図面 (/)

技術 無線通信システムにおける多重ユーザ送受信のための方法及びこのための装置

出願人 エルジーエレクトロニクスインコーポレイティド
発明者 パクウンソンチェチンスリムトンククチョハンキュリウクポン
出願日 2015年11月2日 (3年10ヶ月経過) 出願番号 2017-523443
公開日 2017年12月28日 (1年8ヶ月経過) 公開番号 2017-539137
状態 特許登録済
技術分野 交流方式デジタル伝送 時分割方式以外の多重化通信方式 無線伝送方式一般(ダイバーシチ方式等)
主要キーワード ライトガード 一般システム 特定インデックス 併合動作 持続時間値 レガシーフォーマット 特定媒体 基盤構造
関連する未来課題
重要な関連分野

この項目の情報は公開日時点(2017年12月28日)のものです。
また、この項目は機械的に抽出しているため、正しく解析できていない場合があります

図面 (20)

課題

次世代WLANシステムの新しいフレーム及びヌメロロジーに適用可能な効率的なトーンプランを提案する。

解決手段

本発明の一実施形態に係るWLANシステムにおけるSTA装置データ送信方法において、レガシープリアンブル及びHELTFを含む物理プリアンブルデータフィールドを含むフィジカルプロトコルデータユニットPPDU)を生成するステップと、PPDUを送信するステップとを含み、データフィールドは、レガシープリアンブルのIDFT/DFT周期の4倍(4x)で送信され、HE−LTFは、レガシープリアンブルのIDFT/DFT周期の4倍で送信される4x HE−LTF、または2倍(2x)で送信される2x HE−LTFであり、HE−LTFのパイロットトーンは、4x HE−LTFがマッピングされるサブキャリアのうち、偶数インデックスを有するサブキャリアのみに挿入されることができる。

概要

背景

ワイファイ(Wi-Fi)は、2.4GHz、5GHzまたは60GHz周波数帯域において機器インターネット接続可能なようにするWLAN(Wireless Local Area Network)技術である。

WLANは、IEEE(institute of electrical and electronic engineers)802.11標準に基づく。IEEE 802.11のWNG SC(Wireless Next Generation Standing Committee)は、次世代WLAN(wireless local area network)を中長期的に悩むアドホック委員会(committee)である。

IEEE 802.11nは、ネットワークの速度と信頼性を増加させ、無線ネットワーク運営距離を拡張するのに目的をおいている。さらに具体的に、IEEE 802.11nでは、最大600Mbpsデータ処理速度(data rate)を提供する高処理率HT:High Throughput)を支援し、また送信エラーを最小化しデータ速度を最適化するために、送信部と受信部の両端ともに多重アンテナを使用するMIMO(Multiple Inputs and Multiple Outputs)技術に基盤をおいている。

WLANの補給活性化され、またこれを利用したアプリケーション多様化するにつれて、超高処理率(VHT:Very High Throughput)を支援する次世代WLANシステムは、IEEE 802.11n WLANシステムの次のバージョンとして、IEEE 802.11acが新しく制定された。IEEE 802.11acは、80MHz帯域幅送信及び/又はより高い帯域幅送信(例えば、160MHz)を介して、1Gbps以上のデータ処理速度を支援し、主に5GHz帯域で動作する。

最近では、IEEE 802.11acが支援するデータ処理速度よりさらに高い処理率を支援するための新しいWLANシステムに対する必要性が台頭しつつある。

一名IEEE 802.11axまたは高効率(HEW:High Efficiency)WLANと呼ばれる次世代WLANタスクグループで主に論議されるIEEE 802.11axの範囲(scope)は、1)2.4GHz及び5GHzなどの帯域で802.11 PHY(physical)階層とMAC(medium access control)階層の向上、2)スペクトル効率性(spectrum efficiency)と領域スループット(area throughput)向上、3)干渉ソースが存在する環境、密集した異種ネットワーク(heterogeneous network)環境及び高いユーザ負荷が存在する環境のような実際の室内環境及び室外環境での性能向上などを含む。

IEEE 802.11axにおいて主に考慮されるシナリオは、AP(access point)とSTA(station)が多い密集環境であり、IEEE 802.11axは、このような状況でスペクトル効率(spectrum efficiency)と空間送信率(area throughput)の改善について議論する。特に、室内環境だけでなく、従来のWLANで多く考慮されなかった室外環境での実質的性能改善に関心を有する。

IEEE 802.11axでは、無線オフィス(wireless office)、スマートホーム(smart home)、スタジアム(Stadium)、ホットスポット(Hotspot)、ビルアパート(building/apartment)のようなシナリオに関心が大きく、当該シナリオに基づいてAPとSTAが多い密集環境でのシステム性能の向上についての議論が行われている。

今後、IEEE 802.11axでは、1つのBSS(basicservice set)での単一リンク性能上よりは、OBSS(overlappingbasic service set)環境でのシステム性能の向上及び室外環境性能の改善、及びセルラオフロード(cellular offloading)などに対する議論が盛んになると予想される。このようなIEEE 802.11axの方向性は、次世代WLANがますます移動通信と類似の技術範囲を有するようになるのを意味する。最近、スモールセル(small cell)及びD2D(Direct-to-Direct)通信領域で移動通信とWLAN技術が共に論議されている状況を考慮すると、IEEE 802.11axに基づいた次世代WLANと移動通信の技術的及び事業的融合は、さらに盛んになると予測される。

概要

次世代WLANシステムの新しいフレーム及びヌメロロジーに適用可能な効率的なトーンプランを提案する。本発明の一実施形態に係るWLANシステムにおけるSTA装置データ送信方法において、レガシープリアンブル及びHE−LTFを含む物理プリアンブルデータフィールドを含むフィジカルプロトコルデータユニットPPDU)を生成するステップと、PPDUを送信するステップとを含み、データフィールドは、レガシープリアンブルのIDFT/DFT周期の4倍(4x)で送信され、HE−LTFは、レガシープリアンブルのIDFT/DFT周期の4倍で送信される4x HE−LTF、または2倍(2x)で送信される2x HE−LTFであり、HE−LTFのパイロットトーンは、4x HE−LTFがマッピングされるサブキャリアのうち、偶数インデックスを有するサブキャリアのみに挿入されることができる。

目的

さらに具体的に、IEEE 802.11nでは、最大600Mbpsのデータ処理速度(data rate)を提供する

効果

実績

技術文献被引用数
0件
牽制数
0件

この技術が所属する分野

ライセンス契約や譲渡などの可能性がある特許掲載中! 開放特許随時追加・更新中 詳しくはこちら

請求項1

WLANシステムにおけるSTA装置データ送信方法において、レガシープリアンブル及びHELTFを含む物理プリアンブルデータフィールドを含むフィジカルプロトコルデータユニットPPDU)を生成するステップと、前記PPDUを送信するステップと、を含み、前記データフィールドは、前記レガシープリアンブルのIDFT/DFT周期の4倍(4x)で送信され、前記HE−LTFは、前記レガシープリアンブルのIDFT/DFT周期の前記4倍で送信される4xHE−LTF、または2倍(2x)で送信される2xHE−LTFであり、前記HE−LTFのパイロットトーンは、前記4xHE−LTFがマッピングされるサブキャリアのうち、偶数インデックスを有するサブキャリアのみに挿入される、STA装置のデータ送信方法。

請求項2

前記サブキャリアのうち、前記偶数インデックスを有するサブキャリアは、データを運び、奇数インデックスを有するサブキャリアは、前記データを運ばない、請求項1に記載のSTA装置のデータ送信方法。

請求項3

前記パイロットトーンの値は、前記PPDUを送信する総ストリーム個数によって各ストリーム別に予め設定されたパイロットシーケンスで決定されるか、前記総ストリーム個数と関係なく、全てのストリームに対して固定された1つのパイロットシーケンスで決定される、請求項1に記載のSTA装置のデータ送信方法。

請求項4

前記パイロットシーケンスに含まれたパイロット値は、下記の数式1を満たす、請求項3に記載のSTA装置のデータ送信方法。

請求項5

前記各ストリーム別に決定されたパイロットシーケンス間には直交性が満たされる、請求項4に記載のSTA装置のデータ送信方法。

請求項6

前記パイロットシーケンスの各々は、複数のハダマード行列を組み合わせて生成された行列の各行で決定される、請求項5に記載のSTA装置のデータ送信方法。

請求項7

前記パイロットシーケンスの各々は、予め設定されたシーケンスペアリングされることにより決定される、請求項1に記載のSTA装置のデータ送信方法。

請求項8

前記周波数資源は、20MHz帯域幅、40MHz帯域幅、80MHz帯域幅、または160MHz帯域幅に該当する、請求項1に記載のSTA装置のデータ送信方法。

請求項9

前記周波数資源が前記20MHz帯域幅に該当する場合、前記周波数資源に含まれたサブキャリアのうち、8個のサブキャリアに前記パイロットトーンが挿入され、前記周波数資源が前記40MHz帯域幅に該当する場合、前記周波数資源に含まれたサブキャリアのうち、16個のサブキャリアに前記パイロットトーンが挿入され、前記周波数資源が前記80MHz帯域幅に該当する場合、前記周波数資源に含まれたサブキャリアのうち、16個のサブキャリアに前記パイロットトーンが挿入され、前記周波数資源が前記160MHz帯域幅に該当する場合、前記周波数資源に含まれたサブキャリアのうち、32個のサブキャリアに前記パイロットトーンが挿入される、請求項8に記載のSTA装置のデータ送信方法。

請求項10

前記40MHzまたは80MHz帯域幅の周波数資源に挿入された8個のパイロットトーンに対するパイロットシーケンスは、前記20MHz帯域幅の周波数資源に挿入された4個のパイロットトーンに対するパイロットシーケンスが2回複製されて決定され、前記160MHz帯域幅の周波数資源に挿入された32個のパイロットトーンに対するパイロットシーケンスは、前記40MHzまたは80MHz帯域幅の周波数資源に挿入された16個のパイロットトーンに対するパイロットシーケンスが2回複製されて決定される、請求項9に記載のSTA装置のデータ送信方法。

請求項11

WLANシステムのSTA装置において、無線信号送受信するRFユニットと、前記RFユニットを制御するプロセッサと、を備え、前記プロセッサは、レガシープリアンブル及びHE−LTFを含む物理プリアンブルとデータフィールドを含むフィジカルプロトコルデータユニット(PPDU)を生成し、前記PPDUを送信し、前記データフィールドは、前記レガシープリアンブルのIDFT/DFT周期の4倍(4x)で送信され、前記HE−LTFは、前記レガシープリアンブルのIDFT/DFT周期の前記4倍で送信される4xHE−LTF、または2倍(2x)で送信される2xHE−LTFであり、前記HE−LTFのパイロットトーンは、前記4xHE−LTFがマッピングされるサブキャリアのうち、偶数インデックスを有するサブキャリアのみに挿入される、STA装置。

請求項12

前記サブキャリアのうち、前記偶数インデックスを有するサブキャリアは、データを運び、奇数インデックスを有するサブキャリアは、前記データを運ばない、請求項11に記載のSTA装置。

請求項13

前記パイロットトーンの値は、前記PPDUを送信する総ストリーム個数によって各ストリーム別に決定されたパイロットシーケンスで決定されるか、前記総ストリーム個数と関係なく、全てのストリームに対して1つのパイロットシーケンスで決定される、請求項11に記載のSTA装置。

請求項14

前記パイロットシーケンスに含まれたパイロット値は、下記の数式1を満たす、請求項13に記載のSTA装置。

請求項15

前記各ストリーム別に決定されたパイロットシーケンス間には直交性が満たされる、請求項14に記載のSTA装置。

請求項16

前記パイロットシーケンスの各々は、複数のハダマード行列を組み合わせて生成された行列の各行で決定される、請求項15に記載のSTA装置。

請求項17

前記パイロットシーケンスの各々は、予め設定されたシーケンスがペアリングされることにより決定される、請求項11に記載のSTA装置。

請求項18

前記周波数資源は、20MHz帯域幅、40MHz帯域幅、80MHz帯域幅、または160MHz帯域幅に該当する、請求項11に記載のSTA装置。

請求項19

前記周波数資源が前記20MHz帯域幅に該当する場合、前記周波数資源に含まれたサブキャリアのうち、8個のサブキャリアに前記パイロットトーンが挿入され、前記周波数資源が前記40MHz帯域幅に該当する場合、前記周波数資源に含まれたサブキャリアのうち、16個のサブキャリアに前記パイロットトーンが挿入され、前記周波数資源が前記80MHz帯域幅に該当する場合、前記周波数資源に含まれたサブキャリアのうち、16個のサブキャリアに前記パイロットトーンが挿入され、前記周波数資源が前記160MHz帯域幅に該当する場合、前記周波数資源に含まれたサブキャリアのうち、32個のサブキャリアに前記パイロットトーンが挿入される、請求項18に記載のSTA装置。

請求項20

前記40MHzまたは80MHz帯域幅の周波数資源に挿入された8個のパイロットトーンに対するパイロットシーケンスは、前記20MHz帯域幅の周波数資源に挿入された4個のパイロットトーンに対するパイロットシーケンスが2回複製されて決定され、前記160MHz帯域幅の周波数資源に挿入された32個のパイロットトーンに対するパイロットシーケンスは、前記40MHzまたは80MHz帯域幅の周波数資源に挿入された16個のパイロットトーンに対するパイロットシーケンスが2回複製されて決定される、請求項19に記載のSTA装置。

技術分野

0001

本発明は、無線通信システムに関し、より詳細には、次世代WirelessLANシステムの新しいフレーム及びヌメロロジーに適用可能な効率的なトーンプランを提案する。

背景技術

0002

ワイファイ(Wi-Fi)は、2.4GHz、5GHzまたは60GHz周波数帯域において機器インターネット接続可能なようにするWLAN(Wireless Local Area Network)技術である。

0003

WLANは、IEEE(institute of electrical and electronic engineers)802.11標準に基づく。IEEE 802.11のWNG SC(Wireless Next Generation Standing Committee)は、次世代WLAN(wireless local area network)を中長期的に悩むアドホック委員会(committee)である。

0004

IEEE 802.11nは、ネットワークの速度と信頼性を増加させ、無線ネットワーク運営距離を拡張するのに目的をおいている。さらに具体的に、IEEE 802.11nでは、最大600Mbpsデータ処理速度(data rate)を提供する高処理率HT:High Throughput)を支援し、また送信エラーを最小化しデータ速度を最適化するために、送信部と受信部の両端ともに多重アンテナを使用するMIMO(Multiple Inputs and Multiple Outputs)技術に基盤をおいている。

0005

WLANの補給活性化され、またこれを利用したアプリケーション多様化するにつれて、超高処理率(VHT:Very High Throughput)を支援する次世代WLANシステムは、IEEE 802.11n WLANシステムの次のバージョンとして、IEEE 802.11acが新しく制定された。IEEE 802.11acは、80MHz帯域幅送信及び/又はより高い帯域幅送信(例えば、160MHz)を介して、1Gbps以上のデータ処理速度を支援し、主に5GHz帯域で動作する。

0006

最近では、IEEE 802.11acが支援するデータ処理速度よりさらに高い処理率を支援するための新しいWLANシステムに対する必要性が台頭しつつある。

0007

一名IEEE 802.11axまたは高効率(HEW:High Efficiency)WLANと呼ばれる次世代WLANタスクグループで主に論議されるIEEE 802.11axの範囲(scope)は、1)2.4GHz及び5GHzなどの帯域で802.11 PHY(physical)階層とMAC(medium access control)階層の向上、2)スペクトル効率性(spectrum efficiency)と領域スループット(area throughput)向上、3)干渉ソースが存在する環境、密集した異種ネットワーク(heterogeneous network)環境及び高いユーザ負荷が存在する環境のような実際の室内環境及び室外環境での性能向上などを含む。

0008

IEEE 802.11axにおいて主に考慮されるシナリオは、AP(access point)とSTA(station)が多い密集環境であり、IEEE 802.11axは、このような状況でスペクトル効率(spectrum efficiency)と空間送信率(area throughput)の改善について議論する。特に、室内環境だけでなく、従来のWLANで多く考慮されなかった室外環境での実質的性能改善に関心を有する。

0009

IEEE 802.11axでは、無線オフィス(wireless office)、スマートホーム(smart home)、スタジアム(Stadium)、ホットスポット(Hotspot)、ビルアパート(building/apartment)のようなシナリオに関心が大きく、当該シナリオに基づいてAPとSTAが多い密集環境でのシステム性能の向上についての議論が行われている。

0010

今後、IEEE 802.11axでは、1つのBSS(basicservice set)での単一リンク性能上よりは、OBSS(overlappingbasic service set)環境でのシステム性能の向上及び室外環境性能の改善、及びセルラオフロード(cellular offloading)などに対する議論が盛んになると予想される。このようなIEEE 802.11axの方向性は、次世代WLANがますます移動通信と類似の技術範囲を有するようになるのを意味する。最近、スモールセル(small cell)及びD2D(Direct-to-Direct)通信領域で移動通信とWLAN技術が共に論議されている状況を考慮すると、IEEE 802.11axに基づいた次世代WLANと移動通信の技術的及び事業的融合は、さらに盛んになると予測される。

発明が解決しようとする課題

0011

802.11axシステムにおいてレガシーWLANシステムに比べて4倍大きい(4x)FFTサイズを使用する場合、802.11acシステムのパイロット配置をそのまま適用し難くなる。したがって、本発明では、既存の802.11n及び802.11acシステムで提案されたトーンプランに基づいてこれを補完及び拡張し、802.11axシステムのヌメロロジーに適合し、効率的なパイロット設計方式を提案しようとする。

課題を解決するための手段

0012

本発明の一実施形態に係るWLAN(Wireless LAN)システムにおけるSTA(Station)装置のデータ送信方法において、レガシープリアンブル及びHE−LTF(High Efficiency−Long Training Field)を含む物理プリアンブル(physical preamble)とデータフィールドを含むフィジカルプロトコルデータユニットPPDU:Physical Protocol Data Unit)を生成するステップと、前記PPDUを送信するステップとを含み、前記データフィールドは、前記レガシープリアンブルのIDFT(inverse discrete Fourier transform)/DFT(discrete Fourier transform)周期の4倍(4x)で送信され、前記HE−LTFは、前記レガシープリアンブルのIDFT/DFT周期の前記4倍で送信される4x HE−LTF、または2倍(2x)で送信される2x HE−LTFであり、前記HE−LTFのパイロットトーンは、前記4x HE−LTFがマッピングされるサブキャリアのうち、偶数インデックスを有するサブキャリアのみに挿入されることができる。

0013

また、前記サブキャリアのうち、前記偶数インデックスを有するサブキャリアは、データを運び(carry)、奇数インデックスを有するサブキャリアは、前記データを運ばないことがある。

0014

また、前記パイロットトーンの値は、前記PPDUを送信する総ストリーム個数によって各ストリーム別に予め設定されたパイロットシーケンスで決定されるか、前記総ストリーム個数と関係なく、全てのストリームに対して固定された1つのパイロットシーケンスで決定されることができる。

0015

また、前記パイロットシーケンスに含まれたパイロット値は、下記の数式1を満たすことができる。

0016

0017

0018

また、前記各ストリーム別に決定されたパイロットシーケンス間には直交性(Orthogonality)が満たされ得る。

0019

また、前記パイロットシーケンスの各々は、複数のハダマード行列を組み合わせて生成された行列の各行で決定されることができる。

0020

また、前記パイロットシーケンスの各々は、予め設定されたシーケンスペアリングされることにより決定されることができる。

0021

また、前記周波数資源は、20MHz帯域幅、40MHz帯域幅、80MHz帯域幅、または160MHz帯域幅に該当し得る。

0022

また、前記周波数資源が前記20MHz帯域幅に該当する場合、前記周波数資源に含まれたサブキャリアのうち、8個のサブキャリアに前記パイロットトーンが挿入され、前記周波数資源が前記40MHz帯域幅に該当する場合、前記周波数資源に含まれたサブキャリアのうち、16個のサブキャリアに前記パイロットトーンが挿入され、前記周波数資源が前記80MHz帯域幅に該当する場合、前記周波数資源に含まれたサブキャリアのうち、16個のサブキャリアに前記パイロットトーンが挿入され、前記周波数資源が前記160MHz帯域幅に該当する場合、前記周波数資源に含まれたサブキャリアのうち、32個のサブキャリアに前記パイロットトーンが挿入され得る。

0023

また、前記40MHzまたは80MHz帯域幅の周波数資源に挿入された8個のパイロットトーンに対するパイロットシーケンスは、前記20MHz帯域幅の周波数資源に挿入された4個のパイロットトーンに対するパイロットシーケンスが2回複製(duplicate)されて決定され、前記160MHz帯域幅の周波数資源に挿入された32個のパイロットトーンに対するパイロットシーケンスは、前記40MHzまたは80MHz帯域幅の周波数資源に挿入された16個のパイロットトーンに対するパイロットシーケンスが2回複製(duplicate)されて決定されることができる。

0024

また、WLAN(Wireless LAN)システムのSTA(Station)装置において、無線信号送受信するRFユニットと、前記RFユニットを制御するプロセッサとを備え、前記プロセッサは、レガシープリアンブル及びHE−LTFを含む物理プリアンブル(physical preamble)とデータフィールドを含むフィジカルプロトコルデータユニット(PPDU:Physical Protocol Data Unit)を生成し、前記PPDUを送信し、前記データフィールドは、前記レガシープリアンブルのIDFT(inverse discrete Fourier transform)/DFT(discrete Fourier transform)周期の4倍(4x)で送信され、前記HE−LTFは、前記レガシープリアンブルのIDFT/DFT周期の前記4倍で送信される4x HE−LTF、または2倍(2x)で送信される2x HE−LTFであり、前記HE−LTFのパイロットトーンは、前記4x HE−LTFがマッピングされるサブキャリアのうち、偶数インデックスを有するサブキャリアのみに挿入されることができる。

0025

また、前記サブキャリアのうち、前記偶数インデックスを有するサブキャリアは、データを運び(carry)、奇数インデックスを有するサブキャリアは、前記データを運ばないことがある。

0026

また、前記パイロットトーンの値は、前記PPDUを送信する総ストリーム個数によって各ストリーム別に決定されたパイロットシーケンスで決定されるか、前記総ストリーム個数と関係なく、全てのストリームに対して1つのパイロットシーケンスで決定されることができる。

0027

また、前記パイロットシーケンスに含まれたパイロット値は、下記の数式1を満たすことができる。

0028

0029

0030

また、前記各ストリーム別に決定されたパイロットシーケンス間には直交性(Orthogonality)が満たされ得る。

0031

また、前記パイロットシーケンスの各々は、複数のハダマード行列を組み合わせて生成された行列の各行で決定されることができる。

0032

また、前記パイロットシーケンスの各々は、予め設定されたシーケンスがペアリングされることにより決定されることができる。

0033

また、前記周波数資源は、20MHz帯域幅、40MHz帯域幅、80MHz帯域幅、または160MHz帯域幅に該当し得る。

0034

また、前記周波数資源が前記20MHz帯域幅に該当する場合、前記周波数資源に含まれたサブキャリアのうち、8個のサブキャリアに前記パイロットトーンが挿入され、前記周波数資源が前記40MHz帯域幅に該当する場合、前記周波数資源に含まれたサブキャリアのうち、16個のサブキャリアに前記パイロットトーンが挿入され、前記周波数資源が前記80MHz帯域幅に該当する場合、前記周波数資源に含まれたサブキャリアのうち、16個のサブキャリアに前記パイロットトーンが挿入され、前記周波数資源が前記160MHz帯域幅に該当する場合、前記周波数資源に含まれたサブキャリアのうち、32個のサブキャリアに前記パイロットトーンが挿入され得る。

0035

また、前記40MHzまたは80MHz帯域幅の周波数資源に挿入された8個のパイロットトーンに対するパイロットシーケンスは、前記20MHz帯域幅の周波数資源に挿入された4個のパイロットトーンに対するパイロットシーケンスが2回複製(duplicate)されて決定され、前記160MHz帯域幅の周波数資源に挿入された32個のパイロットトーンに対するパイロットシーケンスは、前記40MHzまたは80MHz帯域幅の周波数資源に挿入された16個のパイロットトーンに対するパイロットシーケンスが2回複製(duplicate)されて決定されることができる。

発明の効果

0036

本発明は、従来のWLANシステムのプリアンブル及びPLCPヘッダオーバーヘッドを減らし、効率的なPPDU送信構造を設計してシステムの効率性増進させることができる。具体的に、既存のIEEE 802.11nシステムで提案されたmulti stream pilot設計方式を補完及び拡張して次世代WLANシステムの新しいフレーム構造及びヌメロロジー(numerology)に適用可能な効率的なpilot設計方法を提案する。

0037

その他、本発明の様々な効果に関しては、以下、図面を参照して詳細に説明する。

図面の簡単な説明

0038

本発明に関する理解を助けるために、詳細な説明の一部として含まれる添付図面は、本発明に対する実施形態を提供し、詳細な説明とともに本発明の技術的特徴を説明する。

0039

本発明が適用され得るIEEE 802.11システムの一例を示す図である。
本発明が適用され得るIEEE 802.11システムの階層アーキテクチャー(layer architecture)の構造を例示する図である。
本発明が適用され得る無線通信システムのnon-HTフォーマットPPDU及びHTフォーマットPPDUを例示する。
本発明が適用され得る無線通信システムのVHTフォーマットPPDUフォーマットを例示する。
本発明が適用され得る無線通信システムのPPDUのフォーマットを区分するためのコンステレーション(constellation)を例示する図である。
本発明が適用され得るIEEE 802.11システムのMACフレームフォーマットを例示する。
本発明が適用され得る無線通信システムにおけるHT ControlフィールドのHTフォーマットを例示する。
本発明が適用され得る無線通信システムにおけるHT ControlフィールドのVHTフォーマットを例示する。
本発明が適用され得る無線通信システムにおける一般的なリンクセットアップ(link setup)手順を説明するための図である。
本発明が適用され得る無線通信システムにおける任意バックオフ周期フレーム送信手順を説明するための図である。
本発明の一実施形態に係るHE(High Efficiency)フォーマットPPDUを例示する図である。
本発明の一実施形態に係るHE(High Efficiency)フォーマットPPDUを例示する図である。
本発明の一実施形態に係るHE(High Efficiency)フォーマットPPDUを例示する図である。
本発明の一実施形態に係るHE(High Efficiency)フォーマットPPDUを例示する図である。
本発明の一実施形態に係るOFDMA多重ユーザ(multi−user)送信方式資源割当単位を例示する図である。
本発明の一実施形態に係るOFDMA多重ユーザ(multi−user)送信方式で資源割当単位を例示する図である。図16では、PPDU帯域幅が40MHzである場合を例示する。
本発明の一実施形態に係るOFDMA多重ユーザ(multi−user)送信方式で資源割当単位を例示する図である。図17では、PPDU帯域幅が80MHzである場合を例示する。
既存のシステムのパイロットトーンプランを説明するために示した図である。
本発明の一実施形態によってストリーム個数によるパイロットトーンの値をまとめた表である。
本発明の一実施形態によってストリーム個数によるパイロットトーンの値をまとめた表である。
本発明の一実施形態によってストリーム個数によるパイロットトーンの値をまとめた表である。
本発明の一実施形態によってストリーム個数によるパイロットトーンの値をまとめた表である。
本発明の一実施形態に係るパイロット値を生成するためのシーケンスグループをまとめた表である。
本発明の一実施形態によってストリーム個数によるパイロットトーンの値をまとめた表である。
本発明の一実施形態によってストリーム個数によるパイロットトーンの値をまとめた表である。
本発明の一実施形態によってストリーム個数によるパイロットトーンの値をまとめた表である。
本発明の一実施形態によってストリーム個数によるパイロットトーンの値をまとめた表である。
本発明の一実施形態に係るパイロット値を生成するためのシーケンスグループをまとめた表である。
本発明の一実施形態によってストリーム個数によるパイロットトーンの値をまとめた表である。
本発明の一実施形態によってストリーム個数によるパイロットトーンの値をまとめた表である。
本発明の一実施形態に係るパイロット値を生成するためのシーケンスグループをまとめた表である。
106トーン資源ユニットに含まれたパイロットトーンの位置を説明するために示した図である。
本発明の一実施形態によってSTA別に割り当てられたパイロットトーンの値をまとめた表である。
本発明の一実施形態に係るSTA装置のデータ送信方法を示した順序図である。
本発明の一実施形態に係るSTA装置のブロック図である。

実施例

0040

本明細書において使用される用語は、本明細書での機能を考慮しつつ、できる限り、現在広く使用される一般的な用語を選択したが、これは、当分野に従事する技術者の意図、慣例、または新しい技術の出現などによって変わることができる。また、特定の場合は、出願人が任意に選定した用語もあり、この場合、当該実施形態の説明部分でその意味を記載するであろう。したがって、本明細書において使用される用語は、単純な用語の名称でない、その用語でない実質的な意味と本明細書の全般にわたった内容に基づいて解釈されなければならないこと を明かしておく。

0041

さらに、以下、添付図面及び添付図面に記載された内容を参照して実施形態を詳細に説明するが、実施形態により制限されるか、限定されるものではない。

0042

以下、添付した図面を参照して本発明の好ましい実施形態をさらに詳細に説明する。

0043

以下の技術は、CDMA(code division multiple access)、FDMA(frequency division multiple access)、TDMA(time division multiple access)、OFDMA(orthogonal frequency division multiple access)、SC-FDMA(single carrier frequency division multiple access)、NOMA(non-orthogonal multiple access)などのような様々な無線接続システムに利用されることができる。CDMAは、UTRA(universal terrestrial radio access)またはCDMA2000のような無線技術(radio technology)により実現化されることができる。TDMAは、GSM(global system for mobile communications)/GPRS(general packet radio service)/EDGE(enhanced data rates for GSM evolution)のような無線技術により実現化されることができる。OFDMAは、IEEE(institute of electrical and electronics engineers)802.11(Wi-Fi)、IEEE 802.16(WiMAX)、IEEE 802-20、E-UTRA(evolved UTRA)などのような無線技術により実現化されることができる。UTRAは、UMTS(universal mobile telecommunications system)の一部である。3GPP(3rd generation partnership project)LTE(long term evolution)は、E-UTRAを使用するE-UMTS(evolved UMTS)の一部として、ダウンリンクでOFDMAを採用しアップリンクでSC-FDMAを採用する。LTE-A(advanced)は、3GPP LTEの進化である。

0044

本発明の実施の形態は、無線接続システムであるIEEE 802、3GPP及び3GPP2のうち、少なくとも1つに開示された標準文書により裏付けられることができる。すなわち、本発明の実施の形態のうち、本発明の技術的思想を明らかに表すために説明しないステップまたは部分は、前記文書により裏付けられることができる。また、本文書において開示しているすべての用語は、前記標準文書により説明されることができる。

0045

説明を明確にするために、IEEE 802.11システムを中心に述べるが、本発明の技術的特徴がこれに制限されるものではない。

0046

システム一般
図1は、本発明が適用され得るIEEE 802.11システムの一例を示す図である。

0047

IEEE 802.11構造は、複数の構成要素から構成されることができ、これらの相互作用により上位階層に対してトランスペアレントな(transparent)ステーション(STA:Station)移動性を支援する無線通信システムが提供されることができる。基本サービスセット(BSS:Basic Service Set)は、IEEE 802.11システムでの基本的な構成ブロックに該当できる。

0048

図1では、3個のBSS(BSS1〜BSS3)が存在し、それぞれのBSSのメンバーとして2個のSTAが含まれること(STA1及びSTA2は、BSS1に含まれ、STA3及びSTA4は、BSS2に含まれ、STA5及びSTA6は、BSS3に含まれる)を例示的に示す。

0049

図1においてBSSを示す楕円は、当該BSSに含まれたSTAが通信を維持するカバレッジ領域を示すものと理解されることができる。この領域を基本サービス領域(BSA:Basic Service Area)と称することができる。STAがBSAの外に移動するようになると、当該BSA内の他のSTAと直接的に通信できなくなる。

0050

IEEE 802.11システムにおいて最も基本的なタイプのBSSは、独立的なBSS(IBSS:Independent BSS)である。例えば、IBSSは、2個のSTAだけから構成された最小の形態を有することができる。また、最も単純な形態で他の構成要素が省略されている図1のBSS3がIBSSの代表的な例示に該当できる。このような構成は、STAが直接通信できる場合に可能である。また、このような形態のLANは、予め計画されて構成されることではなく、LANが必要な場合に構成されることができ、これをアドホック(ad-hoc)ネットワークと称することもできる。

0051

STAのオンまたはオフ、STAがBSS領域に入ったり行く等により、BSSでのSTAのメンバーシップが動的に変更されることができる。BSSのメンバーになるためには、STAは、同期化過程を用いてBSSにジョインできる。BSS基盤構造のすべてのサービスアクセスするためには、STAは、BSSに連係(associated)されなければならない。このような連係(association)は、動的に設定されることができ、分配システムサービス(DSS:Distribution System Service)の利用を含むことができる。

0052

802.11システムにおいて直接的なSTA-対-STAの距離は、物理階層(PHY:physical)性能によって制限されることができる。ある場合には、このような距離の限界が十分でありうるが、場合によっては、より遠くの距離のSTA間の通信が必要でありうるときもある。拡張されたカバレッジを支援するために、分配システム(DS:Distribution System)が構成されることができる。

0053

DSは、BSSが相互接続する構造を意味する。具体的に、図1のように、BSSが独立的に存在する代わりに、複数のBSSから構成されたネットワークの拡張された形態の構成要素としてBSSが存在することもできる。

0054

DSは、論理的な概念であり、分配システム媒体(DSM:Distribution System Medium)の特性によって特定されることができる。これと関連して、IEEE 802.11標準では、無線媒体(WM:Wireless Medium)と分配システム媒体(DSM:Distribution System Medium)を論理的に区分している。各々の論理的媒体は、相違する目的のために使用され、相違する構成要素によって使用される。IEEE 802.11標準の定義では、このような媒体を同じことに制限することもせず相違することに制限することもしない。このように複数の媒体が論理的に相違するという点で、IEEE 802.11システムの構造(DS構造または他のネットワーク構造)の柔軟性が説明されることができる。すなわち、IEEE 802.11システム構造は、多様に実現化されることができ、各々の実現例の物理的な特性によって独立的に当該システム構造が特定されることができる。

0055

DSは、複数のBSSの途切れない(seamless)統合を提供し、目的地へのアドレスを扱うのに必要な論理的サービスを提供することによって、移動装置を支援できる。

0056

APは、関連したSTAに対してWMを介してDSへのアクセスを可能にし、STA機能性を有する個体を意味する。APを介してBSS及びDS間のデータ移動が行われることができる。例えば、図1に示すSTA2及びSTA3は、STAの機能性を有し、かつ関連したSTA(STA1及びSTA4)がDSにアクセスするようにする機能を提供する。また、すべてのAPは、基本的にSTAに該当するので、すべてのAPは、アドレス可能な個体である。WM上での通信のために、APによって使用されるアドレスとDSM上での通信のために、APによって使用されるアドレスは、必ず同様である必要はない。

0057

APに関連したSTAのうちの1つからそのAPのSTAアドレスに送信されるデータは、常に非制御ポート(uncontrolled port)で受信され、IEEE 802.1Xポートアクセス個体によって処理されることができる。また、制御ポート(controlled port)が認証されると、送信データ(またはフレーム)は、DSに伝達されることができる。

0058

任意の(arbitrary)サイズ及び複雑度を有する無線ネットワークがDS及びBSSから構成されることができる。IEEE 802.11システムでは、このような方式のネットワークを拡張されたサービスセットESS:Extended Service Set)ネットワークと称する。ESSは、1つのDSに接続したBSSの集合に該当できる。しかしながら、ESSは、DSを含まない。ESSネットワークは、論理リンク制御LLC:Logical Link Control)階層でIBSSネットワークに見える点が特徴である。ESSに含まれるSTAは、互いに通信でき、移動STAは、LLCにトランスペアレント(transparent)に1つのBSSから他のBSSに(同じESS内で)移動できる。

0059

IEEE 802.11システムでは、図1でのBSSの相対的な物理的位置に対してなんにも仮定しなく、次のような形態が全部可能である。

0060

具体的に、BSSは、部分的に重なることができ、これは、連続的なカバレッジを提供するために一般に利用される形態である。また、BSSは、物理的に接続されていなくても良く、論理的には、BSS間の距離に制限はない。また、BSSは、物理的に同じ位置に位置でき、これは、リダンダンシー(redundancy)を提供するために利用されることができる。また、1つ(または1つ以上の)IBSSまたはESSネットワークが1つまたはそれ以上のESSネットワークとして同じ空間に物理的に存在し得る。これは、ESSネットワークが存在する位置にad-hocネットワークが動作する場合、相違する機関(organizations)によって物理的に重なるIEEE 802.11ネットワークが構成される場合、または同じ位置で2つ以上の相違したアクセス及びセキュリティー政策が必要な場合などでのESSネットワーク形態に該当できる。

0061

WLANシステムにおけるSTAは、IEEE 802.11の媒体接続制御(MAC:Medium Access Control)/PHY規定にしたがい動作する装置である。STAの機能がAPと個別的に区分されない限り、STAは、AP STAと非-AP STA(non-AP STA)を含むことができる。ただし、STAとAPとの間に通信が行われるとするとき、STAは、non-AP STAと理解されることができる。図1の例示において、STA1、STA4、STA5及びSTA6は、non-AP STAに該当し、STA2及びSTA3は、AP STAに該当する。

0062

Non-APSTAは、ラップトップパソコン移動電話機のように、一般にユーザが直接扱う装置に該当する。以下の説明において、non-AP STAは、無線装置(wireless device)、端末(terminal)、ユーザ装置(UE:User Equipment)、移動局(MS:Mobile Station)、移動端末(Mobile Terminal)、無線端末(wireless terminal)、無線送受信ユニット(WTRU:Wireless Transmit/Receive Unit)、ネットワークインタフェース装置(network interface device)、MTC(Machine-Type Communication)装置、M2M(Machine-to-Machine)装置などと呼ぶことができる。

0063

また、APは、他の無線通信分野での基地局(BS:Base Station)、ノード-B(Node-B)、発展したノード-B(eNB:evolved Node-B)、基底送受信システムBTS:Base Transceiver System)、フェムト基地局(Femto BS)などに対応する概念である。

0064

以下、本明細書においてダウンリンク(DL:downlink)は、APからnon-AP STAへの通信を意味し、アップリンク(UL:uplink)は、non-AP STAからAPへの通信を意味する。ダウンリンクにおける送信機は、APの一部で、受信機は、non-AP STAの一部でありうる。アップリンクにおける送信機は、non-AP STAの一部で、受信機は、APの一部でありうる。

0065

図2は、本発明が適用され得るIEEE 802.11システムの階層アーキテクチャー(layer architecture)の構造を例示する図である。

0066

図2に示すように、IEEE 802.11システムの階層アーキテクチャーは、MACサブ階層(MAC(Medium Access Control)sublayer/layer)とPHYサブ階層/階層(Physical sublayer/layer)とを備えることができる。

0067

PHYは、PLCP(Physical Layer Convergence Procedure)個体(entity)とPMD(Physical Medium Dependent)個体とに区分されることもできる。この場合、PLCP個体は、MACとデータフレームとを連結する役割を果たし、PMD個体は、2個またはそれ以上のSTAとデータとを無線で送受信する役割を果たす。

0068

MACとPHYとは共に管理個体(Management Entity)を含むことができ、各々MACサブ階層管理個体(MLME:MAC Sublayer Management Entity)とPHYサブ階層管理個体(PLME:Physical sublayer Management Entity)とで呼ぶことができる。これらの管理個体は、階層管理関数の動作を介して階層管理サービスインターフェースを提供する。MLMEは、PLMEと連結されてMACの管理動作(management operation)を行うことができ、同様に、PLMEもMLMEと連結されてPHYの管理動作(management operation)を行うことができる。

0069

正確なMAC動作を提供するために、SME(Station Management Entity)が各STA内に存在し得る。SMEは、各階層と独立的な管理個体であって、MLMEとPLMEから階層基盤状態情報収集するか、または各階層の特定パラメータの値を設定する。SMEは、一般システム管理個体の代わりに、このような機能を行うことができ、標準管理プロトコルを実現できる。

0070

MLME、PLME及びSMEは、プリミティブ(primitive)に基づく様々な方法で相互作用(interact)できる。具体的に、XX-GET.requestプリミティブは、管理情報ベース属性(MIB attribute:Management Information Base attribute)の値を要請するために使用され、XX-GET.confirmプリミティブは、状態が「SUCCESS」であると、当該MIB属性値リターン(return)し、その他の場合には、状態フィールドエラー表示をしてリターンする。XX-SET.requestプリミティブは、指定されたMIB属性を与えた値に設定するように要請するために使用される。MIB属性が特定動作を意味している場合、この要請は、その特定動作の実行を要請する。そして、XX-SET.confirmプリミティブは、状態が「SUCCESS」であると、これは指定されたMIB属性が要請された値に設定されたことを意味する。その他の場合には、状態フィールドは、エラー状況を表す。このMIB属性が特定動作を意味する場合、このプリミティブは、当該動作が行われたことを確認してくれることができる。

0071

PHYは、MACにTXVECTOR、RXVECTOR、及びPHYCONFIG_VECTORを介してインターフェース(interface)を提供する。TXVECTORは、PHYにPPDU別の送信パラメータを支援する。RXVECTORを用いてPHYは、MACに受信したPPDUパラメータを知らせる。TXVECTORは、MACでPHYにPHY−TXSTART.requestプリミティブを介して伝達され、RXVECTORは、PHYでMACにPHY−RXSTART.indicationプリミティブを介して伝達される。

0072

PHYCONFIG_VECTORを用いてMACは、フレーム送信または受信と関係なく、PHYの動作を設定する。

0073

各サブ階層(または、階層)での動作を簡略に説明すれば、次のとおりである。

0074

MACは、上位階層(例えば、LLC)から伝達されたMACサービスデータユニット(MSDU:MAC Service Data Unit)またはMSDUの破片(fragment)にMACヘッダ(header)とフレームチェックシーケンスFCS:Frame Check Sequence)を付着して、1つ以上のMACプロトコルデータユニット(MPDU:MAC Protocol Data Unit)を生成する。生成されたMPDUは、PHYに伝達される。

0075

A−MSDU(aggregated MSDU)技法(scheme)が使用される場合、複数個のMSDUは、単一のA−MSDU(aggregated MSDU)に併合されることができる。MSDU併合動作は、MAC上位階層で行われることができる。A−MSDUは、単一のMPDU(破片化(fragment)されない場合)でPHYに伝達される。

0076

PHYは、MACから伝達された物理サービスデータユニットPSDU:Physical Service Data Unit)に物理階層送受信機により必要な情報を含む付加フィールドを加えて物理プロトコルデータユニット(PPDU:Physical Protocol Data Unit)を生成する。PPDUは、無線媒体を介して送信される。

0077

PSDUは、PHYがMACから受信したものであって、MPDUは、MACがPHYに送信したものであるので、PSDUは、実質的にMPDUと同様である。

0078

A−MPDU(aggregated MPDU)技法(scheme)が使用される場合、複数のMPDU(このとき、各MPDUは、A−MSDUを運ぶことができる。)は、単一のA−MPDUに併合されることができる。MPDU併合動作は、MAC下位階層で行われることができる。A−MPDUは、様々なタイプのMPDU(例えば、QoSデータ、ACK(Acknowledge)、ブロックACK(BlockAck)等)が併合され得る。PHYは、MACに単一のPSDUとしてA−MPDUを受信する。すなわち、PSDUは、複数のMPDUで構成される。したがって、A−MPDUは、単一のPPDU内で無線媒体を介して送信される。

0079

PPDU(Physical Protocol Data Unit)フォーマット
PPDU(Physical Protocol Data Unit)は、物理階層から発生されるデータブロックを意味する。以下、本発明が適用されうるIEEE 802.11WLANシステムに基づいてPPDUフォーマットを説明する。

0080

図3は、本発明が適用されうる無線通信システムのnon-HTフォーマットPPDU及びHTフォーマットPPDUを例示する。

0081

図3の(a)は、IEEE 802.11a/gシステムを支援するためのnon-HTフォーマットPPDUを例示する。non-HT PPDUは、レガシー(legacy)PPDUとも呼ばれることができる。

0082

図3の(a)に示すように、non-HTフォーマットPPDUは、L-STF(Legacy(またはNon-HT)Short Training field)、L-LTF(Legacy(またはNon-HT)Long Training field)及びL-SIG(Legacy(またはNon-HT)SIGNAL)フィールドから構成されるレガシーフォーマットプリアンブルとデータフィールドとを含んで構成される。

0083

L−STFは、短いトレーニングOFDMシンボル(short training orthogonal frequency division multiplexing symbol)を含むことができる。L−STFは、フレームタイミング取得(frame timing acquisition)、自動利得制御(AGC:Automatic Gain Control)、ダイバシティ検出(diversity detection)、概略的な周波数時間同期化(coarse frequency/time synchronization)のために使用されることができる。

0084

L-LTFは、長いトレーニングOFDMシンボル(long training orthogonal frequency division multiplexing symbol)を含むことができる。L-LTFは、精密な周波数/時間同期化(fine frequency/time synchronization)及びチャネル推定(channel estimation)のために使用されることができる。

0085

L-SIGフィールドは、データフィールドの復調及びデコードのための制御情報を送信するために使用されることができる。

0086

図3の(b)は、IEEE 802.11nシステム及びIEEE 802.11a/gシステムを全部支援するためのHT混合フォーマットPPDU(HT-mixed format PPDU)を例示する。

0087

図3の(b)に示すように、HT混合フォーマットPPDUは、L-STF、L-LTF及びL-SIGフィールドから構成されるレガシーフォーマットプリアンブルとHT-SIG(HT-Signal)フィールド、HT-STF(HT Short Training field)、HT-LTF(HT Long Training field)から構成されるHTフォーマットプリアンブル及びデータフィールドを含んで構成される。

0088

L-STF、L-LTF及びL-SIGフィールドは、下位互換性(backward compatibility)のためのレガシーフィールドを意味するので、L-STFからL-SIGフィールドまでnon-HTフォーマットと同様である。L-STAは、HT混合PPDUを受信してもL-LTF、L-LTF及びL-SIGフィールドを介してデータフィールドを解釈できる。ただし、L-LTFは、HT-STAがHT混合PPDUを受信しL-SIGフィールド及びHT-SIGフィールドを復調するために行うチャネル推定のための情報をさらに含むことができる。

0089

HT-STAは、レガシーフィールドの後にくるHT-SIGフィールド利用して、HT-混合フォーマットPPDUであることが分かり、これに基づいてデータフィールドをデコードできる。

0090

HT-LTFフィールドは、データフィールドの復調のためのチャネル推定に使用されることができる。IEEE 802.11nは、SU-MIMO(Single-User Multi-Input and Multi-Output)を支援するので、複数の空間ストリームに送信されるデータフィールドの各々に対して、チャネル推定のためにHT-LTFフィールドは、複数から構成されることができる。

0091

HT-LTFフィールドは、空間ストリームに対するチャネル推定のために使用されるデータHT-LTF(data HT-LTF)とフルチャネルサウンディング(full channel sounding)のために追加的に使用される拡張HT-LTF(extension HT-LTF)から構成されることができる。したがって、複数のHT-LTFは、送信される空間ストリームの数より同じであるか、または多くありうる。

0092

HT-混合フォーマットPPDUは、L-STAも受信してデータを取得できるようにするために、L-STF、L-LTF及びL-SIGフィールドが最も速く送信される。以後、HT-STAのために送信されるデータの復調及びデコードのためにHT-SIGフィールドが送信される。

0093

HT-SIGフィールドまでは、ビーム形成を行わないで送信して、L-STA及びHT-STAが当該PPDUを受信してデータを取得できるようにし、以後に送信されるHT-STF、HT-LTF及びデータフィールドは、プリコーディングを介した無線信号送信が行われる。ここで、プリコーディングをして受信するSTAでプリコーディングにより電力可変される部分を案できるように、HT-STFフィールドを送信し、その以後に複数のHT-LTF及びデータフィールドを送信する。

0094

図3の(c)は、IEEE 802.11nシステムのみを支援するためのHT-GFフォーマットPPDU(HT-greenfield format PPDU)を例示する。

0095

図3の(c)に示すように、HT-GFフォーマットPPDUは、HT-GF-STF、HT-LTF1、HT-SIGフィールド、複数のHT-LTF2及びデータフィールドを含む。

0096

HT-GF-STFは、フレームタイミング取得及びAGCのために使用される。

0097

HT-LTF1は、チャネル推定のために使用される。

0098

HT-SIGフィールドは、データフィールドの復調及びデコードのために使用される。

0099

HT-LTF2は、データフィールドの復調のためのチャネル推定に使用される。同様に、HT-STAは、SU-MIMOを使用するので、複数の空間ストリームに送信されるデータフィールドの各々に対してチャネル推定を要するので、HT-LTF2は、複数から構成されることができる。

0100

複数のHT-LTF2は、HT混合PPDUのHT-LTFフィールドと同様に、複数のData HT-LTFと複数の拡張HT-LTFから構成されることができる。

0101

図3の(a)〜(c)におけるデータフィールドは、ペイロード(payload)として、サービスフィールド(SERVICE field)、スクランブルされたPSDU(scrambled PSDU)フィールド、テールビット(Tail bits)、パディングビット(padding bits)を含むことができる。データフィールドのすべてのビットは、スクランブルされる。

0102

図3(d)は、データフィールドに含まれるサービスフィールドを示す。サービスフィールドは、16ビットを有する。各ビットは、0番から15番まで付与され、0番ビットから順次に送信される。0番から6番ビットは、0に設定され、受信端内のデスクランブラー(descrambler)を同期化するために使用される。

0103

IEEE 802.11acWLANシステムは、無線チャネルを効率的に用いるために、複数のSTAが同時にチャネルにアクセスするダウンリンクMU-MIMO(Multi User Multiple Input Multiple Output)方式の送信を支援する。MU-MIMO送信方式によれば、APがMIMOペアリング(pairing)された1つ以上のSTAに同時にパケットを送信できる。

0104

DL MU送信(downlink multi-user transmission)は、1つ以上のアンテナを介してAPが同じ時間資源を介してPPDUを複数のnon-AP STAに送信する技術を意味する。

0105

以下、MUPPDUは、MU-MIMO技術またはOFDMA技術を利用して1つ以上のSTAのための1つ以上のPSDUを伝達するPPDUを意味する。そして、SU PPDUは、1つのPSDUのみを伝達できるか、またはPSDUが存在しないフォーマットを有したPPDUを意味する。

0106

MU-MIMO送信のために、802.11n制御情報のサイズに比べてSTAに送信される制御情報のサイズが相対的に大きくありうる。MU-MIMO支援のために追加的に要求される制御情報の一例として、各STAにより受信される空間的ストリーム(spatial stream)の数を指示する情報、各STAに送信されるデータの変調及びコーディング関連情報などがこれに該当することができる。

0107

したがって、複数のSTAに同時にデータサービスを提供するためにMU-MIMO送信が行われるとき、送信される制御情報のサイズは、受信するSTAの数に応じて増加されることができる。

0108

このように増加される制御情報のサイズを効率的に送信するために、MU-MIMO送信のために要求される複数の制御情報は、すべてのSTAに共通的に要求される共通制御情報(common control information)と特定STAに個別的に要求される専用制御情報(dedicated control information)の2とおりのタイプの情報に区分して送信されることができる。

0109

図4は、本発明が適用され得る無線通信システムのVHTフォーマットPPDUフォーマットを例示する。

0110

図4は、IEEE 802.11acシステムを支援するためのVHTフォーマットPPDU(VHT format PPDU)を例示する。

0111

図4に示すように、VHTフォーマットPPDUは、L-STF、L-LTF及びL-SIGフィールドから構成されるレガシーフォーマットプリアンブルとVHT-SIG-A(VHT-Signal-A)フィールド、VHT-STF(VHT Short Training field)、VHT-LTF(VHT Long Training field)、VHT-SIG-B(VHT-Signal-B)フィールドから構成されるVHTフォーマットプリアンブル及びデータフィールドを含んで構成される。

0112

L-STF、L-LTF及びL-SIGは、下位互換性(backward compatibility)のためのレガシーフィールドを意味するので、L-STFからL-SIGフィールドまでnon-HTフォーマットと同様である。ただし、L-LTFは、L-SIGフィールド及びVHT-SIG-Aフィールドを復調するために行うチャネル推定のための情報をさらに含むことができる。

0113

L-STF、L-LTF、L-SIGフィールド及びVHT-SIG-Aフィールドは、20MHzチャネル単位に繰り返されて送信されることができる。例えば、PPDUが4個の20MHzチャネル(すなわち、80MHz帯域幅)を介して送信されるとき、L-STF、L-LTF、L-SIGフィールド及びVHT-SIG-Aフィールドは、毎20MHzチャネルで繰り返されて送信されることができる。

0114

VHT-STAは、レガシーフィールドの後にくるVHT-SIG-Aフィールド利用して、VHTフォーマットPPDUであることが分かり、これに基づいてデータフィールドをデコードできる。

0115

VHTフォーマットPPDUは、L-STAも受信してデータを取得できるようにするために、L-STF、L-LTF及びL-SIGフィールドが最も速く送信される。以後、VHT-STAのために送信されるデータの復調及びデコードのために、VHT-SIG-Aフィールドが送信される。

0116

VHT-SIG-Aフィールドは、APとMIMOペアリングされた(paired)VHT STAに共通する制御情報送信のためのフィールドであって、これは、受信されたVHTフォーマットPPDUを解釈するための制御情報を含んでいる。

0117

VHT-SIG-Aフィールドは、VHT-SIG-A1フィールドとVHT-SIG-A2フィールドを含むことができる。

0118

VHT-SIG-A1フィールドは、使用するチャネル帯域幅(BW:bandwidth)情報、時空間ブロックコーディング(STBC:Space Time Block Coding)の適用有無、MU-MIMOでグループ化されたSTAのグループを指示するためのグループ識別情報(Group ID:Group Identifier)、使用されるストリームの数(NSTS:Number of space-time stream)/部分AID(Partial AID(association Identifier))に関する情報及び送信パワーセーブ禁止(Transmit power save forbidden)情報を含むことができる。ここで、Group IDは、MU-MIMO送信を支援するために送信対象STAグループに対して割り当てられる識別子を意味し、現在使用されたMIMO送信方法がMU-MIMOであるか、またはSU-MIMOであるかを表すことができる。

0119

表1は、VHT-SIG-A1フィールドを例示する表である。

0120

0121

VHT-SIG-A2フィールドは、短い保護区間GI:Guard Interval)の使用有無に関する情報、フォワードエラー訂正(FEC:Forward Error Correction)情報、単一ユーザに対するMCS(Modulation and Coding Scheme)に関する情報、複数ユーザに対するチャネルコーディングの種類に関する情報、ビーム形成関連情報、CRC(Cyclic Redundancy Checking)のための冗長ビット(redundancy bits)と畳み込みデコーダ(convolutional decoder)のテールビット(tail bit)などを含むことができる。

0122

表2は、VHT-SIG-A2フィールドを例示する表である。

0123

0124

0125

VHT−STFは、MIMO送信においてAGC推定の性能を改善するために使用される。VHT−STFフィールド区間(duration)は、4μsである。20MHz送信帯域でVHT−STFを構成するのに使用される周波数ドメインシーケンスは、L−STFと同様でありうる。40MHz/80MHz送信帯域でのVHT−STFは、20MHz送信帯域での周波数ドメインシーケンスを20MHz単位で複製し、前記複製された20MHz単位で位相回転を行うことにより構成されることができる。

0126

VHT-LTFは、VHT-STAがMIMOチャネルを推定するのに使用される。VHTWLANシステムは、MU-MIMOを支援するから、VHT-LTFは、PPDUが送信される空間ストリームの数だけ設定されることができる。追加的に、フルチャネルサウンディング(full channel sounding)が支援される場合、VHT-LTFの数は、より多くなることができる。

0127

VHT−SIG−Bフィールドは、MU−MIMOペアリングされた複数のVHT−STAがPPDUを受信してデータを取得するのに必要な専用制御情報を含む。したがって、VHT−SIG−Aフィールドに含まれた共用制御情報が、現在受信されたPPDUがMU−MIMO送信を指示した場合のみに、VHT−STAは、VHT−SIG−Bフィールドをデコーディング(decoding)するように設計されることができる。それに対し、共用制御情報が、現在受信されたPPDUが単一VHT−STAのためのもの(SU−MIMOを含む)であることを指示した場合、STAは、VHT−SIG−Bフィールドをデコーディングしないように設計されることができる。

0128

VHT−SIG−Bフィールドは、各VHT−STAの変調(modulation)、エンコーディング(encoding)、及びレートマッチング(rate−matching)に関する情報を含む。VHT−SIG−Bフィールドのサイズは、MIMO送信の類型(MU−MIMOまたはSU−MIMO)及びPPDU送信のために使用するチャネル帯域幅によって異なることができる。

0129

MU-MIMOを支援するシステムにおいて同じサイズのPPDUをAPにペアリングされたSTAに送信するために、PPDUを構成するデータフィールドのビットサイズを指示する情報及び/又は特定フィールドを構成するビットストリームサイズを指示する情報がVHT-SIG-Aフィールドに含まれることができる。

0130

ただし、効果的にPPDUフォーマットを使用するために、L-SIGフィールドが使用されることができる。同じサイズのPPDUがすべてのSTAに送信されるために、L-SIGフィールド内に含まれて送信される長さフィールド(length field)及びレートフィールド(rate field)が必要な情報を提供するために使用されることができる。この場合、MPDU(MAC Protocol Data Unit)及び/又はA-MPDU(Aggregate MAC Protocol Data Unit)がMAC階層バイト(またはオクテット(oct:octet))に基づいて設定されるので、物理階層で追加的なパディング(padding)が要求されることができる。

0131

図4においてデータフィールドは、ペイロード(payload)として、サービスフィールド(SERVICE field)、スクランブルされたPSDU(scrambled PSDU)、テールビット(tail bits)、パディングビット(padding bits)を含むことができる。

0132

上述のように、様々なPPDUのフォーマットが混合して使用されるから、STAは、受信したPPDUのフォーマットを区分できなければならない。

0133

ここで、PPDUを区分するという意味(またはPPDUフォーマットを区分するという意味)は、様々な意味を有することができる。例えば、PPDUを区分するという意味は、受信したPPDUがSTAによりデコード(または解釈)が可能なPPDUであるかどうかに対して判断するという意味を含むことができる。また、PPDUを区分するという意味は、受信したPPDUがSTAにより支援可能なPPDUであるかどうかに対して判断するという意味でありうる。また、PPDUを区分するという意味は、受信したPPDUを介して送信された情報がいかなる情報であるかを区分するという意味としても解釈できる。

0134

これについて下記の図面を参照してより詳細に説明する。

0135

図5は、本発明が適用され得る無線通信システムのPPDUのフォーマットを区分するためのコンステレーション(constellation)を例示する図である。

0136

図5(a)は、non−HTフォーマットPPDUに含まれるL−SIGフィールドのコンステレーション(constellation)を例示し、図5(b)は、HT混合フォーマットPPDU検出のための位相回転(phase rotation)を例示し、図5(c)は、VHTフォーマットPPDU検出のための位相回転(phase rotation)を例示する。

0137

STAがnon−HTフォーマットPPDU、HT−GFフォーマットPPDU、HT混合フォーマットPPDU、及びVHTフォーマットPPDUを区分(classification)するために、L−SIGフィールド及びL−SIGフィールド以後に送信されるOFDMシンボルのコンステレーション(constellation)の位相(phase)が使用される。すなわち、STAは、受信したPPDUのL−SIGフィールド及び/又はL−SIGフィールド以後に送信されるOFDMシンボルのコンステレーションの位相に基づいてPPDUフォーマットを区分できる。

0138

図5(a)に示すように、L−SIGフィールドを構成するOFDMシンボルは、BPSK(Binary Phase Shift Keying)が用いられる。

0139

まず、HT−GFフォーマットPPDUを区分するために、STAは、受信したPPDUで1番目のSIGフィールドが感知されれば、L−SIGフィールドであるか否かを判断する。すなわち、STAは、図5(a)の例示のようなコンステレーションに基づいてデコーディングを試みる。STAがデコーディングに失敗すれば、当該PPDUがHT−GFフォーマットPPDUであると判断することができる。

0140

次に、non−HTフォーマットPPDU、HT混合フォーマットPPDU、及びVHTフォーマットPPDUを区分(classification)するために、L−SIGフィールド以後に送信されるOFDMシンボルのコンステレーションの位相が使用され得る。すなわち、L−SIGフィールド以後に送信されるOFDMシンボルの変調方法が互いに異なることができ、STAは、受信したPPDUのL−SIGフィールド以後のフィールドに対する変調方法に基づいてPPDUフォーマットを区分できる。

0141

図5(b)に示すように、HT混合フォーマットPPDUを区分するために、HT混合フォーマットPPDUでL−SIGフィールド以後に送信される2個のOFDMシンボルの位相が使用され得る。

0142

より具体的に、HT混合フォーマットPPDUでL−SIGフィールド以後に送信されるHT−SIGフィールドに対応するOFDMシンボル#1及びOFDMシンボル#2の位相は、両方とも時計方向に90度だけ回転される。すなわち、OFDMシンボル#1及びOFDMシンボル#2に対する変調方法は、QBPSK(Quadrature Binary Phase Shift Keying)が用いられる。QBPSKコンステレーションは、BPSKコンステレーションを基準として反時計方向に90度だけ位相が回転したコンステレーションでありうる。

0143

STAは、受信したPPDUのL−SIGフィールドの次に送信されるHT−SIGフィールドに対応する第1のOFDMシンボル及び第2のOFDMシンボルを、図5(b)の例示のようなコンステレーションに基づいてデコーディングを試みる。STAがデコーディングに成功すれば、当該PPDUがHTフォーマットPPDUであると判断する。

0144

次に、non−HTフォーマットPPDU及びVHTフォーマットPPDUを区分するために、L−SIGフィールド以後に送信されるOFDMシンボルのコンステレーションの位相が使用され得る。

0145

図5(c)に示すように、VHTフォーマットPPDUを区分(classification)するために、VHTフォーマットPPDUでL−SIGフィールド以後に送信される2個のOFDMシンボルの位相が使用され得る。

0146

より具体的に、VHTフォーマットPPDUでL−SIGフィールド以後のVHT−SIG−Aフィールドに対応するOFDMシンボル#1の位相は回転されないが、OFDMシンボル#2の位相は反時計方向に90度だけ回転される。すなわち、OFDMシンボル#1に対する変調方法はBPSKが用いられ、OFDMシンボル#2に対する変調方法はQBPSKが用いられる。

0147

STAは、受信したPPDUのL−SIGフィールドの次に送信されるVHT−SIGフィールドに対応する第1のOFDMシンボル及び第2のOFDMシンボルを、図5(c)の例示のようなコンステレーションに基づいてデコーディングを試みる。STAがデコーディングに成功すれば、当該PPDUがVHTフォーマットPPDUであると判断することができる。

0148

それに対し、デコーディングに失敗すれば、STAは、当該PPDUがnon−HTフォーマットPPDUであると判断することができる。

0149

MACフレームフォーマット
図6は、本発明が適用され得るIEEE 802.11システムのMACフレームフォーマットを例示する。

0150

図6に示すように、MACフレーム(すなわち、MPDU)は、MACヘッダ(MAC Header)、フレーム本体(Frame Body)及びフレームチェックシーケンス(FCS:frame check sequence)から構成される。

0151

MAC Headerは、フレーム制御(Frame Control)フィールド、持続時間/識別子(Duration/ID)フィールド、アドレス1(Address1)フィールド、アドレス2(Address2)フィールド、アドレス3(Address3)フィールド、シーケンス制御(Sequence Control)フィールド、アドレス4(Address4)フィールド、QoS制御(QoS Control)フィールド及びHT制御(HT Control)フィールドを含む領域と定義される。

0152

Frame Controlフィールドは、当該MACフレーム特性に関する情報を含む。Frame Controlフィールドに対するより詳細な説明は、後述する。

0153

Duration/IDフィールドは、当該MACフレームのタイプ及びサブタイプに応じる他の値を有するように実現化されることができる。

0154

仮に、当該MACフレームのタイプ及びサブタイプがパワーセーブ(PS:power save)運営のためのPS-ポール(PS-Poll)フレームの場合、Duration/IDフィールドは、フレームを送信したSTAのAID(association identifier)を含むように設定されることができる。その以外の場合、Duration/IDフィールドは、当該MACフレームのタイプ及びサブタイプに応じて特定持続時間値を有するように設定されることができる。また、フレームがA-MPDU(aggregate-MPDU)フォーマットに含まれたMPDUである場合、MACヘッダに含まれたDuration/IDフィールドは、全部同じ値を有するように設定されることもできる。

0155

Address1フィールド〜Address4フィールドは、BSSID、ソースアドレス(SA:source address)、目的アドレス(DA:destination address)、送信STAアドレスを表す送信アドレス(TA:Transmitting Address)、受信STAアドレスを表す受信アドレス(RA:Receiving Address)を指示するために使用される。

0156

一方、TAフィールドにより実現化されたアドレスフィールドは、帯域幅シグナリングTA(bandwidth signaling TA)値に設定されることができ、この場合、TAフィールドは、当該MACフレームがスクランブリングシーケンスに追加的な情報を含んでいることを指示できる。帯域幅シグナリングTAは、当該MACフレームを送信するSTAのMACアドレス表現されることができるが、MACアドレスに含まれた個別/グループビット(Individual/Group bit)が特定値(例えば、「1」)に設定されることができる。

0157

Sequence Controlフィールドは、シーケンスナンバー(sequence number)及びフラグメントナンバー(fragment number)を含むように設定される。シーケンスナンバーを当該MACフレームに割り当てられたシーケンスナンバーを指示できる。フラグメントナンバーは、当該MACフレームの各フラグメントのナンバーを指示できる。

0158

QoS Controlフィールドは、QoSと関連した情報を含む。QoS Controlフィールドは、サブタイプ(Subtype)のサブフィールドにおいてQoSデータフレームを指示する場合に含まれることができる。

0159

HTControlフィールドは、HT及び/又はVHT送受信技法と関連した制御情報を含む。HT Controlフィールドは、制御ラッパー(Control Wrapper)フレームに含まれる。また、オーダー(Order)サブフィールド値が1であるQoSデータ(QoS Data)フレーム、管理(Management)フレームに存在する。

0160

Frame Bodyは、MACペイロード(payload)と定義され、上位階層で送信しようとするデータが位置するようになり、可変的なサイズを有する。例えば、最大MPDUのサイズは、11454オクテット(octets)で、最大PPDUのサイズは、5.484msでありうる。

0161

FCSは、MACフッター(footer)と定義され、MACフレームのエラー探索のために使用される。

0162

1番目の3つのフィールド(Frame Controlフィールド、Duration/IDフィールド及びAddress1フィールド)と最も最後のフィールド(FCSフィールド)は、最小フレームフォーマットを構成し、すべてのフレームに存在する。その他のフィールドは、特定フレームタイプにおいてのみ存在し得る。

0163

図7は、本発明が適用され得る無線通信システムにおけるHTControlフィールドのHTフォーマットを例示する。

0164

図7に示すように、HTControlフィールドは、VHTサブフィールド、HT制御ミドル(HT Control Middle)サブフィールド、AC制限(AC Constraint)サブフィールド、及び逆方向承認(RDG:Reverse Direction Grant)/追加PPDU(More PPDU)サブフィールドで構成されることができる。

0165

VHTサブフィールドは、HT ControlフィールドがVHTのためのHT Controlフィールドのフォーマットを有するか(VHT=1)、またはHTのためのHT Controlフィールドのフォーマットを有するか(VHT=0)の可否を指示する。図7では、HTのためのHT Controlフィールド(すなわち、VHT=0)を仮定して説明する。

0166

HTControl Middleサブフィールドは、VHTサブフィールドの指示にしたがい他のフォーマットを有するように実現されることができる。HT Control Middleサブフィールドについてのさらに詳細な説明は後述する。

0167

AC Constraintサブフィールドは、逆方向(RD:reverse direction)データフレームのマップされたAC(Access Category)が単一ACに限定されたことであるかどうかを指示する。

0168

RDG/MorePPDUサブフィールドは、当該フィールドがRDイニシエーター(initiator)またはRD応答者(responder)によって送信されるかどうかによって異なるように解釈されることができる。

0169

RDイニシエーターによって送信された場合、RDGが存在する場合、RDG/MorePPDUフィールドが「1」に設定され、RDGが存在しない場合、「0」に設定される。RD応答者によって送信された場合、当該サブフィールドを含むPPDUがRD応答者により送信された最後のフレームであると、「1」に設定され、さらに他のPPDUが送信されると、「0」に設定される。

0170

HTのためのHT ControlフィールドのHT Control Middleサブフィールドは、リンク適応(Link Adaptation)サブフィールド、カリブレーションポジション(Calibration Position)サブフィールド、カリブレーションシーケンス(Calibration Sequence)サブフィールド、予備(Reserved)サブフィールド、チャネル状態情報/調整(CSI/Steering:Channel State Information/Steering)サブフィールド、HT NDP公知(HT NDP Announcement:HT Null Data Packet Announcement)サブフィールド、予備(Reserved)サブフィールドを含むことができる。

0171

Link Adaptationサブフィールドは、トレーニング要請(TRQ:Training request)サブフィールド、MCS要請またはアンテナ選択指示(MAI:MCS(Modulation and Coding Scheme)Request orASEL(Antenna Selection)Indication)サブフィールド、MCSフィードバックシーケンス指示(MFSI:MCS Feedback Sequence Identifier)サブフィールド、MCSフィードバック及びアンテナ選択命令/データ(MFB/ASELC:MCS Feedback and Antenna Selection Command/data)サブフィールドを含むことができる。

0172

TRQサブフィールドは、応答者(responder)にサウンディングPPDU(sounding PPDU)送信を要請する場合、1に設定され、応答者にサウンディングPPDU送信を要請しない場合、0に設定される。

0173

MAIサブフィールドが14に設定されれば、アンテナ選択指示(ASEL indication)を表し、MFB/ASELCサブフィールドは、アンテナ選択命令/データに解釈される。そうでない場合、MAIサブフィールドは、MCS要請を表し、MFB/ASELCサブフィールドは、MCSフィードバックに解釈される。

0174

MAIサブフィールドがMCS要請(MRQ:MCS Request)を表す場合、MAIサブフィールドは、MRQ(MCS request)及びMSI(MRQ sequence identifier)で構成されると解釈される。MRQサブフィールドは、MCSフィードバックが要請されれば、「1」に設定され、MCSフィードバックが要請されなければ、「0」に設定される。MRQサブフィールドが「1」であるとき、MSIサブフィールドは、MCSフィードバック要請を特定するためのシーケンス番号を含む。MRQサブフィールドが「0」であるとき、MSIサブフィールドは、予備(reserved)ビットに設定される。

0175

前述した各サブフィールドは、HT制御フィールドに含まれ得るサブフィールドの例示に該当し、他のサブフィールドに代替されるか、追加的なサブフィールドがさらに含まれることができる。

0176

図8は、本発明が適用され得る無線通信システムにおけるHTControlフィールドのVHTフォーマットを例示する。

0177

図8に示すように、HTControlフィールドは、VHTサブフィールド、HT制御ミドル(HT Control Middle)サブフィールド、AC制限(AC Constraint)サブフィールド、及び逆方向承認(RDG:Reverse Direction Grant)/追加PPDU(More PPDU)サブフィールドで構成されることができる。

0178

図8では、VHTのためのHT Controlフィールド(すなわち、VHT=1)を仮定して説明する。VHTのためのHT ControlフィールドをVHT Controlフィールドと呼ぶことができる。

0179

AC Constraintサブフィールド及びRDG/MorePPDUサブフィールドについての説明は、前述した図7での説明と同様であるから、説明を省略する。

0180

上述のように、HTControl Middleサブフィールドは、VHTサブフィールドの指示にしたがい、他のフォーマットを有するように実現されることができる。

0181

VHTのためのHT ControlフィールドのHT Control Middleサブフィールドは、予備ビット(Reserved bit)、MCSフィードバック要請(MRQ:MCS(Modulation and Coding Scheme)feedback request)サブフィールド、MRQシーケンス識別子(MSI:MRQ Sequence Identifier)/時空間ブロックコーディング(STBC:space-time block coding)サブフィールド、MCSフィードバックシーケンス識別子(MFSI:MCS feedback sequence identifier)/グループID最下位ビット(GID-L:LSB(Least Significant Bit)of Group ID)サブフィールド、MCSフィードバック(MFB:MCS Feedback)サブフィールド、グループID最上位ビット(GID-H:MSB(Most Significant Bit)of Group ID)サブフィールド、コーディングタイプ(Coding Type)サブフィールド、フィードバック送信タイプ(FB Tx Type:Feedback Transmission type)サブフィールド及び自発的MFB(Unsolicited MFB)サブフィールドから構成されることができる。

0182

表3は、VHTフォーマットのHT Control Middleサブフィールドに含まれた各サブフィールドに対する説明を示す。

0183

0184

0185

そして、MFBサブフィールドは、VHT空間-時間ストリーム数(NUM_STS:Number of space time streams)サブフィールド、VHT-MCSサブフィールド、帯域幅(BW:Bandwidth)サブフィールド、信号対雑音比(SNR:Signal to Noise Ratio)サブフィールドを含むことができる。

0186

NUM_STSサブフィールドは、推薦する空間ストリームの数を指示する。VHT-MCSサブフィールドは、推薦するMCSを指示する。BWサブフィールドは、推薦するMCSと関連した帯域幅情報を指示する。SNRサブフィールドは、データサブキャリア及び空間ストリーム上記の平均SNR値を指示する。

0187

上述の各フィールドに含まれる情報は、IEEE 802.11システムの定義にしたがうことができる。また、上述の各フィールドは、MACフレームに含まれることができるフィールドの例示に該当し、これに限定されない。すなわち、上述の各フィールドが他のフィールドに代替されるか、または追加的なフィールドがさらに含まれることができ、すべてのフィールドが必須的に含まれなくても良い。

0188

リンクセットアップ手順(Link setup Procedure)

0189

図9は、本発明が適用され得る無線通信システムにおける一般的なリンクセットアップ(link setup)手順を説明するための図である。

0190

STAがネットワークに対してリンクセットアップし、データを送受信するためには、まず、ネットワークを発見(discovery)するためのスキャニング(Scanning)手順、認証(authentication)手順、連係(association)手順などを経なければならない。リンクセットアップ手順をセッション開示手順、セッションセットアップ手順とも称することができる。また、リンクセットアップ手順のスキャニング、認証、連係手順を通称して連係手順と称することもできる。

0191

WLANにおいてスキャニング手順は、受動的スキャニング(passive scanning)手順と能動的スキャニング(active scanning)手順とがある。

0192

図9(a)は、受動的スキャニング(passive scanning)によるリンクセットアップ(link setup)手順を例示し、図9(b)は、能動的スキャニング(active scanning)によるリンクセットアップ(link setup)手順を例示する。

0193

図9(a)のように受動的スキャニング手順は、APが周期的にブロードキャストするビーコンフレーム(beacon frame)を介して行われる。ビーコンフレームは、IEEE 802.11において管理フレーム(management frame)のうち、1つであって、無線ネットワークの存在を知らせ、スキャニングを行うnon−AP STAにして無線ネットワークを探して、無線ネットワークに参加できるように周期的に(例えば、100msec間隔)ブロードキャストされる。ビーコンフレームには、現在のネットワークに関する情報(例えば、BSSに対した情報)が載ってある。

0194

ネットワークに関する情報を得るために、non−APSTAは、受動的にチャネルを移しながらビーコンフレームの受信を待つ。ビーコンフレームを受信したnon−AP STAは、受信したビーコンフレームに含まれたネットワークに関する情報を格納し、次のチャネルに移動して同じ方法で次のチャネルでスキャニングを行うことができる。non−AP STAがビーコンフレームを受信してネットワークに関する情報を取得することにより、当該チャネルでのスキャニング手順が完了する。

0195

このように、受動的スキャニング手順は、non−APSTAが他のフレームを送信する必要無しでビーコンフレームを受信さえすれば、手順が完了するので、全体的なオーバーヘッドが少ないという長所がある。ただし、ビーコンフレームの送信周期に比例してnon−AP STAのスキャニング実行時間が増えるという短所がある。

0196

それに対し、図9(b)のような能動的スキャニング手順は、non−APSTAが周辺にどのAPが存在するか探索するために、能動的にチャネルを移しながらプローブ要請フレーム(probe request frame)をブロードキャストすることで、これを受信した全てのAPからネットワーク情報を要求する。

0197

プローブ要請フレームを受信した応答者(responder)は、フレーム衝突を防止するために、ランダム(random)時間の間待った後、プローブ応答フレーム(probe response frame)にネットワーク情報を載せて、当該non−APSTAに送信する。プローブ応答フレームを受信したSTAは、受信したプローブ応答フレームに含まれたネットワーク関連情報を格納し、次のチャネルに移動して同じ方法でスキャニングを行うことができる。non−AP STAがプローブ応答フレームを受信してネットワーク情報を取得することにより、スキャニング手順が完了する。

0198

能動的スキャニング手順は、受動的スキャニング手順に比べて相対的に速い時間の間スキャニングを終えることができるという長所がある。しかし、追加的なフレームシーケンス(frame sequence)が必要なので、全体的なネットワークオーバーヘッドは増加するようになる。

0199

スキャニング手順を完了したnon−APSTAは、自分だけの基準に応じてネットワークを選択した後、当該APと認証(authentication)手順を行う。

0200

認証手順は、non−APSTAが認証要請フレーム(authentication request frame)をAPに送信する過程と、これに応答してAPが認証応答フレーム(authentication response frame)をnon−AP STAに送信する過程、すなわち、2−wayハンドシェーキング(handshaking)で行われる。

0201

認証要請/応答に使用される認証フレーム(authentication frame)は、管理フレームに該当する。

0202

認証フレームは、認証アルゴリズム番号(authentication algorithm number)、認証トランザクションシーケンス番号(authentication transaction sequence number)、状態コード(status code)、検問テキスト(challenge text)、RSN(Robust Security Network)、有限循環グループ(Finite Cyclic Group)などに関する情報を含むことができる。これは、認証要請/応答フレームに含まれ得る情報の一部の例示に該当し、他の情報に代替されるか、追加的な情報がさらに含まれることができる。

0203

non−APSTAは、認証要請フレームをAPに送信することができる。APは、受信された認証要請フレームに含まれた情報に基づいて、当該non−AP STAに対する認証を許すか否かを決定できる。APは、認証処理の結果を認証応答フレームを介してnon−AP STAに提供することができる。

0204

認証手順を介してnon−APSTAとAPとは、互いに対する認証を経た後、連係(association)を確立(establish)する。

0205

連係過程は、non−APSTAが連係要請フレーム(association request frame)をAPに送信する過程と、これに応答してAPが連係応答フレーム(association response frame)をnon−AP STAに送信する過程、すなわち、2−wayハンドシェーキング(handshaking)で行われる。

0206

連係要請フレームは、non−APSTAの様々な能力(capability)に関連した情報、ビーコン聴取間隔(listen interval)、SSID(service set identifier)、支援レート(supported rates)、支援チャネル(supported channels)、RSN、移動性ドメイン、支援オペレーティングクラス(supported operating classes)、TIM放送要請(Traffic Indication Map Broadcast request)、相互動作(interworking)サービス能力などに関する情報を含むことができる。

0207

これに基づいてAPは、当該non−AP STAに対して支援可能可否を判断する。決定後、APは、連係応答フレームに連係要請に対する受諾可否とその理由、自分が支援可能な性能(Capability Information)に関する情報を入れてnon−AP STAに送信する。

0208

連係応答フレームは、様々な能力に関連した情報、状態コード、AID(Association ID)、支援レート、EDCA(Enhanced Distributed Channel Access)パラメータセット、RCPI(Received Channel Power Indicator)、RSNI(Received Signalto Noise Indicator)、移動性ドメイン、タイムアウト間隔(連係カムバック時間(association comeback time))、重ね合わせ(overlapping)BSSスキャンパラメータ、TIM放送応答、QoS(Quality of Service)マップなどの情報を含むことができる。

0209

前述した連係要請/応答フレームに含まれ得る情報は、例示に該当し、他の情報に代替されるか、追加的な情報がさらに含まれることができる。

0210

non−APSTAがAPと成功的に連係を確立した場合、正常な送受信がなされるようになる。それに対し、APと成功的に連係を確立できなかった場合、その理由に基づいてnon−AP STAは、再度連係手順を試みたり、他のAPに連係を試みることができる。

0211

媒体アクセスメカニズム

0212

IEEE 802.11における通信は、共有された無線媒体(shared wireless medium)においてなされるから、有線チャネル(wired channel)環境とは根本的に異なる特徴を有する。

0213

有線チャネル環境では、CSMA/CD(carrier sense multiple access/collision detection)に基づいて通信が可能である。例えば、送信端から一回シグナルが送信されると、チャネル環境が大きな変化がないから、受信端まで大きく信号が減衰されずに送信される。このとき、2つ以上のシグナルが衝突されると、感知(detection)が可能であった。これは、受信端で感知された電力(power)が瞬間的に送信端から送信した電力より大きくなるためである。しかしながら、無線チャネル環境は、様々な要素(例えば、距離に応じてシグナルの減衰が大きいか、または瞬間的に深いフェージング(deep fading)を経ることができる)がチャネルに影響を与えるから、実際に受信端で信号が正しく送信されたか、または衝突が発生したか、送信端で正確にキャリアセンシング(carrier sensing)をすることができない。

0214

これにより、IEEE 802.11に応じるWLANシステムにおいて、MACの基本アクセスメカニズムとしてCSMA/CA(Carrier Sense Multiple Access with Collision Avoidance)メカニズムを導入した。CAMA/CAメカニズムは、IEEE 802.11MACの分配調整機能(DCF:Distributed Coordination Function)とも呼ばれるが、基本的に「listen before talk」アクセスメカニズムを採用している。このような類型のアクセスメカニズムによると、AP及び/又はSTAは、送信を始めるに先立ち、所定の時間区間(例えば、DIFS(DCF Inter-Frame Space))の間に無線チャネルまたは媒体(medium)をセンシング(sensing)するCCA(Clear Channel Assessment)を行う。センシング結果、万が一、媒体がアイドル状態(idle status)であると判断されると、当該媒体を介してフレーム送信を始める。これに対し、媒体が占有状態(occupied status)であると感知されると、当該AP及び/又はSTAは、自分の送信を開示せずに、既に様々なSTAが当該媒体を使用するために待機しているという仮定下でDIFSに追加的に媒体アクセスのための遅延時間(例えば、任意のバックオフ周期(random backoff period))の間により待った後にフレーム送信を試みることができる。

0215

任意のバックオフ周期を適用することによって、フレームを送信するための複数のSTAが存在すると仮定するとき、複数のSTAは、確率的に異なるバックオフ周期値を有するようになって、互いに異なる時間の間に待機した後にフレーム送信を試みることが期待されるので、衝突(collision)を最小化させることができる。

0216

また、IEEE 802.11MACプロトコルは、HCF(Hybrid Coordination Function)を提供する。HCFは、前記DCFと支点調整機能(PCF:Point Coordination Function)に基づく。PCFは、ポーリング(polling)基盤の同期式アクセス方式ですべての受信AP及び/又はSTAがデータフレームを受信することができるように、周期的にポーリングする方式を称する。また、HCFは、EDCA(Enhanced Distributed Channel Access)とHCCA(HCF Controlled Channel Access)を有する。EDCAは、提供者が多数のユーザにデータフレームを提供するためのアクセス方式を競争基盤で行うことで、HCCAは、ポーリング(polling)メカニズムを利用した非競争基盤チャネルアクセス方式を使用することである。また、HCFは、WLANのQoS(Quality of Service)を向上させるための媒体アクセスメカニズムを含み、競争周期(CP:Contention Period)と非競争周期(CFP:Contention Free Period)の両方でQoSデータを送信できる。

0217

図10は、本発明が適用され得る無線通信システムにおける任意のバックオフ周期とフレーム送信手順を説明するための図である。

0218

特定媒体占有(occupyまたはbusy)状態からアイドル(idle)状態に変更されると、複数のSTAは、データ(またはフレーム)送信を試みることができる。このとき、衝突を最小化するための方案として、STAは、各々任意のバックオフカウント(random backoff count)を選択し、それに該当するスロット時間(slot time)分だけ待機した後に、送信を試みることができる。任意のバックオフカウントは、疑似-任意整数(pseudo-random integer)値を有し、0〜競争ウィンドウ(CW:Contention Window)範囲で均一分布(uniform distribution)した値のうちのいずれか1つで決定されることができる。ここで、CWは、競争ウィンドウパラメータ値である。CWパラメータは、初期値としてCW_minが与えられるが、送信が失敗した場合(例えば、送信されたフレームに対するACKを受信していない場合)に2倍の値を取ることができる。CWパラメータ値がCW_maxになると、データ送信が成功するまでCW_max値を維持しながらデータ送信を試みることができ、データ送信が成功する場合には、CW_min値リセットされる。CW、CW_min及びCW_max値は、(2^n)-1(n=0,1,2,...)に設定されることが好ましい。

0219

任意のバックオフ過程が始まると、STAは、決定されたバックオフカウント値で応じてバックオフスロットカウントダウンし、カウントダウンする間に媒体をモニタリングし続ける。媒体が占有状態であるとモニタリングされる場合、カウントダウンを中断し待機するようになり、媒体がアイドル状態になると、カウントダウンを再開する。

0220

図10の例示においてSTA3のMACに送信するパケットが到達した場合に、STA3は、DIFS分だけ媒体がアイドル状態であることを確認し、直にフレームを送信できる。

0221

一方、残りのSTAは、媒体が占有(busy)状態であることをモニタリングし待機する。その間にSTA1、STA2及びSTA5のそれぞれでも送信するデータが発生でき、それぞれのSTAは、媒体がアイドル状態であるとモニタリングされる場合、DIFSだけ待機した後に、各自が選択した任意のバックオフカウント値で応じてバックオフスロットをカウントダウンする。

0222

図10の例示では、STA2が最も小さなバックオフカウント値を選択し、STA1が最も大きなバックオフカウント値を選択した場合を示す。すなわち、STA2がバックオフカウントを終えフレーム送信を始める時点においてSTA5の残余バックオフ時間は、STA1の残余バックオフ時間より短い場合を例示する。

0223

STA1及びSTA5は、STA2が媒体を占有する間にカウントダウンを止め待機する。STA2の媒体占有が終了して媒体が再度アイドル状態になると、STA1及びSTA5は、DIFSだけ待機した後に、止めたバックオフカウントを再開する。すなわち、残余バックオフ時間ほどの残りのバックオフスロットをカウントダウンした後にフレーム送信を始めることができる。STA5の残余バックオフ時間がSTA1より短かったので、STA5のフレーム送信を始めるようになる。

0224

一方、STA2が媒体を占有する間にSTA4でも送信するデータが発生できる。このとき、STA4の立場では、媒体がアイドル状態になると、DIFSだけ待機した後、自分が選択した任意のバックオフカウント値で応じるバックオフスロットのカウントダウンを行う。

0225

図10の例示では、STA5の残余バックオフ時間がSTA4の任意のバックオフカウント値と偶然に一致する場合を示し、この場合、STA4とSTA5との間に衝突が発生できる。衝突が発生する場合には、STA4とSTA5ともがACKを受信できないから、データ送信を失敗するようになる。この場合、STA4とSTA5は、CW値を2倍に増やした後に、任意のバックオフカウント値を選択しバックオフスロットのカウントダウンを行う。

0226

一方、STA1は、STA4とSTA5の送信により媒体が占有状態である間に待機している途中で、媒体がアイドル状態になると、DIFSだけ待機した後に、残余バックオフ時間が経過すると、フレーム送信を始めることができる。

0227

CSMA/CAメカニズムは、AP及び/又はSTAが媒体を直接センシングする物理的キャリアセンシング(physical carrier sensing)の他に、仮像キャリアセンシング(virtual carrier sensing)も含む。

0228

仮像キャリアセンシングは、非表示ノード問題(hidden node problem)などのように媒体接近上発生できる問題を補完するためのものである。仮像キャリアセンシングのために、WLANシステムのMACは、ネットワーク割り当てベクトル(NAV:Network Allocation Vector)を用いる。NAVは、現在媒体を使用しているか、または使用する権限があるAP及び/又はSTAが、媒体が利用可能な状態になるまで残っている時間を他のAP及び/又はSTAに指示する値である。したがって、NAVに設定された値は、当該フレームを送信するAP及び/又はSTAによって媒体の使用が予定されている期間に該当し、NAV値を受信するSTAは、当該期間の間に媒体アクセスが禁止される。NAVは、例えば、フレームのMACヘッダ(header)の持続期間(duration)フィールドの値で応じて設定されることができる。

0229

AP及び/又はSTAは、媒体に接近しようとすることを知らせるために、RTS(request to send)フレーム及びCTS(clear to send)フレームを交換する手順を行うことができる。RTSフレーム及びCTSフレームは、実質的なデータフレーム送信及び受信確認応答(ACK)が支援される場合、ACKフレームが送受信されるのに必要な無線媒体が接近予約された時間的な区間を指示する情報を含む。フレームを送信しようとするAP及び/又はSTAから送信されたRTSフレームを受信するか、またはフレーム送信対象STAから送信されたCTSフレームを受信した他のSTAは、RTS/CTSフレームに含まれている情報が指示する時間的な区間の間に媒体に接近しないように設定されることができる。これは、時間区間の間にNAVが設定されることにより実現されることができる。

0230

アップリンク多重ユーザ送信方法

0231

次世代WiFiに対する様々な分野のベンダーの高い関心と802.11ac以後の高いスループット(high throughput)及びQoE(quality of experience)性能向上に対する要求が高まっている状況において、次世代WLANシステムである802.11axシステムのための新しいフレームフォーマット及びヌメロロジー(numerology)に対する議論が盛んに進行中である。

0232

IEEE 802.11axは、より高いデータ処理率(data rate)を支援し、より高いユーザ負荷(user load)を処理するための次世代WLANシステムとして最近に新しく提案されているWLANシステムのうちの一つであって、一名高効率WLAN(HEW:High Efficiency WLAN)と呼ばれる。

0233

IEEE 802.11axWLANシステムは、従来のWLANシステムと同様に、2.4GHz周波数帯域及び5GHz周波数帯域で動作できる。また、それより高い60GHz周波数帯域でも動作できる。

0234

IEEE 802.11axシステムでは、平均スループット向上(average throughput enhancement)と室外環境でのシンボル間干渉(inter-symbol interference)に対する 強固な送信(outdoor robust transmission)のために、従来のIEEE 802.11 OFDMsystem(IEEE 802.11a、802.11n、802.11ac等)より各帯域幅において4倍大きいFFTサイズを使用することができる。これについて、以下の図面を参照して説明する。

0235

以下、本発明にHEフォーマットPPDUに対する説明において、別の言及がなくても上述のnon-HTフォーマットPPDU、HT-mixedフォーマットPPDU、HT-greenfieldフォーマットPPDU及び/又はVHTフォーマットPPDUに対する説明がHEフォーマットPPDUに対する説明に併合されることができる。

0236

図11は、本発明の一実施形態に係るHE(High Efficiency)フォーマットPPDUを例示する図である。

0237

図11に示すように、HEWのためのHEフォーマットPPDUは、大別して、レガシー部分(L−part)、HE部分(HE−part)で構成されることができる。

0238

L−partは、既存のWLANシステムで維持する形態と同様に、L−STFフィールド、L−LTFフィールド、及びL−SIGフィールドで構成される。L−STFフィールド、L−LTFフィールド、及びL−SIGフィールドをレガシープリアンブル(legacy preamble)と呼ぶことができる。

0239

HE−partは、802.11ax標準のために新しく定義される部分であって、HE−SIGフィールドとHEプリアンブル(HE−preamble)、及びデータ(HE−data)フィールドで構成されることができる。そして、HE−preambleは、HE−STFフィールド及びHE−LTFフィールドを含むことができる。また、HE−STFフィールド及びHE−LTFフィールドだけでなく、HE−SIGフィールドを含んでHE−preambleと通称することもできる。

0240

図11では、HE−SIGフィールド、HE−STFフィールド、及びHE−LTFフィールドの順序を例示しているが、これと相違した順序で構成されることができる。

0241

L−part、HE−SIGフィールド、HE−preambleを物理プリアンブル(PHY(physical) preamble)と通称することができる。

0242

HE−SIGフィールドは、HE−dataフィールドをデコーディングするための情報(例えば、OFDMA、UL MUMIMO、向上したMCS等)を含むことができる。

0243

L−partとHE−part(特に、HE−preamble及びHE−data)は、互いに異なるFFT(Fast Fourier Transform)サイズを有することができ、互いに異なるCP(Cyclic Prefix)を使用することもできる。すなわち、L−partとHE−part(特に、HE−preamble及びHE−data)は、サブキャリア周波数間隔(subcarrier frequency spacing)が互い異なるように定義され得る。

0244

802.11axシステムでは、レガシーWLANシステムに比べて4倍大きい(4×)FFTサイズを使用することができる。すなわち、L-partは、1×シンボル構造から構成され、HE-part(特に、HE-preamble及びHE-data)は、4×シンボル構造から構成されることができる。ここで、1×、2×、4×サイズのFFTは、レガシーWLANシステム(例えば、IEEE 802.11a、802.11n、802.11ac等)に対する相対的なサイズを意味する。

0245

例えば、L-partに利用されるFFTサイズは、20MHz、40MHz、80MHz及び160MHzにおいてそれぞれ64、128、256、512であると、HE-partに利用されるFFTサイズは、20MHz、40MHz、80MHz及び160MHzにおいてそれぞれ256、512、1024、2048でありうる。

0246

このようにレガシーWLANシステムよりFFTサイズが大きくなると、サブキャリア周波数間隔(subcarrier frequency spacing)が小さくなるので、単位周波数当たりのサブキャリアの数が増加するが、OFDMシンボル長が長くなる。

0247

すなわち、より大きなFFTサイズが使用されるということは、サブキャリア間隔が狭くなるという意味であり、同様にIDFT(Inverse Discrete Fourier Transform)/DFT(Discrete Fourier Transform)周期(period)が増えるという意味である。ここで、IDFT/DFT周期は、OFDMシンボルにおいて保護区間(GI)を除いたシンボル長を意味できる。

0248

したがって、HE-part(特に、HE-preamble及びHE-data)は、L-partに比べて4倍大きなFFTサイズが使用されるならば、HE-partのサブキャリア間隔は、L-partのサブキャリア間隔の1/4倍になり、HE-partのIDFT/DFT周期は、L-partのIDFT/DFT周期の4倍になる。例えば、L-partのサブキャリア間隔が312.5kHz(=20MHz/64、40MHZ/128、80MHz/256及び/又は160MHz/512)であると、HE-partのサブキャリア間隔は、78.125kHz(=20MHz/256、40MHZ/512、80MHz/1024及び/又は160MHz/2048)でありうる。また、L-partのIDFT/DFT周期が3.2μs(=1/312.5kHz)であると、HE-partのIDFT/DFT周期は、12.8μs(=1/78.125kHz)でありうる。

0249

ここで、GIは、0.8μs、1.6μs、3.2μsのうちのいずれか一つが使用されることができるので、GIを含むHE-partのOFDMシンボル長(またはシンボル間隔(symbol interval))は、GIに応じて13.6μs、14.4μs、16μsでありうる。

0250

図11では、HE−SIGフィールドが1xシンボル構造で構成される場合を例示しているが、HE−SIGフィールドもHE−preamble及びHE−dataのように、4xシンボル構造で構成されることができる。

0251

図11の例示とは異なり、HE−SIGは、HE−SIG AフィールドとHE−SIG Bフィールドとに区分されることができる。この場合、単位周波数当たりFFTサイズは、HE−SIG B以後からさらに大きくなることができる。すなわち、HE−SIG B以後からL−partに比べてOFDMシンボル長さが長くなり得る。

0252

本発明が適用され得るWLANシステムのためのHEフォーマットPPDUは、少なくとも1つの20MHzチャネルを介して送信されることができる。例えば、HEフォーマットPPDUは、総4個の20MHzチャネルを介して40MHz、80MHz、または160MHz周波数帯域で送信されることができる。これについて、下記の図面を参照してより詳細に説明する。

0253

図12は、本発明の一実施形態に係るHEフォーマットPPDUを例示する図である。

0254

図12では、1つのSTAに80MHzが割り当てられた場合(または、80MHz内の複数のSTAにOFDMA資源ユニットが割り当てられた場合)、或いは、複数のSTAに各々80MHzの互いに異なるストリームが割り当てられた場合のPPDUフォーマットを例示する。

0255

図12に示すように、L−STF、L−LTF、及びL−SIGは、各20MHzチャネルで64FFTポイント(または、64サブキャリア)に基盤して生成されたOFDMシンボルで送信されることができる。

0256

HE−SIG Aフィールドは、PPDUを受信するSTAに共通に送信される共通制御情報を含むことができる。HE−SIG Aフィールドは、1個〜3個のOFDMシンボルで送信されることができる。HE−SIG Aフィールドは、20MHz単位で複写されて同じ情報を含む。また、HE−SIG−Aフィールドは、システムの全体帯域幅情報を知らせる。

0257

表4は、HE−SIG Aフィールドに含まれる情報を例示する表である。

0258

0259

表4に例示される各フィールドに含まれる情報は、IEEE 802.11システムの定義にしたがうことができる。また、前述した各フィールドは、PPDUに含まれ得るフィールドの例示に該当し、これに限定されない。すなわち、前述した各フィールドが他のフィールドに代替されるか、追加的なフィールドがさらに含まれ得るし、全てのフィールドが必須的に含まれないこともある。

0260

HE−STFは、MIMO送信においてAGC推定の性能を改善するために使用される。

0261

HE−SIG Bフィールドは、各STAが自分のデータ(例えば、PSDU)を受信するために要求されるユーザ特定(user−specific)情報を含むことができる。HE−SIG Bフィールドは、1つまたは2つのOFDMシンボルで送信されることができる。例えば、HE−SIG Bフィールドは、当該PSDUの変調及びコーディング技法(MCS)及び当該PSDUの長さに関する情報を含むことができる。

0262

L−STF、L−LTF、L−SIG、及びHE−SIG Aフィールドは、20MHzチャネル単位で繰り返されて送信されることができる。例えば、PPDUが4個の20MHzチャネル(すなわち、80MHz帯域)を介して送信されるとき、L−STF、L−LTF、L−SIG、及びHE−SIG Aフィールドは、20MHzチャネル毎に繰り返されて送信されることができる。

0263

FFTサイズが大きくなると、既存のIEEE 802.11a/g/n/acを支援するレガシーSTAは、当該HEPPDUをデコーディングできないこともある。レガシーSTAとHE STAとが共存(coexistence)するために、L−STF、L−LTF、及びL−SIGフィールドは、レガシーSTAが受信できるように、20MHzチャネルで64FFTを介して送信される。例えば、L−SIGフィールドは、1つのOFDMシンボルを占有し、1つのOFDMシンボル時間は、4μsであり、GIは、0.8μsでありうる。

0264

周波数単位別のFFTサイズは、HE−STFからさらに大きくなることができる。例えば、256FFTが20MHzチャネルで使用され、512FFTが40MHzチャネルで使用され、1024FFTが80MHzチャネルで使用されることができる。FFTサイズが大きくなると、OFDMサブキャリア間の間隔が小さくなるので、単位周波数当たりOFDMサブキャリアの数が増加されるが、OFDMシンボル時間は長くなる。システムの効率を向上させるために、HE−STF以後のGIの長さは、HE−SIG AのGIの長さと同様に設定されることができる。

0265

HE−SIG Aフィールドは、HE STAがHEPPDUをデコーディングするために要求される情報を含むことができる。しかし、HE−SIG Aフィールドは、レガシーSTAとHE STAとを共に受信できるように、20MHzチャネルで64FFTを介して送信されることができる。これは、HE STAがHEフォーマットPPDUだけでなく、既存のHT/VHTフォーマットPPDUを受信することができ、レガシーSTA及びHE STAがHT/VHTフォーマットPPDUとHEフォーマットPPDUとを区分しなければならないためである。

0266

図13は、本発明の一実施形態に係るHEフォーマットPPDUを例示する図である。

0267

図13では、20MHzチャネルが各々互いに異なるSTA(例えば、STA1、STA2、STA3、及びSTA4)に割り当てられる場合を仮定する。

0268

図13に示すように、単位周波数当たりFFTサイズは、HE−STF(または、HE−SIG−B)からさらに大きくなり得る。例えば、HE−STF(または、HE−SIG−B)から256FFTが20MHzチャネルで使用され、512FFTが40MHzチャネルで使用され、1024FFTが80MHzチャネルで使用されることができる。

0269

PPDUに含まれる各フィールドで送信される情報は、前述した図12の例示と同様であるから、以下、説明を省略する。

0270

HE−SIG−Bフィールドは、各STAに特定された情報を含むことができるが、全体バンド(すなわち、HE−SIG−Aフィールドで指示)にわたってエンコーディングされることができる。すなわち、HE−SIG−Bフィールドは、全てのSTAに関する情報を含み、全てのSTAが受信されるようになる。

0271

HE−SIG−Bフィールドは、各STA別に割り当てられる周波数帯域幅情報及び/又は当該周波数帯域でストリーム情報を知らせることができる。例えば、図13においてHE−SIG−Bは、STA1が20MHz、STA2がその次の20MHz、STA3がその次の20MHz、STA4がその次の20MHzを割り当てることができる。また、STA1とSTA2とは、40MHzを割り当て、STA3とSTA4とは、その次の40MHzを割り当てることができる。この場合、STA1とSTA2とは、互いに異なるストリームを割り当て、STA3とSTA4とは、互いに異なるストリームを割り当てることができる。

0272

また、HE−SIG−Cフィールドを定義し、図13の例示にHE−SIG Cフィールドが追加され得る。この場合、HE−SIG−Bフィールドでは、全帯域にわたって全てのSTAに関する情報が送信され、各STAに特定の制御情報は、HE−SIG−Cフィールドを介して20MHz単位で送信されることもできる。

0273

また、図12及び図13の例示と異なり、HE−SIG−Bフィールドは、全帯域にわたって送信せずに、HE−SIG−Aフィールドと同様に20MHz単位で送信されることができる。これについて下記の図面を参照して説明する。

0274

図14は、本発明の一実施形態に係るHEフォーマットPPDUを例示する図である。

0275

図14では、20MHzチャネルが各々互いに異なるSTA(例えば、STA1、STA2、STA3、及びSTA4)に割り当てられる場合を仮定する。

0276

図14に示すように、HE−SIG−Bフィールドは、全帯域にわたって送信されず、HE−SIG−Aフィールドと同様に20MHz単位で送信される。ただし、このとき、HE−SIG−Bは、HE−SIG−Aフィールドと異なり、20MHz単位でエンコーディングされて送信されるが、20MHz単位で複製されて送信されないこともある。

0277

この場合、単位周波数当たりFFTサイズは、HE−STF(または、HE−SIG−B)からさらに大きくなることができる。例えば、HE−STF(または、HE−SIG−B)から256FFTが20MHzチャネルで使用され、512FFTが40MHzチャネルで使用され、1024FFTが80MHzチャネルで使用されることができる。

0278

PPDUに含まれる各フィールドで送信される情報は、前述した図12の例示と同様であるから、以下、説明を省略する。

0279

HE−SIG−Aフィールドは、20MHz単位で複写されて(duplicated)送信される。

0280

HE−SIG−Bフィールドは、各STA別に割り当てられる周波数帯域幅情報及び/又は当該周波数帯域でストリーム情報を知らせることができる。HE−SIG−Bフィールドは、各STAに関する情報を含むので、20MHz単位の各HE−SIG−Bフィールド別に各STAに関する情報が含まれ得る。このとき、図14の例示では、各STA別に20MHzが割り当てられる場合を例示しているが、例えば、STAに40MHzが割り当てられる場合、20MHz単位でHE−SIG−Bフィールドが複写されて送信されることもできる。

0281

各BSS別に互いに異なる帯域幅を支援する状況で隣接したBSSからの干渉レベルが少ない一部の帯域幅をSTAに割り当てる場合に、上記のように、HE−SIG−Bフィールドを全帯域にわたって送信しないことがより好ましい。

0282

図11図14においてデータフィールドは、ペイロード(payload)であって、サービスフィールド(SERVICE field)、スクランブリングされたPSDU、テールビット(tail bits)、パディングビット(padding bits)を含むことができる。

0283

一方、前述した図11図14のようなHEフォーマットPPDUは、L−SIGフィールドの繰り返しシンボルであるRL−SIG(Repeated L−SIG)フィールドを介して区分されることができる。RL−SIGフィールドは、HE SIG−Aフィールドの前に挿入され、各STAは、RL−SIGフィールドを用いて受信されたPPDUのフォーマットをHEフォーマットPPDUとして区分することができる。

0284

WLANシステムで動作するAPが同じ時間資源上において複数のSTAへデータを送信する方式をDL MU送信(downlink multi-user transmission)と呼ぶことができる。反対に、WLANシステムで動作する複数のSTAが同じ時間資源上においてAPにデータを送信する方式をUL MU送信(uplink multi-user transmission)と呼ぶことができる。

0285

このようなDL MU送信またはUL MU送信は、周波数ドメイン(frequency domain)または空間ドメイン(spatial domain)上で多重化されることができる。

0286

周波数ドメイン上において多重化される場合、OFDMA(orthogonal frequency division multiplexing)に基づいて複数のSTA各々に対して互いに異なる周波数資源(例えば、サブキャリアまたはトーン(tone))がダウンリンクまたはアップリンク資源に割り当てられることができる。このような同じ時間資源で互いに異なる周波数資源を介した送信方式を「DL/UL OFDMA送信」と呼ぶことができる。

0287

空間ドメイン(spatial domain)上において多重化される場合、複数のSTA各々に対して互いに異なる空間ストリームがダウンリンクまたはアップリンク資源に割り当てられることができる。このような同じ時間資源で互いに異なる空間的ストリームを介した送信方式を「DL/UL MUMIMO」送信と呼ぶことができる。

0288

図15図17は、本発明の一実施形態に係るOFDMA多重ユーザ(multi−user)送信方式で資源割当単位を例示する図である。

0289

DL/UL OFDMA送信方式が使用されるとき、PPDU帯域幅内でn個のトーン(tone)(または、サブキャリア(subcarrier))単位で複数個の資源ユニット(Resource Unit)が定義され得る。

0290

資源ユニットは、DL/UL OFDMA送信のための周波数資源の割当単位を意味する。

0291

1つのSTAにDL/UL周波数資源として1つ以上の資源ユニットが割り当てられて、複数個のSTAに各々互いに異なる資源ユニットが割り当てられ得る。

0292

図15では、PPDU帯域幅が20MHzである場合を例示する。

0293

20MHzPPDU帯域幅(bandwidth)の中心周波数領域には、7個のDCトーンが位置し得る。また、20MHz PPDU帯域幅の両側には、6個のレフトガードトーン(left guard tones)及び5個のライトガードトーン(right guard tones)が各々位置し得る。

0294

図15(a)のような資源ユニット構成方式によれば、1つの資源ユニットは、26個のトーン(26トーン資源ユニット)で構成されることができる。このとき、20MHzPPDU帯域幅には、26トーン資源ユニットに隣接して4個のレフトオーバートーン図15(a)に示したように存在し得る。また、図15(b)のような資源ユニット構成方式によれば、1つの資源ユニットは、52個のトーン(52トーン資源ユニット)で構成されるか、26個のトーンで構成されることができる。このとき、20MHz PPDU帯域幅には、26トーン/52トーン資源ユニットに隣接して4個のレフトオーバートーンが図15(b)に示したように存在し得る。また、図15(c)のような資源ユニット構成方式によれば、1つの資源ユニットは、106個のトーン(106トーン資源ユニット)で構成されるか、26個のトーンで構成されることができる。また、図15(d)のような資源ユニット構成方式によれば、1つの資源ユニットは、242個のトーン(242トーン資源ユニット)で構成されることができる。

0295

図15(a)のように資源ユニットが構成される場合、20MHz帯域でDL/UL OFDMA送信のために、最大9個のSTAまで支援することができる。また、図15(b)のように資源ユニットが構成される場合、20MHz帯域でDL/UL OFDMA送信のために、最大5個のSTAまで支援することができる。また、図15(c)のように資源ユニットが構成される場合、20MHz帯域でDL/UL OFDMA送信のために、最大3個のSTAまで支援することができる。また、図15(d)のように資源ユニットが構成される場合、20MHz帯域は、1つのSTAに割り当てられることができる。

0296

DL/UL OFDMA送信に参加するSTAの数及び/又は当該STAが送信する或いは受信するデータの量等に基盤して、図15(a)〜図15(d)のうち、いずれか1つの資源ユニット構成方式が適用されるか、または、図15(a)〜図15(d)が組み合わせられた資源ユニット構成方式が適用され得る。

0297

図16では、PPDU帯域幅が40MHzである場合を例示する。

0298

40MHzPPDU帯域幅の中心周波数領域には、5個のDCトーンが位置し得る。また、40MHz PPDU帯域幅の両側には、12個のレフトガードトーン及び11個のライトガードトーンが各々位置し得る。

0299

図16(a)のような資源ユニット構成方式によれば、1つの資源ユニットは、26個のトーンで構成されることができる。このとき、40MHzPPDU帯域幅には、26トーン資源ユニットに隣接して16個のレフトオーバートーンが図16(a)に示したように存在し得る。また、図16(b)のような資源ユニット構成方式によれば、1つの資源ユニットは、52個のトーンで構成されるか、26個のトーンで構成されることができる。このとき、40MHz PPDU帯域幅には26トーン/52トーン資源ユニットに隣接して16個のレフトオーバートーンが図16(b)に示したように存在し得る。また、図16(c)のような資源ユニット構成方式によれば、1つの資源ユニットは、106個のトーンで構成されるか、26個のトーンで構成されることができる。このとき、40MHz PPDU帯域幅には、26トーン/106トーン資源ユニットに隣接して8個のレフトオーバートーンが図16(c)に示したように存在し得る。また、図16(d)のような資源ユニット構成方式によれば、1つの資源ユニットは、242個のトーンで構成されることができる。また、図16(e)のような資源ユニット構成方式によれば、1つの資源ユニットは、484個のトーン(484トーン資源ユニット)で構成されることができる。

0300

図16(a)のように資源ユニットが構成される場合、40MHz帯域でDL/UL OFDMA送信のために最大18個のSTAまで支援することができる。また、図16(b)のように資源ユニットが構成される場合、40MHz帯域でDL/UL OFDMA送信のために最大10個のSTAまで支援することができる。また、図16(c)のように資源ユニットが構成される場合、40MHz帯域でDL/UL OFDMA送信のために最大6個のSTAまで支援することができる。また、図16(d)のように資源ユニットが構成される場合、40MHz帯域でDL/UL OFDMA送信のために最大2個のSTAまで支援することができる。また、図16(e)のように資源ユニットが構成される場合、当該資源ユニットは、40MHz帯域でSU DL/UL送信のために1個のSTAに割り当てられることができる。

0301

DL/UL OFDMA送信に参加するSTAの数及び/又は当該STAが送信する或いは受信するデータの量などに基づいて、図16(a)〜図16(e)のうち、いずれか1つの資源ユニット構成方式が適用されるか、または、図16(a)〜図16(e)が組み合わせられた資源ユニット構成方式が適用されることができる。

0302

図17では、PPDU帯域幅が80MHzである場合を例示する。

0303

80MHzPPDU帯域幅の中心周波数領域には、7個のDCトーンが位置し得る。ただし、80MHz PPDU帯域幅が1つのSTAに割り当てられた場合に(すなわち、996トーンで構成された資源ユニットが1つのSTAに割り当てられた場合)、中心周波数領域には、5個のDCトーンが位置し得る。また、80MHz PPDU帯域幅の両側には、12個のレフトガードトーン及び11個のライトガードトーンが各々位置し得る。

0304

図17(a)のような資源ユニット構成方式によれば、1つの資源ユニットは、26個のトーンで構成されることができる。このとき、80MHzPPDU帯域幅には、26トーン資源ユニットに隣接して32個のレフトオーバートーンが図17(a)に示したように存在し得る。また、図17(b)のような資源ユニット構成方式によれば、1つの資源ユニットは、52個のトーンで構成されるか、26個のトーンで構成されることができる。このとき、80MHz PPDU帯域幅には、26トーン/52トーン資源ユニットに隣接して32個のレフトオーバートーンが図17(b)に示したように存在し得る。また、図17(c)のような資源ユニット構成方式によれば、1つの資源ユニットは、106個のトーンで構成されるか、26個のトーンで構成されることができる。このとき、80MHz PPDU帯域幅には、26トーン/106トーン資源ユニットに隣接して16個のレフトオーバートーンが図17(c)に示したように存在し得る。また、図17(d)のような資源ユニット構成方式によれば、1つの資源ユニットは、242個のトーンで構成されるか、26個のトーンで構成されることができる。図17(e)のような資源ユニット構成方式によれば、1つの資源ユニットは、484個のトーンで構成されるか、26個のトーンで構成されることができる。図17(f)のような資源ユニット構成方式によれば、1つの資源ユニットは、996個のトーンで構成されることができる。

0305

図17(a)のように資源ユニットが構成される場合、80MHz帯域でDL/UL OFDMA送信のために最大37個のSTAまで支援することができる。また、図17(b)のように資源ユニットが構成される場合、80MHz帯域でDL/UL OFDMA送信のために最大21個のSTAまで支援することができる。また、図17(c)のように資源ユニットが構成される場合、80MHz帯域でDL/UL OFDMA送信のために最大13個のSTAまで支援することができる。また、17(d)のように資源ユニットが構成される場合、80MHz帯域でDL/UL OFDMA送信のために最大5個のSTAまで支援することができる。また、17(e)のように資源ユニットが構成される場合、80MHz帯域でDL/UL OFDMA送信のために最大3個のSTAまで支援することができる。また、図28(f)のように資源ユニットが構成される場合、当該資源ユニットは、80MHz帯域でSU DL/UL送信のために1個のSTAに割り当てられることができる。

0306

DL/UL OFDMA送信に参加するSTAの数及び/又は当該STAが送信する或いは受信するデータの量などに基づいて、図17(a)〜図17(f)のうち、いずれか1つの資源ユニット構成方式が適用されるか、または、図17(a)〜図17(f)が組み合わせられた資源ユニット構成方式が適用されることができる。

0307

その他にも、図面には示していないが、PPDU帯域幅が160MHzである場合の資源ユニットの構成方式も提案されることができる。この場合、160MHz PPDUの帯域幅は、図32において上述した80MHz PPDU帯域幅が2回繰り返された構造を有することができる。

ページトップへ

この技術を出願した法人

この技術を発明した人物

ページトップへ

関連する挑戦したい社会課題

関連する公募課題

ページトップへ

技術視点だけで見ていませんか?

この技術の活用可能性がある分野

分野別動向を把握したい方- 事業化視点で見る -

(分野番号表示ON)※整理標準化データをもとに当社作成

ページトップへ

おススメ サービス

おススメ astavisionコンテンツ

新着 最近 公開された関連が強い技術

  • 三菱電機株式会社の「 受信装置」が 公開されました。( 2019/07/25)

    【課題・解決手段】本発明にかかる受信装置(10)は、同一の信号フォーマットを有し、共通の周波数帯に信号強度を持つ複数の送信信号を含む受信信号に基づいて、複数の送信信号の中の1つである推定対象信号の到来... 詳細

  • 三菱電機株式会社の「 信号整形装置、整形終端装置、信号整形方法および光伝送方法」が 公開されました。( 2019/07/18)

    【課題・解決手段】信号整形装置(100)は、複数の系統のビット列を予め定められた長さに区切ったブロックに、複数の種類の予め定められた処理を行って、送信する整形ブロックの候補である複数の候補ブロックを生... 詳細

  • 日本電気株式会社の「 通信装置、通信端末、通信方法、および通信用プログラム」が 公開されました。( 2019/07/18)

    【課題・解決手段】[課題] 通信性能の低下を防ぐことができる通信装置、通信端末、および通信装置の制御方法を提供する。[解決手段] 通信装置600は、給電部610と、複数の通信部620と、MIMO処... 詳細

この 技術と関連性が強い人物

関連性が強い人物一覧

この 技術と関連する社会課題

関連する挑戦したい社会課題一覧

この 技術と関連する公募課題

関連する公募課題一覧

astavision 新着記事

サイト情報について

本サービスは、国が公開している情報(公開特許公報、特許整理標準化データ等)を元に構成されています。出典元のデータには一部間違いやノイズがあり、情報の正確さについては保証致しかねます。また一時的に、各データの収録範囲や更新周期によって、一部の情報が正しく表示されないことがございます。当サイトの情報を元にした諸問題、不利益等について当方は何ら責任を負いかねることを予めご承知おきのほど宜しくお願い申し上げます。

主たる情報の出典

特許情報…特許整理標準化データ(XML編)、公開特許公報、特許公報、審決公報、Patent Map Guidance System データ