図面 (/)

この項目の情報は公開日時点(2018年1月18日)のものです。
また、この項目は機械的に抽出しているため、正しく解析できていない場合があります

図面 (16)

課題

劣化したときの蓄電デバイスの特性を精度よく推定し、蓄電デバイス容量を的確に選択することができる方法を提供する。

解決手段

この方法は、蓄電デバイスの等価回路モデルを用いてシミュレーションを行い、シミュレーションの結果に基づいて蓄電デバイスの容量を選択する方法であって、等価回路モデルを流れる電流I(t)に基づいて等価回路モデルの端子電圧V(t)を計算するステップを含む。等価回路モデルは、複数の特性パラメータを含む。少なくとも一つの特性パラメータは、蓄電デバイスの劣化の影響を表す時間関数を含む。その時間関数は、蓄電デバイスの動作状態を表す数値の時間積分と、時間積分に乗算された劣化速度を表す係数とを含む項を有する。

概要

背景

特許文献1には、電池モデル同定方法が記載されている。この方法では、電池に入力される電流波形電流センサを用いて測定し、電池の端子電圧電圧波形電圧センサを用いて測定する。そして、システム同定演算部が、これらの電流波形及び電圧波形に基づいて、電池モデルのシステム同定を行う。

概要

劣化したときの蓄電デバイスの特性を精度よく推定し、蓄電デバイス容量を的確に選択することができる方法を提供する。この方法は、蓄電デバイスの等価回路モデルを用いてシミュレーションを行い、シミュレーションの結果に基づいて蓄電デバイスの容量を選択する方法であって、等価回路モデルを流れる電流I(t)に基づいて等価回路モデルの端子電圧V(t)を計算するステップを含む。等価回路モデルは、複数の特性パラメータを含む。少なくとも一つの特性パラメータは、蓄電デバイスの劣化の影響を表す時間関数を含む。その時間関数は、蓄電デバイスの動作状態を表す数値の時間積分と、時間積分に乗算された劣化速度を表す係数とを含む項を有する。

目的

本発明は、実際に劣化した蓄電デバイスを用いなくても、劣化したときの蓄電デバイスの特性を精度良く推定し、蓄電デバイス容量を的確に選択することができる蓄電デバイス容量選択方法を提供する

効果

実績

技術文献被引用数
0件
牽制数
0件

この技術が所属する分野

(分野番号表示ON)※整理標準化データをもとに当社作成

ライセンス契約や譲渡などの可能性がある特許掲載中! 開放特許随時追加・更新中 詳しくはこちら

請求項1

蓄電デバイス等価回路モデルを用いてシミュレーションを行い、前記シミュレーションの結果に基づいて前記蓄電デバイスの容量を選択する方法であって、前記等価回路モデルを流れる電流に基づいて前記等価回路モデルの端子電圧を計算するステップを含み、前記等価回路モデルが複数の特性パラメータを含んでおり、少なくとも一つの前記特性パラメータが、前記蓄電デバイスの劣化の影響を表す時間関数を含んでおり、前記時間関数が、前記蓄電デバイスの動作状態を表す数値の時間積分と、前記時間積分に乗算された劣化速度を表す係数とを含む項を有する、蓄電デバイス容量選択方法。

請求項2

前記シミュレーションは車両の燃費シミュレーションである、請求項1に記載の蓄電デバイス容量選択方法。

請求項3

前記蓄電デバイスの動作状態を表す数値が前記電流である、請求項1または2に記載の蓄電デバイス容量選択方法。

請求項4

前記項が、前記時間積分に乗算された放電深度を更に含む、請求項3に記載の蓄電デバイス容量選択方法。

請求項5

前記蓄電デバイスの動作状態を表す数値が、暗電流放電時の充電率及び休止時の充電率の一方または双方である、請求項1または2に記載の蓄電デバイス容量選択方法。

請求項6

前記係数が前記蓄電デバイスの温度に応じて変化する、請求項1〜5のいずれか一項に記載の蓄電デバイス容量選択方法。

請求項7

前記蓄電デバイスが鉛蓄電池である、請求項1〜6のいずれか一項に記載の蓄電デバイス容量選択方法。

技術分野

0001

本発明は、蓄電デバイス容量選択方法に関する。

背景技術

0002

特許文献1には、電池モデル同定方法が記載されている。この方法では、電池に入力される電流波形電流センサを用いて測定し、電池の端子電圧電圧波形電圧センサを用いて測定する。そして、システム同定演算部が、これらの電流波形及び電圧波形に基づいて、電池モデルのシステム同定を行う。

先行技術

0003

特開2016−3963号公報

発明が解決しようとする課題

0004

現在、車載用蓄電デバイスとして、鉛蓄電池リチウムイオン電池リチウムイオンキャパシタといった様々な蓄電デバイスが用いられている。そして、これらの電池を組み合わせて、様々な種類のハイブリッド方式が実用化されている。例えば、メイン蓄電デバイスとは別に、減速の際のエネルギー回生及び補機への給電のためのサブ蓄電デバイスを設ける、いわゆるμHEV(Hybrid Electric Vehicle)方式が近年特に有用とされている。

0005

一方、例えば車両の燃費シュミレーションにおいては、エンジン及び蓄電デバイスといった様々な動力源並びに負荷モデル化し、規定の走行パターンを該モデルに入力して燃費を算出することが行われている。このような燃費シュミレーション等に含まれる蓄電デバイスのシミュレーションにおいて、ハイブリッド方式における複雑化した蓄電デバイス構成を正確にモデル化することは、シミュレーションを精度よく行うために極めて重要である。しかしながら、従来のシュミレーションにおいては、蓄電デバイスの使用による劣化を考慮せずに蓄電デバイスをモデル化しているので、劣化したときの蓄電デバイスの特性を精度良く推定するためには、モデルの特性パラメータを同定する際に、実際に劣化した蓄電デバイスを用意する必要がある。

0006

このため、実際に劣化した蓄電デバイスを用意できない場合には、シミュレーションにおいて蓄電デバイスの劣化により性能がどれほど低下するかが不明であり、シミュレーション結果から選択される蓄電デバイス容量よりも十分に余裕のある蓄電デバイス容量を選択せざるを得ない。従って、蓄電デバイス容量が必要以上に大きくなり易く、車両コスト低減の妨げとなるおそれがある。

0007

本発明は、実際に劣化した蓄電デバイスを用いなくても、劣化したときの蓄電デバイスの特性を精度良く推定し、蓄電デバイス容量を的確に選択することができる蓄電デバイス容量選択方法を提供することを目的とする。

課題を解決するための手段

0008

本発明の一実施形態による蓄電デバイス容量選択方法は、蓄電デバイスの等価回路モデルを用いてシミュレーションを行い、シミュレーションの結果に基づいて蓄電デバイスの容量を選択する方法であって、等価回路モデルを流れる電流に基づいて等価回路モデルの端子電圧を計算するステップを含み、等価回路モデルが複数の特性パラメータを含んでおり、少なくとも一つの特性パラメータが、蓄電デバイスの劣化の影響を表す時間関数を含んでおり、時間関数が、蓄電デバイスの動作状態を表す数値の時間積分と、時間積分に乗算された劣化速度を表す係数とを含む項を有する。

0009

この蓄電デバイス容量選択方法では、少なくとも一つの特性パラメータが、蓄電デバイスの劣化の影響を表す時間関数を含む。このような時間関数に蓄電デバイスの使用期間(トータルサイクル時間)内の適切な時間(例えば動作状態を表す数値に関わる動作時間)を入力することにより、該使用時間経過時における蓄電デバイスの劣化度合いを特性パラメータに反映させることができる。そして、本発明者の知見によれば、その時間関数が、劣化速度を表す係数と、蓄電デバイスの動作状態を表す数値の時間積分(すなわち蓄電デバイスの使用履歴)とを乗算した項を含むことによって、蓄電デバイスの劣化度合いを精度良く表すことができる。従って、上記の蓄電デバイス容量選択方法によれば、実際に劣化した蓄電デバイスを用いなくても、劣化したときの蓄電デバイスの入出力特性を精度よく推定することができ、劣化した蓄電デバイスを用いた燃費シミュレーションなどを精度良く行うことができる。これにより、所定の年数を経た後の蓄電デバイスの推定特性に基づいて、所定の条件を満足できる蓄電デバイス容量を的確に選択することができる。なお、この蓄電デバイスは、例えば鉛蓄電池である。

0010

上記の蓄電デバイス容量選択方法において、シミュレーションは車両の燃費シミュレーションであってもよい。これにより、所定の年数を経た後の推定燃費に基づいて、所定の燃費条件を満足できる蓄電デバイス容量を的確に選択することができる。

0011

上記の蓄電デバイス容量選択方法において、蓄電デバイスの動作状態を表す数値は上記電流であってもよい。これにより、使用期間における蓄電デバイスを流れる総電流量に基づく劣化(通電劣化)による影響を考慮して、蓄電デバイスの特性を更に精度良く推定することができる。この場合、上記項は、時間積分に乗算された放電深度(Depth ofDischarge;DOD)を更に含んでもよい。これにより、使用期間における蓄電デバイスのDODに基づく劣化による影響を考慮して、蓄電デバイスの特性を更に精度良く推定することができる。

0012

上記の蓄電デバイス容量選択方法において、蓄電デバイスの動作状態を表す数値は、蓄電デバイスの暗電流放電時の充電率(State Of Charge;SOC)及び休止時のSOCの一方または双方であってもよい。これにより、使用期間における暗電流放電時または休止時の劣化による影響を考慮して、蓄電デバイスの特性を更に精度良く推定することができる。

0013

上記の蓄電デバイス容量選択方法において、係数は蓄電デバイスの温度に応じて変化してもよい。これにより、蓄電デバイスの温度に応じて変化する劣化度合いを精度良く表すことができる。

発明の効果

0014

本発明による蓄電デバイス容量選択方法によれば、実際に劣化した蓄電デバイスを用いなくても、劣化したときの蓄電デバイスの特性を精度よく推定し、蓄電デバイス容量を的確に選択することができる。

図面の簡単な説明

0015

図1は、燃費シミュレーションを行う装置の概略構成を示す図である。
図2は、等価回路モデルの例を示す図である。
図3は、一実施形態に係るシミュレーション装置の概略構成を示す図である。
図4は、図3のシミュレーション装置のハードウェア構成の例を示す図である。
図5は、シミュレーション装置が実行する端子電圧の計算処理を説明する図である。
図6(a)〜図6(c)は、蓄電デバイスを流れる電流の波形の例を概念的に示すグラフである。
図7は、リチウムイオン電池を例として図6(a)〜図6(c)の電流波形を入力したときの直流抵抗の変化を示すグラフである。
図8は、図6(a)〜図6(c)の電流波形に対応する、通電劣化項の時間積分の計算値プロットしたグラフである。
図9は、図6(a)〜図6(c)の電流波形に対応する、自己発熱劣化項の時間積分の計算値をプロットしたグラフである。
図10は、図6(a)〜図6(c)の電流波形に対応する、休止劣化項の時間積分の計算値をプロットしたグラフである。
図11(a)〜図11(c)は、カーブフィッティングの様子を概念的に示すグラフである。
図12は、各特性パラメータの係数の数値例を示す図表である。
図13は、車両の燃費シミュレーションにおいて、蓄電デバイスの等価回路モデルに一実施形態の特性パラメータを使用した場合と、劣化による影響を考慮しない特性パラメータを使用した場合とにおける燃費誤差最大値を比較した結果を示すグラフである。
図14は、各特性パラメータの同定に用いた電流波形を示す図である。
図15は、一実施形態による燃費シミュレーション結果の一例を示すグラフである。

実施例

0016

以下、添付図面を参照しながら本発明による蓄電デバイス容量選択方法の実施の形態を詳細に説明する。なお、図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。なお、以下の説明において、蓄電デバイスへを流れる電流とは、蓄電デバイスに入力される充電電流および蓄電デバイスから出力される放電電流の双方を指し、電流の符号が正である場合は充電を表し、電流の符号が負である場合は放電を表す。

0017

一実施形態に係る蓄電デバイス容量選択方法は、たとえば、蓄電デバイスが搭載された車両の燃費シミュレーションの結果を用いる。この蓄電デバイスは、例えばμHEV方式を採用した車両に搭載されるメイン蓄電デバイス、若しくはメイン蓄電デバイスとは別に設けられたサブ蓄電デバイスである。蓄電デバイスがサブ蓄電デバイスである場合、蓄電デバイスは、車両に搭載された12V系の補機の消費電流を賄うために用いられる。

0018

[燃費シミュレーション装置の概要
図1は、燃費シミュレーションを行う装置の概略構成を示す図である。図1に示されるように、燃費シミュレーション装置90は、その機能ブロックとして、入力部91と、制御部92と、出力部93とを含む。

0019

入力部91は、燃費シミュレーションに必要なデータを入力する。入力データの例は、車両の走行パターンである。それ以外にも、車両に搭載されるエンジンなどの各種デバイスの特性を定めるパラメータ、蓄電デバイスの充放電制御方法の種類、蓄電デバイスの構成、車両に搭載される補機の消費電力、および車両の重量などのデータが入力され得る。

0020

制御部92は、入力部91によって入力されたデータを用いて、燃費シミュレーションを行う。燃費シミュレーションの具体的な手法は特に限定されないが、たとえば、次のような手順で行われる。

0021

まず、制御部92は、入力部91によって入力された走行パターンなどから、たとえば区間ごとに、車両が走行するために要求されるパワー(以下、単に「要求パワー」という)および補機の消費電流を算出する。区間としては、停止区間加速区間定速走行区間、および減速区間などがある。要求パワーは、加速区間では比較的大きく、定速走行区間では比較的小さい。要求パワーは、停止区間および減速区間では0であってもよい。補機の消費電流は、補機の種類によって異なる。たとえばオーディオ機器など連続的に使用される補機の消費電流の大きさは、区間によらずほぼ一定である。これに対し、エンジンの点火装置など一時的に使用される補機の消費電流の大きさは、使用時のみ大きくなる。

0022

次に、制御部92は、区間ごとのエンジンの出力を算出する。エンジンの出力は、たとえば、停止区間ではエンジンが停止して0となり、それ以外の区間では所定の出力とされる。エンジンの出力のうち、要求パワーを上回る分の出力が、オルタネータによって電力に変換され、オルタネータから補機および蓄電デバイスに向かって供給される。オルタネータから供給される電力が補機の消費電力を上回ると、オルタネータから蓄電デバイスに電流が流れ、蓄電デバイスが充電される。オルタネータから供給される電力が補機の消費電力を下回ると、蓄電デバイスから補機に電流が流れ、蓄電デバイスが放電する。ここで、蓄電デバイスの端子電圧は、蓄電デバイスのSOCおよび充放電電流の大きさなどに依存する。この蓄電デバイスの端子電圧が、たとえば、蓄電デバイスの端子電圧を計算するための等価回路モデルを用いて推定される。端子電圧の推定の詳細については後述する。蓄電デバイスの充放電電流および蓄電デバイスの端子電圧から、制御部92は、区間ごとの蓄電デバイスの充放電電力も算出する。

0023

その後、制御部92は、全区間におけるエンジンの出力および蓄電デバイスの充放電電力の積算値を算出する。全区間におけるエンジンの出力の積算値は、入力部91によって入力された走行パターンで車両が走行した場合に、エンジンが消費するであろうエネルギー量を示す。全区間における蓄電デバイスの充放電電力の積算値は、入力部91によって入力された走行パターンで車両が走行した場合に、蓄電デバイスにおいて増減するであろうエネルギー量の大きさを示す。エンジンが消費するであろうエネルギー量と、蓄電デバイスにおいて減少するであろうエネルギー量との合計のエネルギー量は、入力部91によって入力された走行パターンの車両の走行に要するエネルギー量となる。走行パターンから車両の走行距離も分かるので、当該走行距離とそれに要するエネルギー量とに基づいて、制御部92は、所定エネルギー量当たりに走行可能な距離を燃費として算出する。

0024

出力部93は、制御部92によって算出された燃費を出力する。これにより、入力部91によって入力された走行パターンなどに基づく燃費シミュレーションの結果が得られる。

0025

上述のように、燃費シミュレーションにおいては、蓄電デバイスの端子電圧が推定される。蓄電デバイスの端子電圧の推定精度を向上させることによって燃費シミュレーションの精度も向上するので、たとえば燃費の計算精度を向上させることを目的として、実施形態に係るシミュレーション装置(蓄電デバイスシミュレータ)が用いられてもよい。なお、以下の説明において、蓄電デバイスとしては、単一の鉛蓄電池が用いられる。蓄電デバイスは、鉛蓄電池に限られず、他の蓄電デバイスであってもよく、複数の蓄電デバイスを組み合わせた複合型の蓄電デバイスであってもよい。

0026

本実施形態では、シミュレーション装置は、蓄電デバイスの端子電圧を計算するための蓄電デバイスモデルを用いて、蓄電デバイスの端子電圧を推定する。本実施形態では、蓄電デバイスモデルとして、蓄電デバイスの等価回路モデルを用いることとする。まず、等価回路モデルの例について、図2を参照して説明する。

0027

[蓄電デバイスの等価回路モデル]
図2に示される例では、等価回路モデル40は、互いに逆極性ノードN1およびノードN2の間に直列に接続された、回路10と、回路20と、定電圧源30とを含む。

0028

ノードN1およびノードN2は、蓄電デバイスの外部の要素と電気的に接続される部分であり、等価回路モデル40に発生する電圧を与える。等価回路モデル40に発生する電圧は、蓄電デバイスの端子電圧V(t)である。ノードN1はアノードであり、蓄電デバイスを流れる電流I(t)を与える。なお、電圧および電流などの時間変化する物理量を示す符号に(t)などを付す場合があるが、このように示された物理量は、時刻tにおける当該物理量の値を意味するものとする。また、時刻tは、0以上の整数であり、端子電圧V(t)の推定の開始時刻からの経過時間を示す。時刻t=0は、端子電圧V(t)の推定の開始時刻である。

0029

回路10は、蓄電デバイスの直流インピーダンス直流抵抗成分)を模擬する直流抵抗部である。回路10は、抵抗器11を含む。抵抗器11は、蓄電デバイスの線形直流抵抗成分を模擬している。線形直流抵抗成分としては、電極抵抗が挙げられる。抵抗器11の抵抗値定数である。回路10の抵抗器11の抵抗値によって、回路10のインピーダンスが定まる。回路10のインピーダンスが定まれば、等価回路モデル40に電流I(t)が流れたときに、その電流I(t)が回路10にも流れるので、電流I(t)と回路10のインピーダンスとから、回路10に発生する電圧が計算できる。回路10に発生する電圧を、直流抵抗電圧Vdc(t)と称し図示する。

0030

回路20は、蓄電デバイスの分極インピーダンス成分を模擬する分極モデル部である。回路20は、並列接続された抵抗器およびコンデンサRC並列回路)を含む。図2に示される例では、2つのRC並列回路が直列に接続されている。具体的に、並列接続された抵抗器21およびコンデンサ22(第1のRC並列回路)と、並列接続された抵抗器23およびコンデンサ24(第2のRC並列回路)とが、直列に接続されている。第1のRC並列回路を構成する抵抗器21の抵抗値およびコンデンサ22の容量値は定数である。抵抗器21は、蓄電デバイスの第1の分極抵抗成分を模擬し、コンデンサ22は、蓄電デバイスの第1の分極容量成分を模擬している。第2のRC並列回路を構成する抵抗器23の抵抗値およびコンデンサ24の容量値は定数である。抵抗器23は蓄電デバイスの第2の分極抵抗成分を模擬し、コンデンサ24は蓄電デバイスの第2の分極容量成分を模擬している。

0031

なお、図2に示される例では回路20は、第1及び第2の2つのRC並列回路を含むが、回路20は、少なくとも第1のRC並列回路(抵抗器21およびコンデンサ22)を含んでいればよい。また、回路20は、3つ以上のRC並列回路を含んでいてもよい。

0032

回路20の各抵抗器の抵抗値および各コンデンサの容量値によって、回路20のインピーダンスが定まる。回路20のインピーダンスが定まれば、等価回路モデル40に電流I(t)が流れたときに、その電流I(t)が回路20にも流れるので、電流I(t)と回路20のインピーダンスとから、回路20に発生する電圧が計算できる。回路20に発生する電圧を、分極電圧Vpol(t)と称し図示する。

0033

分極電圧Vpolは、抵抗器21およびコンデンサ22に発生する電圧と、抵抗器23およびコンデンサ24に発生する電圧との合計電圧である。抵抗器21およびコンデンサ22に発生する電圧を、第1分極電圧Vp1(t)と称し図示する。抵抗器23およびコンデンサ24に発生する電圧を、第2分極電圧Vp2(t)と称し図示する。すなわち、回路20において、以下の関係式(1)が成立する。

0034

ここで、抵抗器21およびコンデンサ22から構成される第1のRC並列回路の時定数時定数τ1とすると、時定数τ1は、抵抗器21の抵抗値とコンデンサ22の容量値とを乗じた値として定められる。時定数τ1は、抵抗器21およびコンデンサ22に発生する第1分極電圧Vp1(t)の時間変化に反映される。たとえば、時定数τ1が大きいほど、第1分極電圧Vp1(t)の時間変化は遅くなる。同様に、抵抗器23およびコンデンサ24から構成される第2のRC並列回路の時定数を時定数τ2とすると、時定数τ2は、抵抗器23の抵抗値とコンデンサ24の容量値とを乗じた値として定められる。時定数τ2は、抵抗器23およびコンデンサ24に発生する第2分極電圧Vp2(t)の時間変化に反映される。時定数τ1及びτ2は互いに異なる値に設定されてよい。回路20が複数の異なる時定数を有するRC並列回路を含むことで、分極電圧Vpol(t)の電圧の時間変化をより正確に表すことができる。各時定数は、たとえば、時定数τ1<時定数τ2となるように設定されてよい。

0035

定電圧源30は、一定の直流(DC)電圧を有する。定電圧源30の有する電圧は、蓄電デバイスの開放電圧OCV:OpenCircuit Voltage)である。定電圧源30のインピーダンスは0である。蓄電デバイスの開放電圧を、開放電圧Vocv(t)と称し図示する。開放電圧Vocv(t)は、たとえば、蓄電デバイスのSOCから求められる。その場合、開放電圧Vocv(t)は、SOCを引数とする関数となる。蓄電デバイスの温度なども、引数に含まれてもよい。

0036

以上説明した回路10に発生する直流抵抗電圧Vdc(t)、回路20に発生する分極電圧Vpol(t)および定電圧源30が有する開放電圧Vocv(t)と、端子電圧V(t)との間には、以下の関係式(2)が成立する。

0037

以上説明した蓄電デバイスの等価回路モデル40を用いて、実施形態に係るシミュレーション装置は、蓄電デバイスの端子電圧V(t)を推定する。

0038

図3は、一実施形態に係るシミュレーション装置の概略構成を示す図である。シミュレーション装置1は、その機能ブロックとして、入力部2と、SOC計算部3と、パラメータ設定部4と、直流抵抗計算部5と、分極計算部6と、OCV計算部7と、端子電圧計算部8とを含む。

0039

図4は、図3のシミュレーション装置1のハードウェア構成の例を示す図である。図4に示されるように、シミュレーション装置1は、物理的には、一または複数のCPU(Central Processing Unit)101と、主記憶装置であるRAM(Random Access Memory)102およびROM(Read Only Memory)103と、データ送受信デバイスである通信モジュール104と、ハードディスクおよびフラッシュメモリなどの補助記憶装置105と、キーボードなどのユーザの入力を受け付け入力装置106と、ディスプレイなどの出力装置107と、を備えるコンピュータとして構成されている。図3に示されるシミュレーション装置1の各機能は、CPU101およびRAM102などのハードウェア上に一または複数の所定のコンピュータソフトウェアを読み込ませることにより、CPU101の制御のもとで通信モジュール104、入力装置106、および出力装置107を動作させるとともに、RAM102および補助記憶装置105におけるデータの読み出しおよび書き込みを行うことで実現される。なお、上記の説明はシミュレーション装置1のハードウェア構成として説明したが、燃費シミュレーション装置90がCPU101、RAM102およびROM103などの主記憶装置、通信モジュール104、補助記憶装置105、入力装置106、および出力装置107などを含む通常のコンピュータシステムとして構成されてもよい。

0040

再び図3を参照して、シミュレーション装置1の各機能の詳細を説明する。入力部2は、蓄電デバイスへの指定値(bat_demand)を入力する部分である。指定値は、たとえば上述の燃費シミュレーション装置90による燃費計算において蓄電デバイスに要求される、充放電電流の大きさ、および充放電電力の大きさなどを含む。入力部2は、入力した指定値を直流抵抗計算部5に出力する。

0041

SOC計算部3は、蓄電デバイスのSOCを計算する部分である。たとえば、蓄電デバイスの初期のSOC(0)と、その後の蓄電デバイスの充放電電気量とから、蓄電デバイスのSOC(t)が計算される。蓄電デバイスの初期のSOC(0)の値は特に限定されず、適宜設定されてよい。蓄電デバイスの充放電電気量は、蓄電デバイスの充放電電流を充放電時間で積算することによって求められる。蓄電デバイスのSOC(t)は、時刻tにおける蓄電デバイスの充放電電気量と蓄電デバイスの満充電容量とに基づいて求められる。時刻tのSOC(t)の計算において、蓄電デバイスに流れる電流として、等価回路モデル40を時刻0から時刻t−1までに流れた電流Iが用いられ得る。この場合、SOC計算部3は、たとえば以下の式(3)によってSOC(t)を計算する。SOC計算部3は、計算したSOC(t)をパラメータ設定部4、分極計算部6、およびOCV計算部7にそれぞれ出力する。

0042

パラメータ設定部4は、蓄電デバイスの端子電圧の推定に必要な種々の特性パラメータの値を設定する部分である。特性パラメータは、例えば、抵抗器11の抵抗値(直流抵抗)、抵抗器21の抵抗値(第1の分極抵抗)、時定数τ1(第1の分極時定数)、抵抗器23の抵抗値(第2の分極抵抗)、及び時定数τ2(第2の分極時定数)である。なお、各特性パラメータの値は、蓄電デバイスのSOCに応じて変更されてもよい。

0043

パラメータ設定部4は、たとえば、各パラメータの値を記述するルックアップテーブルを参照することによって、各パラメータの値を設定する。ルックアップテーブルは、パラメータごとに設けられる。ルックアップテーブルは、たとえばSOCと各パラメータの値とが対応付けられたテーブルである。この場合、パラメータ設定部4は、各ルックアップテーブルを参照することによって、SOC計算部3から受け取ったSOC(t)に対応付けられた各パラメータの値を取得し、取得した値を各パラメータの値に設定する。なお、各ルックアップテーブルは、蓄電デバイスの温度ごとに準備されていてもよい。その場合には、さらに、蓄電デバイスの温度も考慮して、各パラメータの値が設定される。また、各パラメータの値は予め定められていてもよい。パラメータ設定部4は、設定した各パラメータの値を直流抵抗計算部5および分極計算部6に出力する。

0044

直流抵抗計算部5は、等価回路モデル40中の回路10に発生する直流抵抗電圧Vdc(t)を計算する部分である。また、直流抵抗計算部5は、入力部2によって入力された指定値(bat_demand)から、等価回路モデル40に流れる電流I(t)を計算する部分でもある。分極計算部6は、等価回路モデル40中の回路20に発生する分極電圧Vpol(t)を計算する部分である。OCV計算部7は、蓄電デバイスの開放電圧Vocv(t)を計算する部分である。先に説明したように、開放電圧Vocv(t)は、蓄電デバイスのSOCから求められる。たとえば、各SOCの値と開放電圧Vocvの値とを対応付けたテーブルが予め準備されている。OCV計算部7は、当該テーブルを参照することによって、SOC計算部3から受け取ったSOC(t)から開放電圧Vocv(t)を計算する。なお、上述のテーブルが、温度ごとに準備されていてもよく、その場合には、さらに、蓄電デバイスの温度も考慮して、開放電圧Vocv(t)が計算される。

0045

端子電圧計算部8は、蓄電デバイスの端子電圧V(t)を計算する部分である。先に説明したように、直流抵抗計算部5によって計算された直流抵抗電圧Vdc(t)、分極計算部6によって計算された分極電圧Vpol(t)、およびOCV計算部7によって計算された開放電圧Vocv(t)が端子電圧計算部8に送られる。端子電圧計算部8は、直流抵抗電圧Vdc(t)、分極電圧Vpol(t)、および開放電圧Vocv(t)に基づいて、端子電圧V(t)を計算する。具体的には、端子電圧計算部8は、上記式(2)に示されるように、直流抵抗電圧Vdc(t)、分極電圧Vpol(t)、および開放電圧Vocv(t)を加算し、その合計電圧を端子電圧V(t)として計算する。端子電圧計算部8は、計算した端子電圧V(t)をシミュレーション装置1の外部および直流抵抗計算部5に出力する。

0046

次に、図5を参照して、シミュレーション装置1が実行する端子電圧V(t)の計算処理(シミュレーション方法)を説明する。図5は、シミュレーション装置1が実行する端子電圧V(t)の計算処理の例を示すフローチャートである。図5に示されるフローチャートの処理は、たとえば燃費シミュレーション装置90の燃費計算において、ある時刻tにおける蓄電デバイスの端子電圧を推定する際に実行される。

0047

まず、入力部2が指定値(bat_demand)を入力する(ステップS01)。たとえば、入力部2は、シミュレーション装置1の外部装置から指定値を受け取ることにより、その指定値を入力する。そして、入力部2は、入力した指定値を直流抵抗計算部5に出力する。そして、SOC計算部3は、蓄電デバイスのSOCを計算する(ステップS02)。SOC計算部3は、たとえば、上述された式(3)を用いてSOC(t)を計算する。そして、SOC計算部3は、計算したSOC(t)をパラメータ設定部4、分極計算部6、およびOCV計算部7に出力する。

0048

続いて、パラメータ設定部4は、等価回路モデル40の各特性パラメータを設定する(ステップS03)。ステップS03において設定される特性パラメータは、たとえば、抵抗器11の抵抗値、抵抗器21の抵抗値、時定数τ1、抵抗器23の抵抗値、及び時定数τ2である。パラメータ設定部4は、たとえば、各特性パラメータの値を記述するルックアップテーブルを参照することによって、SOC計算部3から受け取ったSOC(t)に対応付けられた各パラメータの値を取得し、取得した値を各パラメータの値に設定する。そして、パラメータ設定部4は、設定したパラメータを直流抵抗計算部5および分極計算部6に出力する。

0049

続いて、直流抵抗計算部5は、パラメータ設定部4から提供された抵抗器11の抵抗値を用いて、電流I(t)および直流抵抗電圧Vdc(t)を計算する(ステップS04)。直流抵抗計算部5は、充放電モード定電流放電モード(端子電圧V(t)によらず、一定の電流を流すモード)である場合には、入力部2によって入力された指定値に含まれる指定電流を電流I(t)に設定する。そして、直流抵抗計算部5は、この電流I(t)に基づいて直流抵抗電圧Vdc(t)を計算する。また、直流抵抗計算部5は、充放電モードが定電圧充電モード(蓄電デバイスを充電するための電圧源(たとえばオルタネータ)の出力電圧を一定にした状態で蓄電デバイスを充電するモード)である場合には、まず直流抵抗電圧Vdc(t)を計算する。そして、この直流抵抗電圧Vdc(t)に基づいて、等価回路モデル40に流れる電流I(t)を計算する。

0050

続いて、分極計算部6は、分極電圧Vpol(t)を計算する(ステップS05)。具体的には、分極計算部6は、パラメータ設定部4から提供された抵抗器21の抵抗値、時定数τ1、抵抗器23の抵抗値、及び時定数τ2を用いて、第1分極電圧Vp1(t)および第2分極電圧Vp2(t)を計算する。そして、分極計算部6は、それら第1分極電圧Vp1(t)および第2分極電圧Vp2(t)の合計値を、分極電圧Vpol(t)として計算する。

0051

続いて、OCV計算部7は、開放電圧Vocv(t)を計算する(ステップS06)。たとえば、OCV計算部7は、各SOCの値と開放電圧Vocvの値とを対応付けたテーブルを参照することによって、SOC計算部3から受け取ったSOC(t)から開放電圧Vocv(t)を計算する。そして、OCV計算部7は、計算した開放電圧Vocv(t)を端子電圧計算部8に出力する。

0052

続いて、端子電圧計算部8は、端子電圧V(t)を計算する(ステップS07)。具体的には、端子電圧計算部8は、直流抵抗計算部5によって計算された直流抵抗電圧Vdc(t)、分極計算部6によって計算された分極電圧Vpol(t)、およびOCV計算部7によって計算された開放電圧Vocv(t)に基づいて、端子電圧V(t)を計算する。より具体的には、端子電圧計算部8は、上記式(2)に示されるように、直流抵抗電圧Vdc(t)、分極電圧Vpol(t)、および開放電圧Vocv(t)を加算し、その合計電圧を端子電圧V(t)として計算する。そして、端子電圧計算部8は、計算した端子電圧V(t)をシミュレーション装置1の外部、および直流抵抗計算部5に出力する。以上のようにして、時刻tにおける端子電圧V(t)の計算処理が終了する。

0053

なお、ステップS05の処理とステップS06の処理とは、並行して行われてもよく、実施される順番が逆になってもよい。

0054

ここで、等価回路モデル40を構成する特性パラメータについて詳細に説明する。前述したように、等価回路モデル40は、例えば抵抗器11の抵抗値(直流抵抗)、抵抗器21の抵抗値(第1の分極抵抗)、時定数τ1(第1の分極時定数)、抵抗器23の抵抗値(第2の分極抵抗)、及び時定数τ2(第2の分極時定数)といった複数の特性パラメータを有する。通常、これらの特性パラメータは、蓄電デバイスの使用による劣化を考慮せずに算出される。その場合、劣化したときの蓄電デバイスの特性を精度よく推定することができないという問題がある。

0055

そこで、本実施形態では、複数の特性パラメータのうち少なくとも一つの特性パラメータを以下の数式(4)のように設定する。すなわち、任意の特性パラメータAを




としてモデル化する。右辺の第1項A0は蓄電デバイス未使用時に対応する特性パラメータの初期値であり、右辺の第2項A1は、蓄電デバイスを或る時間使用した後における特性パラメータの変化分である。この変化分は、蓄電デバイスの劣化の影響を表す時間関数であり、使用期間内の適切な時間を入力することによって、当該使用時間経過後に対応する劣化した特性パラメータが得られる。なお、この時間は、例えば数百時間ないし数千時間といった長さである。

0056

特性パラメータAを数式(4)のように表現することにより、例えば未使用状態の蓄電デバイスを用いて初期特性パラメータA0を同定するだけで、任意の期間経過後の特性パラメータAを計算によって求めることができる。

0057

上記の第2項A1は、蓄電デバイスの種類によって異なってもよい。蓄電デバイスが鉛蓄電池である場合、第2項A1は例えば次の数式(5)のように定義される。なお、係数a1、a2、及びa3は定数であり、SOC1(t)は暗電流放電時のSOCであり、SOC2(t)は休止時のSOCである。これらのSOCは時間tの関数となっている。

0058

数式(5)に示されるA1は、3つの項を含んでいる。第1項は、




である。この項は、電流I(t)の絶対値の時間積分と、該時間積分に乗算された係数a1とを含む。この場合、電流I(t)は蓄電デバイスの動作状態を表す数値であって、電流I(t)の絶対値の時間積分は即ち、使用期間中に蓄電デバイスを流れる総電流量を表し、係数a1は、総電流量に対する蓄電デバイスの劣化の速度を表す。従って、数式(6)で表される項は、蓄電デバイスを流れる総電流量に基づく劣化(以下、通電劣化という)を表す。なお、t1は充放電時間である。また、蓄電デバイスの特性パラメータは複数あり、劣化の進行に伴ってこれらの特性パラメータの値が変化するが、通電劣化による変化分は、特性パラメータによって増加傾向の場合と減少傾向の場合とがある。従って、特性パラメータごとに係数a1の符号が決定される。

0059

第2項は、




である。この項は、電流I(t)の絶対値の時間積分と、該時間積分に乗算された係数a2及び放電深度(DOD)とを含む。DODは、例えば定数である。或いは、DODは時間tの関数であってもよく、その場合、I(t)の絶対値とDOD(t)との積が時間積分される。また、係数a2は、DODに対する蓄電デバイスの劣化の速度を表す。従って、数式(7)で表される項は、蓄電デバイスのDODに基づく劣化(DOD劣化)を表す。なお、DOD劣化による特性パラメータの変化分は、特性パラメータによって増加傾向の場合と減少傾向の場合とがある。従って、特性パラメータごとに係数a2の符号が決定される。

0060

第3項及び第4項は、




である。第3項は、SOC1(t)の時間積分と、この時間積分に乗算された係数a3とを含む。また、第4項は、SOC2(t)の時間積分と、この時間積分に乗算された、第3項と共通の係数a3とを含む。SOC1(t)及びSOC2(t)は蓄電デバイスの動作状態を表す数値である。係数a3は、暗電流放電時及び休止時の各SOCに対する蓄電デバイスの劣化の速度を表す。数式(8)で表される第3項及び第4項は、それぞれ蓄電デバイスの暗電流放電時及び休止時の各SOCに基づく劣化(暗電流放電劣化および休止劣化)を表す。暗電流放電劣化および休止劣化による特性パラメータの変化分は、特性パラメータによって増加傾向の場合と減少傾向の場合とがある。従って、特性パラメータごとに係数a3の符号が決定される。なお、暗電流放電とは、車両のエンジンが停止している状態(すなわちオルタネータが発電していない状態。但し、アイドリングストップ時を除く)において、カーナビゲーションシステム及び時計などに供給される微弱な電流をいい、暗電流放電時とはこのような微弱が流れている期間をいう。また、休止とは、暗電流が全く流れていない状態をいい、休止時とは休止状態である期間をいう。なお、t2は暗電流放電時間であり、t3は休止時間である。数式(8)においては、必要に応じて、SOC1(t)及びSOC2(t)の各時間積分項の一方(すなわち第3項及び第4項の一方)を省略してもよい。

0061

なお、通常の充放電時においてはSOC1(t)=0、SOC2(t)=0である。暗電流放電時においてはI(t)=0、SOC2(t)=0である。休止時においてはI(t)=0、SOC1(t)=0である。

0062

また、蓄電デバイスがリチウムイオン電池である場合、数式(4)の第2項A1は例えば次の数式(9)のように定義される。

0063

数式(9)に示されるA1は、3つの項を含んでいる。第1項は通電劣化項である。第2項は、




である。この項は、電流I(t)の絶対値の時間積分と、該時間積分に乗算された係数a2と、該時間積分に乗算された自己発熱とを含む。すなわち、次の数式(11)によって表される時間τの関数Tは、蓄電デバイスの自己発熱を表す。




自己発熱Tは、数式(11)に示されるように、電流I(τ)の二乗の時間積分によって求められる。また、係数a2は、自己発熱Tに対する蓄電デバイスの劣化の速度を表す。従って、数式(10)で表される項は、蓄電デバイスの自己発熱に基づく劣化(以下、自己発熱劣化という)を表す。

0064

第3項は、




である。この項は、休止時のSOC2(t)の時間積分と、該時間積分に乗算された係数a3とを含む。これらの意味付けは、前述した鉛蓄電池の場合の第4項と同様である。すなわち、この項は休止劣化項である。

0065

上記の例では、数式(8)において暗電流放電劣化項が存在するが、数式(12)においては同様の暗電流放電劣化項が存在しない。それは次の理由による。例えば蓄電デバイスが単一で用いられる場合には、車両のエンジンが停止しても暗電流が流れる期間が必ず存在する。このような単一で用いられる蓄電デバイスとしては、鉛蓄電池が挙げられる。これに対し、例えばμHEV方式のようにメイン蓄電デバイス及びサブ蓄電デバイスが用いられる場合には、メイン蓄電デバイスのみから暗電流が供給され、サブ蓄電デバイスからは暗電流が供給されない状況が考えられる。そのような状況では、サブ蓄電デバイスにおいて暗電流状態は生じない。リチウムイオン電池は、このようなサブ蓄電デバイスとして用いられることが多い。従って、数式(12)においては暗電流放電劣化項が省略されている。

0066

また、蓄電デバイスがニッケル亜鉛電池である場合、数式(4)の第2項A1は例えば次の数式(13)のように定義される。




数式(13)に示されるA1は、3つの項を含んでいる。第1項は通電劣化項である。第2項はDOD劣化項である。第3項は休止劣化項である。ニッケル亜鉛電池もまた、上述したリチウムイオン電池と同様に、サブ蓄電デバイスとして用いられることが多い。従って、数式(13)においては暗電流放電劣化項が省略されている。

0067

ここで、上述した係数a1,a2,a3の算出方法について説明する。3つの係数a1,a2,a3を算出するためには、3つの異なるモデル式が必要となる。そこで、互いに時間波形が異なる3つの電流I(t)を特性パラメータの式に入力して3つのモデル式を立て、それらに基づいて係数a1,a2,a3を求める。図6(a)〜図6(c)は、そのような電流I(t)の波形の例を概念的に示すグラフである。これらの図において、縦軸は電流I(t)を表し、横軸は時間を表す。これらの電流波形は、定電圧充電期間Ta、及び定電流放電期間Tb、及び休止期間Tcを含む。図6(a)は、定電圧充電期間Taにおける電流が比較的大きい場合を示し、充電電流が大きい分だけ定電流放電期間Tbが長くなっている。図6(b)は、定電圧充電期間Taにおける電流が比較的小さい場合を示し、充電電流が小さい分だけ定電流放電期間Tbが短くなっている。図6(c)は、図6(a)及び図6(b)と較べて休止期間Tcが長い場合を示している。

0068

図7は、リチウムイオン電池を例として図6(a)〜図6(c)の電流波形を入力したときの、複数の特性パラメータのうち直流抵抗(図2の抵抗器11の抵抗値)の変化を示すグラフである。縦軸は直流抵抗(単位:mΩ)を表し、横軸はトータルサイクル時間(使用時間、単位:時間)を示す。また、同図において、菱形のプロットP1は図6(a)に示された電流波形を入力した場合を示し、正方形のプロットP2は図6(b)に示された電流波形を入力した場合を示し、三角形のプロットP3は図6(c)に示された電流波形を入力した場合を示す。図7に示されるように、入力される電流I(t)の波形が異なると、それに伴い直流抵抗の劣化分(数式(4)のA1)が変化することがわかる。

0069

図8は、図6(a)〜図6(c)の電流波形に対応する、通電劣化項の時間積分の計算値をプロットしたグラフである。図9は、図6(a)〜図6(c)の電流波形に対応する、自己発熱劣化項の時間積分の計算値をプロットしたグラフである。図10は、図6(a)〜図6(c)の電流波形に対応する、休止劣化項の時間積分の計算値をプロットしたグラフである。なお、図8図10において、縦軸は時間積分値を表し、横軸はトータルサイクル時間(単位:時間)を表す。また、これらの図において、菱形のプロットP4は図6(a)に示された電流波形を入力したときの数値を示し、正方形のプロットP5は図6(b)に示された電流波形を入力したときの数値を示し、三角形のプロットP6は図6(c)に示された電流波形を入力したときの数値を示す。

0070

図8図10に示されるように、図6(a)〜図6(c)の電流波形に基づいて、通電劣化項、自己発熱劣化項、及び休止劣化項それぞれにおける時間積分の値が計算される。従って、係数a1,a2,a3を変数として含む互いに独立した3つの関数を作成でき、実験値とのカーブフィッティングによる最適化を行うことで、係数a1,a2,a3を求めることができる。図11(a)〜図11(c)は、カーブフィッティングの様子を概念的に示すグラフである。図11(a)〜図11(c)は、それぞれ図6(a)〜図6(c)の電流波形により得られたa1,a2,a3の関数と実験値とのフィッティングの様子を示している。図中のプロットP7〜P9が実験値であり、曲線R1〜R3が関数からの推定値である。

0071

図12は、上述した方法によって得られた、各特性パラメータの係数a1,a2,a3の数値例を示す図表である。図12に示されるように、上述した方法によって係数a1,a2,a3が好適に求められる。なお、図12には、フィッティング誤差(%)が併せて示されている。第1分極抵抗及び第2分極抵抗の誤差が比較的大きくなっているが、これは、試験期間が短く、劣化の進行度合いが小さい段階であることが原因と考えられる。

0072

以上に説明した本実施形態による蓄電デバイス容量選択方法によって得られる効果について説明する。本実施形態の蓄電デバイス容量選択方法では、数式(4)に示したように、少なくとも一つの特性パラメータAが、蓄電デバイスの劣化の影響を表す時間関数A1を含む。このような時間関数A1に蓄電デバイスの使用時間(トータルサイクル時間)を入力することにより、該使用時間経過時における蓄電デバイスの劣化度合いを特性パラメータAに反映させることができる。

0073

そして、本発明者は、その時間関数A1が、劣化速度を表す係数(例えばa1,a2,a3など)と、蓄電デバイスの動作状態を表す数値(例えば電流I(t)、SOC1(t)、SOC2(t)など)の時間積分すなわち蓄電デバイスの使用履歴とを乗算した項(例えば数式(6)〜(8)、(10)〜(12)など)を含むことによって、蓄電デバイスの劣化度合いを精度良く表すことができることを見出した。従って、本実施形態によれば、実際に劣化した蓄電デバイスを用いなくても、劣化したときの蓄電デバイスの入出力特性を精度よく推定することができ、劣化した蓄電デバイスを用いた燃費シミュレーションなどを精度良く行うことができる。

0074

図13は、車両の燃費シミュレーションにおいて、リチウムイオン電池の等価回路モデルに本実施形態の特性パラメータを使用した場合(グラフG11)と、劣化による影響を考慮しない特性パラメータ(すなわち数式(4)の右辺第2項A1がないもの)を使用した場合(グラフG12)とにおける燃費誤差の最大値を比較した結果を示すグラフである。図13において、縦軸は燃費誤差の最大値(単位:%)を表し、横軸は試験期間(単位:日)を表す。なお、特性パラメータの初期値(すなわち数式(4)の右辺第1項A0)の同定に用いる電流I(t)としては、図14に示される電流波形を用いた。この電流波形は、定電圧充電期間T1、定電圧充電期間T1後の定電流放電期間T2、及び定電流放電期間T2後のクランキング期間T3を含む第1〜第3の期間TA〜TCを繰り返し含んでいる。なお、これら第1〜第3の期間TA〜TCにおける定電圧充電期間T1の電圧値は14(V)で一定であり、定電流放電期間T2及びクランキング期間T3の時間はそれぞれ59秒、1秒で一定である。また、第1〜第3の期間TA〜TCにおける電流値は次の通りである。
<第1の期間TA>
定電圧充電期間T1:100(A)
定電流放電期間T2:−20(A)
クランキング期間T3:−300(A)
<第2の期間TB>
定電圧充電期間T1:200(A)
定電流放電期間T2:−45(A)
クランキング期間T3:−300(A)
<第3の期間TC>
定電圧充電期間T1:50(A)
定電流放電期間T2:−10(A)
クランキング期間T3:−300(A)

0075

また、燃費誤差の最大値とは、特性パラメータを含む等価回路モデルを用いて燃費シミュレーションを行った結果と、実際に測定された燃費との差の最大値である。ここで、蓄電デバイスの特性パラメータ抽出時の電圧誤差(蓄電デバイスの端子電圧の実測値とモデルによる端子電圧の推定値との差)が同値となる特性パラメータの値の組合せは無数に存在し、同じ電圧誤差の値であっても特性パラメータの値の組合せによって燃費計算結果は異なる。上述した「最大値」とは、同じ電圧誤差になる特性パラメータの値の組み合わせを複数用意し、それぞれの組み合わせで燃費誤差を算出し、算出した燃費誤差のうち最大の燃費誤差の値をいう。

0076

図13に示されるように、試験期間が長くなるほど燃費誤差は大きくなるが、劣化による影響を考慮しない場合には、試験期間が60日を過ぎると燃費誤差の最大値が0.3%を超えている。これに対し、劣化による影響を考慮した本実施形態では、試験期間が60日を過ぎても燃費誤差の最大値が0.05%以下に収まっている。このように、本実施形態の方法および装置によれば、試験期間が長くなるほど、蓄電デバイスの劣化の状態を精度よく燃費シミュレーション結果に反映させることができる。

0077

本実施形態による燃費シミュレーション結果は、車両に採用される蓄電デバイス容量の選択に応用される。一般に、車両の燃費は搭載する蓄電デバイスの容量が大きいほど良くなる。一方、使用開始からの年数を経るほど、蓄電デバイスの性能が劣化し、車両の燃費は低下する。従来は、シミュレーションにおいて蓄電デバイスの劣化により性能がどれほど低下するかが不明であったため、燃費シミュレーション結果から選択される蓄電デバイス容量よりも十分に余裕のある蓄電デバイス容量が選択されていた。このような選択方法では、蓄電デバイス容量が必要以上に大きくなり易く、車両コスト低減の妨げとなるおそれがある。

0078

そのような問題に対し、本実施形態の蓄電デバイス容量選択方法では、蓄電デバイスの劣化度合いに応じたシミュレーションを行うことができるので、使用開始からの年数を考慮した燃費シミュレーションを精度良く行うことができる。従って、所定の年数を経た後の推定燃費に基づいて、所定の燃費条件を満足できる蓄電デバイス容量を的確に選択することができる。

0079

図15は、本実施形態による燃費シミュレーション結果の一例を示すグラフである。図15において、縦軸は燃費(単位:km/l)を表し、横軸は使用年数(単位:年)を表す。また、図中の菱形のプロットP10、正方形のプロットP11、及び三角形のプロットP12は、蓄電デバイス初期容量がそれぞれ3Ah、5Ah、及び7Ahである場合を示す。図15に示されるように、車両の燃費は蓄電デバイス容量が大きいほど良いが、使用年数が長くなるほど車両の燃費は低下する。そこで、例えば使用年数が5年経過した時点での燃費を30(km/l)以上としたい場合、このグラフによれば、車両に搭載する蓄電デバイス初期容量を5Ahとすれば良いことがわかる。このように、本実施形態によれば、所定の年数を経た後の推定燃費に基づいて、所定の燃費条件を満足できる蓄電デバイス容量を的確に選択することができる。

0080

なお、蓄電デバイス容量の選択は、推定燃費を基準として行う場合に限られない。本実施形態によれば、所定の年数を経た後の蓄電デバイスの推定特性に基づいて、所定の条件を満足できる蓄電デバイス容量を的確に選択することができる。

0081

また、本実施形態のように、蓄電デバイスの動作状態を表し時間積分される数値は、等価回路モデルを流れる電流I(t)であってもよい(例えば数式(6)、数式(7)、数式(11)を参照)。これにより、使用期間における蓄電デバイスを流れる総電流量に基づく劣化(通電劣化)による影響を考慮して、劣化した蓄電デバイスの入出力特性を更に精度よく推定することができる。この場合、係数と時間積分とを乗算した項は、該時間積分に乗算されたDODを更に含んでもよい(例えば数式(7)を参照)。これにより、使用期間における蓄電デバイスのDODに基づく劣化による影響を考慮して、劣化した蓄電デバイスの入出力特性を更に精度よく推定することができる。

0082

また、本実施形態のように、蓄電デバイスの動作状態を表し時間積分される数値は、暗電流放電時のSOC(すなわち数式(8)のSOC1(t))、及び休止時のSOC(すなわち数式(8)、数式(12)のSOC2(t))の一方または双方であってもよい(例えば数式(8)、数式(12)を参照)。これにより、暗電流放電時または休止時の劣化による影響を考慮して、劣化した蓄電デバイスの入出力特性を更に精度良く推定することができる。

0083

(変形例)
上記実施形態では、係数a1,a2,a3と蓄電デバイスの温度との関係については述べていない。すなわち、係数a1,a2,a3は、蓄電デバイスの温度によらず一定であってもよい。しかしながら、多くの場合において、好適な係数a1,a2,a3の値は蓄電デバイスの温度に依存する。従って、係数a1,a2,a3は、蓄電デバイスの温度に応じて変化してもよい。これにより、蓄電デバイスの温度に応じて変化する劣化度合いを精度良く表すことができる。

0084

具体的には、係数a1,a2,a3が温度THの関数a1(TH),a2(TH),a3(TH)であってもよく、或いは、複数の温度毎に異なる係数a1,a2,a3が設定されてもよい。そのために、実験値とのカーブフィッティングによる最適化を行う際に、蓄電デバイスの温度を変えながら実験値を取得するとよい。

0085

本発明による蓄電デバイス容量選択方法は、上述した実施形態及び変形例に限られるものではなく、他に様々な変形が可能である。例えば、上述した実施形態では、蓄電デバイスの動作状態を表し時間積分される数値として、蓄電デバイスを流れる電流I(t)、暗電流放電時のSOC1(t)、及び休止時のSOC2(t)を例示したが、本発明における当該数値としては、蓄電デバイスの動作状態を表すものであればこれら以外にも様々な数値を採用し得る。例えば、SOC1(t)、SOC2(t)に代わる数値として、蓄電デバイスの端子電圧を用いてもよい。

0086

1…シミュレーション装置、2…入力部、3…SOC計算部、4…パラメータ設定部、5…直流抵抗計算部、6…分極計算部、7…OCV計算部、8…端子電圧計算部、10,20…回路、11,21,23…抵抗器、22,24…コンデンサ、30…定電圧源、40…等価回路モデル、90…燃費シミュレーション装置、91…入力部、92…制御部、93…出力部、N1,N2…ノード。

ページトップへ

この技術を出願した法人

この技術を発明した人物

ページトップへ

関連する挑戦したい社会課題

関連する公募課題

ページトップへ

技術視点だけで見ていませんか?

この技術の活用可能性がある分野

分野別動向を把握したい方- 事業化視点で見る -

(分野番号表示ON)※整理標準化データをもとに当社作成

ページトップへ

おススメ サービス

おススメ astavisionコンテンツ

新着 最近 公開された関連が強い技術

この 技術と関連性が強い人物

関連性が強い人物一覧

この 技術と関連する社会課題

関連する挑戦したい社会課題一覧

この 技術と関連する公募課題

関連する公募課題一覧

astavision 新着記事

サイト情報について

本サービスは、国が公開している情報(公開特許公報、特許整理標準化データ等)を元に構成されています。出典元のデータには一部間違いやノイズがあり、情報の正確さについては保証致しかねます。また一時的に、各データの収録範囲や更新周期によって、一部の情報が正しく表示されないことがございます。当サイトの情報を元にした諸問題、不利益等について当方は何ら責任を負いかねることを予めご承知おきのほど宜しくお願い申し上げます。

主たる情報の出典

特許情報…特許整理標準化データ(XML編)、公開特許公報、特許公報、審決公報、Patent Map Guidance System データ