図面 (/)

技術 光スイッチ

出願人 富士ゼロックス株式会社
発明者 近藤崇
出願日 2016年6月30日 (4年4ヶ月経過) 出願番号 2016-129756
公開日 2018年1月11日 (2年10ヶ月経過) 公開番号 2018-004867
状態 特許登録済
技術分野 半導体レーザ
主要キーワード 歪構造 光源ヘッド 参照光信号 スーパコンピュータ サイリスタ特性 メタモルフィック 電導型 n型半導体
関連する未来課題
重要な関連分野

この項目の情報は公開日時点(2018年1月11日)のものです。
また、この項目は機械的に抽出しているため、正しく解析できていない場合があります

図面 (20)

課題

電気信号に変換することなく光により信号処理ができる光スイッチを提供する。

解決手段

光スイッチCは、入射光によりオフ状態からオン状態移行する光サイリスタTと、光サイリスタTがオン状態にあると、出射光を出力する発光素子の一例としての垂直共振器面発光レーザVCSELと、光サイリスタTと垂直共振器面発光レーザVCSELとの間に設けられたトンネル接合層15又は金属的導電性を有するIII−V族化合物層とを備える。

概要

背景

特許文献1には、しきい電圧もしくはしきい電流が外部から制御可能な発光素子数個を、一次元、二次元、もしくは三次元的に配列し、各発光素子のしきい電圧もしくはしきい電流を制御する電極を互いに電気的手段にて接続し、各発光素子に、外部から電圧もしくは電流印加させるクロックラインを接続した、発光素子アレイが記載されている。

特許文献2には、基板と基板上にアレイ状に配設された面発光型半導体レーザと基板上に配列され前記面発光型半導体レーザの発光を選択的にオンオフさせるスイッチ素子としてのサイリスタとを備える自己走査型光源ヘッドが記載されている。

特許文献3には、pnpnpn6層半導体構造の発光素子を構成し、両端のp型第1層とn型第6層、および中央のp型第3層およびn型第4層に電極を設け、pn層発光ダイオード機能を担わせ、pnpn4層にサイリスタ機能を担わせた自己走査型発光装置が記載されている。

概要

電気信号に変換することなく光により信号処理ができる光スイッチを提供する。光スイッチCは、入射光によりオフ状態からオン状態移行する光サイリスタTと、光サイリスタTがオン状態にあると、出射光を出力する発光素子の一例としての垂直共振器面発光レーザVCSELと、光サイリスタTと垂直共振器面発光レーザVCSELとの間に設けられたトンネル接合層15又は金属的導電性を有するIII−V族化合物層とを備える。

目的

本発明は、電気信号に変換することなく光により信号処理ができる光スイッチを提供する

効果

実績

技術文献被引用数
0件
牽制数
0件

この技術が所属する分野

(分野番号表示ON)※整理標準化データをもとに当社作成

ライセンス契約や譲渡などの可能性がある特許掲載中! 開放特許随時追加・更新中 詳しくはこちら

請求項1

入射光によりオフ状態からオン状態移行する光サイリスタと、前記光サイリスタがオン状態にあると、出射光を出力する発光素子と、前記光サイリスタと前記発光素子との間に設けられたトンネル接合層又は金属的導電性を有するIII−V族化合物層とを備える光スイッチ。

請求項2

前記光サイリスタは、ゲート層制御電極を備えることを特徴とする請求項1に記載の光スイッチ。

請求項3

前記光サイリスタは、前記発光素子を構成する半導体層バンドギャップエネルギよりも小さいバンドギャップエネルギの電圧低減層を備えることを特徴とする請求項1又は2に記載の光スイッチ。

請求項4

前記発光素子は、電流経路狭窄されていることを特徴とする請求項1乃至3のいずれか1項に記載の光スイッチ。

請求項5

前記光サイリスタは、前記発光素子からの前記出射光を出力する経路に開口部を備えることを特徴とする請求項1乃至4のいずれか1項に記載の光スイッチ。

請求項6

前記光サイリスタは、前記開口部の側壁が前記入射光受光するように傾斜していることを特徴とする請求項5に記載の光スイッチ。

請求項7

前記光サイリスタは、前記入射光を受光する側であって、電極が形成される面が、当該電極で覆われない部分を含むことを特徴とする請求項1乃至6のいずれか1項に記載の光スイッチ。

請求項8

前記発光素子を構成する発光層に対向して設けられた分布ブラッグ反射層を含むことを特徴とする請求項1乃至7のいずれか1項に記載の光スイッチ。

請求項9

前記発光素子は、前記光サイリスタがオフ状態である期間において、前記出射光より光量の小さい光を出力する状態に維持されるバイアス電圧印加されていることを特徴とする請求項1乃至8のいずれか1項に記載の光スイッチ。

技術分野

0001

本発明は、光スイッチに関する。

背景技術

0002

特許文献1には、しきい電圧もしくはしきい電流が外部から制御可能な発光素子数個を、一次元、二次元、もしくは三次元的に配列し、各発光素子のしきい電圧もしくはしきい電流を制御する電極を互いに電気的手段にて接続し、各発光素子に、外部から電圧もしくは電流印加させるクロックラインを接続した、発光素子アレイが記載されている。

0003

特許文献2には、基板と基板上にアレイ状に配設された面発光型半導体レーザと基板上に配列され前記面発光型半導体レーザの発光を選択的にオンオフさせるスイッチ素子としてのサイリスタとを備える自己走査型光源ヘッドが記載されている。

0004

特許文献3には、pnpnpn6層半導体構造の発光素子を構成し、両端のp型第1層とn型第6層、および中央のp型第3層およびn型第4層に電極を設け、pn層発光ダイオード機能を担わせ、pnpn4層にサイリスタ機能を担わせた自己走査型発光装置が記載されている。

先行技術

0005

特開平1−238962号公報
特開2009−286048号公報
特開2001−308385号公報

発明が解決しようとする課題

0006

ところで、データセンタスーパコンピュータには、多数の光通信デバイスが用いられている。ここでは、光ファイバなどで伝送された光信号が光通信デバイスにより電気信号に変換される。そして、電気信号において、マイクロプロセッサなどの信号処理デバイスにより信号処理が施された後、電気信号が再び光通信デバイスにより光信号に変換されて光ファイバにより伝送される。すなわち、光信号、電気信号、光信号と変換される。このため、速度が遅くなり、消費電力が大きくなっている。
そこで本発明は、電気信号に変換することなく光により信号処理ができる光スイッチを提供することを目的とする。

課題を解決するための手段

0007

請求項1に記載の発明は、入射光によりオフ状態からオン状態移行する光サイリスタと、前記光サイリスタがオン状態にあると、出射光を出力する発光素子と、前記光サイリスタと前記発光素子との間に設けられたトンネル接合層又は金属的導電性を有するIII−V族化合物層とを備える光スイッチである。
請求項2に記載の発明は、前記光サイリスタは、ゲート層制御電極を備えることを特徴とする請求項1に記載の光スイッチである。
請求項3に記載の発明は、前記光サイリスタは、前記発光素子を構成する半導体層バンドギャップエネルギよりも小さいバンドギャップエネルギの電圧低減層を備えることを特徴とする請求項1又は2に記載の光スイッチである。
請求項4に記載の発明は、前記発光素子は、電流経路狭窄されていることを特徴とする請求項1乃至3のいずれか1項に記載の光スイッチである。
請求項5に記載の発明は、前記光サイリスタは、前記発光素子からの前記出射光を出力する経路に開口部を備えることを特徴とする請求項1乃至4のいずれか1項に記載の光スイッチである。
請求項6に記載の発明は、前記光サイリスタは、前記開口部の側壁が前記入射光受光するように傾斜していることを特徴とする請求項5に記載の光スイッチである。
請求項7に記載の発明は、前記光サイリスタは、前記入射光を受光する側であって、電極が形成される面が、当該電極で覆われない部分を含むことを特徴とする請求項1乃至6のいずれか1項に記載の光スイッチである。
請求項8に記載の発明は、前記発光素子を構成する発光層に対向して設けられた分布ブラッグ反射層を含むことを特徴とする請求項1乃至7のいずれか1項に記載の光スイッチである。
請求項9に記載の発明は、前記発光素子は、前記光サイリスタがオフ状態である期間において、前記出射光より光量の小さい光を出力する状態に維持されるバイアス電圧が印加されていることを特徴とする請求項1乃至8のいずれか1項に記載の光スイッチである。

発明の効果

0008

請求項1の発明によれば、電気信号に変換することなく光により信号処理ができる。
請求項2の発明によれば、制御電極を備えない場合に比べて、光サイリスタをターンオンさせる入射光の光量が調整できる。
請求項3の発明によれば、電圧低減層を備えない場合に比べて、駆動電圧が低減できる。
請求項4の発明によれば、電流経路を狭窄しない場合に比べて、低消費電力化できる。
請求項5の発明によれば、出射光の経路に開口部を設けない場合に比べて、入射光に対する感度が向上する。
請求項6の発明によれば、開口部の側壁が入射光を受光しない場合に比べて、入射光に対する感度がさらに向上する。
請求項7の発明によれば、入射光が入る側を電極で覆った場合に比べて、入射光に対する感度が向上する。
請求項8の発明によれば、分布ブラッグ反射層を用いない場合に比べて、光利用効率が向上する。
請求項9の発明によれば、バイアス電圧を印加しない場合に比べて、発光素子の応答特性が改善する。

図面の簡単な説明

0009

第1の実施の形態に係る光スイッチを説明する図である。(a)は、断面図、(b)は、上面図、(c)は等価回路である。
光サイリスタと垂直共振器面発光レーザとの積層構造をさらに説明する図である。(a)は、光サイリスタと垂直共振器面発光レーザとの積層構造における模式的なエネルギーバンド図、(b)は、トンネル接合層の逆バイアス状態におけるエネルギーバンド図、(c)は、トンネル接合層の電流電圧特性を示す。
光スイッチの製造方法を説明する図である。(a)は、半導体積層体形成工程、(b)は、カソード電極形成工程、(c)は、トンネル接合層出しエッチング工程、(d)は、電流狭窄層における電流阻止部形成工程、(e)は、pゲート層出しエッチング工程、(f)は、アノード電極形成工程である。
金属的導電性III−V族化合物層を構成する材料を説明する図である。(a)は、InNの組成比xに対するInNAsのバンドギャップ、(b)は、InNの組成比xに対するInNSbのバンドギャップ、(c)は、VI族元素及びIII−V族化合物格子定数をバンドギャップに対して示す図である。
電圧低減層を備えた光サイリスタと垂直共振器面発光レーザとが積層された光スイッチを説明する図である。(a)は、断面図、(b)は、上面図、(c)は等価回路である。
サイリスタの構造とサイリスタの特性を説明する図である。(a)は、電圧低減層を備えるサイリスタの断面図、(b)は、電圧低減層を備えないサイリスタの断面図、(c)は、サイリスタ特性である。
半導体層を構成する材料のバンドギャップエネルギを説明する図である。
光スイッチによる論理演算を説明する図である。(a)は、論理積(AND)回路、(b)は、論理和(OR)回路である。
光スイッチによる他の論理演算を説明する図である。(a)は、否定論理積NAND)回路、(b)は、否定論理和NOR)回路である。
光スイッチとの結合(カップリング)のさせ方の例を説明する図である。(a)、(b)、(c)は、光スイッチの表面に入射光を入射させ、表面から出射光を取り出す場合である。
光スイッチとの結合(カップリング)のさせ方の例を説明する図である。(d)、(e)は、光スイッチの裏面に入射光を入射させ、表面から出射光を取り出す場合である。
第2の実施の形態に係る光スイッチを説明する図である。(a)は、断面図、(b)は、上面図、(c)は等価回路である。
第3の実施の形態に係る光スイッチを説明する図である。(a)は、断面図、(b)は、上面図である。
第4の実施の形態に係る光スイッチを説明する図である。(a)は、断面図、(b)は、上面図である。
第5の実施の形態に係る光スイッチを説明する図である。(a)は、断面図、(b)は、上面図、(c)は等価回路である。
第6の実施の形態に係る光スイッチを説明する図である。(a)は、断面図、(b)は、上面図である。
第7の実施の形態に係る光スイッチを説明する図である。(a)は、断面図、(b)は、上面図である。
第8の実施の形態に係る光スイッチを説明する図である。(a)は、断面図、(b)は、等価回路である。
第9の実施の形態に係る光スイッチの断面図である。(a)は、断面図、(b)は、上面図、(c)は等価回路である。
第10の実施の形態に係る光スイッチの断面図である。(a)は、断面図、(b)は、上面図、(c)は等価回路である。
第11の実施の形態に係る光スイッチの断面図である。(a)は、断面図、(b)は、上面図、(c)は等価回路である。

実施例

0010

ここで、光スイッチとは、光が入力されるとそれに対応して光を出力する部品である。すなわち、光スイッチは、光信号が入力されると光信号を出力する。よって、光信号から電気信号への変換及び電気信号から光信号への変換を要しない。
また、電気信号の代わりに光信号のみで信号処理を行うために、光スイッチには、光によって論理積(AND)、論理和(OR)などの論理演算ができることが求められる。そして、光スイッチには、信号増幅(Reamp)、波形整形(Reshape)、タイミング調整(Retime)など3Rの機能が実現されることが求められる。
以下、添付図面を参照して、本発明の実施の形態について詳細に説明する。
なお、以下では、アルミニウムをAlとするなど、元素記号を用いて表記する。

0011

[第1の実施の形態]
(光スイッチC)
図1は、第1の実施の形態に係る光スイッチCを説明する図である。図1(a)は、断面図、図1(b)は、上面図、図1(c)は等価回路である。
ここで説明する光スイッチCは、光信号の入力(入射光)によりターンオンする光サイリスタTと、光サイリスタTがターンオンすることで、光信号(出射光)を出力する発光素子(ここでは、一例として垂直共振器面発光レーザVCSEL(Vertical Cavity Surface Emitting Laser))とが組み合わされて構成されている。
光スイッチCは、例えば、GaAsなどの基板10上にモノリシックエピタキシャル)に積層されたGaAs、GaAlAs、AlAsなどの化合物半導体層による集積回路(IC)チップとして構成されている。

0012

図1(a)により、光スイッチCの断面構造を説明する。
光スイッチCは、光サイリスタTと垂直共振器面発光レーザVCSELとが、後述するトンネル接合層15を介して積層され、電気的に直列接続されている(VCSEL on Thyristor)。

0013

光スイッチCは、p型の基板10(基板10)上に、光サイリスタTのアノードとして機能するp型のアノード層11(pアノード層11)、ゲートとして機能するn型のゲート層12(nゲート層12)、同様にゲートとして機能するp型のゲート層13(pゲート層13)及びカソードとして機能するn型のカソード層14(nカソード層14)が順に積層されている。光サイリスタTは、pアノード層11、nゲート層12、pゲート層13、nカソード層14から構成された、pnpnの4層構造である。
光サイリスタTについては、後に詳述する。

0014

そして、nカソード層14上に、トンネル接合トンネルダイオード)層15が設けられている。トンネル接合層15は、n型の不純物ドーパント)を高濃度に添加(ドープ)したn++層15aと、p型の不純物を高濃度に添加したp++層15bとで構成されている。

0015

さらに、トンネル接合層15上に、垂直共振器面発光レーザVCSELのアノードとして機能する分布ブラッグ反射層(DBR:Distributed Bragg Reflector)(以下では、DBR層と表記する。)(pアノード(DBR)層16)、発光層17、垂直共振器面発光レーザVCSELのカソードとして機能するDBR層(nカソード(DBR)層18)が設けられている。
垂直共振器面発光レーザVCSELは、2つのDBR層(pアノード(DBR)層16とnカソード(DBR)層18)間で、光を共振させてレーザ発振させる。2つのDBR層(pアノード(DBR)層16及びnカソード(DBR)層18)の反射率が例えば99%以上になるとレーザ発振する。光は、発光層17に垂直な方向に出射する。

0016

以下では、構成要素については上記の( )内の表記を用いる。なお、この表記は、光サイリスタT及び垂直共振器面発光レーザVCSELの機能に対応している。他の場合も同様とする。なお、図1などの図面においては、主に不純物の電導型を記し、DBR層である場合は、「DBR」を付記している。

0017

pアノード(DBR)層16は、電流狭窄層16bを含んでいる。すなわち、pアノード(DBR)層16は、下側pアノード層16a、電流狭窄層16b、上側pアノード層16cの順で積層され、下側pアノード層16a、上側pアノード層16cがDBR層として構成されている。以下では、下側pアノード(DBR)層16a、上側pアノード(DBR)層16cと表記する。
電流狭窄層16bは、垂直共振器面発光レーザVCSELに流れる電流を、中央部に集中させるために設けられている。すなわち、垂直共振器面発光レーザVCSELの周辺部は、光スイッチCを分離するためのメサエッチングに起因して欠陥が多い。このため、周辺部では、非発光再結合が起こりやすい。そこで、垂直共振器面発光レーザVCSELの中央部を電流の流れやすい電流通過部(領域)αとし、周辺部を電流の流れにくい電流阻止部(領域)βとなるように、電流狭窄層16bが設けられている。

0018

そして、基板10の裏面には、アノード電極91が設けられている。また、nカソード(DBR)層18上には、カソード電極92が設けられている。
また、光サイリスタTにおいて、露出させたpゲート層13上には、光サイリスタTのターンオン特性を制御するゲートGである制御電極93が設けられている。なお、制御電極93は、露出させたnゲート層12上に設けられてもよい。さらに、制御電極93は、設けられなくともよい。そこで、図1(a)では、制御電極93は、破線で示されている。以下では、制御電極93を表記しない。
なお、アノード電極91、制御電極93は、p型半導体オーミック接触する材料で構成され、カソード電極92は、n型半導体とオーミック接触する材料で構成されている。

0019

図1では、入射光IN1、IN2及び出射光OUT1、OUT2を示している。なお、入射光IN1、IN2をそれぞれ区別しない場合は、入射光と表記し、出射光OUT1、OUT2をそれぞれ区別しない場合は、出射光と表記する。
入射光IN1、IN2は、光サイリスタTで吸収されることが求められる。
入射光IN1は、垂直共振器面発光レーザVCSELの側から入射して、垂直共振器面発光レーザVCSELを通過して、光サイリスタTに到達する。この場合、垂直共振器面発光レーザVCSELを構成する半導体は、入射光IN1を吸収しないこと、すなわち透明であること(バンドギャップが大きい)が求められる。
一方、入射光IN2は、基板10側から入射する。よって、基板10が入射光IN2を減衰させない(吸収が小さい)こと、すなわち透明であることが求められる。

0020

一方、出射光OUT1は、垂直共振器面発光レーザVCSELの側から出射する。よって、出射光OUT1は、光サイリスタTで吸収される光であってもよい。
出射光OUT2は、光サイリスタT及び基板10を通過して出射する。よって、出射光OUT2は、光サイリスタT及び基板10で吸収されないことが求められる。すなわち、光サイリスタT及び基板10は、出射光OUT2に対して透明である(バンドギャップが大きい)ことが求められる。

0021

よって、入射光IN2と出射光OUT1との組み合わせを用いる場合には、入射光と出射光とは、同じ波長でよい。一方、入射光IN1と出射光OUT2との組み合わせ、入射光IN1と出射光OUT1との組み合わせ、及び、入射光IN2と出射光OUT2との組み合わせの場合には、入射光と出射光とは異なる波長になる。
なお、入射光IN1と出射光OUT1との組み合わせの場合には、アノード電極91は、基板10の裏面の全面に設けられてもよい。他の場合は、アノード電極91には、入射光IN2又は出射光OUT2の入出力を妨げないため、アノード電極91を設けない入出力部91aが設けられている。

0022

次に、図1(b)により、光スイッチCの上面を説明する。
光スイッチCは、前述したように、メサエッチングにより分離されている。ここでは、垂直共振器面発光レーザVCSELの部分が、一例として断面が円となるようにメサエッチングされている。そして、nカソード(DBR)層18上に、円環状にカソード電極92が設けられている。そして、円環状のカソード電極92の内側が入射光IN1又は出射光OUT1が入出力する入出力部92aとなっている。
なお、図1(a)では、制御電極93を設けたために、光サイリスタTの部分の断面形状は、垂直共振器面発光レーザVCSELの断面形状と異なるようにしている。制御電極93を設けない場合には、光サイリスタTの部分の断面形状は、垂直共振器面発光レーザVCSELの断面形状と同じであってよい。
断面形状は、四角形など他の形状であってもよい。

0023

図1(c)により、光スイッチCの等価回路を説明する。
光スイッチCは、光サイリスタTと垂直共振器面発光レーザVCSELとが積層されて構成されている。
そして、光スイッチCは、アノード電極91が接地され、カソード電極92が電流制限抵抗RIを介して電源PSに接続されている。後述するように、トンネル接合層15は、光サイリスタTから垂直共振器面発光レーザVCSELへの電流の流れを阻害しないとして、記載を省略している。
図1(c)に示すように、光サイリスタTと垂直共振器面発光レーザVCSELとは、電気的に直列接続されている。なお、光サイリスタTの制御電極93は、電圧が印加されていない。なお、後述するように、光サイリスタTの制御電極93は、電圧(ゲート電圧)が印加されてもよい。
なお、図1(c)に示す等価回路は、アノードコモンである。

0024

光スイッチCの動作を説明する。まず、トンネル接合層15について説明する。
<トンネル接合層15>
図2は、光サイリスタTと垂直共振器面発光レーザVCSELとの積層構造をさらに説明する図である。図2(a)は、光サイリスタTと垂直共振器面発光レーザVCSELとの積層構造における模式的なエネルギーバンド図、図2(b)は、トンネル接合層15の逆バイアス状態におけるエネルギーバンド図、図2(c)は、トンネル接合層15の電流電圧特性を示す。
図2(a)のエネルギーバンド図に示すように、光サイリスタTは、pアノード層11、nゲート層12、pゲート層13、nカソード層14からなるpnpnの4層構造である。垂直共振器面発光レーザVCSELは、nカソード(DBR)層18、発光層17、pアノード(DBR)層16の構造である。そして、光サイリスタTと垂直共振器面発光レーザVCSELとの間には、トンネル接合層15が設けられている。トンネル接合層15は、n++層15a、p++層15bの構造である。
図1のアノード電極91が+側、カソード電極92が−側になるように電圧を印加すると、図2(a)に示すようにトンネル接合層15におけるn++層15aとp++層15bとの間、及び、光サイリスタTのnゲート層12とpゲート層13との間が逆バイアスになる。

0025

トンネル接合層15は、n型の不純物を高濃度に添加したn++層15aと、p型の不純物を高濃度に添加したp++層15bとの接合である。このため、空乏領域の幅が狭く、順バイアス(+V)されると、n++層15a側の伝導帯コンダクションバンド)からp++層15b側の価電子帯(バレンスバンド)に電子トンネルする。この際、負性抵抗特性が表れる(図2(c)参照)。
一方、図2(b)に示すように、トンネル接合層15(トンネル接合)は、逆バイアス(−V)されると、p++層15b側の価電子帯(バレンスバンド)の電位Evが、n++層15a側の伝導帯(コンダクションバンド)の電位Ecより上になる。そして、p++層15bの価電子帯(バレンスバンド)から、n++層15a側の伝導帯(コンダクションバンド)に電子がトンネルする。そして、逆バイアス電圧(−V)が絶対値において増加するほど、電子がトンネルしやすくなる。すなわち、図2(c)に示すように、トンネル接合層15(トンネル接合)は、逆バイアスにおいて、電流が流れやすい。

0026

よって、トンネル接合層15は、逆バイアスであっても、光スイッチCがオン状態になるときに、光サイリスタTから垂直共振器面発光レーザVCSELへ電流が流れやすい。

0027

なお、トンネル接合層15を設けないと、光サイリスタTと垂直共振器面発光レーザVCSELとの間の接合が逆バイアスになる。このため、光サイリスタTと垂直共振器面発光レーザVCSELとに電流を流すためには、逆バイアスの接合が降伏する電圧を印加することになる。すなわち、駆動電圧が高くなってしまう。
すなわち、光サイリスタTと垂直共振器面発光レーザVCSELとをトンネル接合層15を介して積層することで、トンネル接合層15を介さない場合に比べて、光スイッチCに印加する電圧が低く抑えられる。

0028

<光サイリスタT>
次に、光サイリスタTの動作を説明する。
ここでは、図1(a)を参照しつつ、光サイリスタTを取り出して説明する。
光サイリスタTは、前述したように、GaAs、AlGaAs、AlAsなどによるp型の半導体層(pアノード層11、pゲート層13)、n型の半導体層(nゲート層12、nカソード層14)とで構成されているとし、p型の半導体層とn型の半導体層との接合(pn接合)の順方向電位(拡散電位)Vdを、一例として1.5Vとする。

0029

光サイリスタTのアノード(pアノード層11)を+側に、カソード(nカソード層14)を−側とする電圧を印加すると、pアノード層11とnゲート層12との接合及びpゲート層13とnカソード層14との接合が順バイアス、nゲート層12とpゲート層13との接合が逆バイアスになる。すなわち、nゲート層12とpゲート層13との間に空乏層が形成される。
この状態において、光サイリスタTを構成する半導体材料が吸収する波長の光(入射光)を照射すると、空乏層内に電荷が発生する。すると、pアノード層11、nゲート層12、pゲート層13で構成されるバイポーラトランジスタと、nゲート層12、pゲート層13、nカソード層14で構成されるバイポーラトランジスタとがともにオン状態に移行する。これにより、nゲート層12とpゲート層13との接合を含むすべての接合が順バイアスになって、電流が流れ続ける状態、すなわち、光サイリスタTがオフ状態からオン状態に移行する(ターンオンする)。

0030

すると、光サイリスタTのアノードとカソードとの間の電圧は、1つのpn接合の順方向電位Vd(1.5V)とほぼ同じになる。なお、光サイリスタTのアノードとカソードとの間の電圧は、光サイリスタTのアノードとカソードとの間に流れる電流によって決まる。すなわち、電流制限抵抗RIなどによって決まる。以下では、オン状態の光サイリスタTのアノードとカソードとの間の電圧は、1.5Vになるとして説明する。
なお、光サイリスタTをオン状態からオフ状態に移行させる(ターンオフさせる)には、光サイリスタTのアノードとカソードとの間の電圧を、オン状態が維持できない電圧、すなわち、順方向電位Vd(1.5V)より小さい電圧(0又は±が逆の電圧を含む。)にすればよい。

0031

なお、制御電極93に電圧を印加すると、nゲート層12とpゲート層13との接合に形成される空乏層の大きさが制御される。よって、制御電極93に電圧を印加すると、光サイリスタTがターンオンするのに必要な入射光の光量が、電圧を印加しない場合に比べて、小さくなる。よって、制御電極93に印加する電圧を調整することで、光サイリスタTがターンオンする入射光の光量を調整してもよい。
前述したように、nゲート層12を露出させて、nゲート層12上に制御電極を設けてもよい。

0032

<光スイッチCの動作>
次に、光スイッチCの動作を説明する。
ここでは、垂直共振器面発光レーザVCSELが発光する(出射光を生じる)ために必要な電圧を、例えば1.7Vとする。この場合、光サイリスタTの順方向電位Vd(1.5V)と1.7Vとを加えた3.2Vを、電源PSが供給するとする。
光サイリスタTがターンオンしない状態(オフ状態)では、印加した電圧のほとんどが、光サイリスタTの逆バイアスされた接合(nゲート層12とpゲート層13との接合)に印加されている。よって、垂直共振器面発光レーザVCSELは、発光しない(出射光を生じない)。

0033

入射光により光サイリスタTがターンオンすると、光サイリスタTのアノードとカソードとの間は、1.5Vになる。すると、垂直共振器面発光レーザVCSELに1.7Vが印加される。これにより、垂直共振器面発光レーザVCSELは、発光する(出射光を生じる)。
なお、上記した電圧は一例であって、印加する電圧は、光スイッチCの特性に応じて設定されればよい。

0034

<光スイッチCの製造方法>
図3は、光スイッチCの製造方法を説明する図である。図3(a)は、半導体積層体形成工程、図3(b)は、カソード電極92形成工程、図3(c)は、トンネル接合層15出しエッチング工程、図3(d)は、電流狭窄層16bにおける電流阻止部β形成工程、図3(e)は、pゲート層13出しエッチング工程、図3(f)は、アノード電極91形成工程である。
なお、図3(a)〜(f)では、複数の工程をまとめて示す場合がある。
以下順に説明する。

0035

図3(a)に示す半導体積層体形成工程では、p型の基板10上に、pアノード層11、nゲート層12、pゲート層13、nカソード層14、金属的導電性III−V族化合物層15、pアノード(DBR)層16、発光層17、nカソード(DBR)層18を順にエピタキシャル成長させて、半導体積層体を形成する。なお、pアノード(DBR)層16は、下側pアノード(DBR)層16a、電流狭窄層16b、上側pアノード(DBR)層16cである。
ここでは、基板10は、p型のGaAsを例として説明するが、n型のGaAs、不純物を添加していないイントリンシック(i)のGaAsでもよい。また、InP、GaN、InAsサファイア、Siなどでもよい。基板を変更した場合、基板上にモノリシックに積層される材料は、基板の格子定数に略整合歪構造歪緩和層メタモルフィック成長を含む)する材料を用いる。一例として、InAs基板上には、InAs、InAsSb、GaInAsSbなどを使用し、InP基板上にはInP、InGaAsPなどを使用し、GaN基板上又はサファイア基板上には、GaN、AlGaN、InGaNを使用し、Si基板上にはSi、SiGe、GaPなどを使用する。ただし、結晶成長後に他の支持基板に貼りつける場合は、支持基板に対して半導体材料が略格子整合している必要はない。

0036

pアノード層11は、例えば不純物濃度1×1018/cm3のp型のAl0.9GaAsである。Al組成は、0〜1の範囲で変更してもよい。なお、GaInPなどでもよい。
nゲート層12は、例えば不純物濃度1×1017/cm3のn型のAl0.9GaAsである。Al組成は、0〜1の範囲で変更してもよい。なお、GaInPなどでもよい。
pゲート層13は、例えば不純物濃度1×1017/cm3のp型のAl0.9GaAsである。Al組成は、0〜1の範囲で変更してもよい。なお、GaInPなどでもよい。
nカソード層14は、例えば不純物濃度1×1018/cm3のn型のAl0.9GaAsである。Al組成は、0〜1の範囲で変更してもよい。なお、GaInPなどでもよい。

0037

トンネル接合層15は、n型の不純物を高濃度に添加したn++層15aとn型の不純物を高濃度に添加したp++層15bとの接合(図8(b)参照。)で構成されている。n++層15a及びp++層15bは、例えば不純物濃度1×1020/cm3と高濃度である。なお、通常の接合の不純物濃度は、1017/cm3台〜1018/cm3台である。n++層15aとp++層15bとの組み合わせ(以下では、n++層15a/p++層15bで表記する。)は、例えばn++GaInP/p++GaAs、n++GaInP/p++AlGaAs、n++GaAs/p++GaAs、n++AlGaAs/p++AlGaAs、n++InGaAs/p++InGaAs、n++GaInAsP/p++GaInAsP、n++GaAsSb/p++GaAsSbである。なお、組み合わせを相互に変更したものでもよい。

0038

pアノード(DBR)層16は、下側pアノード(DBR)層16a、電流狭窄層16b、上側pアノード(DBR)層16cを順に積層して構成されている。
下側pアノード(DBR)層16a、上側pアノード(DBR)層16cは、例えば、不純物濃度1×1018/cm3のp型のAl0.9Ga0.1Asの高Al組成低屈折率層と、例えば不純物濃度1×1018/cm3のp型のAl0.2Ga0.8Asの低Al組成高屈折率層との組み合わせで構成されている。低屈折率層及び高屈折率層のそれぞれの膜厚光路長)は、例えば中心波長の0.25(1/4)に設定されている。なお、低屈折率層と高屈折率層とのAlの組成比は、0〜1の範囲で変更してもよい。
電流狭窄層16bは、例えばAlAs又はAlの不純物濃度が高いp型のAlGaAsである。Alが酸化されてAl2O3が形成されることにより、電気抵抗が高くなって、電流経路を狭窄するものであればよい。

0039

なお、電流狭窄層16bの膜厚(光路長)は、採用する構造によって決定される。取り出し効率やプロセス再現性を重要視する場合は、DBR層を構成する低屈折率層及び高屈折率層の膜厚(光路長)の整数倍に設定されるのがよく、例えば中心波長の0.75(3/4)に設定されている。なお、奇数倍の場合は、電流狭窄層16bは、高屈折率層と高屈折率層とで挟まれるとよい。また、偶数倍の場合は、電流狭窄層16bは、高屈折率層と低屈折率層とで挟まれるとよい。すなわち、電流狭窄層16bは、DBR層による屈折率周期乱れを抑制するように設けられるとよい。逆に、酸化された部分の影響(屈折率や歪)を低減したい場合は、電流狭窄層16bの膜厚は、数十nmが好ましく、DBR層内に立つ定在波の節の部分に挿入されるのが好ましい。

0040

発光層17は、井戸ウエル)層と障壁バリア)層とが交互に積層された量子井戸構図である。井戸層は、例えばGaAs、AlGaAs、InGaAs、GaAsP、AlGaInP、GaInAsP、GaInPなどであり、障壁層は、AlGaAs、GaAs、GaInP、GaInAsPなどである。なお、発光層17は、量子線量子ワイヤ)や量子箱量子ドット)であってもよい。

0041

nアノード(DBR)層18は、例えば不純物濃度1×1018/cm3のn型のAl0.9Ga0.1Asの高Al組成の低屈折率層と、例えば不純物濃度1×1018/cm3のn型のAl0.2Ga0.8Asの低Al組成の高屈折率層との組み合わせで構成されている。低屈折率層及び高屈折率層のそれぞれの膜厚(光路長)は、例えば中心波長の0.25(1/4)に設定されている。

0042

これらの半導体層は、例えば有機金属気相成長法MOCVD:Metal Organic Chemical Vapor Deposition)、分子線エピタキシー法(MBE:Molecular Beam Epitaxy)などによって積層され、半導体積層体が形成される。

0043

図3(b)に示すカソード電極92形成工程では、nカソード(DBR)層18上に、カソード電極92が形成される。
カソード電極92は、例えばnカソード層18などn型の半導体層とオーミックコンタクトが取りやすいGeを含むAu(AuGe)などである。
そして、カソード電極92は、例えばリフトオフ法などにより形成される。

0044

図3(c)に示すトンネル接合層15出しエッチング工程では、発光ダイオードLEDの周囲において、トンネル接合層15上のnカソード層18、発光層17、pアノード層16がエッチングで除去される。
このエッチングは、硫酸系のエッチング液重量比において硫酸:過酸化水素水:水=1:10:300)などを用いたウェットエッチングで行ってもよく、例えば塩化ホウ素などを用いた異方性ドライエッチング(RIE)で行ってもよい。

0045

図3(d)に示す電流狭窄層16bにおける電流阻止部β形成工程では、トンネル接合層15出しエッチング工程により、側面が露出した電流狭窄層16bを側面から酸化して、電流を阻止する電流阻止部βを形成する。酸化されないで残った部分が電流通過部αとなる。
電流狭窄層16bの側面からの酸化は、例えば、300〜400℃での水蒸気酸化により、AlAs、AlGaAsなどである電流狭窄層16bのAlを酸化させる。このとき、酸化は、露出した側面から進行し、発光ダイオードLEDの周囲にAlの酸化物であるAl2O3による電流阻止部βが形成される。
なお、電流阻止部βは、AlAsなどのAl組成比が大きい半導体層を用いる代わりに、GaAs、AlGaAsなどの半導体層(例えば、pアノード(DBR)層16)に水素イオン(H+)を打ち込むことで形成してもよい。(H+イオン打ち込み)。電流阻止部βとする部分にH+を打ち込むことで、不純物を不活性化して、電気抵抗が高い電流阻止部βとしてもよい。

0046

図3(e)に示すpゲート層13出しエッチング工程では、トンネル接合層15及びnカソード層14をエッチングして、pゲート層13を露出させる。
このエッチングは、硫酸系のエッチング液(重量比において硫酸:過酸化水素水:水=1:10:300)を用いたウェットエッチングで行ってもよく、例えば塩化ホウ素を用いた異方性ドライエッチングで行ってもよい。
なお、図3(c)に示したトンネル接合層15出しエッチング工程において、トンネル接合層15を露出させる代わりにpゲート層13を露出させると、図3(d)における電流阻止部β形成工程において、pゲート層13に含まれるAlが酸化されるおそれがある。このため、pゲート層13に含まれるAlが酸化されると、表面が荒れたり、後述する制御電極93の接着性が悪くなったりする。そこで、トンネル接合層15を露出させた状態で、電流阻止部β形成工程を行っている。

0047

図3(f)に示すアノード電極91形成工程では、基板10の裏面にアノード電極91が形成される。この前又は後に、露出させたpゲート層13上に制御電極93を設けてもよい(図1(a)参照)。
アノード電極91(制御電極93)は、例えばp型の基板10とオーミックコンタクトが取りやすいZnを含むAu(AuZn)などである。
そして、アノード電極91(制御電極93)は、例えばリフトオフ法などにより形成される。

0048

この他に、保護層を形成する工程などが含まれてもよい。
なお、制御電極93を設けない場合には、図3(e)のpゲート層13出しエッチング工程を省略してもよい。

0049

次に、光スイッチCの変形例を説明する。
<金属的導電性III−V族化合物層>
上記の光スイッチCにおいては、トンネル接合層15を介して、光サイリスタTと垂直共振器面発光レーザVCSELとを積層した。
トンネル接合層15の代わりに、金属的な導電性を有し、III−V族の化合物半導体層にエピタキシャル成長するIII−V族化合物層を用いてもよい。この場合、上記の説明における「トンネル接合層15」を以下に説明する「金属的導電性III−V族化合物層15」に置き換えればよい。
図4は、金属的導電性III−V族化合物層を構成する材料を説明する図である。図4(a)は、InNの組成比xに対するInNAsのバンドギャップ、図4(b)は、InNの組成比xに対するInNSbのバンドギャップ、図4(c)は、VI族元素及びIII−V族化合物の格子定数をバンドギャップに対して示す図である。
図4(a)は、組成比x(x=0〜1)のInNと組成比(1−x)のInAsとの化合物であるInNAsに対するバンドギャップエネルギ(eV)を示す。
図4(b)は、組成比x(x=0〜1)のInNと組成比(1−x)のInSbとの化合物であるInNSbに対するバンドギャップエネルギ(eV)を示す。

0050

金属的導電性III−V族化合物層の材料の一例として説明するInNAs及びInNSbは、図4(a)、(b)に示すように、ある組成比xの範囲において、バンドギャップエネルギが負になることが知られている。バンドギャップエネルギが負になることは、バンドギャップを持たないことを意味する。よって、金属と同様な導電特性伝導特性)を示すことになる。すなわち、金属的な導電特性(導電性)とは、金属と同様に電位に勾配があれば電流が流れることをいう。
図4(a)に示すように、InNAsは、例えばInNの組成比xが約0.1〜約0.8の範囲において、バンドギャップエネルギが負になる。
図4(b)に示すように、InNSbは、例えばInNの組成比xが約0.2〜約0.75の範囲において、バンドギャップエネルギが負になる。
すなわち、InNAs及びInNSbは、上記の範囲において、金属的な導電特性(導電性)を示すことになる。
なお、上記の範囲外のバンドギャップエネルギが小さい領域では、熱エネルギによって電子がエネルギを有するため、わずかなバンドギャップを遷移することが可能であり、バンドギャップエネルギが負の場合や金属と同様に電位に勾配がある場合には電流が流れやすい特性を有している。
そして、InNAs及びInNSbに、Al、Ga、Ag、Pなどが含まれても、組成次第でバンドギャップエネルギを0近傍もしくは負に維持することができ、電位に勾配があれば電流が流れる。

0051

さらに、図4(c)に示すように、GaAs、InPなどのIII−V族化合物(半導体)の格子定数は、5.6Å〜5.9Åの範囲にある。そして、この格子定数は、Siの格子定数の約5.43Å、Geの格子定数の約5.66Åに近い。
これに対して、同様にIII−V族化合物であるInNの格子定数は、閃亜鉛鉱構造において約5.0Å、InAsの格子定数は、約6.06Åである。よって、InNとInAsとの化合物であるInNAsの格子定数は、GaAsなどの5.6Å〜5.9Åに近い値になりうる。
また、III−V族化合物であるInSbの格子定数は、約6.48Åである。よって、InNの格子定数は約5.0Åであるので、InSbとInNとの化合物であるInNSbの格子定数を、GaAsなど5.6Å〜5.9Åに近い値になりうる。

0052

すなわち、InNAs及びInNSbは、GaAsなどのIII−V族化合物(半導体)の層に対してモノリシックにエピタキシャル成長させうる。また、InNAs又はInNSbの層上に、GaAsなどのIII−V族化合物(半導体)の層をモノリシックにエピタキシャル成長させうる。

0053

よって、トンネル接合層15の代わりに、金属的導電性III−V族化合物層を介して、光サイリスタTと垂直共振器面発光レーザVCSELとを直列接続されるように積層すれば、光サイリスタTのnカソード層14と垂直共振器面発光レーザVCSELのpアノード(DBR)層16とが逆バイアスになることが抑制される。

0054

<電圧低減層19>
また、上記の発光スイッチCにおいては、トンネル接合層15を介して、光サイリスタTと垂直共振器面発光レーザVCSELとを積層した。この場合、光サイリスタTと垂直共振器面発光レーザVCSELとは電気的に直列に接続されている。よって、光スイッチCに印加する電圧は、光サイリスタTと垂直共振器面発光レーザVCSELとがそれぞれ単体に電圧を印加する場合に比べ、絶対値において大きくなる。そこで、光スイッチCに印加する電圧を低減するために、光サイリスタTに電圧を低減する電圧低減層19を用いてもよい。

0055

図5は、電圧低減層19を備えた光サイリスタTと垂直共振器面発光レーザVCSELとが積層された光スイッチCを説明する図である。図5(a)は、断面図、図5(b)は、上面図、図5(c)は等価回路である。図5は、図1に、電圧低減層19を追加したものである。よって、図1と同様な部分は同じ符号を付して説明を省略し、異なる部分を説明する。
電圧低減層19は、光サイリスタTのpアノード層11とnゲート層12との間に設けられている。
電圧低減層19は、pアノード層11の一部として、pアノード層11と同様の不純物濃度のp型であってもよく、nゲート層12の一部として、nゲート層12と同様の不純物濃度のn型であってもよい。また、電圧低減層19はi層であってもよい。

0056

図6は、サイリスタの構造とサイリスタの特性を説明する図である。図6(a)は、電圧低減層19を備えるサイリスタの断面図、図6(b)は、電圧低減層19を備えないサイリスタの断面図、図6(c)は、サイリスタ特性である。図6(a)、(b)は、上側に垂直共振器面発光レーザVCSELが積層されていない光サイリスタTの断面に相当する。なお、カソード電極92は、nカソード層14の表面に設けられているとする。
図6(a)に示すように、サイリスタは、pアノード層11とnゲート層12との間に、電圧低減層19を備える。なお、電圧低減層19は、pアノード層11と同様な不純物濃度のp型であれば、pアノード層11の一部として働き、nゲート層12と同様な不純物濃度のn型であれば、nゲート層12の一部として働く。電圧低減層19はi層であってもよい。
図6(b)に示すサイリスタは、電圧低減層19を備えない。

0057

サイリスタにおける立ち上がり電圧Vr(図6(c)参照)は、サイリスタを構成する半導体層におけるもっとも小さいバンドギャップのエネルギ(バンドギャップエネルギ)によって決まる。なお、サイリスタにおける立ち上がり電圧Vrとは、サイリスタのオン状態における電流を、電圧軸に外挿した際の電圧である。
図6(c)に示すように、電圧低減層19は、サイリスタでは、pアノード層11、nゲート層12、pゲート層13、nカソード層14に比べ、バンドギャップエネルギが小さい層である。よって、サイリスタの立ち上がり電圧Vrは、電圧低減層19を備えないサイリスタの立ち上がり電圧Vr′に比べて低い。さらに、電圧低減層19は、一例として、発光層17のバンドギャップよりも小さいバンドギャップを有する層である。
光サイリスタTは発光素子として利用されるものではなく、あくまで垂直共振器面発光レーザVCSELを駆動する。よって、実際に発光する垂直共振器面発光レーザVCSELの発光波長とは無関係にバンドギャップが決められる場合がある。そこで、発光層17のバンドギャップよりも小さいバンドギャップを有する電圧低減層19を設けることで、サイリスタの立ち上がり電圧Vrを低減している。
これにより、サイリスタ及び発光素子がオンした状態で、サイリスタ及び発光素子に印加する電圧が低減される。

0058

図7は、半導体層を構成する材料のバンドギャップエネルギを説明する図である。
GaAsの格子定数は、約5.65Åである。AlAsの格子定数は、約5.66Åである。よって、この格子定数に近い材料は、GaAs基板に対してエピタキシャル成長しうる。例えば、GaAsとAlAsとの化合物であるAlGaAsやGeは、GaAs基板に対してエピタキシャル成長しうる。
また、InPの格子定数は、約5.87Åである。この格子定数に近い材料は、InP基板に対してエピタキシャル成長しうる。
また、GaNの格子定数は、成長面によって異なるが、a面が3.19Å、c面が5.17Åである。この格子定数に近い材料はGaN基板に対してエピタキシャル成長しうる。

0059

そして、GaAs、InP及びGaNに対して、サイリスタの立ち上がり電圧が小さくなるバンドギャップエネルギは、図7網点で示す範囲の材料である。つまり、網点で示す範囲の材料を、サイリスタを構成する層として用いると、サイリスタの立ち上がり電圧Vrが、網点で示す領域の材料のバンドギャップエネルギになる。
例えば、GaAsのバンドギャップエネルギは、約1.43eVである。よって、電圧低減層19を用いないと、サイリスタの立ち上がり電圧Vrは、約1.43Vとなる。しかし、網点で示す範囲の材料を、サイリスタを構成する層とするか、又は、含むことで、サイリスタの立ち上がり電圧Vrは、0V超且つ1.43V未満としうる(0V<Vr<1.43V)。
これにより、サイリスタがオン状態にある時の、電力消費が低減される。

0060

網点で示す範囲の材料としては、GaAsに対してバンドギャップエネルギが約0.67eVのGeがある。また、InPに対してバンドギャップエネルギが約0.36eVのInAsがある。また、GaAs基板又はInP基板に対して、GaAsとInPとの化合物、InNとInSbとの化合物、InNとInAsとの化合物などにおいて、バンドギャップエネルギが、小さい材料を用いうる。特に、GaInNAsをベースとした混合化合物が適している。これらに、Al、Ga、As、P、Sbなどが含まれてもよい。また、GaNに対してはGaNPが電圧低減層19となりうる。他にも、(1)メタリフィック成長などによるInN層InGaN層、(2)InN、InGaN、InNAs、InNSbからなる量子ドット、(3)GaNの格子定数(a面)の2倍に相当するInAsSb層などを電圧低減層19として導入しうる。これらに、Al、Ga、N、As、P、Sbなどが含まれてよい。

0061

ここでは、サイリスタの立ち上がり電圧Vr、Vr′で説明したが、サイリスタがオン状態を維持する最小の電圧である保持電圧Vh、Vh′やオン状態のサイリスタに印加される電圧も同様である(図6(c)参照)。

0062

一方、サイリスタのスイッチング電圧Vs(図6(c)参照)は、逆バイアスになった半導体層の空乏層で決まる。よって、電圧低減層19は、サイリスタのスイッチング電圧Vsに及ぼす影響が小さい。

0063

すなわち、電圧低減層19は、サイリスタのスイッチング電圧Vsを維持しつつ、立ち上がり電圧Vrを低下させる。これにより、オン状態のサイリスタに印加される電圧が低減され、消費電力が低減される。サイリスタのスイッチング電圧Vsはpアノード層11、nゲート層12、pゲート層13、nカソード層14の材料や不純物濃度等を調整することで任意の値に設定される。ただし、電圧低減層19の挿入位置によってスイッチング電圧Vsは変化する。

0064

また、図5では、電圧低減層19を一つ設けた例を示しているが、複数設けてもよい。例えば、pアノード層11とnゲート層12との間、及び、pゲート層13とnカソード層14との間にそれぞれ電圧低減層19を設けた場合や、nゲート層12内に一つ、pゲート層13内にもう一つ設けてもよい。その他にも、pアノード層11、nゲート層12、pゲート層13、nカソード層14の内から1、2、3層を選択し、それぞれの層内に設けてもよい。これらの電圧低減層の導電型は、電圧低減層を設けたアノード層、カソード層、ゲート層と合わせてもよいし、i型であってもよい。

0065

図8は、光スイッチCによる論理演算を説明する図である。図8(a)は、論理積(AND)回路、図8(b)は、論理和(OR)回路である。光スイッチCは、図1(c)に示した光スイッチCである。ここでは、電源PSは、「H」(0V)と「L」(−3.2V)とのパルス信号を供給するとする。
すなわち、光スイッチCにおける光サイリスタTは、例えオン状態にあっても、電源PSが「H」(0V)になると光サイリスタTがターンオフして、オフ状態になる。

0066

図8(a)に示すAND回路には、電源PSが「L」(−3.2V)の期間において、光サイリスタTに、入射光(入射光IN1又は入射光IN2)として光信号A、Bが入力するとする。このとき、光サイリスタTは、光信号Aと光信号Bとがともに入射したときに、ターンオンする(オン状態になる)ように設定されているとする。すると、光信号Aと光信号Bとのいずれも入射しないとき、及び、いずれか一方のみが入射したときには、光サイリスタTはターンオンしないので、光スイッチCの垂直共振器面発光レーザVCSELもオン状態に移行しない。よって、出射光(出射光OUT1又は出射光OUT2)を生じない。
しかし、光スイッチCの光サイリスタTは、光信号Aと光信号Bとの両方が入射すると、光サイリスタTがターンオンする(オン状態になる)。これにより、光スイッチCの垂直共振器面発光レーザVCSELは、オフ状態からオン状態に移行して出射光(出射光OUT1又は出射光OUT2)を生じる。

0067

よって、電源PSが「L」(−3.2V)の期間において、光スイッチCの光サイリスタTに光信号A、Bを論理値0/1に対応させて入射させることで、垂直共振器面発光レーザVCSELから光信号A、Bの論理積(A・B)に対応した出射光が生じる。なお、電源PSが「H」(0V)になると、光サイリスタTがターンオフして、垂直共振器面発光レーザVCSELからの出射光が停止する。すなわち、電源PSの「L」(−3.2V)の期間毎に、光サイリスタTに入射光として光信号A、Bを時系列シーケンシャル)で入射させることで、垂直共振器面発光レーザVCSELから光信号A、Bの論理積の光信号A・Bが時系列(シーケンシャル)に出力される。
すなわち、光スイッチCは、光信号から光信号を生成する論理積(AND)回路として機能する。

0068

図8(b)に示すOR回路では、光サイリスタTは、光信号Aと光信号Bとのいずれかが入射したときに、ターンオンする(オン状態になる)ように設定されているとする。すると、光信号A及び光信号Bのいずれも入射しないときには、光サイリスタTがオン状態にならないので、光スイッチCの垂直共振器面発光レーザVCSELもオン状態に移行しない。よって、出射光(出射光OUT1又は出射光OUT2)を生じない。
しかし、光スイッチCの垂直共振器面発光レーザVCSELは、光信号Aと光信号Bとのいずれか一方又は両方が入射したときに、光サイリスタTがターンオンする(オン状態になる)ので、光スイッチCの垂直共振器面発光レーザVCSELがオン状態に移行して、出射光(出射光OUT1又は出射光OUT2)を生じる。

0069

よって、電源PSが「L」(−3.2V)の期間において、光スイッチCの光サイリスタTに光信号A、Bを論理値0/1に対応させて入射させることで、垂直共振器面発光レーザVCSELから光信号A、Bの論理和(A+B)に対応した出射光が生じる。なお、電源PSが「H」(0V)になると、光サイリスタTがターンオフして、垂直共振器面発光レーザVCSELからの出射光が停止する。すなわち、電源PSの「L」(−3.2V)の期間毎に、光サイリスタTに入射光として光信号A、Bを時系列(シーケンシャル)で入射させることで、垂直共振器面発光レーザVCSELから光信号A、Bの論理和の光信号A+Bが時系列(シーケンシャル)に出力される。
すなわち、光スイッチCは、光信号から光信号を生成する論理和(OR)回路として機能する。

0070

図9は、光スイッチCによる他の論理演算を説明する図である。図9(a)は、否定論理積(NAND)回路、図5(b)は、否定論理和(NOR)回路である。ここでは、二つの光スイッチC1、C2が、一つの電源PSに対して並列に接続されて光スイッチCを構成している。なお、電流制限抵抗RIは、二つの光スイッチC1、C2で共通になっている。そして、光スイッチC1、C2のそれぞれの光サイリスタT及び垂直共振器面発光レーザVCSELは、同じ特性を有しているとする。他の構成は、図9(a)、(b)と同様である。

0071

図9(a)に示す否定論理積(NAND)回路を説明する。
NAND回路における光スイッチC1には、信号A、Bが入射し、光スイッチC2には、参照光信号Rが入射する。そして、光スイッチC1、C2は、参照光信号Rの光強度以上の光が入射するとターンオンするように設定されている。ここで、参照光信号Rの光強度は、光信号Aと光信号Bとを加えた光強度より弱く、光信号Aと光信号Bとのそれぞれの光強度より強く設定されている。そして、光スイッチC1、C2の光サイリスタTは、参照光信号Rの光強度以上の光であって、より強い光強度の光が入射した方が、先にターンオンする。

0072

まず、光スイッチC1の光サイリスタTに光信号A、Bが同時に入射する場合、光スイッチC2の光サイリスタTには参照光信号Rが入射する。すると、光信号A、B(光信号A+B)の光強度は、参照光信号Rの光強度より大きいので、光スイッチC1の光サイリスタTがターンオンする。そして、光スイッチC1の垂直共振器面発光レーザVCSELが発光(発振)して、出射光(出射光OUT1又は出射光OUT2)を生じる。これにより、光スイッチC1の光サイリスタTと垂直共振器面発光レーザVCSELとの直列接続に印加された電圧は、−2.2Vに低下する。
同様に、光スイッチC2の光サイリスタTと垂直共振器面発光レーザVCSELとの直列接続に印加された電圧も−2.2Vになる。光スイッチC2の光サイリスタTには、参照光信号Rが入射しているが、もはやターンオンしないように設定されている。よって、光スイッチC2の垂直共振器面発光レーザVCSELは、発光しない。

0073

一方、光スイッチC1の光サイリスタTに光信号A、Bのいずれか一方が入射するか、又は、いずれもが入射しない場合、光スイッチC1の光サイリスタTは、ターンオンしない。しかし、光スイッチC2に参照光信号Rが入射するので、光スイッチC2の光サイリスタTがターンオンする。そして、光スイッチC2の垂直共振器面発光レーザVCSELが発光(発振)して、出射光(出射光OUT1又は出射光OUT2)を生じる。

0074

よって、電源PSが「L」(−3.2V)の期間において、光スイッチC1の光サイリスタTに光信号A、Bを論理値0/1に対応させて入射させることで、光スイッチC2の垂直共振器面発光レーザVCSELから、光信号A、Bの否定論理積(NAND)に対応した出射光(出射光OUT1又は出射光OUT2)を生じる。なお、電源PSが「H」(0V)になると、光スイッチC1又は光スイッチC2の光サイリスタTがターンオフして、垂直共振器面発光レーザVCSELからの出射光が停止する。すなわち、電源PSの「L」(−3.2V)の期間毎に、光スイッチC1の光サイリスタTに入射光(入射光IN1又は入射光IN2)として光信号A、Bを時系列(シーケンシャル)で入射させることで、光スイッチC2の垂直共振器面発光レーザVCSELから光信号A、Bの否定論理積(NAND)に対応した出射光(出射光OUT1又は出射光OUT2)が時系列(シーケンシャル)に出力される。
すなわち、光スイッチC1、C2で構成される光スイッチCは、光信号から光信号を生成する否定論理積(NAND)回路として機能する。
なお、光スイッチC1の垂直共振器面発光レーザVCSELから、光信号A、Bの論理積(AND)に対応した出射光(出射光OUT1又は出射光OUT2)が生じる。

0075

図9(b)に示す否定論理和(NOR)回路を説明する。
NOR回路における光スイッチC1には、信号A、Bが入射し、光スイッチC2には、参照光信号Rが入射する。そして、光スイッチC1、C2は、参照光信号Rの光強度以上の光が入射するとターンオンするように設定されている。ここで、参照光信号Rの光強度は、光信号A及び光信号Bのいずれの光強度より弱く設定されている。そして、光スイッチC1、C2の光サイリスタTは、参照光信号Rの光強度以上の光であって、より強い光強度の光が入射した方が、先にターンオンする。

0076

まず、光スイッチC1の光サイリスタTに光信号A、Bが同時に、又は、光信号Aと光信号Bとのいずれか一方が入射する場合を考える。光スイッチC2の光サイリスタTには参照光信号Rが入射する。すると、光スイッチC1の光サイリスタTに入射する光強度は、参照光信号Rの光強度より大きいので、光スイッチC1の光サイリスタTがターンオンする。そして、光スイッチC1の垂直共振器面発光レーザVCSELが発光して、出射光(出射光OUT1又は出射光OUT2)を生じる。これにより、光スイッチC1の光サイリスタTと垂直共振器面発光レーザVCSELとの直列接続に印加された電圧は、−2.2Vに低下する。
同様に、光スイッチC2の光サイリスタTと垂直共振器面発光レーザVCSELとの直列接続に印加された電圧も−2.2Vになる。光スイッチC2の光サイリスタTには、参照光信号Rが入射しているが、もはやターンオンしないように設定されている。よって、光スイッチC2の垂直共振器面発光レーザVCSELは、発光しない。

0077

一方、光スイッチC1の光サイリスタTに光信号A、Bのいずれも入射しない場合、光スイッチC1の光サイリスタTは、ターンオンしない。しかし、光スイッチC2に参照光信号Rが入射するので、光スイッチC2の光サイリスタTがターンオンする。そして、光スイッチC2の垂直共振器面発光レーザVCSELが発光する。

0078

よって、電源PSが「L」(−3.2V)の期間において、光スイッチC1の光サイリスタTに光信号A、Bを論理値0/1に対応させて入射(入射光IN1又は入射光IN2)させることで、光スイッチC2の垂直共振器面発光レーザVCSELから、光信号A、Bの否定論理和(NOR)に対応した出射光(出射光OUT1又は出射光OUT2)が生じる。なお、電源PSが「H」(0V)になると、光スイッチC1又は光スイッチC2の光サイリスタTがターンオフして、垂直共振器面発光レーザVCSELからの出射光が停止する。すなわち、電源PSの「L」(−3.2V)の期間毎に、光スイッチC1の光サイリスタTに入射光として光信号A、Bを時系列(シーケンシャル)で入射(入射光IN1又は入射光IN2)させることで、光スイッチC2の垂直共振器面発光レーザVCSELから光信号A、Bの否定論理和(NOR)に対応した出射光が時系列(シーケンシャル)に出射(出射光OUT1又は出射光OUT2)する。
すなわち、光スイッチC1、C2で構成される光スイッチCは、光信号から光信号を生成する否定論理和(NOR)回路として機能する。
なお、光スイッチC1の垂直共振器面発光レーザVCSELから、光信号A、Bの論理和(OR)に対応した出射光(出射光OUT1又は出射光OUT2)が生じる。

0079

以上説明したように、光スイッチCは、否定論理積(NAND)及び否定論理和(NOR)を構成する。よって、光スイッチCは、光により、あらゆる論理演算を実行しうる。

0080

図10、11は、光スイッチCとの結合(カップリング)のさせ方の例を説明する図である。図10(a)、(b)、(c)は、光スイッチCの表面に入射光を入射させ、表面から出射光を取り出す場合、図11(d)、(e)は、光スイッチCの裏面に入射光を入射させ、表面から出射光を取り出す場合である。

0081

図10(a)は、光スイッチCと光ファイバ110とのカップリングを説明する図である。光ファイバ110は、中心部のコア111がクラッド112で囲まれている。そして、光ファイバ110のコア111から入射光IN1が光スイッチCに入射し、光スイッチCから出射光OUT1が光ファイバ110のコア111に入射する。
すなわち、光信号は、光スイッチCを介して、光ファイバ110から光ファイバ110へ伝搬する。

0082

図10(b)は、光スイッチCと光導波路120及び光ファイバ130とのカップリングを説明する図である。光導波路120は、端面121が45°のハーフミラーになっている。そして、光ファイバ130は、中心部のコア131がクラッド132で囲まれている。
光導波路120を伝播してきた入射光IN1が、端面121で反射し、光スイッチCに入射する。光スイッチCからの出射光OUT1は、光導波路120の端面121を通過して、光ファイバ130のコア131に入射する。
すなわち、光信号は、光スイッチCを介して、光導波路120から光ファイバ130へ伝搬する。

0083

図10(c)は、光スイッチCと光導波路140とのカップリングを説明する図である。光導波路140は、端面141が45°のミラーになっている。
光導波路140を伝播してきた入射光IN1が、端面141で反射し、光スイッチCに入射する。光スイッチCからの出射光OUT1は、光導波路140の端面141で反射して、光導波路140を伝播する。
すなわち、光信号は、光スイッチCを介して、光導波路140から光導波路140へ伝搬する。

0084

図11(d)は、光スイッチCと光ファイバ150、160とのカップリングを説明する図である。光ファイバ150は、中心部のコア151がクラッド152で囲まれている。また、光ファイバ160は、中心部のコア161がクラッド162で囲まれている。
光ファイバ150のコア151を伝播してきた入射光IN2が、光スイッチCの裏面に入射する。光スイッチCの表面からの出射光OUT1が、光ファイバ160のコア161に入射する。
すなわち、光信号は、光スイッチCを介して、光ファイバ150から光ファイバ160へ伝搬する。

0085

図11(e)は、光スイッチCと光導波路170、光ファイバ180とのカップリングを説明する図である。光ファイバ180は、中心部のコア181がクラッド182で囲まれている。
光導波路170を伝播してきた入射光IN2が、光スイッチCの裏面に入射する。光スイッチCの表面からの出射光OUT1が、光ファイバ180のコア181に入射する。
すなわち、光信号は、光スイッチCを介して、光導波路170から光ファイバ180へ伝搬する。

0086

なお、上記のカップリングは一例であって、他の構成でカップリングさせてもよい。

0087

[第2の実施の形態]
図12は、第2の実施の形態に係る光スイッチCを説明する図である。図12(a)は、断面図、図12(b)は、上面図、図12(c)は等価回路である。
第2の実施の形態に係る光スイッチCは、p型の基板10(基板10)上に、垂直共振器面発光レーザVCSELのアノードとして機能するDBR層(pアノード(DBR)層16)、発光層17、垂直共振器面発光レーザVCSELのカソードとして機能するDBR層(nカソード(DBR)層18)が設けられている。

0088

そして、nカソード(DBR)層18上に、トンネル接合(トンネルダイオード)層15が設けられている。トンネル接合層15は、n型の不純物(ドーパント)を高濃度に添加(ドープ)したn++層15aと、p型の不純物を高濃度に添加したp++層15bとで構成されている。

0089

さらに、トンネル接合層15上に、光サイリスタTのアノードとして機能するp型のアノード層11(pアノード層11)、ゲートとして機能するn型のゲート層12(nゲート層12)、同様にゲートとして機能するp型のゲート層13(pゲート層13)及びカソードとして機能するn型のカソード層14(nカソード層14)が順に積層されている。

0090

図1に示した第1の実施の形態に係る光スイッチCでは、基板10上に、光サイリスタTと垂直共振器面発光レーザVCSELとが、トンネル接合層15を介して、この順に積層されていた。図12に示す第2の実施の形態に係る光スイッチCでは、基板10上に、垂直共振器面発光レーザVCSELと光サイリスタTとが、トンネル接合層15を介して、この順に積層されている。すなわち、第1の実施の形態に係る光スイッチCと第2の実施の形態に係る光スイッチCとで、積層の順序が逆になっている。
他の構成は、第1の実施の形態で説明した光スイッチCと同様であるので、同じ符号を付して、説明を省略する。
そして、第1の実施の形態に係る光スイッチCと同様に動作する。
また、第2の実施の形態に係る光スイッチCは、第1の実施の形態に係る光スイッチCと同様に製造される。
なお、第1の実施の形態で説明した金属的導電性III−V族化合物層をトンネル接合層15の代わりに用いてもよく、電圧低減層19を光サイリスタTに用いてもよい。

0091

光サイリスタTと垂直共振器面発光レーザVCSELとの間に設けられたトンネル接合層15は、不純物濃度が高い。例えば、トンネル接合層15の不純物濃度は、1019/cm3と、他の層の不純物濃度1017〜1018/cm3に比べて高い。不純物として用いられるSiは、ベースとなる半導体材料の一例であるGaAsとは、格子定数、結合強度最外殻電子数などが異なる。よって、トンネル接合層15上に、例えばGaAsなどの半導体層を成長させると欠陥が発生しやすい。欠陥は、不純物濃度が高くなればなるほど、発生確率が上昇する。そして、欠陥は、その上に形成される半導体層に伝播していく。
また、トンネル接合層15のように、不純物濃度を他の層よりも高くするためには、低温成長せざるを得ない。すなわち、成長条件(温度、成長速度、比率)を変えねばならない。このため、トンネル接合層15上に設けられる半導体層は、最適な成長条件からずれてしまう。
この結果、トンネル接合層15上に設けられる半導体層は、欠陥が多く含まれることになる。

0092

特に、垂直共振器面発光レーザVCSELなどの発光素子の発光特性は、半導体層に含まれる欠陥の影響を受けやすい。一方、光サイリスタTは、入射光によってターンオンして、垂直共振器面発光レーザVCSELに電流が供給できればよい。すなわち、光サイリスタTは、垂直共振器面発光レーザVCSELに比べ、欠陥の影響を受けにくい。

0093

よって、第2の実施の形態に係る光スイッチCのように、基板10上に、垂直共振器面発光レーザVCSELを設け、その上に、トンネル接合層15を介して光サイリスタTを設けることがよい。これにより、垂直共振器面発光レーザVCSELにおける欠陥の発生を抑制することで、垂直共振器面発光レーザVCSELの発光特性が欠陥の影響を受けにくくしている。そして、光サイリスタTを垂直共振器面発光レーザVCSEL上にモノリシックに積層するようにしている。

0094

また、トンネル接合層15の代わりに、金属的導電性III−V族化合物層を用いた場合も同様である。
InNAsやInNSbなどで構成される金属的導電性III−V族化合物層は、理論的にバンドギャップがマイナスにあるが、GaAs、InPなどに比べると成長が難しく、品質が劣る。特に、N組成を大きくすると、成長の難易度が格段に上がる。よって、金属的導電性III−V族化合物層上に、例えばGaAsなどの半導体層を成長させると欠陥が発生しやすい。
そこで、トンネル接合層15と同様に、基板10上に、垂直共振器面発光レーザVCSELを設け、その上に、金属的導電性III−V族化合物層を介して光サイリスタTを設けるようにすればよい。これにより、垂直共振器面発光レーザVCSELにおける欠陥の発生を抑制することで、垂直共振器面発光レーザVCSELの発光特性が欠陥の影響を受けにくいようになる。そして、光サイリスタTを垂直共振器面発光レーザVCSEL上にモノリシックに積層しうる。

0095

さらに、電圧低減層19を用いる場合も同様である。
電圧低減層19として用いられる材料は、GaAs、InPなどに比べると成長が難しく、品質が劣る。よって、電圧低減層19上に、例えばGaAsなどの半導体層を成長させると欠陥が発生しやすい。
そこで、トンネル接合層15や金属的導電性III−V族化合物層と同様に、基板10上に、垂直共振器面発光レーザVCSELを設け、その上に、金属的導電性III−V族化合物層を介して光サイリスタTを設けるようにすればよい。これにより、垂直共振器面発光レーザVCSELにおける欠陥の発生を抑制することで、垂直共振器面発光レーザVCSELの発光特性が欠陥の影響を受けにくいようになる。そして、光サイリスタTを垂直共振器面発光レーザVCSEL上にモノリシックに積層しうる。

0096

[第3の実施の形態]
図13は、第3の実施の形態に係る光スイッチCを説明する図である。図13(a)は、断面図、図13(b)は、上面図である。等価回路は、図12(c)に示した第2の実施の形態に係る光スイッチCと同様であるので記載を省略する。
第3の実施の形態に係る光スイッチCは、光サイリスタTの中央部にくり抜かれた開口部20を備えている。開口部20は、断面形状が円形で、光サイリスタTの表面から、垂直共振器面発光レーザVCSELに向かって設けられている。そして、カソード電極92が、nカソード層14上に開口部20を囲むように円環状に設けられている。
なお、開口部20の断面形状は、円形でなくともよく、カソード電極92の形状も円環状でなくともよい。
また、開口部20は、光サイリスタTの中央部をくり抜くように設けられているが、中央部でなくともよく、光サイリスタTの端部であってもよい。開口部20は、光サイリスタTの表面から垂直共振器面発光レーザVCSELに向かって設けられていればよい。

0097

このようにすることで、入射光と出射光とを同じ波長で、入射光の入射した方向に、出射光を出力させられる。
すなわち、図12に示した第2の実施の形態に係る光スイッチCでは、入射光IN1と出射光OUT1とを同じ波長することが難しい。これは、入射光IN1は、光サイリスタTで吸収される。このとき、垂直共振器面発光レーザVCSELが同じ波長の光を出射すると、その光も光サイリスタTに吸収される。よって、光サイリスタTの影響を受けないで、出射光OUT1を得ることは難しい。
同様に、入射光IN2と出射光OUT2とを同じ波長にすることも難しい。

0098

しかし、図13に示す第3の実施の形態に係る光スイッチCでは、入射光IN1は、開口部20において、光サイリスタTの側壁に入射する。そして、光サイリスタTをターンオンする。これにより、垂直共振器面発光レーザVCSELがオン状態になり、同じ波長の光を出射光OUT1として出力する。このとき、開口部20には、光サイリスタTが存在しないため、出射光OUT1は光サイリスタTで吸収されにくい。
すなわち、光スイッチCが吸収してターンオンする光の波長と、垂直共振器面発光レーザVCSELが出射する光の波長とが同じであってもよい。
さらに、入射光IN1の入射する方向に、出射光OUT1を出射させられる。よって、基板10を通過する入射光IN2、出射光OUT2を使用することを要しない。よって、入射光、出射光の利用効率が高い。

0099

なお、開口部20は、基板10に垂直な側壁を有した形状20aであってもよい。光スイッチCへの入射光IN1には、基板10に対して斜め方向に進む成分(広がり角)を有している。よって、開口部20が基板10に垂直な側壁を有した形状20aであっても、光サイリスタTは、入射光IN1によりターンオンする。このため、開口部20が光サイリスタTの中央部がくり抜かれていると、入射光を有効に利用しうる。
また、開口部20は、基板10に対して傾斜した側壁を有した形状20bであってもよい。この場合、開口部20の側壁が入射光IN1を受光することで、より多くの光が光サイリスタTに入射して、光サイリスタTが動作しやすい。すなわち、光サイリスタTの入射光の光量に対する実効的な感度が向上する。なお、実効的な感度とは、光サイリスタTがターンオンするのに必要な光量をいう。開口部20の側壁が斜めである場合に光サイリスタTをターンオンするための入射光IN1の光量は、開口部20の側壁が垂直である場合に光サイリスタTをターンオンするための入射光IN1の光量に比べて小さくて済む。よって、光サイリスタTの感度が向上したようにみえる。

0100

なお、開口部20は、底部が垂直共振器面発光レーザVCSELに到達していない形状20cであってもよい。垂直共振器面発光レーザVCSELのnカソード(DBR)層18の表面に、トンネル接合層15や光サイリスタTのpアノード層11の一部が残っていてもよい。出射光OUT1は、開口部20の底部に残ったトンネル接合層15や光サイリスタTのpアノード層11の一部を通過して出力すればよい。
なお、第1の実施の形態で説明した金属的導電性III−V族化合物層をトンネル接合層15の代わりに用いてもよく、電圧低減層19を光サイリスタTに用いてもよい。

0101

[第4の実施の形態]
図14は、第4の実施の形態に係る光スイッチCを説明する図である。図14(a)は、断面図、図14(b)は、上面図である。等価回路は、図12(c)に示した第2の実施の形態と同様であるので記載を省略する。
第4の実施の形態に係る光スイッチCは、第3の実施の形態に係る光スイッチCと同様に、光サイリスタTの中央部にくり抜かれた開口部20を備えている。開口部20は、断面形状が円形で、光サイリスタTの表面から、垂直共振器面発光レーザVCSELに向かって設けられている。そして、カソード電極92は、nカソード層14上に開口部20の半周の周り円弧状に設けられている。
なお、開口部20の断面形状は、円形でなくともよく、カソード電極92は、開口部20の半周の周りでなくともよく、3/4周又は1/4周などの周りでもよい。すなわち、nカソード層14の表面の一部がカソード電極で覆われていなければよい。

0102

このようにすることで、入射光IN1は、開口部20の側壁に加え、nカソード層14のカソード電極92で覆われていない部分からも、光サイリスタTに入射することで、より多くの光が光サイリスタTに入射して、光サイリスタTが動作しやすい。すなわち、光サイリスタTの入射光の光量に対する実効的な感度がさらに向上する。

0103

[第5の実施の形態]
図15は、第5の実施の形態に係る光スイッチCを説明する図である。図15(a)は断面図、図15(b)は、上面図、図15(c)は等価回路である。
第5の実施の形態に係る光スイッチCは、n型の基板30(基板30)上に、垂直共振器面発光レーザVCSELのカソード層として機能するDBR層(nカソード(DBR)層18)、発光層17、垂直共振器面発光レーザVCSELのアノードとして機能するDBR層(pアノード(DBR)層16)が設けられている。

0104

そして、pアノード(DBR)層16上に、トンネル接合(トンネルダイオード)層15が設けられている。トンネル接合層15は、p型の不純物(ドーパント)を高濃度に添加(ドープ)したp++層15bと、n型の不純物を高濃度に添加したn++層15aとで構成されている。

0105

さらに、トンネル接合層15上に、光サイリスタTのカソードとして機能するn型のカソード層14(nカソード層14)、ゲートとして機能するp型のゲート層13(pゲート層13)、同様にゲートとして機能するn型のゲート層12(nゲート層12)及びアノードとして機能するp型のアノード層11(pアノード層11)が順に積層されている。

0106

そして、基板30の裏面にはカソード電極92が、光サイリスタTのpアノード層11の表面には、アノード電極91が設けられている。なお、図15(a)では、露出させた光サイリスタTのnゲート層12上に、制御電極94が、設けられている。

0107

すなわち、図15(c)に示すように、図1に示した第1の実施の形態に係る光スイッチCの、アノードとカソードとを引っ繰り返した構成(カソードコモン)になっている。
なお、他の構成は、第4の実施の形態に係る光スイッチCと同様である。よって、説明を省略する。

0108

なお、第1の実施の形態で説明した金属的導電性III−V族化合物層をトンネル接合層15の代わりに用いてもよく、電圧低減層19を光サイリスタTに用いてもよい。

0109

[第6の実施の形態]
図16は、第6の実施の形態に係る光スイッチCを説明する図である。図16(a)は断面図、図16(b)は、上面図である。等価回路は、図14(c)に示した第2の実施の形態と同様であるので記載を省略する。
第6の実施の形態に係る光スイッチCでは、図14に示した第5の実施の形態に係る光スイッチCにおいて、pアノード(DBR)層16をDBR層とすることなく、pアノード層41とするとともに、トンネル接合層15により、電流狭窄を行っている。
そして、pアノード層41上に新たにn型のDBR層42(nDBR層42)を設けている。
ここでは、トンネル接合層15を電流通過部αとなる部分に設けている。

0110

すなわち、基板30側から垂直共振器面発光レーザVCSELのnカソード(DBR)層18、発光層17、pアノード層41が積層されている。そして、pアノード層41上にトンネル接合層15、nDBR層42が積層されている。さらに、nDBR層42上に光サイリスタTのnカソード層14、pゲート層13、nゲート層12、pアノード層11が積層されている。
pアノード層41とnDBR層42と接触している部分(電流阻止部β)は、逆バイアス状態になるので、電流が流れにくいが、トンネル接合層15が設けられている部分(電流通過部α)は、電流が流れやすくなっている。すなわち、トンネル接合層15により電流狭窄される。

0111

なお、光サイリスタTのnカソード層14は、nDBR層42で兼ねられる。よって、nカソード層14はなくてもよい。
また、第1の実施の形態で説明した金属的導電性III−V族化合物層をトンネル接合層15の代わりに用いてもよく、電圧低減層19を光サイリスタTに用いてもよい。

0112

[第7の実施の形態]
図17は、第7の実施の形態に係る光スイッチCを説明する図である。図17(a)は断面図、図17(b)は、上面図である。等価回路は、図15(c)に示した第5の実施の形態と同様であるので記載を省略する。
第7の実施の形態に係る光スイッチCは、図16に示した第6の実施の形態に係る光スイッチCにおけるnDBR層42をDBR層とせずに、n型の層43(n層43)とし、開口部20の底部に発光層17に対向するように反射部44を設けている。
反射部44は、誘電体多層膜反射鏡などであってよい。

0113

なお、光サイリスタTのnカソード層14は、n層43で兼ねられるので、なくてもよい。
そして、第1の実施の形態で説明した金属的導電性III−V族化合物層をトンネル接合層15の代わりに用いてもよく、電圧低減層19を光サイリスタTに用いてもよい。

0114

[第8の実施の形態]
図18は、第8の実施の形態に係る光スイッチCを説明する図である。図18(a)は、断面図、図18(b)は、等価回路である。
垂直共振器面発光レーザVCSELなどのレーザ素子では、オフ状態からオン状態に移行する際に、発振の遅れ緩和振動が発生し、入力信号に対する応答性が劣る。このため、これまで説明した垂直共振器面発光レーザVCSELなどのレーザ素子は、例えば1Gbpsを超える変調が難しい。
そこで、第8の実施の形態に係る光スイッチCでは、垂直共振器面発光レーザVCSELなどのレーザ素子に直流電圧を印加して、予め発振させて(オン状態として)おく。この場合、垂直共振器面発光レーザVCSELの出射光は、信号とならないような小さい光量に設定しておく。そして、光サイリスタTが入射光によりターンオンした際に、大きな光量の出射光を出力するようにする。

0115

図18(a)に示すように、図12に示した第2の実施の形態に係る光スイッチCにおいて、nカソード(DBR)層18を露出させて、電極95を設けている。そして、図18(b)に示すように、光スイッチCは、この電極95に、逆流防止のための逆流防止ダイオードDSを介して、直流電源から直流電圧V0が印加されている。なお、逆流防止ダイオードDSは、光スイッチCの外部に設けられてもよいし、nゲート層12、pアノード層11、トンネル接合層15を光サイリスタTと分離して垂直共振器面発光レーザVCSEL上に形成し、nゲート層12上に電極95を設けてもよい。
直流電圧V0は、垂直共振器面発光レーザVCSELと逆流防止ダイオードDSとの直列回路に印加され、垂直共振器面発光レーザVCSELと逆流防止ダイオードDSとをオン状態にする電圧であればよい。このとき、垂直共振器面発光レーザVCSELの出射光が信号とならない小さい光量であるように、直流電圧V0が設定される。

0116

これにより、垂直共振器面発光レーザVCSELは予めオン状態になっているので、入射光が入射した際に、発振の遅れや緩和振動の発生が生じず、入射光に追随した出射光を出力する。すなわち、光スイッチCは、高速な変調が実現される。

0117

第8の実施の形態は、垂直共振器面発光レーザVCSELを使用する第1の実施の形態、第3の実施の形態から第7の実施の形態に適用しうる。また、第8の実施の形態は、他のレーザ素子を用いる実施の形態に適用してもよい。

0118

[第9の実施の形態]
第1の実施の形態から第8の実施の形態では、発光素子として垂直共振器面発光レーザVCSELを用いた。
第9の実施の形態では、発光素子として、垂直共振器面発光レーザVCSELの代わりに発光ダイオードLEDを用いる。
図19は、第9の実施の形態に係る光スイッチCの断面図である。図19(a)は断面図、図19(b)は、上面図、図19(c)は等価回路である。
第9の実施の形態に係る光スイッチCは、図1に示した第1の実施の形態に係る光スイッチCにおいて、pアノード(DBR)層16を、DBR層でないpアノード層51とし、nカソード(DBR)層18を、DBR層でないnカソード層52としたものである。
pアノード層51は、下側pアノード層51a、電流狭窄層51b、上側pアノード層51cを順に積層して構成されている。
下側pアノード層51a、上側pアノード層51cは、例えば、不純物濃度1×1018/cm3のp型のAl0.9GaAsである。Al組成は、0〜1の範囲で変更してもよい。なお、GaInPなどでもよい。
nカソード層52は、例えば不純物濃度1×1018/cm3のn型のAl0.9GaAsである。Al組成は、0〜1の範囲で変更してもよい。なお、GaInPなどでもよい。
他の構成は、第1の実施の形態に係る光スイッチCと同様であるので、説明を省略する。

0119

なお、第2の実施の形態に係る光スイッチCと同様に、発光ダイオードLEDと光サイリスタTとの積層順入れ替えてもよい。また、第3の実施の形態から第8の実施の形態の垂直共振器面発光レーザVCSELの代わりに発光ダイオードLEDを用いてもよい。
また、第1の実施の形態で説明した金属的導電性III−V族化合物層をトンネル接合層15の代わりに用いてもよく、電圧低減層19を光サイリスタTに用いてもよい。さらに、他の実施の形態を適用してもよい。

0120

[第10の実施の形態]
図20は、第10の実施の形態に係る光スイッチCの断面図である。図20(a)は断面図、図20(b)は、上面図、図20(c)は等価回路である。
第10の実施の形態では、第1の実施の形態に係る光スイッチCの発光素子としての垂直共振器面発光レーザVCSELの代わりに共振器型の発光ダイオードLED(Resonance Cavity Light Emitting Diode on Thyristor)を用いる。なお、共振器型の発光ダイオードLEDの構成は、第1の実施の形態に係る光スイッチCの発光素子としての垂直共振器面発光レーザVCSELと同様である。よって、同じ符号を付して、詳細な説明を省略する。

0121

共振器型の発光ダイオードLEDは、pアノード(DBR)層16とnカソード(DBR)層18とで共振器(キャビティ)を構成し、発光層17が出射する光を共振により強められて出力する。

0122

なお、第2の実施の形態に係る光スイッチCと同様に、発光ダイオードLEDと光サイリスタTとの積層順を入れ替えてもよい。また、第3の実施の形態から第8の実施の形態の垂直共振器面発光レーザVCSELの代わりに共振器型の発光ダイオードLEDを用いてもよい。
そして、第1の実施の形態で説明した金属的導電性III−V族化合物層をトンネル接合層15の代わりに用いてもよく、電圧低減層19を光サイリスタTに用いてもよい。さらに、他の実施の形態を適用してもよい。

0123

[第11の実施の形態]
図21は、第11の実施の形態に係る光スイッチCの断面図である。図21(a)は断面図、図21(b)は、上面図、図21(c)は等価回路である。
第11の実施の形態では、第1の実施の形態に係る光スイッチCの発光素子として、垂直共振器面発光レーザVCSELの代わりに端面共振器型のレーザダイオードLD(Laser Diode on Thyristor)を用いる。
すなわち、pアノード(DBR)層16とnカソード(DBR)層18とを、それぞれクラッド層(pアノード(クラッド)層61及びnカソード(クラッド)層62)とし、発光層17を2つのクラッド層で挟んでいる。
そして、pアノード(クラッド)層61が、電流狭窄層61bを含む下側pアノード(クラッド)層61aと上側pアノード(クラッド)層61cとで構成されている。

0124

pアノード(クラッド)層61の下側pアノード(クラッド)層61a、上側pアノード(クラッド)層61cは、例えば不純物濃度5×1017/cm3のp型のAl0.9GaAsである。Al組成は、0〜1の範囲で変更してもよい。なお、GaInPなどでもよい。
nカソード(クラッド)層62は、例えば不純物濃度5×1017/cm3のn型のAl0.9GaAsである。Al組成は、0〜1の範囲で変更してもよい。なお、GaInPなどでもよい。
他の構成は、第1の実施の形態に係る光スイッチCと同様であるので、説明を省略する。

0125

クラッド層(pアノード(クラッド)層61及びnカソード(クラッド)層62)は、発光層17より屈折率が小さい層である。発光層17とこれらのクラッド層との界面で発光層17から出射した光を反射させ、発光層17内に光を閉じ込める。そして、発光層17の端面(側面)間で構成される共振器で共振させて、レーザ発振させる。出射光OUT3は、基板10の表面に沿った方向に出射する。
よって、カソード電極92は、レーザダイオードLDのnカソード(クラッド)層62上に設けられている。よって、入射光IN2は、上から又は基板10の表面に沿った方向から、光サイリスタTのpゲート層13又はnゲート層12に入射させればよい。また、入射光IN2は、基板10の裏面から入射させてもよい。

0126

なお、第2の実施の形態に係る光スイッチCと同様に、レーザダイオードLDと光サイリスタTとの積層順を入れ替えてもよい。また、第3の実施の形態から第8の実施の形態の垂直共振器面発光レーザVCSELの代わりに共振器型のレーザダイオードLDを用いてもよい。
そして、第1の実施の形態で説明した金属的導電性III−V族化合物層をトンネル接合層15の代わりに用いてもよく、電圧低減層19を光サイリスタTに用いてもよい。さらに、他の実施の形態を適用してもよい。

0127

また、発光素子として、垂直共振器面発光レーザVCSEL、発光ダイオードLED、共振器型の発光ダイオードLED、端面共振器型のレーザダイオードLDを説明したが、バイポーラトランジスタ構造の発光素子など、他の発光素子であってもよい。

0128

以上においては、主にp型のGaAsを基板10の例として説明した。他の基板を用いた場合における各半導体層図17(a)の第7の実施の形態に係る光スイッチC)の例を説明する。

0129

まず、GaN基板30を用いた場合における半導体積層体の一例は以下の通りである。
pアノード層11は、例えば不純物濃度1×1018/cm3のp型のAl0.9GaNである。Al組成は、0〜1の範囲で変更してもよい。
nゲート層12は、例えば不純物濃度1×1017/cm3のn型のAl0.9GaNである。Al組成は、0〜1の範囲で変更してもよい。
pゲート層13は、例えば不純物濃度1×1017/cm3のp型のAl0.9GaNである。Al組成は、0〜1の範囲で変更してもよい。
nカソード層14は、例えば不純物濃度1×1018/cm3のn型のAl0.9GaNである。Al組成は、0〜1の範囲で変更してもよい。

0130

トンネル接合層15は、n型の不純物を高濃度に添加したn++層15aとn型の不純物を高濃度に添加したp++層15bとの接合(図17(a)参照。)で構成されている。n++層15a及びp++層15bは、例えば不純物濃度1×1020/cm3と高濃度である。なお、通常の接合の不純物濃度は、1017/cm3台〜1018/cm3台である。n++層15aとp++層15bとの組み合わせ(以下では、n++層15a/p++層15bで表記する。)は、例えばn++GaN/p++GaN、n++GaInN/p++GaInN、n++AlGaN/p++AlGaNである。なお、組み合わせを相互に変更したものでもよい。

0131

pアノード層41は、例えば、不純物濃度1×1018/cm3のp型のAl0.9GaNである。Al組成は、0〜1の範囲で変更してもよい。
GaN基板上では酸化狭窄層を電流狭窄層として使用することが困難であるため、電流通過部αにトンネル接合層又は金属的導電性III−V族化合物層を設けた構造が望ましい。又は、イオン注入を電流狭窄方法として使用することも有効である。

0132

発光層17は、井戸(ウエル)層と障壁(バリア)層とが交互に積層された量子井戸構造である。井戸層は、例えばGaN、InGaN、AlGaNなどであり、障壁層は、AlGaN、GaNなどである。なお、発光層17は、量子線(量子ワイヤ)や量子箱(量子ドット)であってもよい。

0133

nカソード(DBR)層18は、例えば不純物濃度1×1018/cm3のn型のAl0.9GaN/Al0.1GaNである。Al組成は、0〜1の範囲で変更してもよい。
出射方向の反射部44はn型やi型の半導体多層膜反射鏡であってもよいし、誘電体多層膜反射鏡であってもよい。

0134

次に、InP基板を用いた場合における半導体積層体の一例は以下の通りである。
pアノード層11は、例えば不純物濃度1×1018/cm3のp型のInGaAsPである。Ga組成、Al組成は、0〜1の範囲で変更してもよい。
nゲート層12は、例えば不純物濃度1×1017/cm3のn型のInGaAsPである。Ga組成、Al組成は、0〜1の範囲で変更してもよい。
pゲート層13は、例えば不純物濃度1×1017/cm3のp型のInGaAsPである。Ga組成、Al組成は、0〜1の範囲で変更してもよい。
nカソード層14は、例えば不純物濃度1×1018/cm3のn型のInGaAsPである。Ga組成、Al組成は、0〜1の範囲で変更してもよい。

0135

トンネル接合層15は、n型の不純物を高濃度に添加したn++層15aとn型の不純物を高濃度に添加したp++層15bとの接合(図17(a)参照。)で構成されている。n++層15a及びp++層15bは、例えば不純物濃度1×1020/cm3と高濃度である。なお、通常の接合の不純物濃度は、1017/cm3台〜1018/cm3台である。n++層15aとp++層15bとの組み合わせ(以下では、n++層15a/p++層15bで表記する。)は、例えばn++InP/p++InP、n++InAsP/p++InAsP、n++InGaAsP/p++InGaAsP、n++InGaAsPSb/p++InGaAsPSbである。なお、組み合わせを相互に変更したものでもよい。

0136

pアノード層41は、例えば不純物濃度1×1018/cm3のp型のInGaAsPである。Ga組成、Al組成は、0〜1の範囲で変更してもよい。
InP基板上では酸化狭窄層を電流狭窄層として使用することが困難であるため、電流通過部αにトンネル接合層又は金属的導電性III−V族化合物層を設けた構造が望ましい。又は、イオン注入を電流狭窄方法として使用することも有効である。

0137

発光層17は、井戸(ウエル)層と障壁(バリア)層とが交互に積層された量子井戸構図である。井戸層は、例えばInAs、InGaAsP、AlGaInAs、GaInAsPSbなどであり、障壁層は、InP、InAsP、InGaAsP、AlGaInAsPなどである。なお発光層17は、量子線(量子ワイヤ)や量子箱(量子ドット)であってもよい。

0138

nカソード(DBR)層18は、例えば不純物濃度1×1018/cm3のn型のInGaAsP/InGaAsPである。Ga組成、Al組成は、0〜1の範囲で変更してもよい。
出射方向の反射部44はn型やi型の半導体多層膜反射鏡であってもよいし、誘電体多層膜反射鏡であってもよい。

0139

これらの半導体層は、例えば有機金属気相成長法(MOCVD)、分子線エピタキシー法(MBE)などによって積層され、半導体積層体が形成される。

0140

また、以上説明した実施の形態を、有機材料からなるp型、n型、i型層、発光層に適用してもよい。
さらに、それぞれの実施の形態を、他の実施の形態と組み合わせて用いてもよい。

0141

10…基板、11、41、51…pアノード層、12…nゲート層、13…pゲート層、14…nカソード層、15…トンネル接合層、15a…n++層、15b…p++層、16…pアノード(DBR)層、16a…下側pアノード(DBR)層、16b、51b、61b…電流狭窄層、16c…上側pアノード(DBR)層、17…発光層、18…nカソード(DBR)層、91…アノード電極、91a、92a…入出力部、92…カソード電極、20…開口部、30…基板、42…nDBR層、43…n層、44…反射部、51a…下側pアノード層、51c…上側pアノード層、61…pアノード(クラッド)層、61a…下側pアノード(クラッド)層、61c…上側pアノード(クラッド)層、93、94…制御電極、95…電極、110、130、150、160、180…光ファイバ、120、140、170…光導波路、α…電流通過部、β…電流阻止部、A、B…光信号、C…光スイッチ、DS…逆流防止ダイオード、IN1、IN2…入射光、LD…レーザダイオード、LED…発光ダイオード、OUT1、OUT2、OUT3…出射光、PS…電源、R…参照光信号、T…光サイリスタ、VCSEL…垂直共振器面発光レーザ

ページトップへ

この技術を出願した法人

この技術を発明した人物

ページトップへ

関連する挑戦したい社会課題

該当するデータがありません

関連する公募課題

該当するデータがありません

ページトップへ

技術視点だけで見ていませんか?

この技術の活用可能性がある分野

分野別動向を把握したい方- 事業化視点で見る -

(分野番号表示ON)※整理標準化データをもとに当社作成

ページトップへ

おススメ サービス

おススメ astavisionコンテンツ

新着 最近 公開された関連が強い技術

この 技術と関連性が強い人物

関連性が強い人物一覧

この 技術と関連する社会課題

該当するデータがありません

この 技術と関連する公募課題

該当するデータがありません

astavision 新着記事

サイト情報について

本サービスは、国が公開している情報(公開特許公報、特許整理標準化データ等)を元に構成されています。出典元のデータには一部間違いやノイズがあり、情報の正確さについては保証致しかねます。また一時的に、各データの収録範囲や更新周期によって、一部の情報が正しく表示されないことがございます。当サイトの情報を元にした諸問題、不利益等について当方は何ら責任を負いかねることを予めご承知おきのほど宜しくお願い申し上げます。

主たる情報の出典

特許情報…特許整理標準化データ(XML編)、公開特許公報、特許公報、審決公報、Patent Map Guidance System データ