4006a、4006b、4006cと、を有する。

0082

なお、カセットポート4101は、図3に示すように複数(図3においては、3つ)有していても良い。

0083

また、大気側基板搬送室4002は、ロードロック室4003a及びアンロードロック室4003bと接続され、ロードロック室4003a及びアンロードロック室4003bは、搬送室4004と接続され、搬送室4004は、基板加熱室4005、成膜室4006a、4006b、4006cと接続する。

0084

なお、各室の接続部にはゲートバルブ4104が設けられており、大気側基板供給室4001と、大気側基板搬送室4002を除き、各室を独立して真空状態に保持することができる。また、大気側基板搬送室4002及び搬送室4004は、搬送ロボット4103を有し、ガラス基板を搬送することができる。

0085

また、基板加熱室4005は、プラズマ処理室を兼ねると好ましい。成膜装置4000は、処理と処理の間で基板を大気暴露することなく搬送することが可能なため、基板に不純物が吸着することを抑制できる。また、成膜や加熱処理などの順番を自由に構築することができる。なお、搬送室、成膜室、ロードロック室、アンロードロック室および基板加熱室は、上述の数に限定されず、設置スペースプロセス条件に合わせて、適宜最適な数を設けることができる。

0086

次に、図3に示す成膜装置4000の一点鎖線A1−A2、B1−B2、及びB2−B3の切断面に相当する断面を図4に示す。

0087

図4(A)は、基板加熱室4005と、搬送室4004の断面図である。図4(A)に示す基板加熱室4005は、基板を格納することができる複数の加熱ステージ4105を有する。

0088

なお、図4(A)において、加熱ステージ4105は、7段の構成について示すが、これに限定されず、1段以上7段未満の構成や8段以上の構成としてもよい。加熱ステージ4105の段数を増やすことで複数の基板を同時に加熱処理できるため、生産性が向上するため好ましい。また、基板加熱室4005は、バルブを介して真空ポンプ4200と接続されている。真空ポンプ4200としては、例えば、ドライポンプ、およびメカニカルブースターポンプ等を用いることができる。

0089

また、基板加熱室4005に用いることのできる加熱機構としては、例えば、抵抗発熱体などを用いて加熱する加熱機構としてもよい。または、加熱されたガスなどの媒体からの熱伝導または熱輻射によって、加熱する加熱機構としてもよい。例えば、GRTA(Gas Rapid Thermal Anneal)、LRTA(Lamp Rapid Thermal Anneal)などのRTA(Rapid Thermal Anneal)を用いることができる。LRTAは、ハロゲンランプメタルハライドランプキセノンアークランプカーボンアークランプ高圧ナトリウムランプ高圧水銀ランプなどのランプから発する光(電磁波)の輻射により、被処理物を加熱する。GRTAは、高温のガスを用いて熱処理を行う。ガスとしては、不活性ガスが用いられる。

0090

また、基板加熱室4005は、マスフローコントローラ4300を介して、精製機4301と接続される。なお、マスフローコントローラ4300及び精製機4301は、ガス種の数だけ設けられるが、簡単のため一つのみを示す。基板加熱室4005に導入されるガスは、露点が−80℃以下、好ましくは−100℃以下であるガスを用いることができ、例えば、酸素ガス、窒素ガス、及び希ガス(アルゴンガスなど)を用いる。

0091

搬送室4004は、搬送ロボット4103を有している。搬送ロボット4103は、複数の可動部と、基板を保持するアームと、を有し、各室へ基板を搬送することができる。また、搬送室4004は、バルブを介して真空ポンプ4200と、クライオポンプ4201と、接続されている。このような構成とすることで、搬送室4004は、大気圧から低真空または中真空(数100Paから0.1Pa程度)まで真空ポンプ4200を用いて排気され、バルブを切り替えて中真空から高真空または超高真空(0.1Paから1×10−7Pa程度)まではクライオポンプ4201を用いて排気される。

0092

また、例えば、クライオポンプ4201は、搬送室4004に対して2台以上並列に接続しても良い。このような構成とすることで、1台のクライオポンプがリジェネ中であっても、残りのクライオポンプを使って排気することが可能となる。なお、上述したリジェネとは、クライオポンプ内にため込まれた分子(または原子)を放出する処理をいう。クライオポンプは、分子(または原子)をため込みすぎると排気能力が低下してくるため、定期的にリジェネが行われる。

0093

図4(B)は、成膜室4006bと、搬送室4004と、ロードロック室4003aの断面図である。図4(B)を用いて、成膜室(スパッタリング室)の詳細について説明する。

0094

図4(B)に示す成膜室4006bは、ターゲット4106と、防着板4107と、基板ステージ4108と、を有する。なお、ここでは基板ステージ4108には、基板4109が設置されている。基板ステージ4108は、図示しないが、基板4109を保持する基板保持機構や、基板4109を裏面から加熱する裏面ヒーター等を備えていても良い。

0095

なお、基板ステージ4108は、成膜時に床面に対して概略垂直状態に保持され、基板受け渡し時には床面に対して概略水平状態に保持される。なお、図4(B)中において、破線で示す箇所が基板受け渡し時の基板ステージ4108の保持される位置となる。このような構成とすることで成膜時に混入しうるゴミまたはパーティクルが基板4109に付着する確率を、水平状態に保持するよりも抑制することができる。ただし、基板ステージ4108を床面に対して垂直(90°)状態に保持すると、基板4109が落下する可能性があるため、基板ステージ4108の床面に対する角度は、80°以上90°未満とすることが好ましい。

0096

また、防着板4107は、ターゲット4106からスパッタリングされる粒子が不要な領域に堆積することを抑制できる。また、防着板4107は、累積されたスパッタリング粒子剥離しないように、加工することが望ましい。例えば、表面粗さを増加させるブラスト処理、または防着板4107の表面に凹凸を設けても良い。

0097

また、成膜室4006bは、ガス加熱機構4302を介してマスフローコントローラ4300と接続され、ガス加熱機構4302はマスフローコントローラ4300を介して精製機4301と接続される。ガス加熱機構4302により、成膜室4006bに導入されるガスを40℃以上400℃以下、好ましくは50℃以上200℃以下に加熱することができる。なお、ガス加熱機構4302、マスフローコントローラ4300、および精製機4301は、ガス種の数だけ設けられるが、簡単のため一つのみを示す。成膜室4006bに導入されるガスは、露点が−80℃以下、好ましくは−100℃以下であるガスを用いることができ、例えば、酸素ガス、窒素ガス、及び希ガス(アルゴンガスなど)を用いる。

0098

また、成膜室4006bは、バルブを介してターボ分子ポンプ4202および真空ポンプ4200と接続される。

0099

また、成膜室4006bは、クライオトラップ4110が設けられる。

0100

クライオトラップ4110は、水などの比較的融点の高い分子(または原子)を吸着することができる機構である。ターボ分子ポンプ4202は大きいサイズの分子(または原子)を安定して排気し、かつメンテナンス頻度が低いため、生産性に優れる一方、水素や水の排気能力が低い。そこで、水などに対する排気能力を高めるため、クライオトラップ4110が成膜室4006bに接続された構成としている。クライオトラップ4110の冷凍機の温度は100K以下、好ましくは80K以下とする。また、クライオトラップ4110が複数の冷凍機を有する場合、冷凍機ごとに温度を変えると、効率的に排気することが可能となるため好ましい。例えば、1段目の冷凍機の温度を100K以下とし、2段目の冷凍機の温度を20K以下とすればよい。

0101

なお、成膜室4006bの排気方法は、これに限定されず、先の搬送室4004に示す排気方法(クライオポンプと真空ポンプとの排気方法)と同様の構成としてもよい。もちろん、搬送室4004の排気方法を成膜室4006bと同様の構成(ターボ分子ポンプと真空ポンプとの排気方法)としてもよい。

0102

なお、上述した搬送室4004、基板加熱室4005、及び成膜室4006bの背圧全圧)、ならびに各気体分子(原子)の分圧は、以下の通りとすると好ましい。とくに、成膜室4006bの背圧、ならびに各気体分子(原子)の分圧は、形成される膜中に不純物が混入され得る可能性があるので、注意する必要がある。

0103

上述した各室の背圧(全圧)は、1×10−4Pa以下、好ましくは3×10−5Pa以下、さらに好ましくは1×10−5Pa以下である。上述した各室の質量電荷比(m/z)が18である気体分子(原子)の分圧は、3×10−5Pa以下、好ましくは1×10−5Pa以下、さらに好ましくは3×10−6Pa以下である。また、上述した各室のm/zが28である気体分子(原子)の分圧は、3×10−5Pa以下、好ましくは1×10−5Pa以下、さらに好ましくは3×10−6Pa以下である。また、上述した各室のm/zが44である気体分子(原子)の分圧は、3×10−5Pa以下、好ましくは1×10−5Pa以下、さらに好ましくは3×10−6Pa以下である。

0104

なお、真空チャンバー内の全圧および分圧は、質量分析計を用いて測定することができる。例えば、株式会社アルバック四重極形質量分析計(Q−massともいう。)QuleeCGM−051を用いればよい。

0105

次に、図4(B)に示す搬送室4004、及びロードロック室4003aと、図4(C)に示す大気側基板搬送室4002、及び大気側基板供給室4001の詳細について説明を行う。なお、図4(C)は、大気側基板搬送室4002、及び大気側基板供給室4001の断面図である。

0106

図4(B)に示す搬送室4004については、図4(A)に示す搬送室4004の記載を参酌することができる。

0107

ロードロック室4003aは、基板受け渡しステージ4111を有する。ロードロック室4003aは、減圧状態から大気まで圧力を上昇させ、ロードロック室4003aの圧力が大気圧になった時に、大気側基板搬送室4002に設けられている搬送ロボット4103から基板受け渡しステージ4111が基板を受け取る。その後、ロードロック室4003aを真空引きし、減圧状態としたのち、搬送室4004に設けられている搬送ロボット4103が基板受け渡しステージ4111から基板を受け取る。

0108

また、ロードロック室4003aは、バルブを介して真空ポンプ4200、及びクライオポンプ4201と接続されている。真空ポンプ4200、及びクライオポンプ4201の排気系の接続方法は、搬送室4004の接続方法を参酌することで接続できるため、ここでの説明は省略する。なお、図3に示すアンロードロック室4003bは、ロードロック室4003aと同様の構成とすることができる。

0109

大気側基板搬送室4002は、搬送ロボット4103を有する。搬送ロボット4103により、カセットポート4101とロードロック室4003aとの基板の受け渡しを行うことができる。また、大気側基板搬送室4002、及び大気側基板供給室4001の上方にHEPAフィルター(High Efficiency Particulate Air Filter)等のゴミまたはパーティクルの混入を抑制するための機構を設けてもよい。

0110

大気側基板供給室4001は、複数のカセットポート4101を有する。カセットポート4101は、複数の基板を格納することができる。

0111

上記の成膜装置を用いて、酸化物半導体膜を成膜することで、酸化物半導体膜への不純物の入り込みを抑制できる。さらには、上記の成膜装置を用いて、酸化物半導体膜に接する膜を成膜することで、酸化物半導体膜に接する膜から酸化物半導体膜へ不純物の入り込みを抑制できる。

0112

例えば、図3及び図4に示す成膜装置を用いて、本発明の一態様の半導体装置を作製する場合、以下の順で行うことができる。

0113

成膜室4006bにて第1の酸化物半導体膜を成膜する。続いて、成膜室4006bにて第2の酸化物半導体膜を成膜する。なお、先の説明の通り、第1の酸化物半導体膜と、第2の酸化物半導体膜とは、成膜時の酸素ガスの流量を変えることで、酸化物半導体膜の結晶性または酸化物半導体膜の材料構成を変えることができる。

0114

または、基板加熱室4005にて基板を加熱する。続いて、成膜室4006bにて第1の酸化物半導体膜を成膜する。続いて、成膜室4006bにて第2の酸化物半導体膜を成膜する。このように、第1の酸化物半導体膜及び第2の酸化物半導体膜は、同一の成膜室4006b、及び同一のスパッタリングターゲットを用いて、同一基板上に形成される。別言すると、第1の酸化物半導体膜と、第2の酸化物半導体膜とは、同じ材料を用いて形成され、材料構成が異なる酸化物半導体膜となる。

0115

本実施の形態は、少なくともその一部を本明細書中に記載する他の実施の形態と適宜組み合わせて実施することができる。

0116

(実施の形態2)
本実施の形態では、本発明の一態様の半導体装置及び半導体装置の作製方法について、図5乃至15を用いて説明を行う。

0117

<2−1.半導体装置の構成例1>
図5(A)は、本発明の一態様の半導体装置であるトランジスタ100の上面図であり、図5(B)は、図5(A)に示す一点鎖線X1−X2間における切断面の断面図に相当し、図5(C)は、図5(A)に示す一点鎖線Y1−Y2間における切断面の断面図に相当する。なお、図5(A)において、煩雑になることを避けるため、トランジスタ100の構成要素の一部(ゲート絶縁膜として機能する絶縁膜等)を省略して図示している。また、一点鎖線X1−X2方向をチャネル長方向、一点鎖線Y1−Y2方向をチャネル幅方向と呼称する場合がある。なお、トランジスタの上面図においては、以降の図面においても図5(A)と同様に、構成要素の一部を省略して図示する場合がある。

0118

トランジスタ100は、基板102上の導電膜104と、基板102及び導電膜104上の絶縁膜106と、絶縁膜106上の酸化物半導体膜108と、酸化物半導体膜108上の導電膜112aと、酸化物半導体膜108上の導電膜112bと、を有する。また、トランジスタ100上、具体的には、酸化物半導体膜108、導電膜112a、及び導電膜112b上には、絶縁膜114と、絶縁膜114上の絶縁膜116と、絶縁膜116上の絶縁膜118とが形成されている。

0119

なお、トランジスタ100は、所謂チャネルエッチ型のトランジスタである。

0120

また、酸化物半導体膜108は、絶縁膜106上の酸化物半導体膜108_1と、酸化物半導体膜108_1上の酸化物半導体膜108_2と、を有する。なお、酸化物半導体膜108_1は、実施の形態1で説明した第1の酸化物半導体膜に相当し、酸化物半導体膜108_2は、実施の形態1で説明した第2の酸化物半導体膜に相当する。すなわち、酸化物半導体膜108_1、及び酸化物半導体膜108_2は、それぞれ独立に、Inの原子数比がMの原子数比より多い領域を有する。

0121

酸化物半導体膜108_1、及び酸化物半導体膜108_2が、それぞれ独立に、Inの原子数比がMの原子数比より多い領域を有することで、トランジスタ100の電界効果移動度を高くすることができる。具体的には、トランジスタ100の電界効果移動度が50cm2/Vsを超える、さらに好ましくはトランジスタ100の電界効果移動度が100cm2/Vsを超えることが可能となる。

0122

例えば、上記の電界効果移動度が高いトランジスタを、ゲート信号を生成するゲートドライバに用いることで、額縁幅の狭い(狭額縁ともいう)表示装置を提供することができる。また、上記の電界効果移動度が高いトランジスタを、表示装置が有する信号線からの信号の供給を行うソースドライバ(とくに、ソースドライバが有するシフトレジスタ出力端子に接続されるデマルチプレクサ)に用いることで、表示装置に接続される配線数が少ない表示装置を提供することができる。

0123

一方で、酸化物半導体膜108_1、及び酸化物半導体膜108_2が、それぞれ独立に、Inの原子数比がMの原子数比より多い領域を有していても、酸化物半導体膜108_1、及び酸化物半導体膜108_2それぞれの結晶性が高い場合、電界効果移動度が低くなる場合がある。

0124

しかしながら、本実施の形態においては、酸化物半導体膜108_1は、酸化物半導体膜108_2よりも結晶性が低い領域を有する。なお、酸化物半導体膜108の結晶性としては、例えば、X線回折(XRD:X−Ray Diffraction)を用いて分析する、あるいは、透過型電子顕微鏡TEM:Transmission Electron Microscope)を用いて分析することで解析できる。

0125

酸化物半導体膜108_1が結晶性の低い領域を有する場合、以下の優れた効果を有する。

0126

まず、酸化物半導体膜108中に形成されうる酸素欠損について説明を行う。

0127

酸化物半導体膜108に形成される酸素欠損は、トランジスタ特性に影響を与えるため問題となる。例えば、酸化物半導体膜108中に酸素欠損が形成されると、該酸素欠損に水素が結合し、キャリア供給源となる。酸化物半導体膜108中にキャリア供給源が生成されると、酸化物半導体膜108を有するトランジスタ100の電気特性の変動、代表的にはしきい値電圧のシフトが生じる。したがって、酸化物半導体膜108においては、酸素欠損が少ないほど好ましい。

0128

そこで、本発明の一態様においては、酸化物半導体膜108近傍の絶縁膜、具体的には、酸化物半導体膜108の上方に形成される絶縁膜114、116が過剰酸素を含有する構成である。絶縁膜114、116から酸化物半導体膜108へ酸素または過剰酸素を移動させることで、酸化物半導体膜中の酸素欠損を低減することが可能となる。

0129

ここで、図15(A)(B)を用いて、酸化物半導体膜108中に拡散する酸素または過剰酸素の経路について説明する。図15(A)(B)は、酸化物半導体膜108中に拡散する酸素または過剰酸素の拡散経路を表す概念図であり、図15(A)はチャネル長方向の概念図であり、図15(B)はチャネル幅方向の概念図である。

0130

絶縁膜114、116が有する酸素または過剰酸素は、上方側から、すなわち酸化物半導体膜108_2を通過して、酸化物半導体膜108_1に拡散する(図15(A)(B)に示すRoute 1)。

0131

あるいは、絶縁膜114、116が有する酸素または過剰酸素は、酸化物半導体膜108_1、及び酸化物半導体膜108_2それぞれの側面から酸化物半導体膜108中に拡散する(図15(B)に示すRoute 2)。

0132

例えば、図15(A)(B)に示すRoute 1の場合、酸化物半導体膜108_2の結晶性が高い場合、酸素または過剰酸素の拡散を阻害する場合がある。一方で、図15(B)に示すRoute 2の場合、酸化物半導体膜108_1、及び酸化物半導体膜108_2それぞれの側面から、酸化物半導体膜108_1、及び酸化物半導体膜108_2に酸素または過剰酸素を拡散させることが可能となる。

0133

また、図15(B)に示すRoute 2の場合、酸化物半導体膜108_1の結晶性が、酸化物半導体膜108_2の結晶性よりも低い領域を有するため、当該領域が過剰酸素の拡散経路となり、酸化物半導体膜108_1よりも結晶性の高い酸化物半導体膜108_2にも過剰酸素を拡散させることができる。なお、図15(A)(B)中には、図示しないが、絶縁膜106が酸素または過剰酸素を有する場合、絶縁膜106からも酸化物半導体膜108中に酸素または過剰酸素が拡散しうる

0134

また、図15(A)(B)中には、図示しないが、酸化物半導体膜108_2の成膜時に酸素ガスを用いる場合、当該酸素ガスが酸化物半導体膜108_1中に添加することができる。また、酸化物半導体膜108_1の膜厚が薄い、例えば、酸化物半導体膜108_1の膜厚が、5nm以上40nm以下、または10nm以上20nm以下の場合、酸化物半導体膜108_2の成膜時の酸素ガスを、酸化物半導体膜108_1の膜中に添加させることができるため好適である。

0135

このように、本発明の一態様の半導体装置においては、結晶構造が異なる酸化物半導体膜の積層構造とし、結晶性の低い領域を過剰酸素の拡散経路とすることで、信頼性の高い半導体装置を提供することができる。

0136

なお、酸化物半導体膜108を結晶性が低い酸化物半導体膜のみで構成する場合、バックチャネル側、すなわち酸化物半導体膜108_2に相当する領域に不純物(例えば、水素または水分など)の付着、または不純物が混入することにより、信頼性が悪くなる場合がある。

0137

酸化物半導体膜108に混入する水素または水分などの不純物は、トランジスタ特性に影響を与えるため問題となる。したがって、酸化物半導体膜108においては、水素または水分などの不純物が少ないほど好ましい。

0138

そこで、本発明の一態様において、酸化物半導体膜の上層の酸化物半導体膜の結晶性を高めることで、酸化物半導体膜108に混入しうる不純物を抑制することができる。特に、酸化物半導体膜108_2の結晶性を高めることで、導電膜112a、112bを加工する際のダメージを抑制することができる。酸化物半導体膜108の表面、すなわち酸化物半導体膜108_2の表面は、導電膜112a、112bの加工の際のエッチャントまたはエッチングガスに曝される。しかしながら、酸化物半導体膜108_2は、結晶性が高い領域を有するため、結晶性が低い酸化物半導体膜108_1と比較してエッチング耐性に優れる。したがって、酸化物半導体膜108_2は、エッチングストッパとして機能する。

0139

また、酸化物半導体膜108_1は、酸化物半導体膜108_2よりも結晶性が低い領域を有することで、キャリア密度が高くなる場合がある。

0140

また、酸化物半導体膜108_1のキャリア密度が高くなると、酸化物半導体膜108_1の伝導帯に対してフェルミ準位が相対的に高くなる場合がある。これにより、酸化物半導体膜108_1の伝導帯の下端が低くなり、酸化物半導体膜108_1の伝導帯下端と、ゲート絶縁膜(ここでは、絶縁膜106)中に形成されうるトラップ準位とのエネルギー差が大きくなる場合がある。該エネルギー差が大きくなることにより、ゲート絶縁膜中トラップされる電荷が少なくなり、トランジスタのしきい値電圧の変動を小さくできる場合がある。また、酸化物半導体膜108_1のキャリア密度が高くなると、酸化物半導体膜108の電界効果移動度を高めることができる。

0141

また、酸化物半導体膜108_1は、複合酸化物半導体であると好適である。当該複合酸化物半導体については、実施の形態4にて詳細に説明する。

0142

なお、図5(A)(B)(C)に示すトランジスタ100において、絶縁膜106は、トランジスタ100のゲート絶縁膜としての機能を有し、絶縁膜114、116、118は、トランジスタ100の保護絶縁膜としての機能を有する。また、トランジスタ100において、導電膜104は、ゲート電極としての機能を有し、導電膜112aは、ソース電極としての機能を有し、導電膜112bは、ドレイン電極としての機能を有する。なお、本明細書等において、絶縁膜106を第1の絶縁膜と、絶縁膜114、116を第2の絶縁膜と、絶縁膜118を第3の絶縁膜と、それぞれ呼称する場合がある。

0143

<2−2.半導体装置の構成要素>
次に、本実施の形態の半導体装置に含まれる構成要素について、詳細に説明する。

0144

[基板]
基板102の材質などに大きな制限はないが、少なくとも、後の熱処理に耐えうる程度の耐熱性を有している必要がある。例えば、ガラス基板、セラミック基板石英基板サファイア基板等を、基板102として用いてもよい。また、シリコンや炭化シリコンを材料とした単結晶半導体基板多結晶半導体基板シリコンゲルマニウム等の化合物半導体基板SOI基板等を適用することも可能であり、これらの基板上に半導体素子が設けられたものを、基板102として用いてもよい。なお、基板102として、ガラス基板を用いる場合、第6世代(1500mm×1850mm)、第7世代(1870mm×2200mm)、第8世代(2200mm×2400mm)、第9世代(2400mm×2800mm)、第10世代(2950mm×3400mm)等の大面積基板を用いることで、大型の表示装置を作製することができる。

0145

また、基板102として、可撓性基板を用い、可撓性基板上に直接、トランジスタ100を形成してもよい。または、基板102とトランジスタ100の間に剥離層を設けてもよい。剥離層は、その上に半導体装置を一部あるいは全部完成させた後、基板102より分離し、他の基板に転載するのに用いることができる。その際、トランジスタ100は耐熱性の劣る基板や可撓性の基板にも転載できる。

0146

[導電膜]
ゲート電極として機能する導電膜104、ソース電極として機能する導電膜112a、ドレイン電極として機能する導電膜112bとしては、クロム(Cr)、銅(Cu)、アルミニウム(Al)、金(Au)、銀(Ag)、亜鉛(Zn)、モリブデン(Mo)、タンタル(Ta)、チタン(Ti)、タングステン(W)、マンガン(Mn)、ニッケル(Ni)、鉄(Fe)、コバルト(Co)から選ばれた金属元素、または上述した金属元素を成分とする合金か、上述した金属元素を組み合わせた合金等を用いてそれぞれ形成することができる。

0147

また、導電膜104、112a、112bには、インジウムと錫とを有する酸化物(In−Sn酸化物)、インジウムとタングステンとを有する酸化物(In−W酸化物)、インジウムとタングステンと亜鉛とを有する酸化物(In−W−Zn酸化物)、インジウムとチタンとを有する酸化物(In−Ti酸化物)、インジウムとチタンと錫とを有する酸化物(In−Ti−Sn酸化物)、インジウムと亜鉛とを有する酸化物(In−Zn酸化物)、インジウムと錫とシリコンとを有する酸化物(In−Sn−Si酸化物)、インジウムとガリウムと亜鉛とを有する酸化物(In−Ga−Zn酸化物)等の酸化物導電体または酸化物半導体を適用することもできる。

0148

ここで、酸化物導電体について説明を行う。本明細書等において、酸化物導電体をOC(Oxide Conductor)と呼称してもよい。酸化物導電体としては、例えば、酸化物半導体に酸素欠損を形成し、該酸素欠損に水素を添加すると、伝導帯近傍にドナー準位が形成される。この結果、酸化物半導体は、導電性が高くなり導電体化する。導電体化された酸化物半導体を、酸化物導電体ということができる。一般に、酸化物半導体は、エネルギーギャップが大きいため、可視光に対して透光性を有する。一方、酸化物導電体は、伝導帯近傍にドナー準位を有する酸化物半導体である。したがって、酸化物導電体は、ドナー準位による吸収の影響は小さく、可視光に対して酸化物半導体と同程度の透光性を有する。

0149

また、導電膜104、112a、112bには、Cu−X合金膜(Xは、Mn、Ni、Cr、Fe、Co、Mo、Ta、またはTi)を適用してもよい。Cu−X合金膜を用いることで、ウエットエッチングプロセスで加工できるため、製造コストを抑制することが可能となる。

0150

また、導電膜112a、112bには、上述の金属元素の中でも、特に銅、チタン、タングステン、タンタル、及びモリブデンの中から選ばれるいずれか一つまたは複数を有すると好適である。特に、導電膜112a、112bとしては、窒化タンタル膜を用いると好適である。当該窒化タンタル膜は、導電性を有し、且つ、銅または水素に対して、高いバリア性を有する。また、窒化タンタル膜は、さらに自身からの水素の放出が少ないため、酸化物半導体膜108と接する導電膜、または酸化物半導体膜108の近傍の導電膜として、最も好適に用いることができる。また、導電膜112a、112bとして、銅膜を用いると、導電膜112a、112bの抵抗を低くすることができるため好適である。

0151

また、導電膜112a、112bを、無電解めっき法により形成することができる。当該無電解めっき法により形成できる材料としては、例えば、Cu、Ni、Al、Au、Sn、Co、Ag、及びPdの中から選ばれるいずれか一つまたは複数を用いることが可能である。特に、CuまたはAgを用いると、導電膜の抵抗を低くすることができるため、好適である。

0152

[ゲート絶縁膜として機能する絶縁膜]
トランジスタ100のゲート絶縁膜として機能する絶縁膜106としては、プラズマ化学気相堆積(PECVD:(Plasma Enhanced Chemical Vapor Deposition))法、スパッタリング法等により、酸化シリコン膜酸化窒化シリコン膜窒化酸化シリコン膜窒化シリコン膜酸化アルミニウム膜酸化ハフニウム膜酸化イットリウム膜酸化ジルコニウム膜酸化ガリウム膜酸化タンタル膜酸化マグネシウム膜酸化ランタン膜酸化セリウム膜および酸化ネオジム膜を一種以上含む絶縁層を用いることができる。なお、絶縁膜106を、積層構造、または3層以上の積層構造としてもよい。

0153

また、トランジスタ100のチャネル領域として機能する酸化物半導体膜108と接する絶縁膜106は、酸化物絶縁膜であることが好ましく、化学量論的組成よりも過剰に酸素を含有する領域(過剰酸素領域)を有することがより好ましい。別言すると、絶縁膜106は、酸素を放出することが可能な絶縁膜である。なお、絶縁膜106に過剰酸素領域を設けるには、例えば、酸素雰囲気下にて絶縁膜106を形成する、もしくは成膜後の絶縁膜106を酸素雰囲気下で熱処理すればよい。

0154

また、絶縁膜106として、酸化ハフニウムを用いる場合、以下の効果を奏する。酸化ハフニウムは、酸化シリコン酸化窒化シリコンと比べて比誘電率が高い。したがって、酸化シリコンを用いた場合と比べて、絶縁膜106の膜厚を大きくできるため、トンネル電流によるリーク電流を小さくすることができる。すなわち、オフ電流の小さいトランジスタを実現することができる。さらに、結晶構造を有する酸化ハフニウムは、非晶質構造を有する酸化ハフニウムと比べて高い比誘電率を備える。したがって、オフ電流の小さいトランジスタとするためには、結晶構造を有する酸化ハフニウムを用いることが好ましい。結晶構造の例としては、単斜晶系立方晶系などが挙げられる。ただし、本発明の一態様は、これらに限定されない。

0155

なお、本実施の形態では、絶縁膜106として、窒化シリコン膜と酸化シリコン膜との積層膜を形成する。窒化シリコン膜は、酸化シリコン膜と比較して比誘電率が高く、酸化シリコン膜と同等の静電容量を得るのに必要な膜厚が大きいため、トランジスタ100のゲート絶縁膜として、窒化シリコン膜を含むことで絶縁膜を厚膜化することができる。よって、トランジスタ100の絶縁耐圧の低下を抑制、さらには絶縁耐圧を向上させて、トランジスタ100の静電破壊を抑制することができる。

0156

[酸化物半導体膜]
酸化物半導体膜108としては、先に示す材料を用いることができる。

0157

酸化物半導体膜108がIn−M−Zn酸化物の場合、In−M−Zn酸化物を成膜するために用いるスパッタリングターゲットの金属元素の原子数比は、In>Mを満たすことが好ましい。このようなスパッタリングターゲットの金属元素の原子数比として、In:M:Zn=2:1:3、In:M:Zn=3:1:2、In:M:Zn=4:2:4.1、In:M:Zn=5:1:6、In:M:Zn=5:1:7、In:M:Zn=5:1:8、In:M:Zn=6:1:6、In:M:Zn=5:2:5等が挙げられる。

0158

また、酸化物半導体膜108が、In−M−Zn酸化物の場合、スパッタリングターゲットとしては、多結晶のIn−M−Zn酸化物を含むターゲットを用いると好ましい。多結晶のIn−M−Zn酸化物を含むターゲットを用いることで、結晶性を有する酸化物半導体膜108を形成しやすくなる。なお、成膜される酸化物半導体膜108の原子数比は、上記のスパッタリングターゲットに含まれる金属元素の原子数比のプラスマイナス40%の変動を含む。例えば、酸化物半導体膜108に用いるスパッタリングターゲットの組成がIn:Ga:Zn=4:2:4.1[原子数比]の場合、成膜される酸化物半導体膜108の組成は、In:Ga:Zn=4:2:3[原子数比]の近傍となる場合がある。

0159

また、酸化物半導体膜108は、エネルギーギャップが2eV以上、好ましくは2.5eV以上である。このように、エネルギーギャップの広い酸化物半導体を用いることで、トランジスタ100のオフ電流を低減することができる。

0160

また、酸化物半導体膜108は、非単結晶構造であると好ましい。非単結晶構造は、例えば、後述するCAAC−OS(C Axis Aligned Crystalline Oxide Semiconductor)、多結晶構造微結晶構造、または非晶質構造を含む。非単結晶構造において、非晶質構造は最も欠陥準位密度が高く、CAAC−OSは最も欠陥準位密度が低い。

0161

[保護絶縁膜として機能する絶縁膜1]
絶縁膜114、116は、トランジスタ100の保護絶縁膜としての機能を有する。また、絶縁膜114、116は、酸化物半導体膜108に酸素を供給する機能を有する。すなわち、絶縁膜114、116は、酸素を有する。また、絶縁膜114は、酸素を透過することのできる絶縁膜である。なお、絶縁膜114は、後に形成する絶縁膜116を形成する際の、酸化物半導体膜108へのダメージ緩和膜としても機能する。

0162

絶縁膜114としては、厚さが5nm以上150nm以下、好ましくは5nm以上50nm以下の酸化シリコン、酸化窒化シリコン等を用いることができる。

0163

また、絶縁膜114は、欠陥量が少ないことが好ましく、代表的には、ESR測定により、シリコンのダングリングボンド由来するg=2.001に現れる信号のスピン密度が3×1017spins/cm3以下であることが好ましい。これは、絶縁膜114に含まれる欠陥密度が多いと、該欠陥に酸素が結合してしまい、絶縁膜114における酸素の透過性が減少してしまう。

0164

なお、絶縁膜114においては、外部から絶縁膜114に入った酸素が全て絶縁膜114の外部に移動せず、絶縁膜114にとどまる酸素もある。また、絶縁膜114に酸素が入ると共に、絶縁膜114に含まれる酸素が絶縁膜114の外部へ移動することで、絶縁膜114において酸素の移動が生じる場合もある。絶縁膜114として酸素を透過することができる酸化物絶縁膜を形成すると、絶縁膜114上に設けられる、絶縁膜116から脱離する酸素を、絶縁膜114を介して酸化物半導体膜108に移動させることができる。

0165

また、絶縁膜114は、窒素酸化物に起因する準位密度が低い酸化物絶縁膜を用いて形成することができる。なお、当該窒素酸化物に起因する準位密度は、酸化物半導体膜の価電子帯の上端エネルギー(Ev_os)と酸化物半導体膜の伝導帯の下端のエネルギー(Ec_os)の間に形成され得る場合がある。上記酸化物絶縁膜として、窒素酸化物の放出量が少ない酸化窒化シリコン膜、または窒素酸化物の放出量が少ない酸化窒化アルミニウム膜等を用いることができる。

0166

なお、窒素酸化物の放出量の少ない酸化窒化シリコン膜は、昇温脱離ガス分析法(TDS:Thermal Desorption Spectroscopy)において、窒素酸化物の放出量よりアンモニアの放出量が多い膜であり、代表的にはアンモニアの放出量が1×1018分子cm−3以上5×1019分子cm−3以下である。なお、アンモニアの放出量は、膜の表面温度が50℃以上650℃以下、好ましくは50℃以上550℃以下の加熱処理による放出量とする。

0167

窒素酸化物(NOx、xは0よりも大きく2以下、好ましくは1以上2以下)、代表的にはNO2またはNOは、絶縁膜114などに準位を形成する。当該準位は、酸化物半導体膜108のエネルギーギャップ内に位置する。そのため、窒素酸化物が、絶縁膜114及び酸化物半導体膜108の界面に拡散すると、当該準位が絶縁膜114側において電子をトラップする場合がある。この結果、トラップされた電子が、絶縁膜114及び酸化物半導体膜108界面近傍に留まるため、トランジスタのしきい値電圧をプラス方向にシフトさせてしまう。

0168

また、窒素酸化物は、加熱処理においてアンモニア及び酸素と反応する。絶縁膜114に含まれる窒素酸化物は、加熱処理において、絶縁膜116に含まれるアンモニアと反応するため、絶縁膜114に含まれる窒素酸化物が低減される。このため、絶縁膜114及び酸化物半導体膜108の界面において、電子がトラップされにくい。

0169

絶縁膜114として、上記酸化物絶縁膜を用いることで、トランジスタのしきい値電圧のシフトを低減することが可能であり、トランジスタの電気特性の変動を低減することができる。

0170

なお、トランジスタの作製工程の加熱処理、代表的には300℃以上350℃未満の加熱処理により、絶縁膜114は、100K以下のESRで測定して得られたスペクトルにおいてg値が2.037以上2.039以下の第1のシグナル、g値が2.001以上2.003以下の第2のシグナル、及びg値が1.964以上1.966以下の第3のシグナルが観測される。なお、第1のシグナル及び第2のシグナルのスプリット幅、並びに第2のシグナル及び第3のシグナルのスプリット幅は、XバンドのESR測定において約5mTである。また、g値が2.037以上2.039以下の第1のシグナル、g値が2.001以上2.003以下の第2のシグナル、及びg値が1.964以上1.966以下である第3のシグナルのスピン密度の合計が1×1018spins/cm3未満であり、代表的には1×1017spins/cm3以上1×1018spins/cm3未満である。

0171

なお、100K以下のESRスペクトルにおいて、g値が2.037以上2.039以下の第1のシグナル、g値が2.001以上2.003以下の第2のシグナル、及びg値が1.964以上1.966以下である第3のシグナルのスピンの密度の合計は、窒素酸化物(NOx、xは0より大きく2以下、好ましくは1以上2以下)起因のシグナルのスピン密度の合計に相当する。窒素酸化物の代表例としては、一酸化窒素二酸化窒素等がある。即ち、g値が2.037以上2.039以下の第1のシグナル、g値が2.001以上2.003以下の第2のシグナル、及びg値が1.964以上1.966以下である第3のシグナルのスピンの密度の合計が少ないほど、酸化物絶縁膜に含まれる窒素酸化物の含有量が少ないといえる。

0172

また、上記酸化物絶縁膜は、SIMSで測定される窒素濃度が6×1020atoms/cm3以下である。

0173

基板温度が220℃以上350℃以下であり、シラン及び一酸化二窒素を用いたPECVD法を用いて、上記酸化物絶縁膜を形成することで、緻密であり、且つ硬度の高い膜を形成することができる。

0174

絶縁膜116は、化学量論的組成を満たす酸素よりも多くの酸素を含む酸化物絶縁膜である。上記の酸化物絶縁膜は、加熱により酸素の一部が脱離する。なお、TDSにおいて、上記の酸化物絶縁膜は、酸素の放出量が1.0×1019atoms/cm3以上、好ましくは3.0×1020atoms/cm3以上の領域を有する。また、上記の酸素の放出量は、TDSにおける加熱処理の温度が50℃以上650℃以下、または50℃以上550℃以下の範囲での総量である。また、上記の酸素の放出量は、TDSにおける酸素原子換算しての総量である。

0175

絶縁膜116としては、厚さが30nm以上500nm以下、好ましくは50nm以上400nm以下の、酸化シリコン、酸化窒化シリコン等を用いることができる。

0176

また、絶縁膜116は、欠陥量が少ないことが好ましく、代表的には、ESR測定により、シリコンのダングリングボンドに由来するg=2.001に現れる信号のスピン密度が1.5×1018spins/cm3未満、さらには1×1018spins/cm3以下であることが好ましい。なお、絶縁膜116は、絶縁膜114と比較して酸化物半導体膜108から離れているため、絶縁膜114より、欠陥密度が多くともよい。

0177

また、絶縁膜114、116は、同種の材料の絶縁膜を用いることができるため、絶縁膜114と絶縁膜116の界面が明確に確認できない場合がある。したがって、本実施の形態においては、絶縁膜114と絶縁膜116の界面は、破線で図示している。なお、本実施の形態においては、絶縁膜114と絶縁膜116の2層構造について説明したが、これに限定されず、例えば、絶縁膜114の単層構造、あるいは3層以上の積層構造としてもよい。

0178

[保護絶縁膜として機能する絶縁膜2]
絶縁膜118は、トランジスタ100の保護絶縁膜として機能する。

0179

絶縁膜118は、水素及び窒素のいずれか一方または双方を有する。または、絶縁膜118は、窒素及びシリコンを有する。また、絶縁膜118は、酸素、水素、水、アルカリ金属アルカリ土類金属等のブロッキングできる機能を有する。絶縁膜118を設けることで、酸化物半導体膜108からの酸素の外部への拡散と、絶縁膜114、116に含まれる酸素の外部への拡散と、外部から酸化物半導体膜108への水素、水等の入り込みを防ぐことができる。

0180

絶縁膜118としては、例えば、窒化物絶縁膜を用いることができる。該窒化物絶縁膜としては、窒化シリコン窒化酸化シリコン窒化アルミニウム、窒化酸化アルミニウム等がある。

0181

なお、上記記載の、導電膜、絶縁膜、酸化物半導体膜、金属膜などの様々な膜としては、スパッタリング法やPECVD法により形成することができるが、他の方法、例えば、熱CVD(Chemical Vapor Deposition)法により形成してもよい。熱CVD法の例としてMOCVD(Metal Organic Chemical Vapor Deposition)法、またはALD(Atomic Layer Deposition)法などが挙げられる。

0182

熱CVD法は、プラズマを使わない成膜方法のため、プラズマダメージにより欠陥が生成されることが無いという利点を有する。また、熱CVD法としては、原料ガスチャンバー内に送り、チャンバー内を大気圧または減圧下とし、基板上に膜を堆積させればよい。

0183

また、ALD法としては、原料ガスをチャンバー内に送り、チャンバー内を大気圧または減圧下とし、基板上に膜を堆積させればよい。

0184

<2−3.半導体装置の構成例2>
次に、図5(A)(B)(C)に示すトランジスタ100の変形例について、図6乃至図10を用いて説明する。

0185

図6(A)は、本発明の一態様の半導体装置であるトランジスタ100Aの上面図であり、図6(B)は、図6(A)に示す一点鎖線X1−X2間における切断面の断面図に相当し、図6(C)は、図6(A)に示す一点鎖線Y1−Y2間における切断面の断面図に相当する。

0186

図6(A)(B)に示すトランジスタ100Aは、所謂チャネル保護型のトランジスタ構造である。このように、本発明の一態様の半導体装置は、チャネルエッチ型、及びチャネル保護型の双方のトランジスタ構造とすることができる。

0187

なお、トランジスタ100Aにおいては、絶縁膜114、116は、開口部141a、141bを有する。また、開口部141a、141bを介して酸化物半導体膜108と導電膜112a、112bとが接続されている。また、導電膜112a、112b上に絶縁膜118が形成されている。また、絶縁膜114、116は、所謂チャネル保護膜としての機能を有する。なお、トランジスタ100Aのその他の構成は、先に示すトランジスタ100と同様であり、同様の効果を奏する。

0188

また、図7(A)は、本発明の一態様の半導体装置であるトランジスタ100Bの上面図であり、図7(B)は、図7(A)に示す一点鎖線X1−X2間における切断面の断面図に相当し、図7(C)は、図7(A)に示す一点鎖線Y1−Y2間における切断面の断面図に相当する。

0189

トランジスタ100Bは、基板102上の導電膜104と、基板102及び導電膜104上の絶縁膜106と、絶縁膜106上の酸化物半導体膜108と、酸化物半導体膜108上の導電膜112aと、酸化物半導体膜108上の導電膜112bと、酸化物半導体膜108、導電膜112a、及び導電膜112b上の絶縁膜114と、絶縁膜114上の絶縁膜116と、絶縁膜116上の導電膜120aと、絶縁膜116上の導電膜120bと、絶縁膜116、導電膜120a、及び導電膜120b上の絶縁膜118と、を有する。

0190

また、絶縁膜114、116は、開口部142aを有する。また、絶縁膜106、114、116は、開口部142bを有する。導電膜120aは、開口部142bを介して、導電膜104と電気的に接続される。また、導電膜120bは、開口部142aを介して、導電膜112bと電気的に接続される。

0191

なお、トランジスタ100Bにおいて、絶縁膜106は、トランジスタ100Bの第1のゲート絶縁膜としての機能を有し、絶縁膜114、116は、トランジスタ100Bの第2のゲート絶縁膜としての機能を有し、絶縁膜118は、トランジスタ100Bの保護絶縁膜としての機能を有する。また、トランジスタ100Bにおいて、導電膜104は、第1のゲート電極としての機能を有し、導電膜112aは、ソース電極としての機能を有し、導電膜112bは、ドレイン電極としての機能を有する。また、トランジスタ100Bにおいて、導電膜120aは、第2のゲート電極としての機能を有し、導電膜120bは、表示装置の画素電極としての機能を有する。

0192

なお、図7(C)に示すように、導電膜120aは、開口部142bを介して導電膜104と電気的に接続される。よって、導電膜104と、導電膜120aとは、同じ電位が与えられる。

0193

また、図7(C)に示すように、酸化物半導体膜108は、導電膜104、及び導電膜120aと対向するように位置し、2つのゲート電極として機能する導電膜に挟まれている。導電膜120aのチャネル長方向の長さ、及び導電膜120aのチャネル幅方向の長さは、酸化物半導体膜108のチャネル長方向の長さ、及び酸化物半導体膜108のチャネル幅方向の長さよりもそれぞれ長く、酸化物半導体膜108の全体は、絶縁膜114、116を介して導電膜120aに覆われている。

0194

別言すると、導電膜104及び導電膜120aは、絶縁膜106、114、116に設けられる開口部において接続され、且つ酸化物半導体膜108の側端部よりも外側に位置する領域を有する。

0195

このような構成を有することで、トランジスタ100Bに含まれる酸化物半導体膜108を、導電膜104及び導電膜120aの電界によって電気的に囲むことができる。トランジスタ100Bのように、第1のゲート電極及び第2のゲート電極の電界によって、チャネル領域が形成される酸化物半導体膜を、電気的に囲むトランジスタのデバイス構造をSurrounded Channel(S−Channel)構造と呼ぶことができる。

0196

トランジスタ100Bは、S−channel構造を有するため、第1のゲート電極として機能する導電膜104によってチャネルを誘起させるための電界を効果的に酸化物半導体膜108に印加することができるため、トランジスタ100Bの電流駆動能力が向上し、高いオン電流特性を得ることが可能となる。また、オン電流を高くすることが可能であるため、トランジスタ100Bを微細化することが可能となる。また、トランジスタ100Bは、酸化物半導体膜108が、第1のゲート電極として機能する導電膜104及び第2のゲート電極として機能する導電膜120aによって囲まれた構造を有するため、トランジスタ100Bの機械的強度を高めることができる。

0197

なお、導電膜120a、120bとしては、先に示す導電膜104、112a、112bに列挙した材料と同様の材料を用いることができる。特に導電膜120a、120bとしては、酸化物導電膜(OC)が好ましい。導電膜120a、120bに酸化物導電膜を用いることで、絶縁膜114、116中に酸素を添加することができる。

0198

なお、トランジスタ100Bのその他の構成は、先に示すトランジスタ100と同様であり、同様の効果を奏する。

0199

また、図8(A)は、本発明の一態様の半導体装置であるトランジスタ100Cの上面図であり、図8(B)は、図8(A)に示す一点鎖線X1−X2間における切断面の断面図に相当し、図8(C)は、図8(A)に示す一点鎖線Y1−Y2間における切断面の断面図に相当する。

0200

トランジスタ100Cは、先に示すトランジスタ100Bが有する導電膜112a、112bを3層の積層構造とした構成である。

0201

トランジスタ100Cが有する導電膜112aは、導電膜112a_1と、導電膜112a_1上の導電膜112a_2と、導電膜112a_2上の導電膜112a_3と、を有する。また、トランジスタ100Cが有する導電膜112bは、導電膜112b_1と、導電膜112b_1上の導電膜112b_2と、導電膜112b_2上の導電膜112b_3と、を有する。

0202

例えば、導電膜112a_1、導電膜112b_1、導電膜112a_3、及び導電膜112b_3としては、チタン、タングステン、タンタル、モリブデン、インジウム、ガリウム、錫、及び亜鉛の中から選ばれるいずれか一つまたは複数を有すると好適である。また、導電膜112a_2及び導電膜112b_2としては、銅、アルミニウム、及び銀の中から選ばれるいずれか一つまたは複数を有すると好適である。

0203

より具体的には、導電膜112a_1、導電膜112b_1、導電膜112a_3、及び導電膜112b_3にIn−Sn酸化物またはIn−Zn酸化物を用い、導電膜112a_2及び導電膜112b_2に銅を用いることができる。

0204

上記構成とすることで、導電膜112a、112bの配線抵抗を低くし、且つ酸化物半導体膜108への銅の拡散を抑制できるため好適である。また、上記構成とすることで、導電膜112bと、導電膜120bとの接続抵抗を低くすることができるため好適である。なお、トランジスタ100Cのその他の構成は、先に示すトランジスタ100と同様であり、同様の効果を奏する。

0205

また、図9(A)は、本発明の一態様の半導体装置であるトランジスタ100Dの上面図であり、図9(B)は、図9(A)に示す一点鎖線X1−X2間における切断面の断面図に相当し、図9(C)は、図9(A)に示す一点鎖線Y1−Y2間における切断面の断面図に相当する。

0206

トランジスタ100Dは、先に示すトランジスタ100Bが有する導電膜112a、112bを3層の積層構造とした構成である。また、トランジスタ100Dは、先に示すトランジスタ100Cが有する導電膜112a、112bと導電膜112a、112bの形状が異なる。

0207

トランジスタ100Dが有する導電膜112aは、導電膜112a_1と、導電膜112a_1上の導電膜112a_2と、導電膜112a_2上の導電膜112a_3と、を有する。また、トランジスタ100Cが有する導電膜112bは、導電膜112b_1と、導電膜112b_1上の導電膜112b_2と、導電膜112b_2上の導電膜112b_3と、を有する。なお、導電膜112a_1、導電膜112a_2、導電膜112a_3、導電膜112b_1、導電膜112b_2、及び導電膜112b_3としては、先に示す材料を用いることができる。

0208

また、導電膜112a_1の端部は、導電膜112a_2の端部よりも外側に位置する領域を有し、導電膜112a_3は、導電膜112a_2の上面及び側面を覆い、且つ導電膜112a_1と接する領域を有する。また、導電膜112b_1の端部は、導電膜112b_2の端部よりも外側に位置する領域を有し、導電膜112b_3は、導電膜112b_2の上面及び側面を覆い、且つ導電膜112b_1と接する領域を有する。

0209

上記構成とすることで、導電膜112a、112bの配線抵抗を低くし、且つ酸化物半導体膜108への銅の拡散を抑制できるため好適である。なお、先に示すトランジスタ100Cよりもトランジスタ100Dに示す構造とした方が、銅の拡散を好適に抑制することができる。また、上記構成とすることで、導電膜112bと、導電膜120bとの接続抵抗を低くすることができるため好適である。なお、トランジスタ100Dのその他の構成は、先に示すトランジスタ100と同様であり、同様の効果を奏する。

0210

また、図10(A)は、本発明の一態様の半導体装置であるトランジスタ100Eの上面図であり、図10(B)は、図10(A)に示す一点鎖線X1−X2間における切断面の断面図に相当し、図10(C)は、図10(A)に示す一点鎖線Y1−Y2間における切断面の断面図に相当する。

0211

トランジスタ100Eは、先に示すトランジスタ100Dと、導電膜120a、120bの位置が異なる。具体的には、トランジスタ100Eの導電膜120a、120bは、絶縁膜118上に位置する。なお、トランジスタ100Eのその他の構成は、先に示すトランジスタ100Dと同様であり、同様の効果を奏する。

0212

また、本実施の形態に係るトランジスタは、上記の構造のトランジスタを、それぞれ自由に組み合わせることが可能である。

0213

<2−4.半導体装置の作製方法>
次に、本発明の一態様の半導体装置であるトランジスタ100Bの作製方法について、図11乃至図14を用いて説明する。

0214

なお、図11(A)乃至図11(C)、図12(A)乃至図12(C)、図13(A)乃至図13(C)、及び図14(A)乃至図14(C)は、半導体装置の作製方法を説明する断面図である。また、図11(A)乃至図11(C)、図12(A)乃至図12(C)、図13(A)乃至図13(C)、及び図14(A)乃至図14(C)において、左側がチャネル長方向の断面図であり、右側がチャネル幅方向の断面図である。

0215

まず、基板102上に導電膜を形成し、該導電膜をリソグラフィ工程及びエッチング工程を行い加工して、第1のゲート電極として機能する導電膜104を形成する。次に、導電膜104上に第1のゲート絶縁膜として機能する絶縁膜106を形成する(図11(A)参照)。

0216

本実施の形態では、基板102としてガラス基板を用い、第1のゲート電極として機能する導電膜104として、厚さ50nmのチタン膜と、厚さ200nmの銅膜とを、それぞれスパッタリング法により形成する。また、絶縁膜106として厚さ400nmの窒化シリコン膜と、厚さ50nmの酸化窒化シリコン膜とをPECVD法により形成する。

0217

なお、上記窒化シリコン膜は、第1の窒化シリコン膜と、第2の窒化シリコン膜と、第3の窒化シリコン膜とを有する、3層積層構造である。該3層積層構造の一例としては、以下のように形成することができる。

0218

第1の窒化シリコン膜としては、例えば、流量200sccmのシラン、流量2000sccmの窒素、及び流量100sccmのアンモニアガスを原料ガスとしてPE−CVD装置反応室に供給し、反応室内の圧力を100Paに制御し、27.12MHzの高周波電源を用いて2000Wの電力を供給して、厚さが50nmとなるように形成すればよい。

0219

第2の窒化シリコン膜としては、流量200sccmのシラン、流量2000sccmの窒素、及び流量2000sccmのアンモニアガスを原料ガスとしてPECVD装置の反応室に供給し、反応室内の圧力を100Paに制御し、27.12MHzの高周波電源を用いて2000Wの電力を供給して、厚さが300nmとなるように形成すればよい。

0220

第3の窒化シリコン膜としては、流量200sccmのシラン、及び流量5000sccmの窒素を原料ガスとしてPECVD装置の反応室に供給し、反応室内の圧力を100Paに制御し、27.12MHzの高周波電源を用いて2000Wの電力を供給して、厚さが50nmとなるように形成すればよい。

0221

なお、上記第1の窒化シリコン膜、第2の窒化シリコン膜、及び第3の窒化シリコン膜形成時の基板温度は350℃以下とすることができる。

0222

窒化シリコン膜を上述の3層の積層構造とすることで、例えば、導電膜104に銅を含む導電膜を用いる場合において、以下の効果を奏する。

0223

第1の窒化シリコン膜は、導電膜104からの銅元素の拡散を抑制することができる。第2の窒化シリコン膜は、水素を放出する機能を有し、ゲート絶縁膜として機能する絶縁膜の耐圧を向上させることができる。第3の窒化シリコン膜は、第3の窒化シリコン膜からの水素放出が少なく、且つ第2の窒化シリコン膜からの放出される水素の拡散を抑制することができる。

0224

次に、絶縁膜106上に酸化物半導体膜108_1_0、及び酸化物半導体膜108_2_0を形成する(図11(B)(C)参照)。

0225

なお、図11(B)は、絶縁膜106上に酸化物半導体膜108_1_0、及び酸化物半導体膜108_2_0を形成する際の成膜装置内部の断面模式図である。図11(B)では、成膜装置としてスパッタリング装置を用い、当該スパッタリング装置内部に設置されたターゲット191と、ターゲット191の下方に形成されるプラズマ192とが、模式的に表されている。

0226

なお、図11(B)において、絶縁膜106に添加される酸素または過剰酸素を模式的に破線の矢印で表している。例えば、酸化物半導体膜108_1_0を成膜時に酸素ガスを用いる場合、絶縁膜106中に好適に酸素を添加することができる。

0227

まず、絶縁膜106上に酸化物半導体膜108_1_0を形成する。酸化物半導体膜108_1_0の厚さとしては、1nm以上25nm以下、好ましくは5nm以上20nm以下とすればよい。また、酸化物半導体膜108_1_0は、不活性ガス(代表的にはArガス)及び酸素ガスのいずれか一方または双方を用いて形成される。なお、酸化物半導体膜108_1_0を形成する際の成膜ガス全体に占める酸素ガスの割合(以下、酸素流量比ともいう)としては、0%以上30%以下、好ましくは5%以上15%以下である。

0228

上記範囲の酸素流量比で酸化物半導体膜108_1_0を形成することで、酸化物半導体膜108_1_0の結晶性を低くすることができる。

0229

続いて、酸化物半導体膜108_1_0上に酸化物半導体膜108_2_0を形成する。なお、酸化物半導体膜108_2_0を形成する際に、酸素ガスを含む雰囲気にてプラズマを放電させる。その際に、酸化物半導体膜108_2_0の被形成面となる酸化物半導体膜108_1_0中に酸素が添加される。なお、酸化物半導体膜108_2_0を形成する際の酸素流量比としては、30%より大きく100%以下、好ましくは50%以上100%以下、さらに好ましくは70%以上100%以下である。

0230

また、酸化物半導体膜108_2_0の厚さとしては、20nm以上100nm以下、好ましくは20nm以上50nm以下とすればよい。

0231

なお、上述したように酸化物半導体膜108_2_0の形成条件としては、酸化物半導体膜108_1_0よりも酸素流量比を高めると好ましい。別言すると、酸化物半導体膜108_1_0は、酸化物半導体膜108_2_0のよりも低い酸素分圧で形成されると好ましい。

0232

また、酸化物半導体膜108_1_0、及び酸化物半導体膜108_2_0の形成時の基板温度としては、室温(25℃)以上200℃以下、好ましくは室温以上130℃以下とすればよい。なお、酸化物半導体膜108_1_0、及び酸化物半導体膜108_2_0を真空中で連続して形成することで、各界面に不純物が取り込まれないため、より好適である。

0233

また、スパッタリングガス高純度化も必要である。例えば、スパッタリングガスとして用いる酸素ガスやアルゴンガスは、露点が−40℃以下、好ましくは−80℃以下、より好ましくは−100℃以下、より好ましくは−120℃以下にまで高純度化したガスを用いることで酸化物半導体膜に水分等が取り込まれることを可能な限り防ぐことができる。

0234

また、スパッタリング法で酸化物半導体膜を成膜する場合、スパッタリング装置におけるチャンバーは、酸化物半導体膜にとって不純物となる水等を可能な限り除去すべくクライオポンプのような吸着式真空排気ポンプを用いて、高真空(5×10−7Paから1×10−4Pa程度まで)に排気することが好ましい。特に、スパッタリング装置の待機時における、チャンバー内のH2Oに相当するガス分子(m/z=18に相当するガス分子)の分圧を1×10−4Pa以下、好ましく5×10−5Pa以下とすることが好ましい。

0235

本実施の形態では、酸化物半導体膜108_1_0の形成条件としては、In−Ga−Zn酸化物ターゲット(In:Ga:Zn=4:2:4.1[原子数比])を用いて、スパッタリング法により形成する。また、酸化物半導体膜108_1_0の形成時の基板温度を室温とし、成膜ガスとして流量180sccmのアルゴンガスと、流量20sccmの酸素ガスを用いる(酸素流量比10%)。

0236

また、酸化物半導体膜108_2_0の形成条件としては、In−Ga−Zn酸化物ターゲット(In:Ga:Zn=4:2:4.1[原子数比])を用いて、スパッタリング法により形成する。また、酸化物半導体膜108_2_0の形成時の基板温度を室温とし、成膜ガスとして流量200sccmの酸素ガスを用いる(酸素流量比100%)。

0237

酸化物半導体膜108_1_0と、酸化物半導体膜108_2_0との成膜時の酸素流量比を変えることで、結晶性の異なる積層膜を形成することができる。

0238

次に、酸化物半導体膜108_1_0、及び酸化物半導体膜108_2_0を所望の形状に加工することで、島状の酸化物半導体膜108_1、及び島状の酸化物半導体膜108_2を形成する。なお、本実施の形態においては、酸化物半導体膜108_1、及び酸化物半導体膜108_2により、島状の酸化物半導体膜108が構成される(図12(A)参照)。

0239

また、酸化物半導体膜108を形成した後に、加熱処理(以下、第1の加熱処理とする)を行うと好適である。第1の加熱処理により、酸化物半導体膜108に含まれる水素、水等を低減することができる。なお、水素、水等の低減を目的とした加熱処理は、酸化物半導体膜108を島状に加工する前に行ってもよい。なお、第1の加熱処理は、酸化物半導体膜の高純度化処理の一つである。

0240

第1の加熱処理としては、例えば、150℃以上基板歪み点未満、好ましくは200℃以上450℃以下、さらに好ましくは250℃以上350℃以下とする。

0241

また、第1の加熱処理は、電気炉、RTA装置等を用いることができる。RTA装置を用いることで、短時間に限り基板の歪み点以上の温度で熱処理を行うことができる。そのため、加熱時間を短縮することが可能となる。また、第1の加熱処理は、窒素、酸素、超乾燥空気(水の含有量が20ppm以下、好ましくは1ppm以下、好ましくは10ppb以下の空気)、または希ガス(アルゴン、ヘリウム等)の雰囲気下で行えばよい。なお、上記窒素、酸素、超乾燥空気、または希ガスに水素、水等が含まれないことが好ましい。また、窒素または希ガス雰囲気で加熱処理した後、酸素または超乾燥空気雰囲気で加熱してもよい。この結果、酸化物半導体膜中に含まれる水素、水等を脱離させると共に、酸化物半導体膜中に酸素を供給することができる。この結果、酸化物半導体膜中に含まれる酸素欠損を低減することができる。

0242

次に、絶縁膜106、及び酸化物半導体膜108上に導電膜112を形成する(図12(B)参照)。

0243

本実施の形態では、導電膜112として、厚さ30nmのチタン膜と、厚さ200nmの銅膜と、厚さ10nmのチタン膜とを、それぞれ順に、スパッタリング法により成膜する。

0244

次に、導電膜112を所望の形状に加工することで、島状の導電膜112aと、島状の導電膜112bと、を形成する(図12(C)参照)。

0245

なお、本実施の形態においては、ウエットエッチング装置を用い、導電膜112を加工する。ただし、導電膜112の加工方法としては、これに限定されず、例えば、ドライエッチング装置を用いてもよい。

0246

また、導電膜112a、112bの形成後に、酸化物半導体膜108(より具体的には酸化物半導体膜108_3)の表面(バックチャネル側)を洗浄してもよい。当該洗浄方法としては、例えば、リン酸等の薬液を用いた洗浄が挙げられる。リン酸等の薬液を用いて洗浄を行うことで、酸化物半導体膜108_3の表面に付着した不純物(例えば、導電膜112a、112bに含まれる元素等)を除去することができる。なお、当該洗浄を必ずしも行う必要はなく、場合によっては、洗浄を行わなくてもよい。

0247

また、導電膜112a、112bを形成する工程、及び上記洗浄工程のいずれか一方または双方において、酸化物半導体膜108の導電膜112a、112bから露出した領域が、薄くなる場合がある。

0248

なお、本発明の一態様の半導体装置においては、導電膜112a、112bから露出した領域、すなわち、酸化物半導体膜109_2は結晶性が高められた酸化物半導体膜である。結晶性が高い酸化物半導体膜は、不純物、特に導電膜112a、112bに用いる構成元素が膜中に拡散しにくい構成である。したがって、信頼性の高い半導体装置を提供することができる。

0249

また、図12(C)において、導電膜112a、112bから露出した酸化物半導体膜108の表面、すなわち酸化物半導体膜108_2の表面に凹部が形成される場合について例示したが、これに限定されず、導電膜112a、112bから露出した酸化物半導体膜108の表面は、凹部を有していなくてもよい。

0250

次に、酸化物半導体膜108、及び導電膜112a、112b上に絶縁膜114、及び絶縁膜116を形成する(図13(A)参照)。

0251

なお、絶縁膜114を形成した後、大気に曝すことなく、連続的に絶縁膜116を形成することが好ましい。絶縁膜114を形成後、大気開放せず、原料ガスの流量、圧力、高周波電力及び基板温度の一以上を調整して、絶縁膜116を連続的に形成することで、絶縁膜114と絶縁膜116との界面において大気成分由来の不純物濃度を低減することができる。

0252

例えば、絶縁膜114として、PECVD法を用いて、酸化窒化シリコン膜を形成することができる。この場合、原料ガスとしては、シリコンを含む堆積性気体及び酸化性気体を用いることが好ましい。シリコンを含む堆積性気体の代表例としては、シラン、ジシラントリシラン、フッ化シラン等がある。

0253

本実施の形態においては、絶縁膜114として、基板102を保持する温度を220℃とし、流量50sccmのシラン及び流量2000sccmの一酸化二窒素を原料ガスとし、処理室内の圧力を20Paとし、平行平板電極に供給する高周波電力を13.56MHz、100W(電力密度としては1.6×10−2W/cm2)とするPECVD法を用いて、酸化窒化シリコン膜を形成する。

0254

絶縁膜116としては、PECVD装置の真空排気された処理室内に載置された基板を180℃以上350℃以下に保持し、処理室に原料ガスを導入して処理室内における圧力を100Pa以上250Pa以下、さらに好ましくは100Pa以上200Pa以下とし、処理室内に設けられる電極に0.17W/cm2以上0.5W/cm2以下、さらに好ましくは0.25W/cm2以上0.35W/cm2以下の高周波電力を供給する条件により、酸化シリコン膜または酸化窒化シリコン膜を形成する。

0255

絶縁膜116の成膜条件として、上記圧力の反応室において上記パワー密度の高周波電力を供給することで、プラズマ中で原料ガスの分解効率が高まり、酸素ラジカルが増加し、原料ガスの酸化が進むため、絶縁膜116中における酸素含有量が化学量論的組成よりも多くなる。一方、基板温度が、上記温度で形成された膜では、シリコンと酸素の結合力が弱いため、後の工程の加熱処理により膜中の酸素の一部が脱離する。この結果、化学量論的組成を満たす酸素よりも多くの酸素を含み、加熱により酸素の一部が脱離する酸化物絶縁膜を形成することができる。

0256

なお、絶縁膜116の形成工程において、絶縁膜114が酸化物半導体膜108の保護膜となる。したがって、酸化物半導体膜108へのダメージを低減しつつ、パワー密度の高い高周波電力を用いて絶縁膜116を形成することができる。

0257

なお、絶縁膜116の成膜条件において、酸化性気体に対するシリコンを含む堆積性気体の流量を増加することで、絶縁膜116の欠陥量を低減することが可能である。代表的には、ESR測定により、シリコンのダングリングボンドに由来するg=2.001に現れる信号のスピン密度が6×1017spins/cm3未満、好ましくは3×1017spins/cm3以下、好ましくは1.5×1017spins/cm3以下である欠陥量の少ない酸化物絶縁膜を形成することができる。この結果、トランジスタ100の信頼性を高めることができる。

0258

また、絶縁膜114、116を成膜した後に、加熱処理(以下、第2の加熱処理とする)を行うと好適である。第2の加熱処理により、絶縁膜114、116に含まれる窒素酸化物を低減することができる。または、第2の加熱処理により、絶縁膜114、116に含まれる酸素の一部を酸化物半導体膜108に移動させ、酸化物半導体膜108に含まれる酸素欠損を低減することができる。

0259

第2の加熱処理の温度は、代表的には、400℃未満、好ましくは375℃未満、さらに好ましくは、150℃以上350℃以下とする。第2の加熱処理は、窒素、酸素、超乾燥空気(水の含有量が20ppm以下、好ましくは1ppm以下、好ましくは10ppb以下の空気)、または希ガス(アルゴン、ヘリウム等)の雰囲気下で行えばよい。なお、上記窒素、酸素、超乾燥空気、または希ガスに水素、水等が含まれないことが好ましい該加熱処理には、電気炉、RTA等を用いることができる。

0260

次に、絶縁膜114、116の所望の領域に開口部142a、142bを形成する(図13(B)参照)。

0261

本実施の形態においては、開口部142a、142bを、ドライエッチング装置を用いて形成する。なお、開口部142aは、導電膜112bに達し、開口部142bは、導電膜104に達する。

0262

次に、絶縁膜116上に導電膜120を形成する(図13(C)及び図14(A)参照)。

0263

なお、図13(C)は、絶縁膜116上に導電膜120を形成する際の成膜装置内部の断面模式図である。図13(C)では、成膜装置としてスパッタリング装置を用い、当該スパッタリング装置内部に設置されたターゲット193と、ターゲット193の下方に形成されるプラズマ194とが、模式的に表されている。

0264

まず、導電膜120を形成する際に、酸素ガスを含む雰囲気にてプラズマを放電させる。その際に、導電膜120の被形成面となる絶縁膜116中に、酸素が添加される。また、導電膜120を形成する際に、酸素ガスの他に、不活性ガス(例えば、ヘリウムガス、アルゴンガス、キセノンガスなど)を混合させてもよい。

0265

酸素ガスとしては、少なくとも導電膜120を形成する際に含まれていればよく、導電膜120を形成する際の成膜ガス全体に占める酸素ガスの割合としては、0%より大きく100%以下、好ましくは10%以上100%以下、さらに好ましくは30%以上100%以下である。

0266

なお、図13(C)において、絶縁膜116に添加される酸素または過剰酸素を模式的に破線の矢印で表している。

0267

本実施の形態では、In−Ga−Zn酸化物ターゲット(In:Ga:Zn=4:2:4.1[原子数比])を用いて、スパッタリング法により導電膜120を形成する。

0268

なお、本実施の形態では、導電膜120を成膜する際に、絶縁膜116に酸素を添加する方法について例示したがこれに限定されない。例えば、導電膜120を形成後に、さらに絶縁膜116に酸素を添加してもよい。

0269

絶縁膜116に酸素を添加する方法としては、例えば、インジウムと、錫と、シリコンとを有する酸化物(In−Sn−Si酸化物、ITSOともいう)ターゲット(In2O3:SnO2:SiO2=85:10:5[重量%])を用いて、膜厚5nmのITSO膜を形成すればよい。この場合、ITSO膜の膜厚としては、1nm以上20nm以下、または2nm以上10nm以下とすると好適に酸素を透過し、且つ酸素の放出を抑制できるため好ましい。その後、ITSO膜を通過させて、絶縁膜116に酸素を添加する。酸素の添加方法としては、イオンドーピング法イオン注入法プラズマ処理法等が挙げられる。また、酸素を添加する際に、基板側にバイアス電圧を印加することで効果的に酸素を絶縁膜116に添加することができる。上記バイアス電圧としては、例えば、アッシング装置を用い、該アッシング装置の基板側に印加するバイアス電圧の電力密度を1W/cm2以上5W/cm2以下とすればよい。また、酸素を添加する際の基板温度としては、室温以上300℃以下、好ましくは、100℃以上250℃以下とすることで、絶縁膜116に効率よく酸素を添加することができる。

0270

次に、導電膜120を所望の形状に加工することで、島状の導電膜120aと、島状の導電膜120bと、を形成する(図14(B)参照)。

0271

本実施の形態においては、ウエットエッチング装置を用い、導電膜120を加工する。

0272

次に、絶縁膜116、及び導電膜120a、120b上に絶縁膜118を形成する(図14(C)参照)。

0273

絶縁膜118は、水素及び窒素のいずれか一方または双方を有する。絶縁膜118としては、例えば、窒化シリコン膜を用いると好適である。また、絶縁膜118としては、例えば、スパッタリング法またはPECVD法を用いて形成することができる。例えば、絶縁膜118をPECVD法で成膜する場合、基板温度は400℃未満、好ましくは375℃未満、さらに好ましくは180℃以上350℃以下である。絶縁膜118を成膜する場合の基板温度を、上述の範囲にすることで、緻密な膜を形成できるため好ましい。また、絶縁膜118を成膜する場合の基板温度を、上述の範囲にすることで、絶縁膜114、116中の酸素または過剰酸素を、酸化物半導体膜108に移動させることが可能となる。

0274

また、絶縁膜118としてPECVD法により窒化シリコン膜を形成する場合、シリコンを含む堆積性気体、窒素、及びアンモニアを原料ガスとして用いることが好ましい。窒素と比較して少量のアンモニアを用いることで、プラズマ中でアンモニアが解離し、活性種が発生する。該活性種が、シリコンを含む堆積性気体に含まれるシリコン及び水素の結合、及び窒素の三重結合を切断する。この結果、シリコン及び窒素の結合が促進され、シリコン及び水素の結合が少なく、欠陥が少なく、緻密な窒化シリコン膜を形成することができる。一方、窒素に対するアンモニアの量が多いと、シリコンを含む堆積性気体及び窒素の分解が進まず、シリコン及び水素結合が残存してしまい、欠陥が増大した、且つ粗な窒化シリコン膜が形成されてしまう。これらのため、原料ガスにおいて、アンモニアに対する窒素の流量比を5倍以上50倍以下、10倍以上50倍以下とすることが好ましい。

0275

本実施の形態においては、絶縁膜118として、PECVD装置を用いて、シラン、窒素、及びアンモニアを原料ガスとして用いて、厚さ50nmの窒化シリコン膜を形成する。流量は、シランが50sccm、窒素が5000sccmであり、アンモニアが100sccmである。処理室の圧力を100Pa、基板温度を350℃とし、27.12MHzの高周波電源を用いて1000Wの高周波電力を平行平板電極に供給する。PECVD装置は電極面積が6000cm2である平行平板型のPECVD装置であり、供給した電力を単位面積あたりの電力(電力密度)に換算すると1.7×10−1W/cm2である。

0276

なお、導電膜120a、120bとして、In−Ga−Zn酸化物ターゲット(In:Ga:Zn=4:2:4.1[原子数比])を用いて導電膜を形成した場合、絶縁膜118が形成されることで、絶縁膜118が有する水素及び窒素のいずれか一方または双方が、導電膜120a、120b中に入り込む場合がある。この場合、導電膜120a、120b中の酸素欠損と、水素及び窒素のいずれか一方または双方が結合することで、導電膜120a、120bの抵抗が低くなる場合がある。

0277

また、絶縁膜118形成後に、先に記載の第1の加熱処理及び第2の加熱処理と同等の加熱処理(以下、第3の加熱処理とする)を行ってもよい。

0278

第3の加熱処理を行うことで、絶縁膜116が有する酸素は、酸化物半導体膜108中に移動し、酸化物半導体膜108中の酸素欠損を補填する。

0279

以上の工程で図7(A)(B)(C)に示すトランジスタ100Bを作製することができる。

0280

なお、図5(A)(B)(C)に示すトランジスタ100としては、図13(A)に示す工程を行った後に、絶縁膜118を形成することで、作製することができる。また、図6(A)(B)(C)に示すトランジスタ100Aとしては、導電膜112a、112bと、絶縁膜114、116の形成順を変えて、且つ絶縁膜114、116に開口部141a、141bを形成する工程を追加することで、作製することができる。

0281

本実施の形態は、少なくともその一部を本明細書中に記載する他の実施の形態と適宜組み合わせて実施することができる。

0282

(実施の形態3)
本実施の形態では、本発明の一態様の酸化物半導体膜が有するCAC(Cloud−Aligned Composite)−OSの構成について説明する。

0283

<3−1.CACの構成>
CACとは、酸化物半導体膜を構成する元素が、0.5nm以上10nm以下、好ましくは、1nm以上2nm以下、またはその近傍のサイズで偏在した材料の一構成である。なお、以下では、酸化物半導体膜において、一つあるいはそれ以上の金属元素が、0.5nm以上10nm以下、好ましくは、1nm以上2nm以下、またはその近傍のサイズで混合した状態をモザイク状、またはパッチ状ともいう。

0284

例えば、In−Ga−Zn酸化物(以下、IGZOともいう。)におけるCAC−IGZOとは、インジウム酸化物(以下、InOX1(X1は0よりも大きい実数。))、またはインジウム亜鉛酸化物(以下、InX2ZnY2OZ2(X2、Y2、およびZ2は0よりも大きい実数。))と、ガリウム酸化物(以下、GaOX3(X3は0よりも大きい実数。))、またはガリウム亜鉛酸化物(以下、GaX4ZnY4OZ4(X4、Y4、およびZ4は0よりも大きい実数。))などと、材料が分離することでモザイク状となり、モザイク状のInOX1、またはInX2ZnY2OZ2が、酸化物半導体膜中に分布した構成(クラウド状ともいう)である。

0285

つまり、CAC−IGZOは、InX2ZnY2OZ2、またはInOX1が主成分である領域と、GaOX3が主成分である領域とが、偏在し混合している構造を有する複合酸化物半導体膜である。また、InX2ZnY2OZ2、またはInOX1が主成分である領域と、GaOX3が主成分である領域とは、周辺部が不明瞭である(ボケている)ため、それぞれの境界は明確には観察できない場合がある。

0286

なお、IGZOは通称であり、In、Ga、Zn、およびOによる1つの化合物をいう場合がある。代表例として、InGaO3(ZnO)m1(m1は自然数)、またはIn(1+x0)Ga(1−x0)O3(ZnO)m0(−1≦x0≦1、m0は任意数)で表される結晶性の化合物が挙げられる。

0287

上記結晶性の化合物は、単結晶構造、多結晶構造、またはCAAC構造を有する。なお、CAAC構造とは、複数のIGZOナノ結晶がc軸配向を有し、かつa−b面においては配向せずに連結した結晶構造である。

0288

一方、CACは、材料構成に関する。CACとは、In、Ga、Zn、およびOを含む材料構成において、Gaを主成分とする複数の領域と、Inを主成分とする複数の領域とが、それぞれモザイク状にランダムに分散している構成をいう。従って、CACにおいて、結晶構造は副次的な要素である。なお、Gaを主成分とする領域と、Inを主成分とする領域とは、EDXマッピングで評価することができる。なお、Gaを主成分とする領域、及びInを主成分とする領域を、それぞれナノ粒子と呼称してもよい。当該ナノ粒子は、粒子の径が0.5nm以上10nm以下、代表的には1nm以上2nm以下である。また、上記ナノ粒子は、周辺部が不明瞭である(ボケている)ため、明確な境界が観察できない場合がある。

0289

なお、CACは、組成の異なる二種類以上の膜の積層構造は含まないものとする。例えば、Inを主成分とする膜と、Gaを主成分とする膜との2層からなる構造は、含まない。

0290

なお、GaOX3が主成分である領域と、InX2ZnY2OZ2、またはInOX1が主成分である領域とは、明確な境界が観察できない場合がある。例えば、領域の中心部から周辺部にかけて、主成分である元素の密度は、徐々に小さくなる。例えば、断面写真のEDXマッピングにおいて、EDXマッピングでカウントできる元素の個数(以下、存在量ともいう)に傾斜を有するため、領域の周辺部が不明瞭な(ボケた)状態で観察される。具体的には、GaOX3が主成分である領域では、Ga原子は、中心部から周辺部にかけて徐々に減少し、代わりに、Zn原子が増加することで、GaXZnYOZが主成分である領域へと段階的に変化する。従って、EDXマッピングにおいて、GaOX3が主成分である領域の周辺部は不明瞭な(ボケた)状態で観察される。

0291

<3−2.CAC−IGZOの解析>
続いて、各種測定方法を用い、基板上に成膜した酸化物半導体膜について測定を行った結果について説明する。

0292

[試料の構成と作製方法]
以下では、本発明の一態様に係る9個の試料について説明する。各試料は、それぞれ、酸化物半導体膜を成膜する際の基板温度、および酸素ガス流量比を異なる条件で作製する。なお、試料は、基板と、基板上の酸化物半導体膜と、を有する構造である。

0293

各試料の作製方法について、説明する。

0294

まず、基板として、ガラス基板を用いる。続いて、スパッタリング装置を用いて、ガラス基板上に酸化物半導体膜として、100nmのIn−Ga−Zn酸化物を形成する。成膜条件は、チャンバー内の圧力を0.6Paとし、ターゲットには、金属酸化物ターゲット(In:Ga:Zn=4:2:4.1[原子数比])を用いる。また、スパッタリング装置内に設置された金属酸化物ターゲットに2500WのAC電力を供給する。

0295

なお、酸化物を成膜する際の条件として、基板温度を、意図的に加熱しない温度(以下、R.T.ともいう。)、130℃、または170℃とした。また、Arと酸素の混合ガスに対する酸素ガスの流量比(酸素ガス流量比ともいう)を、10%、30%、または100%とすることで、9個の試料を作製する。

0296

[X線回折による解析]
項目では、9個の試料に対し、X線回折(XRD:X−ray diffraction)測定を行った結果について説明する。なお、XRD装置として、Bruker社製D8 ADVANCEを用いた。また、条件は、Out−of−plane法によるθ/2θスキャンにて、走査範囲を15deg.乃至50deg.、ステップ幅を0.02deg.、走査速度を3.0deg./分とした。

0297

図16にOut−of−plane法を用いてXRDスペクトルを測定した結果を示す。なお、図16において、上段には成膜時の基板温度条件が170℃の試料における測定結果、中段には成膜時の基板温度条件が130℃の試料における測定結果、下段には成膜時の基板温度条件がR.T.の試料における測定結果を示す。また、左側の列には酸素ガス流量比の条件が10%の試料における測定結果、中央の列には酸素ガス流量比の条件が30%の試料における測定結果、右側の列には酸素ガス流量比の条件が100%の試料における測定結果、を示す。

0298

図16に示すXRDスペクトルは、成膜時の基板温度を高くする、または、成膜時の酸素ガス流量比の割合を大きくすることで、2θ=31°付近ピーク強度が高くなる。なお、2θ=31°付近のピークは、被形成面または上面に略垂直方向に対してc軸に配向した結晶性IGZO化合物(CAAC(c−axis aligned crystalline)−IGZOともいう)であることに由来することが分かっている。

0299

また、図16に示すXRDスペクトルは、成膜時の基板温度が低い、または、酸素ガス流量比が小さいほど、明確なピークが現れなかった。従って、成膜時の基板温度が低い、または、酸素ガス流量比が小さい試料は、測定領域のa−b面方向、およびc軸方向の配向は見られないことが分かる。

0300

なお、実施の形態1で説明した第1の酸化物半導体膜としては、図16に示すXRDスペクトルで明確なピークが現れない条件を用いればよい。例えば、図16に示す9個の試料のうち、基板温度をR.T.とし、酸素ガス流量比を10%とした条件、基板温度をR.T.とし、酸素ガス流量比を30%とした条件、または基板温度を130℃とし、酸素ガス流量比を10%とした条件で行えばよい。

0301

また、実施の形態1で説明した第2の酸化物半導体膜としては、図16に示すXRDスペクトルで2θ=31°近傍に明確なピークが見られる条件を用いればよい。例えば、図16に示す9個の試料のうち、基板温度を130℃とし、酸素ガス流量比を100%とした条件、基板温度を170℃とし、酸素ガス流量比を30%とした条件、または基板温度を170℃とし、酸素ガス流量比を100%とした条件で行えばよい。

0302

電子顕微鏡による解析]
本項目では、成膜時の基板温度R.T.、および酸素ガス流量比10%で作製した試料を、HAADF(High−Angle Annular Dark Field)−STEM(Scanning Transmission Electron Microscope)によって観察、および解析した結果について説明する(以下、HAADF−STEMによって取得した像は、TEM像ともいう。)。

0303

HAADF−STEMによって取得した平面像(平面TEM像ともいう。)、および断面像(断面TEM像ともいう。)の画像解析を行った結果について説明する。なお、TEM像は、球面収差補正機能を用いて観察した。なお、HAADF−STEM像の撮影には、日本電子株式会社製原子分解能分析電子顕微鏡EM−ARM200Fを用いて、加速電圧200kV、ビーム径約0.1nmφの電子線を照射して行った。

0304

図17(A)は、成膜時の基板温度R.T.、および酸素ガス流量比10%で作製した試料の平面TEM像である。図17(B)は、成膜時の基板温度R.T.、および酸素ガス流量比10%で作製した試料の断面TEM像である。

0305

[電子線回折パターンの解析]
本項目では、成膜時の基板温度R.T.、および酸素ガス流量比10%で作製した試料に、プローブ径が1nmの電子線(ナノビーム電子線ともいう。)を照射することで、電子線回折パターンを取得した結果について説明する。

0306

図17(A)に示す、成膜時の基板温度R.T.、および酸素ガス流量比10%で作製した試料の平面TEM像において、黒点a1、黒点a2、黒点a3、黒点a4、および黒点a5で示す電子線回折パターンを観察する。なお、電子線回折パターンの観察は、電子線を照射しながら0秒の位置から35秒の位置まで一定の速度で移動させながら行う。黒点a1の結果を図17(C)、黒点a2の結果を図17(D)、黒点a3の結果を図17(E)、黒点a4の結果を図17(F)、および黒点a5の結果を図17(G)に示す。

0307

図17(C)、図17(D)、図17(E)、図17(F)、および図17(G)より、円を描くように(リング状に)輝度の高い領域が観測できる。また、リング状の領域に複数のスポットが観測できる。

0308

また、図17(B)に示す、成膜時の基板温度R.T.、および酸素ガス流量比10%で作製した試料の断面TEM像において、黒点b1、黒点b2、黒点b3、黒点b4、および黒点b5で示す電子線回折パターンを観察する。黒点b1の結果を図17(H)、黒点b2の結果を図17(I)、黒点b3の結果を図17(J)、黒点b4の結果を図17(K)、および黒点b5の結果を図17(L)に示す。

0309

図17(H)、図17(I)、図17(J)、図17(K)、および図17(L)より、リング状に輝度の高い領域が観測できる。また、リング状の領域に複数のスポットが観測できる。

0310

ここで、例えば、InGaZnO4の結晶を有するCAAC−OSに対し、試料面に平行にプローブ径が300nmの電子線を入射させると、InGaZnO4の結晶の(009)面に起因するスポットが含まれる回折パターンが見られる。つまり、CAAC−OSは、c軸配向性を有し、c軸が被形成面または上面に略垂直な方向を向いていることがわかる。一方、同じ試料に対し、試料面に垂直にプローブ径が300nmの電子線を入射させると、リング状の回折パターンが確認される。つまり、CAAC−OSは、a軸およびb軸は配向性を有さないことがわかる。

0311

また、微結晶を有する酸化物半導体膜(nano crystalline oxide semiconductor。以下、nc−OSという。)に対し、大きいプローブ径(例えば50nm以上)の電子線を用いる電子線回折を行うと、ハローパターンのような回折パターンが観測される。また、nc−OSに対し、小さいプローブ径の電子線(例えば50nm未満)を用いるナノビーム電子線回折を行うと、輝点(スポット)が観測される。また、nc−OSに対しナノビーム電子線回折を行うと、円を描くように(リング状に)輝度の高い領域が観測される場合がある。さらに、リング状の領域に複数の輝点が観測される場合がある。

0312

成膜時の基板温度R.T.、および酸素ガス流量比10%で作製した試料の電子線回折パターンは、リング状に輝度の高い領域と、該リング領域に複数の輝点を有する。従って、成膜時の基板温度R.T.、および酸素ガス流量比10%で作製した試料は、電子線回折パターンが、nc−OSになり、平面方向、および断面方向において、配向性は有さない。

0313

上より、成膜時の基板温度が低い、または、酸素ガス流量比が小さい酸化物半導体膜は、アモルファス構造の酸化物半導体膜とも、単結晶構造の酸化物半導体膜とも明確に異なる性質を有すると推定できる。

0314

元素分析
本項目では、エネルギー分散型X線分光法(EDX:Energy Dispersive X−ray spectroscopy)を用い、EDXマッピングを取得し、評価することによって、成膜時の基板温度R.T.、および酸素ガス流量比10%で作製した試料の元素分析を行った結果について説明する。なお、EDX測定には、元素分析装置として日本電子株式会社製エネルギー分散X線分析装置JED−2300Tを用いる。なお、試料から放出されたX線の検出にはSiドリフト検出器を用いる。

0315

EDX測定では、試料の分析対象領域の各点に電子線照射を行い、これにより発生する試料の特性X線のエネルギーと発生回数を測定し、各点に対応するEDXスペクトルを得る。本実施例では、各点のEDXスペクトルのピークを、In原子L殻への電子遷移、Ga原子のK殻への電子遷移、Zn原子のK殻への電子遷移及びO原子のK殻への電子遷移に帰属させ、各点におけるそれぞれの原子の比率を算出する。これを試料の分析対象領域について行うことにより、各原子の比率の分布が示されたEDXマッピングを得ることができる。

ページトップへ

この技術を出願した法人

この技術を発明した人物

ページトップへ

関連する挑戦したい社会課題

関連する公募課題

該当するデータがありません

ページトップへ

技術視点だけで見ていませんか?

この技術の活用可能性がある分野

分野別動向を把握したい方- 事業化視点で見る -

(分野番号表示ON)※整理標準化データをもとに当社作成

ページトップへ

おススメ サービス

おススメ astavisionコンテンツ

新着 最近 公開された関連が強い技術

  • 株式会社東芝の「 イットリウム製スパッタリングターゲットおよびそれを用いた成膜方法」が 公開されました。( 2021/09/30)

    【課題・解決手段】ポアの最大径が1mm以下であることを特徴とするイットリウム製スパッタリングターゲット。また、イットリウム製スパッタリングターゲットの任意の断面中に存在するポアの個数が0個以上2個以下... 詳細

  • 株式会社ソシオネクストの「 半導体集積回路装置」が 公開されました。( 2021/09/30)

    【課題・解決手段】CFET(Complementary FET)を用いたスタンダードセルのレイアウト構造を提供する。スタンダードセルは、埋め込み電源配線(11,12)間に、立体構造トランジスタ(P1)... 詳細

  • ダイソン・テクノロジー・リミテッドの「 デバイス」が 公開されました。( 2021/09/30)

    【課題・解決手段】蒸発器デバイスは、坩堝を有し、坩堝は、固体物質を坩堝に導入する入口と、蒸発物質を坩堝から解放する出口と、を備える。坩堝内で溶融した物質からの脱ガス蒸気は、出口から離間するように案内さ... 詳細

この 技術と関連性が強い人物

関連性が強い人物一覧

この 技術と関連する社会課題

関連する挑戦したい社会課題一覧

この 技術と関連する公募課題

該当するデータがありません

astavision 新着記事

サイト情報について

本サービスは、国が公開している情報(公開特許公報、特許整理標準化データ等)を元に構成されています。出典元のデータには一部間違いやノイズがあり、情報の正確さについては保証致しかねます。また一時的に、各データの収録範囲や更新周期によって、一部の情報が正しく表示されないことがございます。当サイトの情報を元にした諸問題、不利益等について当方は何ら責任を負いかねることを予めご承知おきのほど宜しくお願い申し上げます。

主たる情報の出典

特許情報…特許整理標準化データ(XML編)、公開特許公報、特許公報、審決公報、Patent Map Guidance System データ