図面 (/)

技術 磁気軸受

出願人 株式会社IHI国立大学法人大阪大学
発明者 軸丸武弘遠嶋成文桑田厳坂牧慶一平田勝弘新口昇
出願日 2016年8月1日 (4年3ヶ月経過) 出願番号 2016-151214
公開日 2018年2月8日 (2年9ヶ月経過) 公開番号 2018-021572
状態 特許登録済
技術分野 その他の軸受(磁気軸受、静圧軸受等)
主要キーワード 機械式軸受 二つ一組 ステータ磁束 電力貯蔵用フライホイール 有底円筒 軸剛性 能動制御 危険速度
関連する未来課題
重要な関連分野

この項目の情報は公開日時点(2018年2月8日)のものです。
また、この項目は機械的に抽出しているため、正しく解析できていない場合があります

図面 (11)

課題

ロータ軸長の短縮化を図ることができる磁気軸受の提供。

解決手段

ロータ10と、ロータ10のラジアル方向における支持力を発生するラジアルステータ20と、ロータ10のスラスト方向における支持力を発生するスラストステータ30と、を有する磁気軸受1であって、ラジアルステータ20は、ラジアルステータコア21と、ラジアルステータコア21、ロータ10を経由する第1の磁気回路を形成するラジアル巻線22と、を有し、スラストステータ30は、ラジアルステータコア21に接続されたスラストステータコア31と、スラストステータコア31、ロータ10、及び、ラジアルステータコア21を経由する第2の磁気回路102を形成するスラスト巻線32と、を有する、という構成を採用する。

概要

背景

磁気軸受は、機械的接触による摩耗が発生せず、さらに、潤滑剤が不要である等の利点がある。この磁気軸受は、軸受での損失が少ないため、高速羽根車や軸を回転させるターボ分子ポンプ圧縮機、ガスタービン電力貯蔵用フライホイール等に利用されている。磁気軸受は、電磁力によって回転体を非接触で支持するため、回転体を空間中に固定するためには、並進3自由度、傾き2自由度、回転1自由度の運動を制御する必要がある。通常、回転1自由度は、モータ担当し、残りの5自由度を磁気軸受で制御するようになっている。

下記非特許文献1には、5自由度制御形磁気軸受の基本的な構成が開示されている(非特許文献1の図1参照)。この磁気軸受は、2組のラジアル磁気軸受と1つのスラスト軸受から構成される。軸の並進方向2自由度の運動制御を担うラジアル磁気軸受は、軸端に1個ずつ合計2個配置され、並進方向2自由度と傾き2自由度の運動を制御する。また、1自由度方向に力を発生するスラスト軸受は、軸方向の1自由度の運動を制御する。スラスト軸受は、軸に取り付けられた1枚の磁性体の円板スラストディスク)を、コイル用の溝を設けた2つのリング状の電磁石で挟み込む構成となっている。

概要

ロータ軸長の短縮化をることができる磁気軸受の提供。ロータ10と、ロータ10のラジアル方向における支持力を発生するラジアルステータ20と、ロータ10のスラスト方向における支持力を発生するスラストステータ30と、を有する磁気軸受1であって、ラジアルステータ20は、ラジアルステータコア21と、ラジアルステータコア21、ロータ10を経由する第1の磁気回路を形成するラジアル巻線22と、を有し、スラストステータ30は、ラジアルステータコア21に接続されたスラストステータコア31と、スラストステータコア31、ロータ10、及び、ラジアルステータコア21を経由する第2の磁気回路102を形成するスラスト巻線32と、を有する、という構成を採用する。

目的

本発明は、上記問題点に鑑みてなされたものであり、ロータの軸長の短縮化を図ることができる磁気軸受の提供を目的とする

効果

実績

技術文献被引用数
0件
牽制数
0件

この技術が所属する分野

ライセンス契約や譲渡などの可能性がある特許掲載中! 開放特許随時追加・更新中 詳しくはこちら

請求項1

ロータと、前記ロータのラジアル方向における支持力を発生するラジアルステータと、前記ロータのスラスト方向における支持力を発生するスラストステータと、を有する磁気軸受であって、前記ラジアルステータは、ラジアルステータコアと、前記ラジアルステータコア、前記ロータを経由する第1の磁気回路を形成するラジアル巻線と、を有し、前記スラストステータは、前記ラジアルステータコアに接続されたスラストステータコアと、前記スラストステータコア、前記ロータ、及び、前記ラジアルステータコアを経由する第2の磁気回路を形成するスラスト巻線と、を有する、ことを特徴とする磁気軸受。

請求項2

前記スラストステータは、スラスト方向において前記ラジアルステータを挟んで一対で設けられている、ことを特徴とする請求項1に記載の磁気軸受。

請求項3

前記ラジアルステータコアは、前記ラジアル巻線が巻回されたラジアルステータ磁極を有し、前記一対のスラストステータのそれぞれは、前記ラジアルステータ磁極を経由する前記第2の磁気回路を形成する、ことを特徴とする請求項2に記載の磁気軸受。

請求項4

前記一対のスラストステータは、前記ラジアルステータ磁極において磁束の向きが互いに逆方向となるように前記第2の磁気回路を形成する、ことを特徴とする請求項3に記載の磁気軸受。

請求項5

前記スラストステータコアは、前記ラジアル巻線に対しスラスト方向において第1の空間をあけて配置されたスラストステータ磁極と、前記スラストステータ磁極と前記ラジアルステータコアとの間を接続し、前記ラジアル巻線に対しラジアル方向に第2の空間をあけて配置されたスラストステータバックヨークと、を有し、前記スラスト巻線は、前記第1の空間及び前記第2の空間に配置されている、ことを特徴とする請求項1〜4のいずれか一項に記載の磁気軸受。

請求項6

前記ラジアルステータコアは、前記ラジアル巻線が巻回された複数のラジアルステータ磁極と、前記複数のラジアルステータ磁極の間を接続するラジアルステータバックヨークと、を有し、前記ラジアルステータバックヨークは、前記第1の磁気回路が形成されない磁極間接続部に、該磁極間接続部を横断する溝を有する、ことを特徴とする請求項1〜5のいずれか一項に記載の磁気軸受。

請求項7

前記溝には、前記ラジアル巻線及び前記スラスト巻線の少なくともいずれか一方のリード線が配置されている、ことを特徴とする請求項6に記載の磁気軸受。

請求項8

前記溝には、前記リード線が2本または3本配置されている、ことを特徴とする請求項7に記載の磁気軸受。

技術分野

0001

本発明は、磁気軸受に関するものである。

背景技術

0002

磁気軸受は、機械的接触による摩耗が発生せず、さらに、潤滑剤が不要である等の利点がある。この磁気軸受は、軸受での損失が少ないため、高速羽根車や軸を回転させるターボ分子ポンプ圧縮機、ガスタービン電力貯蔵用フライホイール等に利用されている。磁気軸受は、電磁力によって回転体を非接触で支持するため、回転体を空間中に固定するためには、並進3自由度、傾き2自由度、回転1自由度の運動を制御する必要がある。通常、回転1自由度は、モータ担当し、残りの5自由度を磁気軸受で制御するようになっている。

0003

下記非特許文献1には、5自由度制御形磁気軸受の基本的な構成が開示されている(非特許文献1の図1参照)。この磁気軸受は、2組のラジアル磁気軸受と1つのスラスト軸受から構成される。軸の並進方向2自由度の運動制御を担うラジアル磁気軸受は、軸端に1個ずつ合計2個配置され、並進方向2自由度と傾き2自由度の運動を制御する。また、1自由度方向に力を発生するスラスト軸受は、軸方向の1自由度の運動を制御する。スラスト軸受は、軸に取り付けられた1枚の磁性体の円板スラストディスク)を、コイル用の溝を設けた2つのリング状の電磁石で挟み込む構成となっている。

先行技術

0004

進士忠彦、「磁気軸受基礎と応用」、精密工学会誌、Vol.78、No.12、2012年、p.1054−1057

発明が解決しようとする課題

0005

ところで、上記従来技術のように、ラジアル磁気軸受、スラスト磁気軸受を個々に配置すると、ロータ軸長が増加する。一般に、磁気軸受は、機械式軸受に対して軸受剛性が小さいため、ロータの曲げモードの腹の部分をラジアル磁気軸受で減衰させることが難しい。このため、ロータの軸長の増加に伴って軸剛性が低下すると、危険速度の低下を招くという問題がある。

0006

本発明は、上記問題点に鑑みてなされたものであり、ロータの軸長の短縮化を図ることができる磁気軸受の提供を目的とする。

課題を解決するための手段

0007

上記の課題を解決するために、本発明は、ロータと、前記ロータのラジアル方向における支持力を発生するラジアルステータと、前記ロータのスラスト方向における支持力を発生するスラストステータと、を有する磁気軸受であって、前記ラジアルステータは、ラジアルステータコアと、前記ラジアルステータコア、前記ロータを経由する第1の磁気回路を形成するラジアル巻線と、を有し、前記スラストステータは、前記ラジアルステータコアに接続されたスラストステータコアと、前記スラストステータコア、前記ロータ、及び、前記ラジアルステータコアを経由する第2の磁気回路を形成するスラスト巻線と、を有する、という構成を採用する。

0008

また、本発明においては、前記スラストステータは、スラスト方向において前記ラジアルステータを挟んで一対で設けられている、という構成を採用する。

0009

また、本発明においては、前記ラジアルステータコアは、前記ラジアル巻線が巻回されたラジアルステータ磁極を有し、前記一対のスラストステータのそれぞれは、前記ラジアルステータ磁極を経由する前記第2の磁気回路を形成する、という構成を採用する。

0010

また、本発明においては、前記一対のスラストステータは、前記ラジアルステータ磁極において磁束の向きが互いに逆方向となるように前記第2の磁気回路を形成する、という構成を採用する。

0011

また、本発明においては、前記スラストステータコアは、前記ラジアル巻線に対しスラスト方向において第1の空間をあけて配置されたスラストステータ磁極と、前記スラストステータ磁極と前記ラジアルステータコアとの間を接続し、前記ラジアル巻線に対しラジアル方向に第2の空間をあけて配置されたスラストステータバックヨークと、を有し、前記スラスト巻線は、前記第1の空間及び前記第2の空間に配置されている、という構成を採用する。

0012

また、本発明においては、前記ラジアルステータコアは、前記ラジアル巻線が巻回された複数のラジアルステータ磁極と、前記複数のラジアルステータ磁極の間を接続するラジアルステータバックヨークと、を有し、前記ラジアルステータバックヨークは、前記第1の磁気回路が形成されない磁極間接続部に、該磁極間接続部を横断する溝を有する、という構成を採用する。

0013

また、本発明においては、前記溝には、前記ラジアル巻線及び前記スラスト巻線の少なくともいずれか一方のリード線が配置されている、という構成を採用する。

0014

また、本発明においては、前記溝には、前記リード線が2本または3本配置されている、という構成を採用する。

発明の効果

0015

したがって、本発明では、ロータの軸長を短縮化することができる。

図面の簡単な説明

0016

本発明の一実施形態における磁気軸受の縦断面構造を示す斜視図である。
本発明の一実施形態における磁気軸受の構成を示す分解斜視図である。
本発明の一実施形態におけるラジアルステータの構成を示す磁気軸受の横断面図である。
本発明の一実施形態におけるスラストステータの構成を示す磁気軸受の縦断面図である。
図4に示す磁気軸受においてラジアルステータとスラストステータの磁束を重畳したときの(a)ラジアルステータ磁束の変化、(b)ラジアルステータの支持力の変化を示すグラフである。
比較例として、ラジアルステータ磁極において磁束の向きが同じ方向となるように第2の磁気回路を形成するスラストステータの構成を示す磁気軸受の縦断面図である。
図6に示す磁気軸受においてラジアルステータとスラストステータの磁束を重畳したときの(a)ラジアルステータ磁束の変化、(b)ラジアルステータの支持力の変化を示すグラフである。
本発明の一実施形態におけるラジアルステータを示す平面図である。
図8に示すラジアルステータコアを示す斜視図である。
本発明の一実施形態におけるラジアルステータを示す平面図である。

実施例

0017

以下、本発明の一実施形態について図面を参照して説明する。

0018

図1は、本発明の一実施形態における磁気軸受1の縦断面構造を示す斜視図である。図2は、本発明の一実施形態における磁気軸受1の構成を示す分解斜視図である。なお、視認性向上のため、図1では、図2に示すロータ10を図示していない。また、図2では、図1に示すハウジング2を図示していない。
磁気軸受1は、図1及び図2に示すように、ロータ10と、ロータ10のラジアル方向における支持力を発生するラジアルステータ20と、ロータ10のスラスト方向における支持力を発生するスラストステータ30と、を有する。ロータ10は、磁性体であって、円筒状に形成されている。

0019

本実施形態の磁気軸受1は、3軸能動制御磁気軸受である。すなわち、ラジアルステータ20は、ラジアル方向の2軸を制御する。スラストステータ30は、スラスト方向においてラジアルステータ20を挟んで一対で設けられ、スラスト方向の1軸を制御する。
なお、以下の説明では、一対で設けられたスラストステータ30のうち、一方をスラストステータ30z1と称し、他方をスラストステータ30z2と称することがある。

0020

ラジアルステータ20及び一対のスラストステータ30は、ハウジング2の内側に一体となって収容されている。ハウジング2の中央には、ロータ10が配置される孔部3が形成されている。ハウジング2は、筒部2aと、一対の蓋部2bと、を有する。筒部2aは、円筒状に形成され、ラジアルステータ20及び一対のスラストステータ30の外周面に嵌合している。一対の蓋部2bは、筒部2aの両端部に接続され、一対のスラストステータ30の端面を覆っている。このハウジング2は、非磁性体であって、ステンレス鋼等から形成されている。

0021

図3は、本発明の一実施形態におけるラジアルステータ20の構成を示す磁気軸受1の横断面図である。なお、以下の説明においては、XYZ直交座標系を設定し、このXYZ直交座標系を参照しつつ各部材の位置関係について説明することがある。ラジアル方向において互いに直交する2軸をそれぞれX軸方向、Y軸方向とし、スラスト方向の1軸をZ軸方向とする。Z軸方向は、X軸方向及びY軸方向と直交する。
ラジアルステータ20は、図3に示すように、ラジアルステータコア21と、ラジアル巻線22と、を有する。本実施形態のラジアルステータ20は、電磁石型ヘテロポーララジアル磁気軸受を形成している。

0022

ラジアルステータコア21は、磁性体であって、ラジアル巻線22が巻回された複数のラジアルステータ磁極23と、複数のラジアルステータ磁極23の間を接続するラジアルステータバックヨーク24と、を有する。ラジアルステータバックヨーク24は、円環状に形成され、ロータ10の外側に配置されている。ラジアルステータ磁極23は、ラジアルステータバックヨーク24の内周面から、ロータ10の外周面に向かって突設されている。

0023

ラジアルステータ磁極23は、ロータ10の外周面にギャップをあけて対向している。本実施形態のラジアルステータ磁極23は、ロータ10の周方向に45°間隔で8個設けられている。ラジアル巻線22は、周方向で隣り合うラジアルステータ磁極23間に形成されるスロット開口部を利用してラジアルステータ磁極23に巻回されている。ラジアル巻線22は、周方向で隣り合うラジアルステータ磁極23を二つ一組として巻回されている。

0024

具体的に、周方向で隣り合う二つ一組のラジアルステータ磁極23x1には、ラジアル巻線22x1が巻回されている。また、周方向で隣り合う二つ一組のラジアルステータ磁極23x2には、ラジアル巻線22x2が巻回されている。また、周方向で隣り合う二つ一組のラジアルステータ磁極23y1には、ラジアル巻線22y1が巻回されている。また、周方向で隣り合う二つ一組のラジアルステータ磁極23y2には、ラジアル巻線22y2が巻回されている。

0025

ラジアル巻線22x1,22x2,22y1,22y2は、ラジアルステータコア21、ロータ10を経由する第1の磁気回路101をそれぞれ形成する。第1の磁気回路101を形成する磁束(鎖交磁束)は、ラジアル巻線22が巻回された二つ一組のラジアルステータ磁極23、当該二つ一組のラジアルステータ磁極23を接続するラジアルステータバックヨーク24、及びロータ10を経由する。

0026

ラジアル巻線22x1,22x2は、ロータ10の中心を通るX軸方向において対となって配置されている。これらラジアル巻線22x1,22x2に直流電流をそれぞれ流すと、その電流に伴う磁束に由来する磁気吸引力が発生し、ラジアル方向の1軸(X軸方向)を制御することができる。

0027

また、ラジアル巻線22y1,22y2は、ロータ10の中心を通るY軸方向において対となって配置されている。これらラジアル巻線22y1,22y2に直流電流をそれぞれ流すと、その電流に伴う磁束に由来する磁気吸引力が発生し、ラジアル方向のもう1軸(Y軸方向)を制御することができる。

0028

ラジアル巻線22x1,22x2,22y1,22y2は、磁束の短絡を防ぐため、隣り合う磁束は互いに逆方向となるように極性を選択している。例えば、ラジアル巻線22x1,22x2が形成する第1の磁気回路101は反時計回りであり、ラジアル巻線22y1,22y2が形成する第1の磁気回路101は時計回りである。これらラジアルステータ磁極23の極性は、周方向においてN極→N極→S極→S極→N極→N極→S極…の順に交互に配置される。

0029

図4は、本発明の一実施形態におけるスラストステータ30の構成を示す磁気軸受1の縦断面図である。
スラストステータ30は、図3に示すように、スラストステータコア31と、スラスト巻線32と、を有する。本実施形態のスラストステータ30は、電磁石型ホモポーラスラスト磁気軸受を形成している。スラストステータコア31は、磁性体であって、ラジアルステータコア21と接続されている。

0030

スラストステータコア31は、略有底円筒状に形成され、その内側にスラスト巻線32を収容している。スラストステータコア31は、ロータ10を配置する孔が中央に形成された円板状のスラストステータ磁極33と、スラストステータ磁極33の周縁部からラジアルステータコア21に向かって突出する円筒状のスラストステータバックヨーク34と、を有する。スラストステータバックヨーク34は、スラストステータ磁極33とラジアルステータコア21との間を接続するものであり、その先端はラジアルステータバックヨーク24に接続されている。

0031

スラストステータ磁極33は、図4に示す断面視で、ラジアルステータ磁極23よりも小さい厚みで形成されている。本実施形態のスラストステータ磁極33は、ラジアルステータ磁極23の1/2以下の厚みを有する。また、スラストステータバックヨーク34は、図4に示す断面視で、ラジアルステータバックヨーク24(ラジアルステータコア21の外周からラジアル巻線22まで)よりも小さい厚みで形成されている。本実施形態のスラストステータバックヨーク34は、ラジアルステータバックヨーク24の1/4以下の厚みを有する。スラストステータバックヨーク34とラジアルステータバックヨーク24の外径は等しく形成されている。

0032

スラストステータ磁極33は、ラジアル巻線22に対しスラスト方向において第1の空間201をあけて配置されている。また、スラストステータバックヨーク34は、ラジアル巻線22に対しラジアル方向に第2の空間202をあけて配置されている。これら第1の空間201及び第2の空間202には、スラスト巻線32が配置されている。スラスト巻線32は、Z軸回りに巻かれ、ラジアル巻線22の側面及び上面を覆うL字断面のリング状(図2参照)に成形されている。

0033

スラスト巻線32は、図4に示すように、スラストステータコア31、ロータ10、及び、ラジアルステータコア21を経由する第2の磁気回路102を形成する。第2の磁気回路102を形成する磁束(鎖交磁束)は、スラストステータ磁極33、スラストステータバックヨーク34、ラジアルステータバックヨーク24、ラジアルステータ磁極23、及び、ロータ10を経由する。

0034

上記構成のスラストステータ30は、スラスト方向においてラジアルステータ20を挟んで一対で設けられており、スラストステータ30z1のスラスト巻線32z1とスラストステータ30z2のスラスト巻線32z2は、ロータ10が延びるZ軸方向において対となって配置されている。これらスラスト巻線32z1,32z2に直流電流をそれぞれ流すと、その電流に伴う磁束に由来する磁気吸引力が発生し、スラスト方向の1軸(Z軸方向)を制御することができる。

0035

一対のスラストステータ30z1,30z2のそれぞれは、ラジアルステータ磁極23を経由する第2の磁気回路102z1,102z2を形成する。すなわち、ラジアルステータ磁極23は、ラジアルステータ20の磁路であると共に、一対のスラストステータ30z1,30z2の共有の磁路となっている。
また、一対のスラストステータ30z1,30z2は、図4に示すように、ラジアルステータ磁極23において磁束の向きが互いに逆方向となるように第2の磁気回路102z1,102z2を形成している。

0036

スラスト巻線32z1,32z2は、ラジアルステータ磁極23における磁気飽和を抑制するため、ラジアルステータ磁極23において互いに逆方向になるように極性を選択している。例えば、スラスト巻線32z1が形成する第2の磁気回路102z1は時計回りであり、スラスト巻線32z2が形成する第2の磁気回路102z2も時計回りである。ロータ10においては、スラスト巻線32z1による磁束の向きと、スラスト巻線32z2による磁束の向きが、共にZ軸方向の+側を向いている。

0037

図5は、図4に示す磁気軸受1においてラジアルステータ20とスラストステータ30の磁束を重畳したときの(a)ラジアルステータ磁束の変化、(b)ラジアルステータ20の支持力の変化を示すグラフである。
図5(a)は、スラスト巻線32z1,32z2にバイアス電流をizb=0、izb=1.0、izb=2.0と与え、ラジアル巻線22の制御電流ixcを増加させたときのラジアルステータ磁極23(図4に示す領域300)における磁束φx1の変化を示している。また、図5(b)は、このときのラジアルステータ20の支持力fxの変化を示している。

0038

図5(a)に示すように、スラスト巻線32z1,32z2にバイアス電流をizb=0、izb=1.0、izb=2.0と与えた場合、磁束φx1は、制御電流ixcに比例して増加する。また、図5(b)に示すように、支持力fxも、制御電流ixcに比例して増加する。このように、図4に示す磁気軸受1では、ラジアルステータ20とスラストステータ30の磁束を重畳しても、磁気飽和が確認されず、スラストステータ30の磁束によるラジアルステータ20の磁束変化がない(干渉がない)ことが分かる。

0039

図6は、比較例として、ラジアルステータ磁極23において磁束の向きが同じ方向となるように第2の磁気回路102z1,102z2を形成するスラストステータ30の構成を示す磁気軸受1の縦断面図である。図7は、図6に示す磁気軸受1においてラジアルステータ20とスラストステータ30の磁束を重畳したときの(a)ラジアルステータ磁束の変化、(b)ラジアルステータの支持力の変化を示すグラフである。

0040

図6に示すスラスト巻線32z1,32z2は、図4に示す構成とは逆に、ラジアルステータ磁極23において互いに同じ方向になるように極性を選択している。例えば、スラスト巻線32z1が形成する第2の磁気回路102z1は時計回りであり、スラスト巻線32z2が形成する第2の磁気回路102z2は反時計回りである。ロータ10においては、スラスト巻線32z1による磁束の向きと、スラスト巻線32z2による磁束の向きが、Z軸方向において互いに逆方向を向いている。

0041

図7(a)に示すように、スラスト巻線32z1,32z2に小さいバイアス電流(izb=0、izb=1.0)を与えた場合、磁束φx1は制御電流ixcに比例して増加するが、大きいバイアス電流(izb=2.0)を与えた場合、磁束φx1は制御電流ixc=1.5辺りから比例関係ではなくなり、傾きが徐々に小さくなる(収束する)。また、図7(b)に示すように、大きいバイアス電流(izb=2.0)を与えた場合、支持力fxも、磁束φx1と同様に傾きが徐々に小さくなる(収束する)。このように、図6に示す磁気軸受1では、ラジアルステータ20とスラストステータ30の磁束を重畳した結果、磁気飽和が起こり、スラストステータ30の磁束によるラジアルステータ20の磁束変化が生じた(干渉がある)ことが分かる。

0042

続いて、上記構成の磁気軸受1の作用効果について説明する。
上記構成の磁気軸受1では、ロータ10のラジアル方向における支持力が、ラジアルステータ20のラジアル巻線22を流れる電流に伴う磁束に由来する磁気吸引力によって発生する。この磁束は、図3に示すように、ラジアルステータコア21、ロータ10を経由する第1の磁気回路101を形成する。また、本実施形態では、ロータ10のスラスト方向における支持力が、スラストステータ30のスラスト巻線32を流れる電流に伴う磁束に由来する磁気吸引力によって発生する。スラストステータコア31はラジアルステータコア21と接続されており、この磁束は、図4に示すように、スラストステータコア31、ロータ10、及び、ラジアルステータコア21を経由する第2の磁気回路102を形成する。このように、本実施形態では、ラジアルステータコア21にスラストステータコア31を接続し、ラジアルステータ20とスラストステータ30の磁路を共有化しているため、ラジアルステータ20及びスラストステータ30を一体化して軸方向の省スペース化を図ることができる。つまり、ラジアルステータ20及びスラストステータ30を個々に配置するよりも、ロータ10の軸長を短縮化することができる。

0043

また、本実施形態では、スラストステータ30は、スラスト方向においてラジアルステータ20を挟んで一対で設けられている。この構成によれば、ラジアルステータ20及び一対のスラストステータ30z1,30z2の計3つの磁気軸受を一体化して軸方向の省スペース化を図ることができる。

0044

また、本実施形態では、図4に示すように、ラジアルステータコア21は、ラジアル巻線22が巻回されたラジアルステータ磁極23を有し、一対のスラストステータ30のそれぞれは、ラジアルステータ磁極23を経由する第2の磁気回路102z1,102z2を形成する。この構成によれば、ラジアルステータ20の磁路である既存のラジアルステータ磁極23が、一対のスラストステータ30z1,30z2の共有の磁路となるため、共有の磁路を別途設ける必要がなく、軸方向の省スペース化に寄与できる。

0045

さらに、本実施形態においては、一対のスラストステータ30は、ラジアルステータ磁極23において磁束の向きが互いに逆方向となるように第2の磁気回路102z1,102z2を形成する。この構成によれば、ラジアルステータ磁極23において互いに逆方向になるように極性を選択でき、図5に示すように、ラジアルステータ磁極23における磁気飽和を抑制することができる。このため、ラジアルステータ20の磁路であるラジアルステータ磁極23を、一対のスラストステータ30z1,30z2の共有の磁路とした場合であっても、磁気飽和を抑制し、磁束及び支持力の低下を抑制することができる。

0046

また、本実施形態では、図4に示すように、スラストステータコア31は、ラジアル巻線22に対しスラスト方向において第1の空間201をあけて配置されたスラストステータ磁極33と、スラストステータ磁極33とラジアルステータコア21との間を接続し、ラジアル巻線22に対しラジアル方向に第2の空間202をあけて配置されたスラストステータバックヨーク34と、を有し、スラスト巻線32は、第1の空間201及び第2の空間202に配置されている。この構成によれば、ラジアルステータコア21とスラストステータコア31との断面L字状のデッドスペース(第1の空間201及び第2の空間202)を利用してスラスト巻線32を配置することができるため、軸方向の省スペース化に寄与できる。

0047

このように、上述の本実施形態によれば、ロータ10と、ロータ10のラジアル方向における支持力を発生するラジアルステータ20と、ロータ10のスラスト方向における支持力を発生するスラストステータ30と、を有する磁気軸受1であって、ラジアルステータ20は、ラジアルステータコア21と、ラジアルステータコア21、ロータ10を経由する第1の磁気回路101を形成するラジアル巻線22と、を有し、スラストステータ30は、ラジアルステータコア21に接続されたスラストステータコア31と、スラストステータコア31、ロータ10、及び、ラジアルステータコア21を経由する第2の磁気回路102を形成するスラスト巻線32と、を有する、という構成を採用することによって、ラジアルステータ20及びスラストステータ30を一体化でき、ラジアルステータ20及びスラストステータ30を個々に配置するよりも、ロータ10の軸長を短縮化することができる。これにより、ロータ10の危険速度の低下を抑制することができる。

0048

以上、図面を参照しながら本発明の好適な実施形態について説明したが、本発明は上記実施形態に限定されるものではない。上述した実施形態において示した各構成部材の諸形状や組み合わせ等は一例であって、本発明の主旨から逸脱しない範囲において設計要求等に基づき種々変更可能である。

0049

例えば、本発明は、図8図10に示すような形態を採用し得る。なお、以下の説明において、上述の実施形態と同一又は同等の構成については同一の符号を付し、その説明を簡略若しくは省略する。

0050

図8は、本発明の一実施形態におけるラジアルステータ20を示す平面図である。図9は、図8に示すラジアルステータコア21を示す斜視図である。
図8に示すラジアルステータ20は、ラジアルステータバックヨーク24に溝26が形成されたラジアルステータコア21を有する。溝26は、ラジアルステータバックヨーク24の磁極間接続部25を横断するように形成されている。

0051

溝26は、第1の磁気回路101が形成されない磁極間接続部25に形成され、具体的には、ラジアルステータ磁極23x1,23y2間の磁極間接続部25、ラジアルステータ磁極23y2,23x2間の磁極間接続部25、ラジアルステータ磁極23x2,23y1間の磁極間接続部25、及び、ラジアルステータ磁極23y1,23x1間の磁極間接続部25に形成されている。溝26は、図9に示すように、ラジアルステータバックヨーク24の表面24aと裏面24bに所定深さで形成され、ラジアル方向に直線的に延在している。

0052

溝26には、ラジアル巻線22及びスラスト巻線32の少なくともいずれか一方のリード線40が配置されている。図8に示す一実施形態では、ラジアルステータ磁極23x1,23y2間の溝26及びラジアルステータ磁極23x2,23y1間の溝26には、ラジアル巻線22のリード線40rが2本配置されている。また、ラジアルステータ磁極23y1,23x1間の溝26及びラジアルステータ磁極23y1,23y2間の溝26には、ラジアル巻線22のリード線40rが2本、スラスト巻線32のリード線40tが1本、計3本配置されている。なお、表面24aと裏面24bにおけるリード線40の配置は同じにしても異ならせてもよいが、溝26には、リード線40が2本または3本配置されていることが好ましい。

0053

上記のように、ラジアルステータコア21は、ラジアル巻線22が巻回された複数のラジアルステータ磁極23と、複数のラジアルステータ磁極23の間を接続するラジアルステータバックヨーク24と、を有し、ラジアルステータバックヨーク24は、第1の磁気回路101が形成されない磁極間接続部25に、該磁極間接続部25を横断する溝26を有する。このように、ラジアルステータコア21に溝26を形成することで、ラジアルステータコア21で発生する渦電流を抑制することができる。また、溝26は、第1の磁気回路101が形成されない磁極間接続部25に形成されているため、第1の磁気回路101の磁路が細くならず、磁気飽和を抑制することができる。

0054

また、溝26には、ラジアル巻線22及びスラスト巻線32の少なくともいずれか一方のリード線40が配置されている。この構成によれば、渦電流抑制用の溝26を、ラジアル巻線22及びスラスト巻線32のリード線40を引き出す引出線用の溝として兼用することができる。

0055

また、溝26には、リード線40が2本または3本配置されている。本実施形態では、ラジアルステータ磁極23が8極あるため、ラジアル巻線22のリード線40rは2本ずつで計16本あり、また、スラストステータ30は一対で設けられているため、スラスト巻線32のリード線40tは2本ずつで計4本ある。対して溝26は、表面24aと裏面24bに4つずつで計8つある。本実施形態のように、表裏8つの溝26にリード線40rを2本ずつ均等に配置した場合、表面24a側に配置されたスラスト巻線32の2本のリード線40tは表面24a側の4つの溝26のいずれかに配置し、裏面24b側に配置されたスラスト巻線32の2本のリード線40tは裏面24b側の4つの溝26のいずれかに配置する必要がある。ここで、スラスト巻線32の2本のリード線40tを1つの溝26に配置してもよい(計4本のリード線40を1つの溝26に配置してもよい)が、そうするとその分だけ溝26を大きく形成しなければならず、ラジアルステータコア21の機械的強度が弱くなる。このため、本実施形態では、スラスト巻線32の2本のリード線40tを別々の溝26に配置し、溝26から最大3本のリード線40が引き出されるようにして、ラジアルステータコア21の機械的強度を確保している。

0056

図10は、本発明の一実施形態におけるラジアルステータ20を示す平面図である。なお、図10では視認性向上のため、リード線40を図示していない。
図10に示す変形例のように、表面24aに形成される溝26aと裏面24bに形成される溝26bをオフセットして形成してもよい。この構成によれば、溝26a,26bが厚み方向で対向して形成されないため、溝26a,26bにおける厚みが図8に示す形態と比べて大きくなり、ラジアルステータコア21の機械的強度を高くすることができる。

0057

また、例えば、上記実施形態では、電磁石のみの構成について説明したが、永久磁石を構成に加えてもよい。永久磁石は、例えば、スラストステータバックヨーク34等に挿入することができる。

0058

また、例えば、上記実施形態では、スラストステータ30が、スラスト方向においてラジアルステータ20を挟んで一対で設けられている構成について説明したが、スラストステータ30の一方のみがラジアルステータ20と一体化され、スラストステータ30の他方が別体で配置してもよい。この構成においても、ラジアルステータ20及びスラストステータ30を個々に配置するよりは、ロータ10の軸長を短縮化することができる。

0059

1磁気軸受
10ロータ
20ラジアルステータ
21 ラジアルステータコア
22(22x1,22x2,22y1,22y2)ラジアル巻線
23(23x1,23x2,23y1,23y2) ラジアルステータ磁極
24 ラジアルステータバックヨーク
25磁極間接続部
26 溝
30(30z1,30z2)スラストステータ
31 スラストステータコア
32(32z1,32z2)スラスト巻線
33 スラストステータ磁極
34 スラストステータバックヨーク
40(40r、40t)リード線
101 第1の磁気回路
102(102z1,102z2) 第2の磁気回路
201 第1の空間
202 第2の空間

ページトップへ

この技術を出願した法人

この技術を発明した人物

ページトップへ

関連する挑戦したい社会課題

関連する公募課題

該当するデータがありません

ページトップへ

おススメ サービス

おススメ astavisionコンテンツ

新着 最近 公開された関連が強い技術

  • 林厨の「 発電機及びその調整方法」が 公開されました。( 2020/09/24)

    【課題】安定性に優れ、調整し易い無接触軸受が設けられた発電機を提供する。【解決手段】発電機1は、第1マグネットリング30、及びこれに対して磁気により浮上する第2マグネットリング32を有する下無接触軸受... 詳細

  • NTN株式会社の「 ポンプ装置」が 公開されました。( 2020/09/17)

    【課題】従来のポンプ装置と比べて効率が向上されているポンプ装置を提供する。【解決手段】ポンプ装置1は、第1室21が内部に設けられている第1ハウジング20と、第1室20内において回転するように設けられて... 詳細

  • 株式会社ソディックの「 静圧流体軸受装置」が 公開されました。( 2020/09/17)

    【課題】静圧流体軸受装置(1)は、ラジアル側及びスラスト側の隙間を容易に調整することが望まれる。【解決手段】鍔部(21)とテーパ外周部(20)を有するスピンドル(2)を非接触で支持する静圧流体軸受装置... 詳細

この 技術と関連性が強い技術

関連性が強い 技術一覧

この 技術と関連性が強い人物

関連性が強い人物一覧

この 技術と関連する社会課題

関連する挑戦したい社会課題一覧

この 技術と関連する公募課題

該当するデータがありません

astavision 新着記事

サイト情報について

本サービスは、国が公開している情報(公開特許公報、特許整理標準化データ等)を元に構成されています。出典元のデータには一部間違いやノイズがあり、情報の正確さについては保証致しかねます。また一時的に、各データの収録範囲や更新周期によって、一部の情報が正しく表示されないことがございます。当サイトの情報を元にした諸問題、不利益等について当方は何ら責任を負いかねることを予めご承知おきのほど宜しくお願い申し上げます。

主たる情報の出典

特許情報…特許整理標準化データ(XML編)、公開特許公報、特許公報、審決公報、Patent Map Guidance System データ