図面 (/)

この項目の情報は公開日時点(2017年9月7日)のものです。
また、この項目は機械的に抽出しているため、正しく解析できていない場合があります

図面 (20)

課題・解決手段

本開示は、第Xa因子(fXa)解毒剤溶液及びその凍結乾燥製剤を調製する方法に関する。凍結乾燥に適している適した水性製剤は、fXa解毒剤、可溶化剤、安定剤及び結晶性構成成分を含んでもよく、本製剤は凍結乾燥中に崩壊しない。本開示は、「r−Antidote」とも呼ばれる第Xa因子(fXa)タンパク質誘導体の凍結乾燥製剤を提供する。野生型fXaタンパク質と比較して、r−Antidoteは、Glaドメイン及び活性部位に修飾があり、fXa阻害剤と結合するfXaの能力を保持するが、集まってプロトロンビナーゼ複合体は形成しない。

概要

背景

抗凝固剤は、例えば、凝固障害がある患者、動けない期間に制限された患者または医学手術を受ける患者など凝血塊を形成しやすい患者の望ましくない血栓症処置または予防の市場においてニーズを満たしている。しかしながら、抗凝固療法の重大な制約の1つは、処置に関連する出血リスクであり、過剰投与の場合または緊急の外科的手技が必要とされる場合に速やかに抗凝固活性逆行させる能力に関する限界である。したがって、あらゆる形態の抗凝固療法に対して特異的で効果的な解毒剤が極めて望まれている。

経口送達が実用的でないか、または即時の治療活性が必要とされる場合、生物学的に活性タンパク質注入による送達が一般に最適な送達経路である。しかしながら、不良な長期保管重量オスモル濃度溶解性及び安定性の生物学的、化学的及び物理的障害により、哺乳動物に対する生物活性剤の注入による送達が問題となる。凍結乾燥は、長期保管の問題を解決することができる。しかし、凍結乾燥物の不十分な溶解性及び安定性などの凍結乾燥に伴って起こる問題もある。したがって、安定で可溶性の、抗凝固剤に対する解毒剤の改良された注入可能な調製物に対してニーズがある。本開示は、こうしたニーズ及びその他のニーズを満たすものである。

明細書中で言及される任意の及びすべての公報、特許、特許出願は、その全体を参照により本明細書に組み込んだものとする。

概要

本開示は、第Xa因子(fXa)解毒剤の溶液及びその凍結乾燥製剤を調製する方法に関する。凍結乾燥に適している適した水性製剤は、fXa解毒剤、可溶化剤、安定剤及び結晶性構成成分を含んでもよく、本製剤は凍結乾燥中に崩壊しない。本開示は、「r−Antidote」とも呼ばれる第Xa因子(fXa)タンパク質の誘導体の凍結乾燥製剤を提供する。野生型fXaタンパク質と比較して、r−Antidoteは、Glaドメイン及び活性部位に修飾があり、fXa阻害剤と結合するfXaの能力を保持するが、集まってプロトロンビナーゼ複合体は形成しない。なし

目的

本開示は、「r−Antidote」とも呼ばれる第Xa因子(fXa)タンパク質の誘導体の凍結乾燥製剤を提供する

効果

実績

技術文献被引用数
0件
牽制数
0件

この技術が所属する分野

(分野番号表示ON)※整理標準化データをもとに当社作成

ライセンス契約や譲渡などの可能性がある特許掲載中! 開放特許随時追加・更新中 詳しくはこちら

請求項1

10mMから55mMのアルギニン、1%から3%のスクロース(w/v)、2%から8%のマンニトール(w/v)ならびに配列番号4のアミノ酸配列を含む第1の鎖、配列番号5のアミノ酸配列を含む第2の鎖及び配列番号4の98位の第1のシステイン残基(Cys98)と配列番号5の108位の第2のシステイン残基(Cys108)との間のジスルフィド結合を含む少なくとも5mg/mLの2本鎖のポリペプチドを含み、7.5から8のpHを有する、水性製剤

請求項2

40mMから50mMのアルギニン、1.5%から2.5%のスクロース(w/v)、4.5%から5.5%のマンニトール(w/v)及び少なくとも10mg/mLの前記ポリペプチドを含む、請求項1に記載の製剤。

請求項3

少なくとも18mg/mLの前記ポリペプチドを含む、請求項2に記載の製剤。

請求項4

前記ポリペプチドは、天然アミノ酸とは異なるよう修飾されたアミノ酸残基を含む、請求項2に記載の製剤。

請求項5

前記第1の鎖の残基Asp29は、Asp29において(3R)−3−ヒドロキシAspに修飾されている、請求項4に記載の製剤。

請求項6

前記ポリペプチドは、前記第1及び第2の鎖のそれぞれに関して少なくとも鎖内ジスルフィド結合を含む、請求項1に記載の製剤。

請求項7

約45mMのアルギニン、約2%のスクロース(w/v)、約5%のマンニトール(w/v)ならびに配列番号4のアミノ酸配列を含む第1の鎖、配列番号5のアミノ酸配列を含む第2の鎖及び配列番号4の98位の第1のシステイン残基(Cys98)と配列番号5の108位の第2のシステイン残基(Cys108)との間のジスルフィド結合を含む約10mg/mLの2本鎖のポリペプチドを含み、約7.8のpHを有する、水性製剤。

請求項8

約45mMのアルギニン、約2%のスクロース(w/v)、約5%のマンニトール(w/v)ならびに配列番号4のアミノ酸配列を含む第1の鎖、配列番号5のアミノ酸配列を含む第2の鎖及び配列番号4の98位の第1のシステイン残基(Cys98)と配列番号5の108位の第2のシステイン残基(Cys108)との間のジスルフィド結合を含む約20mg/mLの2本鎖のポリペプチドを含み、約7.8のpHを有する、水性製剤。

請求項9

10mMから55mMのアルギニン、1%から3%のスクロース(w/v)、2%から8%のマンニトール(w/v)ならびに配列番号4のアミノ酸配列を含むか、または配列番号4と少なくとも90%の配列同一性を有する第1の鎖、配列番号5のアミノ酸配列のまたは、配列番号5と少なくとも90%の配列同一性を有する第2の鎖及び配列番号4の98位の第1のシステイン残基(Cys98)と配列番号5の108位の第2のシステイン残基(Cys108)との間のジスルフィド結合を含む少なくとも5mg/mLの2本鎖のポリペプチドを含み、7.5から8のpHを有する、水性製剤。

請求項10

前記2本鎖のポリペプチドはGlaドメインに修飾を有し、活性部位は、野生型fXaタンパク質と比較した場合、fXa阻害剤と結合することができるが、集まってプロトロンビナーゼ複合体を形成しない、請求項9に記載の製剤。

請求項11

請求項1〜10のいずれか一項に記載の水性製剤を凍結乾燥することを含む凍結乾燥製剤を調製する方法。

請求項12

請求項1〜10のいずれか一項に記載の水性製剤を凍結乾燥することによって得られる凍結乾燥組成物

請求項13

配列番号4のアミノ酸配列の第1の鎖、配列番号5のアミノ酸配列の第2の鎖及び配列番号4の98位の第1のシステイン残基(Cys98)と配列番号5の108位の第2のシステイン残基(Cys108)との間のジスルフィド結合を含む少なくとも10%(w/w)の2本鎖のポリペプチドならびにL−アルギニンHCl:スクロース:マンニトールを(0.5〜1.4):(1〜3):(2〜8)の範囲の重量比で含む、凍結乾燥組成物。

請求項14

少なくとも18%(w/w)の前記2本鎖のポリペプチドを含む、請求項13に記載の凍結乾燥組成物。

請求項15

前記L−アルギニンHCl:スクロース:マンニトールの重量比は、(0.9〜1):(1.5〜2.5):(4.5〜5.5)の範囲である、請求項13に記載の凍結乾燥組成物。

請求項16

配列番号4のアミノ酸配列の第1の鎖、配列番号5のアミノ酸配列の第2の鎖及び配列番号4の98位の第1のシステイン残基(Cys98)と配列番号5の108位の第2のシステイン残基(Cys108)との間のジスルフィド結合を含む少なくとも10%(w/w)の2本鎖のポリペプチドならびにL−アルギニンHCl:スクロース:マンニトールを約0.95:2:5の重量比で含む、凍結乾燥組成物。

請求項17

第Xa因子阻害剤を用いた抗凝固療法を受けている対象の出血を低減する方法であって、請求項13〜16のいずれか一項に記載の凍結乾燥組成物を水性溶媒に溶解させることによって調製された溶液を前記対象に投与することを含む、前記方法。

請求項18

前記第Xa因子阻害剤はアピキサバンリバーロキサバンまたはベトリキサバンである、請求項17に記載の方法。

請求項19

配列番号3のアミノ酸配列または配列番号3と少なくとも95%の配列同一性を有するアミノ酸配列を含むポリペプチド、可溶化剤、安定剤及び結晶性構成成分を含み、凍結乾燥中に崩壊しない、水性製剤。

請求項20

前記結晶性構成成分は2%から8%(w/v)の濃度で存在するマンニトールであり、前記可溶化剤はアルギニンであり、前記安定剤はスクロースである、請求項19に記載の製剤。

請求項21

界面活性剤及び緩衝剤をさらに含む、請求項19または20に記載の製剤。

技術分野

0001

関連特許出願の相互参照
本出願は、35U.S.C.第119(e)条のもとに2014年8月20日に出願された米国仮出願第62/039809号の利益を主張するものであり、その全体をあらゆる目的のために参照によって本明細書に組み込んだものとする。

背景技術

0002

抗凝固剤は、例えば、凝固障害がある患者、動けない期間に制限された患者または医学手術を受ける患者など凝血塊を形成しやすい患者の望ましくない血栓症処置または予防の市場においてニーズを満たしている。しかしながら、抗凝固療法の重大な制約の1つは、処置に関連する出血リスクであり、過剰投与の場合または緊急の外科的手技が必要とされる場合に速やかに抗凝固活性逆行させる能力に関する限界である。したがって、あらゆる形態の抗凝固療法に対して特異的で効果的な解毒剤が極めて望まれている。

0003

経口送達が実用的でないか、または即時の治療活性が必要とされる場合、生物学的に活性タンパク質注入による送達が一般に最適な送達経路である。しかしながら、不良な長期保管重量オスモル濃度溶解性及び安定性の生物学的、化学的及び物理的障害により、哺乳動物に対する生物活性剤の注入による送達が問題となる。凍結乾燥は、長期保管の問題を解決することができる。しかし、凍結乾燥物の不十分な溶解性及び安定性などの凍結乾燥に伴って起こる問題もある。したがって、安定で可溶性の、抗凝固剤に対する解毒剤の改良された注入可能な調製物に対してニーズがある。本開示は、こうしたニーズ及びその他のニーズを満たすものである。

0004

明細書中で言及される任意の及びすべての公報、特許、特許出願は、その全体を参照により本明細書に組み込んだものとする。

課題を解決するための手段

0005

本開示は、「r−Antidote」とも呼ばれる第Xa因子(fXa)タンパク質の誘導体凍結乾燥製剤を提供する。野生型fXaタンパク質と比較して、r−Antidoteは、Glaドメイン及び活性部位に修飾があり、fXa阻害剤と結合するfXaの能力を保持するが、集まってプロトロンビナーゼ複合体は形成しない。r−Antidoteは2本鎖のポリペプチドである(表3の配列番号3を参照のこと、これは、軽鎖システイン98(Cys98)と重鎖のシステイン108(Cys108)との間の1つのジスルフィド結合により結合した軽鎖(配列番号4)及び重鎖(配列番号5)を含む。

0006

また野生型fXaのように、r−Antidoteは、翻訳後修飾を受けて、結果として特定のアミノ酸残基、例えば、軽鎖のSer56、Ser72、Ser76及びThr82ならびに重鎖のThr249におけるグリコシル化、ならびに軽鎖のAsp29における修飾残基、(3R)−3−ヒドロキシAspが生じる。さらに、鎖間のジスルフィド結合に加えて、軽鎖のシステイン16と27、21と36、38と47、55と66、62と75及び77と90との間、ならびに重鎖のシステイン7と12、27と43、156と170及び181と209の間に形成された鎖内ジスルフィド結合がある。

0007

r−Antidoteの2本鎖構造及びさまざまな翻訳後修飾のために、許容できる重量オスモル濃度の安定した可溶性の溶液を提供する安定した凍結乾燥製剤の開発には大きな難題が生じることが本明細書において示されている。しかしながら、予想外にも、本発明者らは、タンパク質の溶解性、安定性、ケーク構造及び重量オスモル濃度がバランスを保った溶液に到達することができた。

0008

一実施形態において、本開示は、水性製剤を提供する。一実施形態において、本製剤は、10mMから55mMのアルギニンまたは8mMから35mMのシトラート、1%から3%のスクロース(w/v)、2%から8%のマンニトール(w/v)ならびに配列番号4のアミノ酸配列の第1の鎖、配列番号5のアミノ酸配列の第2の鎖及び配列番号4の98位の第1のシステイン残基(Cys98)と配列番号5の108位の第2のシステイン残基(Cys108)との間のジスルフィド結合を含む少なくとも5mg/mLの2本鎖のポリペプチドを含み、7.5から8のpHを有する。

0009

一部の態様において、本製剤は、40mMから50mMのアルギニン、1.5%から2.5%のスクロース(w/v)、4.5%から5.5%のマンニトール(w/v)及び少なくとも10mg/mLのポリペプチドを含む。一部の態様において、本製剤は、10mMから30mMのシトラート、1.5%から2.5%のスクロース(w/v)、4.5%から5.5%のマンニトール(w/v)及び少なくとも10mg/mLのポリペプチドを含む。

0010

一部の態様において、本製剤は、40mMから50mMのアルギニン、1.5%から2.5%のスクロース(w/v)、4.5%から5.5%のマンニトール(w/v)及び少なくとも18、19または20mg/mLのポリペプチドを含む。一部の態様において、本製剤は、10mMから30mMのシトラート、1.5%から2.5%のスクロース(w/v)、4.5%から5.5%のマンニトール(w/v)及び少なくとも10mg/mLのポリペプチドを含む。

0011

一部の態様において、本製剤は、約45mMのアルギニン、約2%のスクロース(w/v)、約5%のマンニトール(w/v)ならびに配列番号4のアミノ酸配列を含む第1の鎖、配列番号5のアミノ酸配列を含む第2の鎖及び配列番号4の98位の第1のシステイン残基(Cys98)と配列番号5の108位の第2のシステイン残基(Cys108)との間のジスルフィド結合を含む約10mg/mLの2本鎖のポリペプチドを含み、約7.8のpHを有する。一態様において、本製剤は、ポリソルベート80(0.01%w/vから0.02%w/v)及び/または緩衝剤をさらに含む。

0012

一部の態様において、本製剤は、約45mMのアルギニン、約2%のスクロース(w/v)、約5%のマンニトール(w/v)ならびに配列番号4のアミノ酸配列を含む第1の鎖、配列番号5のアミノ酸配列を含む第2の鎖及び配列番号4の98位の第1のシステイン残基(Cys98)と配列番号5の108位の第2のシステイン残基(Cys108)との間のジスルフィド結合を含む約20mg/mLの2本鎖のポリペプチドを含み、約7.8のpHを有する。一態様において、本製剤は、ポリソルベート80(0.01%w/vから0.02%w/v)及び/または緩衝剤をさらに含む。

0013

一部の態様において、本ポリペプチドは、天然アミノ酸とは異なるよう修飾されたアミノ酸残基を含む。一部の態様において、第1の鎖の残基Asp29は、Asp29において(3R)−3−ヒドロキシAspに修飾される。一部の態様において、本ポリペプチドは、第1及び第2の鎖のそれぞれに関して少なくとも鎖内ジスルフィド結合を含む。

0014

一実施形態において、配列番号4のアミノ酸配列の第1の鎖、配列番号5のアミノ酸配列の第2の鎖及び配列番号4の98位の第1のシステイン残基(Cys98)と配列番号5の108位の第2のシステイン残基(Cys108)との間のジスルフィド結合を含む2本鎖のポリペプチドの凍結乾燥製剤を調製する方法であって、上記のとおりの水性製剤を凍結乾燥することを含む方法も提供される。

0015

別の実施形態は、本開示の水性製剤を凍結乾燥することによって調製される凍結乾燥組成物を提供する。

0016

一実施形態において、本開示は、配列番号4のアミノ酸配列の第1の鎖、配列番号5のアミノ酸配列の第2の鎖及び配列番号4の98位の第1のシステイン残基(Cys98)と配列番号5の108位の第2のシステイン残基(Cys108)との間のジスルフィド結合を含む少なくとも10%(w/w)の2本鎖のポリペプチドならびにアルギニン:スクロース:マンニトールを(0.6〜0.95):(1〜3):(2〜8)の範囲の重量比で、あるいはL−アルギニンHCl:スクロース:マンニトールを(0.5〜1.4):(1〜3):(2〜8)の範囲の重量比で含む凍結乾燥組成物を提供する。

0017

一部の態様において、本凍結乾燥組成物は、少なくとも15%、16%、17%、18%または19%(w/w)の2本鎖のポリペプチドを含む。一部の態様において、L−アルギニンHCl:スクロース:マンニトールの重量比は、(0.9〜1):(1.5〜2.5):(4.5〜5.5)の範囲である。

0018

配列番号4のアミノ酸配列の第1の鎖、配列番号5のアミノ酸配列の第2の鎖及び配列番号4の98位の第1のシステイン残基(Cys98)と配列番号5の108位の第2のシステイン残基(Cys108)との間のジスルフィド結合を含む少なくとも10%(w/w)の2本鎖のポリペプチドならびにシトラート:スクロース:マンニトールを(0.15〜0.66):(1〜3):(2〜8)の範囲の重量比で含む凍結乾燥組成物も提供される。一部の態様において、本凍結乾燥組成物は、少なくとも10%、15%、16%、17%、18%または19%(w/w)の2本鎖のポリペプチドを含む。一部の態様において、シトラート:スクロース:マンニトールの重量比は、(0.19〜0.57):(1.5〜2.5):(4.5〜5.5)の範囲である。

0019

本開示の別の実施形態は、本開示の凍結乾燥組成物を溶解することによって調製された溶液を提供する。一部の態様において、溶媒は、水または生理的食塩水である。

0020

さらに別の実施形態は、第Xa因子阻害剤を用いた抗凝固療法を受けている対象の出血を低減する方法であって、有効量の本開示の溶液を対象に投与することを含む方法を提供する。一部の態様において、第Xa因子阻害剤はアピキサバンリバーロキサバンまたはベトリキサバンである。

0021

さらに、一実施形態において、配列番号3のアミノ酸配列または配列番号3と少なくとも95%の配列同一性を有するアミノ酸配列を含むポリペプチド、可溶化剤、安定剤及び結晶性構成成分を含み、凍結乾燥中に崩壊しない水性製剤も提供される。

0022

一部の態様において、結晶性構成成分はマンニトールである。一部の態様において、マンニトールは、2%から8%(w/v)の濃度で存在する。一部の態様において、可溶化剤はアルギニンまたはシトラートであり、安定剤はスクロースである。一部の態様において、本水性製剤は、界面活性剤及び緩衝剤をさらに含む。一部の実施形態において、本水性製剤を凍結乾燥することによって調製された凍結乾燥組成物が提供される。

図面の簡単な説明

0023

図1A〜Fは、さまざまな条件下(pH、可溶化剤、イオン強度)におけるr−Antidoteの溶解性を示すチャートである。影付きの棒はタンパク質の沈殿が観察されたことを示し、空白の棒はタンパク質の沈殿が観察されなかったことを示す。
図1A〜Fは、さまざまな条件下(pH、可溶化剤、イオン強度)におけるr−Antidoteの溶解性を示すチャートである。影付きの棒はタンパク質の沈殿が観察されたことを示し、空白の棒はタンパク質の沈殿が観察されなかったことを示す。
図1A〜Fは、さまざまな条件下(pH、可溶化剤、イオン強度)におけるr−Antidoteの溶解性を示すチャートである。影付きの棒はタンパク質の沈殿が観察されたことを示し、空白の棒はタンパク質の沈殿が観察されなかったことを示す。
図1A〜Fは、さまざまな条件下(pH、可溶化剤、イオン強度)におけるr−Antidoteの溶解性を示すチャートである。影付きの棒はタンパク質の沈殿が観察されたことを示し、空白の棒はタンパク質の沈殿が観察されなかったことを示す。
図1A〜Fは、さまざまな条件下(pH、可溶化剤、イオン強度)におけるr−Antidoteの溶解性を示すチャートである。影付きの棒はタンパク質の沈殿が観察されたことを示し、空白の棒はタンパク質の沈殿が観察されなかったことを示す。
図1A〜Fは、さまざまな条件下(pH、可溶化剤、イオン強度)におけるr−Antidoteの溶解性を示すチャートである。影付きの棒はタンパク質の沈殿が観察されたことを示し、空白の棒はタンパク質の沈殿が観察されなかったことを示す。
1℃/分での冷却及び−32℃におけるトリスの結晶発熱を示す10mMのトリス溶液のDSCヒートフローサーモグラムである。
95mmのアルギニンを伴う10mmのトリスの冷却中のDSCサーモグラムである。トリスの結晶化発熱なし。
およそ−18℃におけるマンニトールの結晶化を示す10mmのトリス、2%のスクロース及び2%のマンニトールを含有する溶液のDSCサーモグラムである。
−42℃におけるスクロースのtg’を示す10mmのトリス、95mmのアルギニン、2%のスクロース及び2%のマンニトールの溶液のDSCサーモグラムである。溶液は、−20℃で5時間アニーリングされた。
結晶化発熱の形跡のない−20℃における5時間のアニーリング工程を示す10mmのトリス、95mmのアルギニン、2%のスクロース及び2%のマンニトールの溶液のDSCサーモグラムである。
およそ−10℃におけるリン酸ナトリウムの結晶化発熱を示す10mmのリン酸ナトリウム溶液のDSCサーモグラムである。
およそ−33℃で開始する結晶化発熱を示す2%のスクロース及び2%のマンニトールを伴う10mmのリン酸ナトリウムのDSCノンリバーシングヒートフローサーモグラムである。
融解吸熱の他には熱現象が示されていない10mmのリン酸ナトリウム、95mmのアルギニン、2%のスクロース及び2%のマンニトールのDSCヒートフローサーモグラムである。
−25℃においておよそ24分に開始した結晶化発熱を示す10mmのトリス、10mmのシトラート、2%のスクロース及び5%のマンニトールのDSCヒートフローサーモグラムである。
−25℃においておよそ30分に開始した結晶化発熱を示す10mmのトリス、20mmのシトラート、2%のスクロース及び5%のマンニトールのDSCヒートフローサーモグラムである。
T0における凍結乾燥製剤と比較した5℃で最大2週間保管されたトリス及びリン酸塩溶液製剤に関するUV濃度データである。
T0における凍結乾燥製剤と比較した25℃で最大2週間保管されたトリス及びリン酸塩溶液製剤に関するUV濃度データである。
T0における溶液製剤と比較した25℃で保管されたトリス及びリン酸塩凍結乾燥製剤に関するUV濃度データである。
−22℃で70分の時点(アニーリングの開始時間)におけるマンニトールの結晶化の開始を示す10mmのトリス、9.5mmのアルギニン、2%のスクロース、2%のマンニトール及び0.01%のPS80製剤のDSCサーモグラムである。
−25℃で30分の時点におけるマンニトールの結晶化の開始を示す10mmのトリス、47.5mmのアルギニン、2%のスクロース、4%のマンニトール及び0.01%のPS80製剤のDSCサーモグラムである。
10mmのトリス、47.5mmのアルギニン、2%のスクロース、5%のマンニトール及び0.01%のPS80溶液を1℃/分で−40ocまで冷却した場合のマンニトールのDSC結晶化発熱である。
10mmのトリス、47.5mmのアルギニン、2%のスクロース、5%のマンニトール及び0.01%のPS80溶液を−25℃でアニーリングする場合のマンニトールのDSC結晶化発熱を示す。結晶化の開始はおよそ23分である。

0024

I.定義
範囲を含むすべての数値的指示、例えば、pH、温度、時間、濃度及び分子量は近似値であり、これは、0.1もしくは10%ずつ(+)または(−)に変動する。常に明記されている訳ではないが、すべての数値的指示に「約」という用語が前に付くものと解釈されるべきである。常に明記されている訳ではないが、本明細書に記載される試薬は単に例となるものであり、そのようなものの等価物は当該技術分野において既知であると理解されるべきである。

0025

本明細書及び請求項において使用される場合、単数形「a」、「an」及び「the」は、文脈が明らかに別のことを指示していない限り複数の言及を含む。例えば、「a pharmaceutically acceptable carrier(薬学的に許容される担体)」という用語は、それらの混合物を含む複数の薬学的に許容される担体を含む。

0026

本明細書中で使用される場合、「comprising(含むこと)」という用語は、組成物および方法が挙げた要素を含むが、その他のものを除外しないこと意味するものとする。「本質的に〜からなること」とは、組成物および方法を定義するために使用される場合、意図した使用のための組み合わせに本質的に意味のあるあらゆる他の要素を除外することを意味するものとする。したがって、本質的に本明細書中で定義される要素から成る組成物は、単離及び精製法による微量の夾雑物ならびにリン酸緩衝食塩水保存料及び同種のものなどの薬学的に許容される担体を除外しないことになろう。「から成ること」とは、その他の成分及び本開示の組成物を投与するための実質的な方法ステップのわずかでない要素を除外することを意味するものとする。それぞれのこうした移行語によって定義される実施形態は、本開示の範囲内にある。

0027

「タンパク質」及び「ポリペプチド」という用語は同義に使用され、その最も広い意味では2つ以上のサブユニットアミノ酸アミノ酸アナログまたはペプチド模倣物化合物を指すために使用される。サブユニットは、ペプチド結合によって連結されていてもよい。別の実施形態において、サブユニットは、例えば、エステルエーテルなどの他の結合によって連結されていてもよい。タンパク質またはペプチドは、少なくとも2つのアミノ酸を含まなくてはならないが、アミノ酸の最大数に制限はなく、これは、タンパク質またはペプチドの配列を含んでもよい。本明細書中で使用される場合、「アミノ酸」という用語は、グリシンならびにD及びL型光学異性体の両方、アミノ酸アナログならびにペプチド模倣物を含む天然及び/または非天然のあるいは合成のアミノ酸のいずれかを指す。天然に生じるアミノ酸の一文字及び三文字略語を下に挙げる。

0028

「第Xa因子」または「fXa」または「fXaタンパク質」は、血液凝固経路におけるセリンプロテアーゼであり、これは不活性第X因子(fX、配列番号1、表1)から作り出される。ヒト第X因子(「fX」)をコードするヌクレオチド配列は、受託番号「NM_000504」によりGenBankで見つけることができる。重鎖の最初の52残基が触媒的に切断されたとき、fXがfXaに活性化される。fXaは、軽鎖及び重鎖を含む。軽鎖の最初の45個のアミノ酸残基(配列番号1の残基1〜45)は、翻訳後に修飾された11個のγ−カルボキシグリタミン酸残基(Gla)を含むためGlaドメインと呼ばれる。これはまた、短い(6アミノ酸残基)芳香族スタッキング配列(配列番号1の残基40〜45)も含む。キモトリプシン消化が選択的に1〜44残基を除去し、結果としてGla−ドメインのないfXaが生じる。fXaのセリンプロテアーゼ触媒ドメインは、C末端重鎖に位置する。fXaの重鎖は、その他のセリンプロテアーゼ、例えば、トロンビントリプシン及び活性化プロテインCと極めて相同的である。

0029

未変性fXa」または「野生型fXa」とは、血漿中にもともと存在するfXaまたはその元の無修飾の形態で単離されたfXaを指し、これは、活性化プロトロンビン生物学的活性プロセシングすることにより、凝血塊の形成を促進する。この用語は、組織サンプルから単離された天然に生じるポリペプチドならびに組み換えで作製されたfXaを含む。「活性型fXa」は、活性化プロトロンビンのプロコアグラント活性を有するfXaを指す。「活性型fXa」は、プロコアグラント活性を保持している未変性fXaまたは修飾fXaでもよい。

0030

本明細書中で使用される場合、「fXa誘導体」とは、集まってプロトロンビナーゼ複合体を形成する際にfXaと競合せず、プロコアグラントまたは触媒活性が低いか、またはないが、fXa阻害剤などの抗凝固剤と結合する及び/またはそれを実質的に中和する修飾fXaタンパク質を指す。fXaタンパク質またはfXa誘導体の「プロコアグラント活性」は、一部の態様では、野生型の活性型fXaポリペプチドが持つ酵素活性を指す。fXa誘導体の例は、米国特許第8,153,590号ならびにPCT公報WO2009/042962及びWO2010/056765で提供されており、さらに配列番号:2及び3ならびにそれらの生物学的等価物など本明細書で提供される。

0031

fXaポリペプチドまたはその誘導体の「酵素活性」は、基質との直接の相互作用により基質との生化学的反応を触媒するポリペプチドの能力を指す。

0032

配列番号:2は、野生型fXaと比較して3つの変異を含む。第1の変異は、fXのGla−ドメインの6〜39番目のアミノ酸の欠失である。第2の変異は、活性化ペプチド配列143〜194番目のアミノ酸の−RKR−による置換である。これが、−RKRRKR−(配列番号:6)リンカーをもたらし、軽鎖(配列番号:4)と重鎖(配列番号:5)を結合する。分泌時、このリンカーが切断され、結果として2本鎖のポリペプチド、配列番号:3(r−Antidote)が生じる。第3の変異は、活性部位残基S379のAla残基への変異である。このアミノ酸置換は、それぞれ配列番号:1及び3のアミノ酸296及び290に該当する。

0033

「r−Antidote」という用語は、リンカーの切断後の配列番号:2のプロセシングされた2本鎖のポリペプチドプロセシング産物を指す。これは、配列番号:3によって表される。r−Antidoteについては、例えば、内容が参照によって本開示に組み込まれるUS8,153,590に開示されている。r−Antidoteは、軽鎖のシステイン98(Cys98)と重鎖のシステイン108(Cys108)との間の1つのジスルフィド結合により結合した軽鎖(配列番号4)及び重鎖(配列番号5)を含む。野生型fXaのように、特定の生産バッチにおいて、r−Antidoteは、翻訳後修飾を受けて、結果として特定のアミノ酸残基、例えば、軽鎖のSer56、Ser72、Ser76及びThr82ならびに重鎖のThr249におけるグリコシル化、ならびに軽鎖のAsp29における修飾残基、(3R)−3−ヒドロキシAspが生じる。さらに、鎖間のジスルフィド結合に加えて、軽鎖のシステイン16と27、21と36、38と47、55と66、62と75及び77と90の間、ならびに重鎖のシステイン7と12、27と43、156と170及び181と209の間に形成される鎖内ジスルフィド結合が存在することがある。

0034

本開示はまた、r−Antidoteのさまざまな生物学的等価物(または配列番号:2によって表されるその前駆体)、あるいは配列番号:3とある一定の配列同一性を有するポリペプチドを提供する。一態様において、そのような生物学的等価物は、配列番号:3の構造的特徴、すなわち、修飾された活性部位及び除去されたか、または修飾されたGlaドメインを保持している。別の態様において、そのような生物学的等価物は、配列番号:3の機能的特徴、すなわち、集まってプロトロンビナーゼ複合体を形成する際にfXaと競合せず、プロコアグラント(例えば、酵素もしくは触媒)活性が低いか、またはない特徴を保持している。

0035

「活性部位」という用語は、化学反応が起こる酵素または抗体の部分を指す。「修飾された活性部位」とは、構造的に修飾されて化学反応性または特異性が向上したか、または低下した活性部位がもたらされた活性部位である。活性部位の例としては、235〜488アミノ酸残基を含むヒト第X因子の触媒ドメイン及び195〜448アミノ酸残基を含むヒト第Xa因子の触媒ドメインが挙げられるが、これらに限定されるものではない。修飾された活性部位の例としては、Arg306、Glu310、Arg347、Lys351、Lys414またはArg424位に少なくとも1つのアミノ酸置換がある配列番号:1の195〜448アミノ酸残基を含むヒト第Xa因子の触媒ドメインが挙げられるが、これらに限定されるものではない。

0036

「組成物」とは、活性剤と、不活性(例えば、検知可能薬剤もしくは標識)または活性の、例えば、アジュバントなどの別の化合物または組成物との組み合わせを意味するものとする。

0037

医薬組成物」とは、その組成物をインビトロインビボまたはエクスビボにおける診断上のまたは治療的使用に適したものにする、活性剤と不活性または活性の担体との組み合わせを含むものとする。

0038

「凍結乾燥製剤」という用語は、フリーズドライされた対象のポリペプチドを含む医薬製剤または組成物を指す。

0039

本明細書中で使用される場合、「増量剤」という用語は、凍結乾燥製剤にかさを与える成分を指す。増量剤の例としては、マンニトール、トレハロースラクトース、スクロース、ポリビニルピロリドン、スクロース、グルコース、グリシン、サイクロデキストリンデキストラン固体PEGならびにそれらの誘導体及び混合物が挙げられるが、これらに限定されるものではない。一実施形態において、本開示の製剤は、任意に増量剤を含む。

0040

本明細書中で使用される場合、「薬学的に許容されるケーク」とは、凍結乾燥後に残り、例えば、薬学的に許容される、長期安定性、短い再構成時間、見事な外見及び再構成時に元の溶液の特徴を維持することなど特定の望ましい特徴を有する非崩壊型固体薬生成物を指す。薬学的に許容されるケークは、固体、粉末または粒状の材料が可能である。薬学的に許容されるケークは、重量でケークの最大5パーセントの水も含んでよい。

0041

本明細書中で使用される場合、「凍結乾燥」またはフリーズドライという用語は、凍結され、真空下に置かれ、氷を液相になることなく固体から蒸気へ直接変えた後、生成物から水が除去されるプロセスを指す。このプロセスは、凍結、一次乾燥昇華)及び二次乾燥(放出)の分離した、固有相互依存的な3つの個別のプロセスから成る。本開示に使用されるポリペプチドを凍結乾燥するための方法は、本明細書に記載されており、当該技術分野において周知である。

0042

「緩衝剤」という用語は、本明細書中で使用される場合、医薬調製物のpHを安定化させる薬学的に許容される賦形剤を指す。適した緩衝剤は、当該技術分野において周知であり、文献に見出すことができる。薬学的に許容される緩衝剤は、トリス緩衝剤、アルギニン緩衝剤、ヒスチジン緩衝剤クエン酸緩衝剤、コハク酸緩衝剤及びリン酸緩衝剤を含むが、これらに限定されるものではない。使用される緩衝剤とは無関係に、pHは、当該技術分野において既知の酸または塩基、例えば、コハク酸、塩酸酢酸リン酸硫酸及びクエン酸、スクシナート、シトラート、トリス塩基、ヒスチジン、ヒスチジンHCl、水酸化ナトリウムならびに水酸化カリウムにより調節することができる。適した緩衝剤としては、ヒスチジン緩衝剤、2−モルホリノエタンスルホン酸(MES)、カコジル酸塩、リン酸塩、アセタート、スクシナート及びシトラートが挙げられるが、これらに限定さるものではない。緩衝剤の濃度は、約4mMから約60mM、あるいは約4mMから約40mM、あるいは約5mMから約25mMの間であってもよい。

0043

凍結保護物質」は、当該技術分野において既知であり、例えば、スクロース、トレハロース及びグリセロールが挙げられるが、これらに限定されるものではない。生物系において低毒性の凍結保護物質が一般に使用される。

0044

張性調整薬剤」という用語は、本明細書中で使用される場合、製剤の張性を調整するために使用される薬学的に許容される薬剤を指す。等張性は、一般に溶液に対する浸透圧、一般にはヒト血清の浸透圧に関する。製剤は、低張等張または高張であってもよい。一態様において、本製剤は等張である。等張製剤とは、液体または固体の形態、例えば、凍結乾燥された形態から再構成された液体であり、例えば、生理的食塩水及び血清などの比較されるいくつかの他の溶液と同じ張性を有する溶液を指す。適した等張化剤としては、塩化ナトリウム塩化カリウムグリセリン及び本明細書中で定義されるアミノ酸、糖の群からの任意の構成成分ならびにそれらの組み合わせが挙げられるが、これらに限定されるものではない。

0045

本明細書中で使用される場合、「界面活性剤」という用語は、両親媒性構造を有する薬学的に許容される有機物質を指し、すなわち、これは、反対の溶解傾向の基、一般に油溶性炭化水素鎖水溶性イオン基から構成される。界面活性剤は、界面活性部分の電荷に応じてアニオン性カチオン性及び非イオン性界面活性剤分類することができる。界面活性剤は、各種医薬組成物及び生物学的材料の調製物に湿潤剤乳化剤、可溶化剤及び分散剤として使用されることが多い。本明細書に記載される医薬製剤の一部の実施形態において、界面活性剤の量は、重量/体積パーセント(w/v%)で表される百分率として記載される。適した薬学的に許容される界面活性剤としては、ポリオキシエチレンソルビタン脂肪酸エステル(Tween)、ポリオキシエチレンアルキルエーテル(Brij)、アルキルフェニルポリオキシエチレンエーテル(Triton−X)、ポリオキシエチレンポリオキシプロピレンコポリマー(Poloxamer、Pluronic)またはドデシル硫酸ナトリウム(SDS)の群が挙げられるが、これらに限定されるものではない。ポリオキシエチレンソルビタン脂肪酸エステルとしては、ポリソルベート20(商標Tween20(商標)として販売されている)及びポリソルベート80(商標Tween80(商標)として販売されている)が挙げられる。ポリエチレンポリプロピレンコポリマーとしては、名称Pluronic(登録商標)F68またはPoloxamer188(商標)として販売されているものが挙げられる。ポリオキシエチレンアルキルエーテルとしては、商標Brij(商標)として販売されているものが挙げられる。アルキルフェノールポリオキシエチレンエーテルとしては、商標名Triton−Xとして販売されているものが挙げられる。

0046

「凍結乾燥保護物質」とは、凍結乾燥(急速な凍結及び高真空における乾燥のプロセス)中にタンパク質を安定化させる薬学的に許容される物質を指す。凍結乾燥保護物質の例としては、スクロース、トレハロースまたはマンニトールが挙げられるが、これらに限定されるものではない。

0047

酸化防止剤」とは、他の分子の酸化を遅らせるか、または妨げることができる分子を指す。酸化とは、電子を物質から酸化剤に運搬する化学反応である。酸化反応フリーラジカルをもたらす可能性があり、フリーラジカルはタンパク質治療薬を不安定にし、最終的に生成物活性に影響を及ぼす連鎖反応を開始する。酸化防止剤は、フリーラジカル中間体を取り除くことによってこうした連鎖反応を終わらせ、それ自体が酸化されることによって他の酸化反応を阻害する。結果として、酸化防止剤は、還元剤キレート剤及び脱酸素剤、例えば、シトラート、EDTADPTA、チオールアスコルビン酸またはポリフェノールである場合が多い。酸化防止剤の非限定例としては、アスコルビン酸(AA、E300)、チオ硫酸塩メチオニントコフェロール(E306)、没食子酸プロピルPG、E310)、ターシャリーブチルヒドロキノン(TBHQ)、ブチルヒドロキシアニソール(BHA、E320)及びブチルヒドロキシトルエン(BHT、E321)が挙げられる。

0048

「保存料」とは、例えば、食物医薬品、塗料、生物学的サンプル、木などの製品に添加され、微生物の増殖による、もしくは望ましくない化学的変化による分解を防ぐ天然または合成の化学物質である。保存添加物は、単独で、または他の保存方法と併せて使用することができる。保存料は、細菌及び真菌の増殖を抑制する抗菌性保存料または構成成分の酸化を抑制する酸素吸収剤などの酸化防止剤であってもよい。一般的な抗菌性保存料としては、塩化ベンザルコニウム安息香酸クロヘキシジン(cholorohexidine)、グリセリン、フェノールソルビン酸カリウムチメロサールスルフィット二酸化硫黄亜硫酸水素ナトリウム亜硫酸カリウムなど)及び二ナトリウムEDTAが挙げられる。その他の保存料としては、非経口タンパク質に一般的に使用されるもの、例えば、ベンジルアルコール、フェノール、m−クレゾールクロロブタノールまたはメチルパラベンが挙げられる。

0049

「界面活性剤」とは、本明細書中で使用される場合、2つの液体の間または液体と固体の間の表面張力(または界面張力)を低下させる化合物を意味する。界面活性剤は、界面活性剤、湿潤剤、乳化剤、発泡剤及び分散剤として働く場合もある。

0050

界面活性剤の例としては、ポリソルベート80、脂肪酸及びスルホン酸アルキル塩化ベンゼタニウム(benzethanium chloride)、例えば、Lonza, Inc.(フェアローンニュージャージー州)のHY AMINE 1622;ポリオキシエチレンソルビタン脂肪酸エステル、例えば、Uniqema(ウィルミントンデラウェア州)のTWEENシリーズ及び天然の界面活性剤、例えば、タウロコール酸ナトリウム、l−パルミトイル−2−Sn−グリセロ−3−ホスホコリンレシチン及びその他のリン脂質が挙げられる。そのような界面活性剤は、例えば、製品の再構成時における凍結乾燥粒子凝集を最小限にする。これらの界面活性剤は、約0.001%から約5%w/vを構成してもよい。

0051

II.製剤
記述のとおり、野生型fXaは2本鎖のポリペプチドである。r−Antidote(配列番号:3)を含むfXa解毒剤の多くの形態がそうであり、これは、軽鎖のシステイン98(Cys98)と重鎖のシステイン108(Cys108)との間の1つのジスルフィド結合により結合した軽鎖(配列番号4)及び重鎖(配列番号5)を含む。また野生型fXaのように、細胞発現したr−Antidoteは、翻訳後修飾を受けて、結果として特定のアミノ酸残基、例えば、軽鎖のSer56、Ser72、Ser76及びThr82ならびに重鎖のThr249においてグリコシル化、ならびに軽鎖のAsp29において修飾残基(3R)−3−ヒドロキシAspが生じる。さらに、鎖間ジスルフィド結合に加えて、軽鎖のシステイン16と27、21と36、38と47、55と66、62と75及び77と90の間ならびに重鎖のシステイン7と12、27と43、156と170及び181と209の間に形成される1つ以上の鎖内ジスルフィド結合が存在することがある。

0052

2本鎖構造及びfXa解毒剤のさまざまな翻訳後修飾のため、許容できる重量オスモル濃度の安定した可溶性の溶液を提供する安定した凍結乾燥製剤の開発には大きな難題が生じることが本明細書において示されている。

0053

例としてr−Antidoteを使用した実験データは、r−Antidoteの適度な溶解性を保持するために高濃度の可溶化剤が必要とされることを示した。特に、実施例4における溶解性試験は、シトラート及びアルギニンの両方がr−Antidoteの溶解性を著しく高めたことを示している。さらに、実施例は、アルギニンの濃度が95mMまたは少なくとも10mMのときに、r−Antidoteは溶液に可溶性のままでいられることを示した。

0054

さらに、凍結乾燥プロセス中、タンパク質の温度は、許容できる凍結乾燥サンプルを得るためには測定された崩壊温度(約−40℃)未満に維持される必要があることが明らかになった(実施例6)。しかしながら、そのような低い生成物温度を維持することは、実際には実現不可能である。したがって、このデータは、非結晶タンパク質材料をフリーズドライの間及び後に所定の位置に保持することができる足場として働く結晶化構成成分(例えば、マンニトール)が必要とされることを示している。

0055

しかしながら、高濃度のアルギニン(例えば、95mM)が存在すると、マンニトールの結晶化(実施例7)が妨げられることがさらにわかった。同時に、マンニトールの存在により製剤中の糖の合計濃度が増加して、許容できない重量オスモル濃度の溶液になる(実施例7)。

0056

よって、r−Antidoteの適した凍結乾燥構造の開発には、可溶化剤としてのアルギニン、結晶化剤としてのマンニトール及び安定化剤としてのスクロースの濃度に対して相反する要件があった。最も良くても、許容される凍結乾燥構造を形成するためのそのような要件のバランスをとることができるかどうか予測できなかった。

0057

しかしながら、驚くべきことに、予想外にも、本発明者らは、タンパク質の溶解性、安定性、ケーク構造及び重量オスモル濃度のバランスを保った溶液に到達することができた。さらに具体的には、適した凍結乾燥構造を形成するための例となるr−Antidote溶液は、約45mMのアルギニン(10〜55mM)、約2%のスクロース(1〜3%)及び約5%のマンニトール(2〜8%)を含む。さらに、溶液は、約10mMのトリス及び0.01%〜0.02%のPS80を所望の量のr−Antidote(例えば、10mg/mL、15mg/mL、20mg/mL、30mg/mL、40mg/mLまたは50mg/mL)とともに含み、約7.8のpHを有する。

0058

さらに、治療タンパク質に対する好適な可溶化剤として知られているが、シトラートには抗凝血作用があることがわかっている。例えば、Wright et al., Nephrology (Carlton). 2011 May;16(4):396−402を参照のこと。したがって、r−Antidoteは抗凝血剤に対する解毒剤(fXa阻害剤)と意図されるため、シトラートはr−Antidoteとともに使用するのに適していないと考えられた。予想外にも、本発明において、シトラートは実際にはインビボにおけるr−Antidoteの活性を妨げないことがわかった。凍結乾燥に適した溶液中のシトラートの適した濃度は、約2%のスクロース(1〜3%)及び約5%のマンニトール(2〜8%)に加えて約10mMから約25mMであることがわかっている。

0059

それゆえに、この溶液が凍結乾燥される場合、それは、L−アルギニンHCl:スクロース:マンニトールの重量比を(0.5〜1.4):(1〜3):(2〜8)の範囲で含む乾燥組成物を形成する。溶液中に5mg/mLから50mg/mLの間のr−Antidoteが使用される場合、その結果、例えば、L−アルギニンHCl:スクロース:マンニトール:r−Antidoteの重量比は(0.5〜1.4):(1〜3):(2〜8):(0.5−5)の範囲である。

0060

反対に、そのような凍結乾燥製剤が水、生理的食塩水またはその他の類似の溶媒に溶解される場合、それは、約10〜55mMのアルギニン、約1〜3%のスクロース及び約2〜8%のマンニトールを含む溶液をもたらすことができる。

0061

同様に、可溶化剤としてシトラートを使用した溶液が凍結乾燥される場合、それは、(0.15〜0.66):(1〜3):(2〜8)の範囲のシトラート:スクロース:マンニトールの重量比を含む乾燥組成物を形成することになる。溶液中に5mg/mLから50mg/mLの間のr−Antidoteが使用される場合、その結果、例えば、L−アルギニンHCl:スクロース:マンニトール:r−Antidoteの重量比は(0.15〜0.66):(1〜3):(2〜8):(0.5〜5)の範囲である。反対に、そのような凍結乾燥製剤が水、生理的食塩水またはその他の類似の溶媒に溶解される場合、それは、約8〜35mMのシトラート、約1〜3%のスクロース及び約2〜8%のマンニトールを含む溶液をもたらすことができる。

0062

r−Antidoteに対して観察された結果は、r−Antidoteの生物学的等価物(もしくは配列番号:2によって表されるその前駆体)を含む類似の構造を有する他のfXa解毒剤に対しても容易に予測することができる。一態様において、そのような生物学的等価物は、配列番号:3と少なくとも80%、85%、90%または95%の配列同一性を有する。一態様において、そのような生物学的等価物は、それぞれが、配列番号:4または配列番号:5それぞれと少なくとも80%、85%、90%または95%の配列同一性を有する2つのペプチド鎖を含む。一態様において、そのような生物学的等価物は、配列番号:3の構造的特徴、すなわち、修飾された活性部位及び除去されたか、または修飾されたGlaドメインを保持している。別の態様において、そのような生物学的等価物は、配列番号:3の機能的特徴、すなわち、集まってプロトロンビナーゼ複合体を形成する際にfXaと競合せず、プロコアグラント(例えば、酵素もしくは触媒)活性が低いか、またはない特徴を保持している。

0063

また、アルギニンは別の可溶化剤で置き換えることができ、マンニトールは別の結晶化剤で置き換えることができ、スクロースは別の安定化剤で置き換えることができることが予想され、それらそれぞれの適当な例が当該技術分野において利用可能であり、本開示において提供される。

0064

A.凍結乾燥に適したポリペプチド溶液
一実施形態において、本開示は、凍結乾燥に適した水性製剤を提供し、この製剤は、本明細書中で開示されているfXa解毒剤またはその生物学的等価物を可溶化剤、安定化剤(または安定剤)及び結晶性薬剤とともに含む。本製剤は、界面活性剤及び/または緩衝剤をさらに含んでもよい。一部の態様において、これらの薬剤のそれぞれの存在が、例えば、フリーズドライ温度が−40℃、−30℃、−20℃、−10℃、0℃、5℃、10℃もしくは15℃よりも高い、20℃または25℃と同じ高さの場合、凍結乾燥中にfXa解毒剤が崩壊するのを妨げる。

0065

本開示の一実施形態は、凍結乾燥に使用することができる水性製剤を提供する。本水性製剤は、fXa誘導体ポリペプチド、例えば、配列番号3のアミノ酸配列または配列番号3と少なくとも95%の配列同一性を有するアミノ酸配列を含むポリペプチドを含む。ポリペプチドに加えて、本製剤は、可溶化剤、安定剤及び結晶性構成成分をさらに含む。そのような製剤は、所望の条件下の凍結乾燥中に崩壊しない。一態様において、所望の条件は、−40℃よりも高い、あるいは、−40℃、−30℃、−20℃、−10℃、0℃、5℃、10℃または15℃より高い温度におけるフリーズドライである。別の態様において、所望の条件は、25℃よりも低い、あるいは20℃、15℃、10℃または5℃よりも低い温度におけるフリーズドライである。

0066

一態様において、fXa誘導体ポリペプチドは、野生型fXaタンパク質と比較した場合にGlaドメイン及び活性部位に修飾がある。一態様において、fXa誘導体ポリペプチドは、fXa阻害剤と結合するfXaの能力を保持しているが、集まってプロトロンビナーゼ複合体を形成しない。一態様において、fXa誘導体ポリペプチドは、配列番号3のアミノ酸配列を有する2本鎖のポリペプチドであり、これは、軽鎖のシステイン98(Cys98)と重鎖のシステイン108(Cys108)との間の1つのジスルフィド結合により結合した軽鎖(配列番号4)及び重鎖(配列番号5)を含む。一態様において、本水性製剤は、少なくとも5mg/mLのポリペプチドを含む。一態様において、本水性製剤は、少なくとも5、10、15、20、25、30、35、40、45または50mg/mLのポリペプチドを含む。

0067

一部の態様において、本製剤中にはフリーズドライプロセス中に結晶マトリックスを形成するのに適した濃度で結晶性構成成分が含まれる。結晶マトリックスの製剤は、実施例において示されたとおり崩壊を防ぐのに有用である。

0068

「結晶性構成成分」とは、フリーズドライプロセス中にポリペプチドを含む製剤中で結晶マトリックスを形成する分子を指す。結晶性構成成分の非限定例としては、マンニトール及びグリシンが挙げられる。

0069

一部の態様において、結晶性構成成分は、マンニトール(例えば、結晶性マンニトール)である。一態様において、水性製剤中の結晶性構成成分の濃度は、少なくとも1%(w/v)である。一態様において、水性製剤中の結晶性構成成分の濃度は、少なくとも1.5%、2%、2.5%、3%、3.5%または4%(w/v)である。一態様において、水性製剤中の結晶性構成成分の濃度は8%以下、あるいは、7%、6.5%、6%、5.5%、5%、4.5%または4%(w/v)以下である。一態様において、水性製剤中の結晶性構成成分の濃度は、約1%から約8%もしくは約2%から約6%もしくは約3%から約5.5%もしくは約4.5%から約5.5%もしくは約4.6%から約5.4%もしくは約4.7%から約5.3%もしくは約4.8%から約5.2%もしくは約4.9%から約5.1%または約4%、4.5%もしくは5%(w/v)である。

0070

一部の態様において、本水性製剤中には可溶化剤が含まれる。「可溶化剤」という用語は、塩、イオン炭水化物複合体形成剤ポリマー及びその他の化合物を指し、これが溶液中に存在すると、溶液中の別の分子(例えば、活性成分)の溶解性を高める。可溶化剤の非限定例としては、アルギニン及びシトラートが挙げられる。一態様において、可溶化剤はアルギニンである。一態様において、可溶化剤はシトラートである。

0071

可溶化剤の存在がfXaポリペプチドを製剤中で可溶性で安定した状態に維持する際に有用であることが本明細書において示されている。一部の態様において、可溶化剤(例えば、アルギニン)の濃度は、少なくとも10mM、あるいは少なくとも20mM、25mM、30mM、36mMまたは40mMである。一部の態様において、可溶化剤(例えば、アルギニン)の濃度は、100mM、96mM、90mM、80mM、70mM、60mMまたは50mM以下である。一部の態様において、可溶化剤の濃度は、約10mMもしくは20mMから約60mM、約10mMもしくは20mMから約55mM、約35mMから約55mM、約40mMから約50mM、約41mMから約49mM、約42mMから約48mM、約43mMから約47mM、約44mMから約46mMまたは約40mM、45mMもしくは50mMである。なお、本明細書中で使用される場合、アルギニンという用語は、アミノ酸ならびにその塩(例えば、アルギニンHCl)を指す。アルギニンは、約174.2ダルトンの分子量を有し、アルギニンHCl(例えば、L−アルギニンHCl)は、約210.7ダルトンの分子量を有する。

0072

一実施形態において、可溶化剤はシトラートまたはその塩である。シトラートの塩はクエン酸ナトリウムである。一態様において、シトラートは、約1.0mMから約200.0mMの濃度を構成する。別の態様において、シトラートの濃度は約25mMである。別の態様において、シトラートの濃度は約50mMである。さらに別の実施形態において、シトラートの濃度は、約5mM、10mMまたは20mMである。別の実施形態において、シトラートは、約0.05Mから約0.2Mの濃度を構成する。

0073

一部の態様において、本水性製剤中には安定剤が含まれる。「安定剤」という用語は、薬学的な許容される賦形剤を指し、これは、製造、保管及び利用時における化学的及び/または物理的分解から活性成分(例えば、fXa誘導体ポリペプチド)及び/または製剤を保護する。安定剤の例としては、スクロース、アルギニン、シトラート、マンニトール、トレハロース、グリシン、塩化ナトリウム、デキストラン及びグルコースを挙げることができる。一態様において、安定剤はスクロースである。

0074

一態様において、水性製剤中の安定剤(例えば、スクロース)の濃度は、少なくとも約0.5%(w/v)である。一態様において、水性製剤中の安定剤(例えば、スクロース)の濃度は、少なくとも約0.6%、0.7%、0.8%、0.9%、1%、1.1%、1.2%、1.3%、1.4%、1.5%、1.6%、1.7%、1.8%、1.9%または2%(w/v)である。一態様において、水性製剤中の安定剤(例えば、スクロース)の濃度は、約5%、4.5%、4%、3.5%、3%、2.5%または2%(w/v)以下である。一態様において、水性製剤中の安定剤(例えば、スクロース)の濃度は、約1%から約5%もしくは約1%から約4%もしくは約1%から約3%もしくは約1.5%から約2.5%もしくは約1.6%から約2.4%もしくは約1.7%から約2.3%もしくは約1.7%から約2.2%もしくは約1.9%から約2.1%または約1%、1.5%、2%、2.5%もしくは3%(w/v)である。

0075

一部の態様において、本水性製剤は、界面活性剤、緩衝剤、張性調整薬剤、凍結保護物質、界面活性剤、凍結乾燥保護物質、保存料またはそれらの組み合わせをさらに含んでもよい。

0076

一部の態様において、本水性製剤は、6以上または6.5以上または7以上または7.5以上のpHを有する。一部の態様において、pHは、9、8.5または8以下である。一部の態様において、pHは、6から9の間、6.5から8.5の間、7から8.5の間、7.5から8.2の間、7.6から8.1の間、7.7から7.9の間または約7.5、7.6、7.7、7.8、7.9もしくは8である。

0077

一態様において、本水性製剤は、約45mMのアルギニン、約2%のスクロース(w/v)、約5%のマンニトール(w/v)及び約10mg/mLの2本鎖のr−Antidoteを含み、約7.8のpHを有する。一態様において、本水性製剤は、約45mMのアルギニン、約2%のスクロース(w/v)、約5%のマンニトール(w/v)及び約20mg/mLの2本鎖のr−Antidoteを含み、約7.8のpHを有する。一態様において、本水性製剤は、約45mMのアルギニン、約2%のスクロース(w/v)、約5%のマンニトール(w/v)及び約40mg/mLの2本鎖のr−Antidoteを含み、約7.8のpHを有する。一態様において、本水性製剤は、0.01%〜0.02%(w/v)のポリソルベート80及び緩衝剤をさらに含む。

0078

B.凍結乾燥及び凍結乾燥組成物
一部の実施形態において、本開示の水性製剤を凍結乾燥する方法も提供される。一態様において、本開示は、表8.2に例示される保存的凍結乾燥サイクルを提供し、これは、凍結工程、等温工程、アニーリング工程、一次乾燥工程及び二次乾燥工程を含む。

0079

別の態様において、凍結乾燥サイクルは、表6に記載されている工程を含む。凍結乾燥に適した水溶液が特定されると、それに応じて、当該技術分野において既知の方法を用いてその溶液を凍結乾燥する方法を導き出すことができることにさらに留意されたい。一態様において、1つ以上またはすべての乾燥工程は、−40℃以上の温度で行われる。一態様において、乾燥工程は、−35℃、−30℃、−25℃、−20℃、−10℃または0℃以上であるが、10℃、15℃、20℃または25℃以下の温度で行われる。

0080

一部の態様において、本開示の水性製剤を凍結乾燥することによって調製された凍結乾燥組成物も提供される。本水性製剤中の各薬剤の濃度に基づいて、凍結乾燥組成物中の薬剤の相対的含有量は、容易に決定することができる。

0081

一態様において、本凍結乾燥組成物は、少なくとも5%、あるいは少なくとも10%、15%、20%、25%、30%または35%(w/w)のfXa誘導体ポリペプチドを含む。その結果、他の主な成分間で、例えば、(0.5〜1.4):(1〜3):(2〜6)の範囲のL−アルギニンHCl:スクロース:マンニトールの重量比が可能である。一部の態様において、L−アルギニンHCl:スクロース:マンニトールの重量比は、(0.9〜1):(1.5〜2.5):(4.5〜5.5)または(0.91〜0.99):(1.6〜2.4):(4.6〜5.4)または(0.92〜0.98):(1.7〜2.3):(4.7〜5.3)、(0.93〜0.97):(1.8〜2.2):(4.8〜5.2)または(0.94〜0.96):(1.9〜2.1):(4.9〜5.1)の範囲である。一部の態様において、本凍結乾燥組成物は、界面活性剤及び/または緩衝剤の固体部分をさらに含む。

0082

さらに、一部の態様において、本開示の凍結乾燥組成物を溶媒に溶解させることによって調製された溶液が提供される。一部の態様において、溶媒は、水または生理的食塩水である。一態様において、溶媒は水である。一態様において、この溶液は、少なくとも5mg/ml、あるいは少なくとも10mg/mlの対象ポリペプチドを含む。

0083

一実施形態において、本開示は、少なくとも10%(w/w)のr−Antidote及び約0.95:2:5の重量比のL−アルギニンHCl:スクロース:マンニトールを含む凍結乾燥組成物を提供する。一実施形態において、本開示は、少なくとも20%(w/w)のr−Antidote及び約0.95:2:5の重量比のL−アルギニンHCl:スクロース:マンニトールを含む凍結乾燥組成物を提供する。一実施形態において、本開示は、少なくとも40%(w/w)のr−Antidote及び約0.95:2:5の重量比のL−アルギニンHCl:スクロース:マンニトールを含む凍結乾燥組成物を提供する。

0084

III.製剤を使用する方法
本開示はまた、fXa阻害剤を用いた抗凝固療法を受けている対象の出血を処置、予防または低減する治療方法であって、適した溶媒に溶解されたときに有効量の凍結乾燥製剤を対象に投与することを含む方法に関する。本開示の解毒剤または誘導体は、選択的なまたは緊急の状況で使用されることになる持続時間の短い薬物であってもよく、これが有害な血行力学的副作用または損傷に対する増殖性血管反応の悪化を生じることなく、fXa阻害剤の通常の抗凝固特性を安全に特異的に中和することができることが予想される。

0085

本明細書中で使用される場合、「処置すること」、「処置」という用語及び同種のものは、所望の薬理学的及び/または生理学的効果を得ることを意味するよう本明細書中で使用される。その効果は、障害またはその徴候もしくは症状を完全にまたは部分的に予防することに関して予防的であってもよく、ならびに/あるいは障害及び/または障害に起因する有害な影響の部分的または完全な回復に関して治療的であってもよい。

0086

「処置すること」は、哺乳動物の障害のあらゆる処置も含み、(a)障害にかかりやすい可能性があるが、障害があるとはまだ診断されていない場合もある対象において障害が生じるのを予防すること、例えば、抗凝固剤の過剰摂取による患者の出血を予防する;(b)障害を抑制すること、すなわち、その発生を抑えること、例えば、出血を抑制すること;または(c)障害を軽減もしくは改善すること、例えば、出血を低減することが挙げられる。

0087

本明細書中で使用される場合、「処置する」ことは、病態と関連する症状の全身的改善及び/または症状の発症遅延をさらに含む。「処置」の臨床的及び準臨床的証拠は、病態、個体及び処置によって変化することになる。

0088

「投与」は、処置の過程全体をとおして1回の用量で、連続的にまたは断続的に行うことができる。投与の最も有効な手段及び投与量を判断する方法は当業者に知られており、療法に使用される組成物、療法の目的、処置される標的細胞及び処置される対象によって変化することになる。単一または複数の投与は、治療医師によって選択された用量レベル及びパターンで行うことができる。適した剤形及び薬剤を投与する方法は、当該技術分野において知られている。診断または処置の「対象」は、細胞またはヒトを含む哺乳動物である。診断または処置に対する非ヒト動物対象としては、例えば、ラットマウスなどのネズミ科動物イヌなどのイヌ科動物ウサギなどのウサギ科動物、家畜スポーツ用動物及びペットが挙げられる。

0089

本開示の薬剤及び組成物は、医薬組成物中の活性成分など医薬の製造ならびに従来の手順に従った投与によるヒト及び他の動物の処置のために使用することができる。

0090

本開示の薬剤は、任意の適切な経路、具体的には、非経口(皮下、筋肉内、静脈内及び皮内を含む)投与によって治療のために投与することができる。好適な経路は、受け手の状態及び年齢ならびに処置される疾患によって変化することになることも認識されるであろう。

0091

「薬学的に許容されるポリマー」という語句は、本明細書中に記載されている1つ以上のポリペプチドと結合できる化合物の群を指す。ポリマーのポリペプチドとの結合は、インビボ及びインビトロにおけるポリペプチドの半減期延長することができると予想される。非限定例としては、ポリエチレングリコール、ポリビニルピロリドン、ポリビニルアルコールセルロース誘導体ポリアクリラートポリメタクリラート、糖、ポリオール及びそれらの混合物が挙げられる。

0092

「抗凝固性薬剤」または「抗凝固剤」とは、凝血塊形成を抑制する薬剤である。抗凝固性薬剤の例としては、トロンビン、第IXa因子、第Xa因子、第XIa因子、第XIIa因子または第VIIa因子の特異的な阻害剤、ヘパリン及び誘導体、ビタミンKアンタゴニストならびに抗組織因子抗体が挙げられるが、これらに限定されるものではない。トロンビンの特異的な阻害剤の例としては、ヒルジンビバリルジン(Angiomax(登録商標))、アルガトロバン及びレピルジン(Refludan(登録商標))が挙げられる。ヘパリン及び誘導体の例としては、未分画ヘパリン(UFH)、低分子量ヘパリン(LMWH)、例えば、エノキサパリン(Lovenox(登録商標))、ダルテパリン(Fragmin(登録商標))及びダナパロイド(Orgaran(登録商標))ならびに合成五糖、例えば、フォンダパリヌクス(Arixtra(登録商標))が挙げられる。ビタミンKアンタゴニストの例としては、ワルファリン(Coumadin(登録商標))、フェノクマロール、アセノクマロール(Sintrom(登録商標))、クロリンジオンジクマロールジフェナジオンエチルビスクマセタート、フェンプロクモン、フェニンジオン及びチオクロマロールが挙げられる。一実施形態において、抗凝固剤は、第Xa因子の阻害剤である。一実施形態において、抗凝固剤はベトリキサバンである。

0093

「抗凝固療法」とは、望ましくない凝血塊または血栓症を予防するために患者に施される治療計画を指す。抗凝固療法は、1つの抗凝固性薬剤または2つ以上の抗凝固性薬剤もしくはその他の薬剤の組み合わせを患者の望ましくない凝血塊または血栓症を処置または予防するのに適した投与量及びスケジュールで投与することを含む。

0094

「第Xa因子阻害剤」または「第Xa因子の阻害剤」という用語は、インビトロ及び/またはインビボにおけるプロトロンビンのトロンビンへの変換を触媒する凝固第Xa因子の活性を直接的または間接的のいずれかで阻害することができる化合物を指す。

0095

「直接的第Xa因子阻害剤」はfXaに直接結合する。非限定例としては、NAP−5、rNAPc2、組織因子経路阻害剤(TFPI)、DX−DX−9065a(例えば、Herbert, J.M., et al, J Pharmacol Exp Ther. 1996 276(3):1030−8に記載されている)、YM−60828(例えば、Taniuchi, Y., et al, Thromb Haemost. 1998 79(3):543−8に記載されている)、YM−150(例えば、Eriksson, B.I. et. al, Blood 2005;106(11), Abstract 1865に記載されている)、アピキサバン、リバーロキサバン、TAK−442、PD−348292(例えば、Pipeline Insight: Antithrombotics − Reaching the Untreated Prophylaxis Market, 2007に記載されている)、オタミキサバン、エドキサバン(例えば、HylekEM, Curr Opin Invest Drugs 2007 8(9):778−783に記載されている)、LY517717(例えば、Agnelli, G., et al, J. Thromb. Haemost. 2007 5(4):746−53に記載されている)、GSK913893、ラザキサバン、ベトリキサバンまたは薬学的に許容されるその塩、及びそれらの組み合わせが挙げられる。特定の態様において、直接的第Xa因子阻害剤はリバーロキサバンである。一部の態様において、直接的fXa阻害剤は小分子化学化合物である。

0096

「間接的第Xa因子阻害剤」のfXa活性の阻止には、1つ以上の他の因子が関係する。間接的第Xa因子阻害剤の非限定例としては、フォンダパリヌクス、イドラパリヌクスビオチン化イドラパリヌクス、エノキサパリン、フラグミン、チンザパリン、低分子量ヘパリン(「LMWH」)及びそれらの組み合わせが挙げられる。特定の態様において、間接的第Xa因子阻害剤はエノキサパリンである。

0097

一実施形態において、第Xa因子阻害剤は、ベトリキサバン、リバーロキサバン、LMWH、DX−9065a、YM−60828、YM−150、PD−348292、オタミキサバン、エドキサバン、LY517717、GSK913893、ラザキサバン、アピキサバン及びそれらの組み合わせから選択される。

0098

「ベトリキサバン」という用語は、化合物「[2−({4−[(ジメチルアミノイミノメチルフェニルカルボニルアミノ)−5−メトキシフェニル]−N−(5−クロロ(2−ピリジル))カルボキサミド」またはその薬学的に許容される塩を指す。「[2−({4−[(ジメチルアミノ)イミノメチル]フェニル}カルボニルアミノ)−5−メトキシフェニル]−N−(5−クロロ(2−ピリジル))カルボキサミド」とは、以下の構造:



を有する化合物またはその互変異性体もしくは薬学的に許容される塩を指す。

0099

ベトリキサバンは、米国特許第6,376,515号及び同第6,835,739号及び2006年11月7日に出願された米国特許出願公開第2007/0112039号に記載されており、その内容を参照によって本明細書に組み込んだものとする。ベトリキサバンは、特異的な第Xa因子の阻害剤であることが知られている。

0100

fXaの阻害剤の活性を「中和する」、「逆行させる」もしくは「打ち消す」または同様の語句は、fXa阻害剤の第Xa因子阻害性または抗凝固性作用を阻害またはブロックすることを指す。そのような語句は、インビトロ及び/またはインビボにおけるfXa阻害剤の作用の部分的阻害またはブロックならびに活性の大半もしくはすべてを阻害またはブロックすることを言及する。

0101

「有効量」とは、所望の生物学的及び/または治療的結果を引き起こすのに十分な誘導体の量を指す。この結果は、疾患の徴候、症状または原因の軽減であってもよく、あるいは生物系の任意の他の所望の変更であってもよい。本開示において、この結果は、一般に以下のもののうちの1つ以上を含むことになる:患者に投与されたfXa阻害剤の中和、fXa阻害剤の抗凝固活性の逆行、fXa阻害剤の血漿からの除去、止血の回復、及び出血の低減または停止。有効量は、使用される特定の解毒剤、対象が投与された特定のfXa阻害剤、fXa阻害剤の投与計画、解毒剤の投与のタイミング、処置される対象及び疾患の状態、対象の体重及び年齢、疾患状態重症度、投与の様式及び同種のものによって変化することになり、そのすべては当業者が容易に決定できる。

0102

特定の態様において、約10ミリグラム(mg)から約2グラム(g)のfXa誘導体(例えば、r−Antidote)の量を送達するために溶液が投与される。使用されるr−Antidoteのその他の量としては、約100mgから約1.5g、約200mgから約1g及び約400mgから約900mgが挙げられる。一部の態様において、使用されるr−Antidoteの量は、約400mgまたは960mgである。一部の態様において、使用されるr−Antidoteの量は、約10mgから約100mg、約15mgから約95mg及び約20mgから約80mgである。

0103

別の実施形態において、溶液は、少なくとも約30分間、第Xa因子阻害剤の血中濃度に対するr−Antidoteの血中濃度が少なくとも約1:1倍モル比である中和量で投与される。他の実施形態において、モル比は、約1:1または約2:1または約4:1である。

0104

投与されると、本製剤は第Xa因子阻害剤を少なくとも約20%だけ、または少なくとも約50%だけ、または少なくとも約75%だけ、または少なくとも約90%だけ、または少なくとも約95%だけ中和する。

0105

本方法が、すなわち、第Xa因子阻害剤の阻害または逆行が達成されるかどうかは、多くのインビトロアッセイ、例えば、トロンビン生成アッセイならびに臨床的血液凝固アッセイ、例えば、aPTT、PT及びACTによって判定することができる。

0106

本開示の一態様は、fXa阻害剤を用いた抗凝固療法を受けている対象において体外から投与されたfXa阻害剤と選択的に結合し、それを阻害する方法であって、有効量の凍結乾燥製剤の溶液を対象に投与することを含む方法に関する。この療法に適した患者は、事前に抗凝固療法を受けており、例えば、直接的または間接的なfXaの阻害剤などの1つ以上の抗凝固剤を投与されている。

0107

一部の実施形態において、本溶液は、過量のfXa阻害剤を投与した後または対象を出血のリスクにさらす可能性がある手術に先立って投与される。対象は、細胞またはヒトなどの哺乳動物であってもよい。

0108

別の態様において、本明細書において提供される方法は、凍結乾燥製剤の溶液を対象に投与することを含み、第Xa因子阻害剤を用いた抗凝固療法を受けている対象において体外から投与された第Xa因子阻害剤と選択的に結合し、それを阻害する。対象は、細胞またはヒトなどの哺乳動物であってもよい。

0109

本明細書に記載される溶解した凍結乾燥製剤の投与及び随伴する方法から利益を得ることになる対象としては、臨床的な重大な出血事象もしくは臨床的に大幅な重大でない出血事象を経験しているか、またはそれを起こしやすい対象が挙げられる。臨床的な重大な出血事象の例は、大量出血、重要臓器への出血、再手術または新たな治療手技を必要とする出血、及び関連する明白な出血を伴う≧2.0の出血指数からなる群から選択される。(Turpie AGG, et al, NEJM, 2001, 344: 619−625。)さらに、対象は、持続性もしくは再発性で、相当な量の、または介入なしには止まらない鼻出血、治療手技を必要とするレベルまでにはならない直腸または尿路出血、注射部位または自然発生的なまたは些細な外傷により生じた他の部位のひどい血腫ドレナージを必要としない、通常の外科的手技に関連するよりも大幅な失血及び予定外輸血を必要とする出血からなる群から選択される重大でない出血事象を経験しているか、またはそれを起こしやすい可能性がある。

0110

一部の実施形態において、溶解した凍結乾燥製剤は、過量のfXa阻害剤を投与した後または対象を大量出血のリスクにさらす可能性がある手術に先立って投与される。

0111

本明細書に記載される任意の方法において、常に明確に述べられている訳ではない場合でも、有効量の溶解した凍結乾燥製剤が対象に投与されることが理解されるべきである。その量は、治療医師が経験的に決定することができ、対象の年齢、性別、体重及び健康により変化することになる。治療医師が考慮するさらなる要素としては、投与された可能性のある第Xa因子阻害剤の素性及び/または量、凍結乾燥製剤が対象に投与されることになる方法または様式ならびに患者に対する治療的ゴールが挙げられるが、これらに限定されるものではない。こうした変化する要素を考慮して、当業者は治療有効量を処置される対象に投与する。

0112

本開示は、以下の実施例を参照することによりさらに理解される。実施例は、本開示の単なる例示的なものであるとする。本開示は、例示された実施形態によって範囲が限定されるものではなく、これらは、本開示の一態様の単なる実例として意図される。機能的に等価な任意の方法は、本開示の範囲内にある。本明細書に記載されるものに加えて本開示のさまざまな改変物が前述の説明及び添付の図から当業者には明らかになるであろう。そのような改変物は、添付の特許請求の範囲内にある。

0113

別に明記されない限り、すべての温度は摂氏温度である。また、これらの実施例及び別の場所において、略語は以下の意味を有する:

0114

実施例1.r−Antidoteの調製
イオン強度が0.15のクエン酸リン酸(20mM)緩衝液(NaClで調節した)を、クエン酸一水和物(Fisher、ピッツバーグペンシルベニア州)及びリン酸ナトリウム二塩基性無水物(Sigma、セントルイス、ミズーリ州)を使用して調製し、6MのHClまたは6MのNaOHのいずれかを使用してpHを調節した。追加の塩を含まないリン酸(20mM)緩衝液を、6.61gのリン酸ナトリウム二塩基性無水物を2.0LのMili−Q水に溶解させることによって調製し、pHを7.5に調節した。塩を含有するリン酸(20mM)緩衝液に関しては(I=0.15M)、14.8gのNaClを上記のリン酸緩衝液に添加した。他に記載がない限り、すべての他の試薬をSigma(セントルイス、ミズーリ州)から購入した。

0115

r−Antidoteのポリペプチド(配列番号3)を、2%のアルギニンを含有するpH8.0の10mMのトリス中でおよそ5mg/mlの濃度の原液として保存した。r−Antidoteの透析を、4℃でSlide−A−Lyzer(登録商標)透析カセット、3000 MWCO(Pierce、ロックフォードイリノイ州)を使用して選択したpH値のクエン酸リン酸緩衝液に対して行った。透析中の凝集を防ぐために、タンパク質原液を、カセット充填する前にろ過した透析緩衝液で0.5mg/mlに希釈した。透析後、r−Antidoteを0.3mg/mlに希釈し、タンパク質濃度を1.16ml・mg−1・cm−1の吸光係数を使用したUV吸収分光法(A280)で測定した。この方法によって生成したr−Antidoteを以下の実施例に使用した。

0116

実施例2.安定性監視のための示差走査熱量測定(DSC)
温度制御されたサンプル充填チャンバーを備えたMicrocalキャピラリーオート−DSCを使用して示差走査熱量測定(DSC)を行った。60℃/hrのスキャン速度及び25分のスキャン前平衡化時間を用いて6〜100℃の熱的変動を行った。適切な適合バッファーリファレンスセルに使用したと同時に、適合バッファー中の典型的なサンプル濃度を約0.6mg/mLとした。解析に先立って、すべてのサンプルスキャンから、バッファー対バッファーリファレンススキャンを差し引いて、サーモグラムを濃度により正規化した。Microcalから供給されたソフトウェアを使用してデータを処理した。非2状態フィッティング関数を使用して吸熱反応ピークを単一のピークにフィッティングし、転移温度(Tm)値をフィッティング関数によって算出した。開始温度(Tonset)値を、低温ベースラインとの吸熱反応のピークのずれによって求めた。

0117

不均質なサンプル中の複数の集団の存在を示すためにDLSが利用されることが多い。WyattプレートリーダーDLS機器を使用して、異なるpH条件における10〜20μLのタンパク質溶液(0.3mg/mL)を1セットの実験として20℃で測定した。そのサンプルを5分間、3000rpmで遠心分離して、あらゆる気泡を除去し、それぞれ20秒の5回のスキャンをして、平均サンプル半径を得た。pH5.0〜7.5において、流体力学的半径約3nmの1つの集団を確認した。

0118

実施例3.安定剤の特定
実施例2のデータは、r−AntidoteがpH7.5で全体的に安定であることを示した。したがって、賦形剤スクリーニング試験を、pH7.5で20mMのリン酸緩衝液中において行った。Dynapro動的光散乱プレートリーダー機器(Wyatt Technology、サンタバーバラカリフォルニア州)を使用してタンパク質の流体力学的直径を測定した。流体力学的直径を拡散係数からキュムラントの方法を使用してStokes−Einsteinの式によって算出した(対数分布型数値に基づく)。与えられたサンプルの均質性を評価するために測定を使用した。

0119

賦形剤がある状態またはない状態で0.3mg/mlのタンパク質を用いて60℃、pH7.5におけるタンパク質凝集反応速度を観察することによって安定化賦形剤の可能性を特定するためにSpectraMax M3プレートリーダーをまず利用した。表4.1で挙げたとおりGenerally−Regarded−As−Safe(GRAS)賦形剤のライブラリーの、全部で32の賦形剤を試験した。

0120

試験した賦形剤、スクロース、ソルビトール及びシトラートが最も大きな安定化効果を有することが確認された。タンパク質の安定性に対する賦形剤の組み合わせの効果の次の試験は、表4.2に概要が示されるこれら3つの賦形剤に基づくものとした。OD350nmでの融解二連で行って、各製剤に対するΔT値を上記のとおり算出した。表2に示したΔT値に基づいて、製剤3、4、5及び6の安定効果が最も大きいことを特定した。



ΔTは、pH7.5におけるタンパク質単独と、賦形剤のさまざまな組み合わせを伴うタンパク質との間の転移温度の差である。重量オスモル濃度は3連の測定値を平均し、ΔTは2連の測定値を平均する。

0121

これらの製剤中の治療タンパク質の凝集特性を、これらの組み合わせ製剤においてNaClを含まないpH7.5の20mMのリン酸緩衝液中でOD350nmでの融解法を使用してさらに試験した。一般に、凝集の程度は、NaClがないとかなり低くなる。実際、OD350nmでの融解を初めに35〜75℃で行い、明らかな凝集が観察されなかったので、同じサンプルを用いて75から100℃で再び融解実験を行った。それにより、75℃における約10分間の停滞ため、この温度でOD350nm曲線に急な変化が見られた。100℃まで上昇させた後でも、製剤3、4、5及び6中のタンパク質に関しては明らかな凝集が観察されなかった。付加的なNaClを除去することの別の利益は、製剤の対応する重量オスモル濃度がNaClを含むこれらの製剤と比較してはるかに低いことである。

0122

実施例4.溶解性試験
この実施例は、r−Antidoteの溶解性に対するpH、温度、安定剤(例えば、シトラート、アルギニン、グリシン及びリシン)ならびにイオン強度の影響を試験した。

0123

材料及び方法
使用した材料は、pH8.0の10mMのトリス中のr−Antidote(4.8mg/ml)及び2%のアルギニンの溶液とした。室温(RT)における溶解性に関しては、少なくとも1〜2時間の物理的な観察により試験を行った。5℃における溶解性に関しては、サンプルを5℃で一晩平衡化し、サンプルに対して物理的な観察を行った。さらに、そのサンプルを5℃で15分間遠心分離し、上清のタンパク質濃度をUV A280nmにより分析した(二倍希釈)。元の原液を対照として日毎に分析した。

0124

タンパク質の沈殿が観察された場合、上清濃度から決定される溶解性を、<XXmg/mLと解釈した(対応する図の影付きの棒)。これは、過剰量のタンパク質の存在及び緩衝液のpHに近いPIを有するタンパク質の部分集団選択的沈殿によるものである。タンパク質の沈殿が観察されない場合、溶液濃度から決定される溶解性を、>XXmg/mLと解釈した(図中の空白の棒)。

0125

室温での溶解性に対するpHの影響を、5.0、6.0、7.0及び8.0を含むさまざまなpHを用いて試験した。図1Aに示されるとおり、r−Antidoteは、pH8.0で溶解性が最も高かった(42.2mg/mLで目に見える沈殿がなかった)。それに反して、それぞれpH5.0、6.0及び7.0における溶解性は、3.5mg/mL(沈殿なし)、12.3mg/mL(沈殿が観察された)及び24.4mg/mL(沈殿が観察された)であった。

0126

表5.1は、5℃における溶解性に関して試験したサンプルを列記する。示したとおり、UF緩衝液は、42mMのMES、4mMのリン酸ナトリウム、833mMのNaCl、8mMのトリス及び58mMの約5mg/mLに濃縮されたアルギニンから成る。

0127

pH7.3において、10mMのシトラートは、解毒剤の5℃における溶解性をわずかに改善した。シトラートまたはアルギニンがないと、5℃における溶解性は以下の順序であった:pH7.55>pH7.80>pH7.30(図1B)。UF緩衝液(pH7.48)が最も溶解性が高いようであった(50mg/mL)。これは、適したpH7.5において58mMのArg+833mMのNaClが存在していたことによる可能性が高い(図1B)。

0128

表5.2は、pH7.55におけるアルギニン対シトラートの効果を試験するためのサンプルを列記する。図1Cに示されるとおり、pH7.55において、シトラート及びアルギニンはともに、r−Antidoteの5℃における溶解性を著しく改善した。さらに、シトラートは、同じモル濃度においてアルギニンよりも有効なようであった:10mMのシトラート≒50mMのアルギニン>20mMのアルギニン>10mMのアルギニン。

0129

表5.3のサンプルを使用して、アルギニン対シトラートの効果をpH7.8及び8.0でさらに試験した。図1Dは、r−Antidoteは、5℃においてpH8.0でpH7.8よりもわずかに可溶性が高かったことを示している。10mMのシトラート及び20mMのアルグニン(Argnine)はともに、pH7.8及び8.0において溶解性を少なくとも15mg/mLに改善した。

0130

pH7.8におけるアルギニンの効果をグリシン及びリシンとも比較し(表5.4)、結果を図1Eに示した。図に示されるとおり、5℃においてグリシン及びリシンは、r−Antidoteの溶解性に対して効果がなく、5℃においてpH7.55に対してpH8.0で20mMのArgに、より可溶化効果が観察された。

0131

r−Antidoteの溶解性に対するイオン強度の影響も試験した(表5.5)。図1Fに示されるとおり、イオン強度は、5℃でアルギニンまたはシトラートの非存在下においてr−Antidoteの溶解性を高め、その効果は、イオン強度>0.10Mで顕著なようであった。

0132

要約すると、この実施例は、室温、アルギニン及びシトラートなどの可溶化剤の非存在下においてr−AntidoteがpH8.0で溶解性が最も高いことを示している。5℃においては、pH8.0がr−Antidoteに対して最も良い。さらに、シトラート及びアルギニンはともに、r−Antidoteの5℃における溶解性を著しく改善する。グリシン及びリシンはともにr−AntidoteのTmを増加させるが、溶解性には影響がない。全体的に、r−Antidoteの5℃における最も高い溶解性は、pH7.8で95mMのアルギニンにより達成された。10日後にも沈殿は観察されなかった。

0133

実施例5.最初の凍結乾燥プロセス
凍結乾燥プロセスを、凍結乾燥サイクルのさまざまな段階における製剤構成成分の物理的性質の理解に基づいて合理的なアプローチを使用して開発した。DSC及びフリーズドライ顕微鏡法FDM)を含む熱的性質決定法を使用して、Tg’(凍結濃縮物のガラス転移温度)及びTc(一次乾燥中の崩壊温度)を測定した。表6に示すサイクルを本凍結乾燥製剤の凍結乾燥に選択した。アニーリング工程はマンニトールの結晶化を可能にし、確実に生成物温度が一次乾燥中の崩壊温度未満に下がらないようにする。一次乾燥温度を、適度な一次乾燥の継続時間とともにケーク崩壊を避けるよう選択した。水分レベルが<1%の凍結乾燥製剤を生成するために2工程の二次乾燥条件を開発した。

0134

実施例6.結晶化構成成分を用いない凍結乾燥
実験/試験デザイン
10の異なる製剤を調製して、r−Antidoteの溶解性及び安定性に対する緩衝剤組成物、pH、安定剤及び薬物濃度の影響を試験した(表7)。製剤を、pH7.8及び8.2のトリスまたはリン酸緩衝剤を使用して調製した。溶液を、遠心ろ過を使用して、10mg/mL及び25mg/mLに濃縮した。

0135

トリスまたはリン酸緩衝液中で調製した濃縮溶液のサンプルを短期安定性に関して2〜8℃及び25℃で2週間評価した。同時に、各溶液のサンプルを凍結/解凍試験に使用し、沈殿及び凝集に関して調べた。凍結/解凍試験のためのサンプルは、2mLのI型ガラス管バイアルに入った0.5mLの各製剤から成るものとした。0.5mLのサンプルを、凍結前及び各凍結/解凍サイクルの後に視覚的に調べた。各サンプルを−80℃でおよそ2時間置き、室温でおよそ15から30分間解凍し、およそ1〜2分間視覚的に調べ、−80℃の冷凍庫に戻した。各製剤の250Lのサンプルを、3回目凍結サイクルの後に取り出し、アッセイのために研究室提出した。残りの溶液を2回のさらなる凍結サイクルに供した後、アッセイのために研究室に提出した。

0136

すべての残りの溶液を0.25mLのサンプルとして保存的サイクルを使用して凍結乾燥し、サンプルを25℃及び40℃における加速安定性に関して評価した。

0137

ポリソルベートを含まない溶液を使用して2つのさらなる製剤を調製して、保護剤の存在がない場合の分子に対する凍結/解凍及び凍結乾燥の影響を試験した(表7の製剤5及び6)。溶液のサンプルを残しておき、変調型DSC及びフリーズドライ顕微鏡法を使用した熱的性質決定のために使用した。



ポリソルベート80(PS80)を含む製剤及び含まない製剤を、3mg/mL、3.3mg/mL及び4.8mg/mLで供給される原薬を使用して調製した。

0138

製剤5及び6を、まず19mLの各製剤の原薬溶液を使用して調製した。その体積原体を10K膜を備えた透析カセットに入れ、カセットをpH7.8の2Lの10mMのトリスまたは10mMのリン酸ナトリウム緩衝液に入れた。その溶液をおよそ2時間透析し、その透析溶液を新しい別の2Lの緩衝液で置き換え、少なくともさらに2時間透析した。その溶液を各カセットから取り出し、Amicon Ultra Ultracel 10K遠心式フィルター管に入れた。その溶液を、3/4の速度でおよそ30分間遠心分離した。残りの溶液を遠心管から取り出し、95mMのアルギニンを添加した後、濃縮溶液のpH及び体積を調節した。

0139

同じ手順を使用して、製剤1Aから4A及び1Bから4Bを調製した。製剤を、3mg/mLの原体溶液を使用して10mg/mLの溶液を調製するために13.5mLの原体及び25mg/mLの溶液を調製するために33.5mLの原体を使用して調製した。4.8mg/mLの原体溶液を使用した製剤は、10mg/mLの溶液を調製するために8.4mLの原体及び25mg/mLの溶液を調製するために20.9mLの原体を使用した。

0140

最終体積のサンプル溶液に必要とされるスクロース及びアルギニンの濃縮物を溶液の濃縮後に原体溶液に添加した後、溶液を適切なpH及び最終体積に調節した。1%のPS80溶液を使用してPS80を最終サンプル溶液に加えて、0.01%の濃度にした。

0141

その溶液を0.22μmのシリンジフィルターによりろ過した後、バイアルに分けた。2mLのバイアルをそれぞれ250Lの溶液で満たし、以下の条件を使用して凍結乾燥した。
1.1℃/分で−40℃まで冷却する
2.−40℃で1時間保持した後、100mTorrの真空にする
3.0.5℃/分で−35℃まで上昇させ、ピラニ真空計測定値が100mTorrのキャパシタンスマノメータ測定値と一致し、生成物温度が棚温度に達するまで保持する。
4.0.5℃/分で20℃まで上昇させ、ピラニ真空計測定値が100mTorrのキャパシタンスマノメータ測定値と一致し、生成物温度が棚温度に達するまで保持する。
凍結乾燥後に、栓をしバイアルにキャップを付けた。最初の時点(T0)の試験のためにサンプルを提出し、残りのバイアルの安定性を評価した。

0142

変調型示差走査熱量測定(DSC)
溶液サンプル熱挙動を変調型及び標準DSCを使用して調べた。12Lの溶液をTzeroパンに入れ密封することによってサンプルを調べた。溶液を1℃/分で−40℃まで冷却し、等温的に5分間保持した。サンプルの温度を120秒毎に1℃の変調で0.5℃/分で10℃まで上昇させた。アニーリング工程を使用して一部のサンプルを調べた。これらのサンプルを、1℃/分で−40℃まで冷却し、等温的に5分間保持し、温度を1から5℃/分で−15℃または−20℃まで上昇させ、等温的に少なくとも60分間保持することによって調べた。サンプルの温度を5℃/分で−40℃に戻し、等温的に5分間保持し、120秒毎に1℃の変調で0.5℃/分で上昇させた。

0143

フリーズドライ顕微鏡法
サンプルを、Linkamフリーズドライ顕微鏡ステージにある2枚のカバーガラスの間に2から4Lの溶液を置くことによってフリーズドライ顕微鏡法を使用して調べた。サンプルを1℃/分で−40℃以下に冷却し、等温的に2分間保持した。100マイクロメートルで真空にし、サンプルを偏光顕微鏡に搭載されたビデオカメラを使用して視覚的に調べた。乾燥した材料が認められ、撮影されるまでサンプルをその温度でフリーズドライした。その後、サンプルの温度を2℃ずつ上昇させ、フリーズドライしたサンプルを観察するために各温度で保持した。サンプルの温度を完全な崩壊が観察されるまで上昇させた。

0144

分析方法
A.紫外可視による濃度
溶液の濃度をNano Drop 2000分光光度計(Thermo Scientific)を使用して測定した。2Lの溶液を試験プラットフォームに置き、280nmの範囲でスキャンすることによってスキャンを行った。

0145

B.pH
OrionpHメーターモデル920Aを使用して溶液のpHを測定した。Thermo Scientificから購入した予め作製された緩衝液を使用してメータープローブをpH7からpH10の範囲に較正した。

0146

C.SEC−HPLC
Agilent 1100シリーズのHPLCを使用してサイズ排除HPLC分析を行った。0.1Mのリン酸ナトリウム、0.75Mの塩酸アルギニンで調製したpH7.4の移動相を分離に使用した。分析カラムは、YMC−Packジオール−200、300×4.6mm、平均粒子径5μmを使用した。カラムを含むHPLC系の適合性を、基準材料の6回の繰り返し測定を使用して検証し、主なタンパク質ピークに対する保持時間、面積及びパーセント面積に関して評価した。さらに、ゲルろ過スタンダードを使用して、カラムの分離能を評価した。サンプルを、製剤緩衝液を使用して1mg/mLのタンパク質に希釈し、1回の注入当たり50μgのタンパク質のカラム負荷となるよう注入した。

0147

D.RP−HPLC
Agilent 1100シリーズのHPLC使用して逆相HPLC分析を行った。この方法は、HPLCグレードの水に0.1%のトリフルオロ酢酸及びアセトニトリル中に0.08%のトリフルオロ酢酸で調製した移動相を使用した分離のためにグラジエントを利用した。分析カラムは、Vydac C18カラム、150×4.6mm、平均粒子径5μmを使用した。カラムを含むHPLC系の適合性は、基準材料の6回の繰り返し測定ならびに主なタンパク質ピークに関する保持時間、面積及びパーセント面積の評価を使用して検証した。サンプルを、製剤緩衝液を使用して1mg/mLのタンパク質に希釈し、1回の注入当たり25μgのタンパク質のカラム負荷になるよう注入した。

0148

E.IE
Agilent 1100シリーズのHPLCを使用してイオン交換HPLC分析を行った。この方法は、pH6.5において20mMのリン酸ナトリウム及びpH6.5において20mMのリン酸ナトリウム、1Mの塩化ナトリウムで調製した移動相を使用してグラジエントを利用した。分析カラムは、Dionex Propac WCX−10、250×4mmを使用した。カラムを含むHPLC系の適合性を、基準材料の6回の反復導入ならびにピーク#2としてラベルされたピークの保持時間、面積及びパーセント面積の評価を使用して検証した。サンプルを、製剤緩衝液を使用して1mg/mLのタンパク質に希釈し、1回の注入当たり50μgのタンパク質のカラム充填となるよう注入した。

0149

結果:
溶液サンプルの一部を、保存的サイクルを使用して凍結乾燥し、25℃及び40℃で2か月間安定性を評価した。凍結乾燥サイクルは、充填体積が小さいためおよそ20時間以内に完了した。場合によってフィルター破れるため製剤2Aを除いて、すべての凍結乾燥ケークは許容されるように見えた。

0150

全般的に、SEC及びRPを使用して得たデータは、製剤間の差異を区別しているように見えた。これは、この方法が安定性を示すものであり、サンプルを比較するために使用することができることを示唆している。このデータは、r−Antidoteの安定性がpHの影響を受けることを裏付けている。このデータは、pH7.8で調製した製剤の安定性が、pH8.2で調製した製剤の安定性よりも良好であることを示している。これは、40℃で保管されたサンプルに特にあてはまる

0151

この試験には、r−Antidoteの安定性に対する緩衝剤のタイプの比較が含まれていた。緩衝剤は、pH7.8及び8.2で調製したトリス及びリン酸塩を含むものとした。このデータは、緩衝剤のタイプがr−Antidoteの安定性に影響を及ぼさず、安定性の差は主にpHの働きであったことを示唆している。

0152

この試験の2つの製剤(製剤5及び6)は、スクロース及びポリソルベート80を用いずに調製した。スクロースは、凍結乾燥保護物質として使用し、ポリソルベート80は、バイアルの壁との相互作用及び凍結工程中の氷との相互作用によるタンパク質の凝集を防ぐために使用する。保護物質なしで調製した製剤は、40℃で1か月保管した後にSECによって測定したパーセント凝集体が増加した。このデータは、タンパク質の安定性を向上させるためには製剤中に賦形剤が必要であることを裏付けている。

0153

安定性試験はまた、凍結乾燥サンプルが溶液として調製した製剤よりも安定していることを裏付けている。溶液サンプルの比較は、溶液サンプルの安定性が5℃よりも高い温度で保管された場合よりも5℃で保管された場合に良好であることを示している。

0154

安定性試験のためのサンプルは、2mLの各バイアル当たり0.25mLを使用して調製した。崩壊は、サンプル2Aにおいてケークを支えるための十分な固体が存在していなかった場合にのみ観察された。他のすべてのサンプルは許容できるように見えたが、そのような小さな充填体積を使用する場合、ケーク収縮の程度を判定するのには適していなかった。完全な規模における製剤の凍結乾燥の実現性を判定するために熱的性質決定試験を安定性試験と同時に行った。

0155

変調型DSCを使用して製剤5及び6を調べた。両製剤ともおよそ25mg/mLのr−Antidote及び95mMのアルギニンHClを含むが、製剤5は10mMのトリスを用いて調製し、製剤6は10mMのリン酸塩を用いて調製した。トータルヒートフロー、ノンリバーシングヒートフローまたはリバーシングヒートフローを使用して観察した場合、加温変動中に熱現象は観察されなかった。トータルヒートフローサーモグラムは、動力学的に関連する現象及び非動力学的に関連する現象の両方を示すことになる。ノンリバーシングヒートフローサーモグラムは、結晶化などの動力学的に関連する現象を示すことになり、リバーシングヒートフローサーモグラムは、ガラス転移などの非動力学的に関連する現象を示すことになる。観察可能な現象がないのは、構成成分の濃度が十分な強度の信号を生成するには低過ぎることを示唆している可能性もある。

0156

崩壊温度がMDSCを使用して測定したTg’に対して観察された結果と一致するかどうかを判定するためにフリーズドライ顕微鏡実験を行った。すべて同じ賦形剤を同様の濃度で含んでいたため、すべてのサンプルの熱挙動は同様であると予測した。

0157

製剤5及び6を、およそ25mg/mLのr−Antidote濃度で調製し、ともにpH7.8の95mMのアルギニンを含むものとした。これらの製剤間の差異は緩衝剤だけであった。製剤5は10mMのトリスを含み、製剤6は10mMのリン酸塩を含んでいた。製剤5は−40℃で崩壊し、製剤6は−39℃で崩壊した。このデータは、許容できる凍結乾燥サンプルを得るためには、生成物の温度が測定された崩壊温度未満に維持される必要があることを裏付けている。そのような低い生成物温度を維持することは、実験室またはフルスケール凍結乾燥機では実現できない。

0158

凍結乾燥製剤に関する安定性データは許容できるように見えるが、熱的性質決定データは、崩壊温度が低いために製剤がスケールアップに適していないことを示した。MDSC及びフリーズドライ顕微鏡法を使用して得た熱的性質決定は、本製剤が凍結及び乾燥後、非結晶のままであること及び構成成分の組み合わせが低い崩壊温度につながることを示唆している。スケールアップに適した製剤を作り出す唯一の方法は、フリーズドライの間及び後に非結晶の材料を所定の位置に保持することができる足場として働く結晶化構成成分を添加することである。医薬製剤に添加される最も一般的な結晶化構成成分はマンニトールである。すべてのさらなる製剤及びプロセスの開発研究では、さまざまな濃度のマンニトールの添加を調べた。マンニトールを含有する製剤の開発及び製剤の安定性試験については、個別の開発報告に記載している。

0159

結論
r−Antidoteの安定性に対する緩衝剤のタイプ、pH、安定剤及びタンパク質濃度の影響を溶液製剤及び凍結乾燥製剤として調べた。溶液サンプルを5℃及び25℃で最大2週間保管し、凍結乾燥サンプルを25℃及び40℃で最大2か月保管した。2mLのバイアルに0.25mLとして凍結乾燥した製剤は、2か月後に許容できる安定性を示した。しかしながら、熱的性質決定実験は、すべての製剤が−37℃以下の崩壊温度を有し、スケールアップに適していないことを示した。このデータは、崩壊を防ぐため及びさらに高温での凍結乾燥を可能にするために製剤中に結晶化構成成分が必要とされることを示唆している。

0160

実施例7.製剤の熱挙動及び安定性に対する緩衝剤のタイプ及びマンニトールの影響。
実施例6のデータは、フリーズドライ中の崩壊を防ぐためにr−Antidote製剤中に結晶化構成成分が必要とされることを示唆していた。この実施例は、製剤の熱挙動及び凍結乾燥ケークの外観に対するマンニトール及びアルギニン濃度の影響を調べた。2%から4%のマンニトールを含有する製剤をアルギニンの濃度を低減しながら試験した。アルギニンは、濃度が47.5mM以下にならない限りマンニトールの結晶化を妨げた。試験は、10mMのトリス、10mg/mLのr−Antidote、45mMのアルギニン、2%のスクロース、5%のマンニトール及び0.01%のポリソルベート80を含有する製剤が結果として許容される外観ならびに物理的及び化学的安定性を有する凍結乾燥ケークをもたらすことを発見した。凍結乾燥の試験は、−25℃での3時間のアニーリング後に−25℃の一次乾燥棚温度を使用することを裏付けるデータをもたらした。2工程の二次乾燥プロセスは、残存水分値が1%未満のケークをもたらす。

0161

実験/試験デザイン
同時に製剤の熱挙動を調べ、保存サイクルを使用して凍結乾燥した製剤の化学的安定性を比較するための試験を設計した。最初の製剤を、95mMのアルギニン、2%のスクロース、2%のマンニトール及び10mMのトリスまたは10mMのリン酸緩衝剤のいずれかを用いてpH7.8で調製した。この製剤はまた、活性成分を10または25mg/mLのいずれかで含むものとした(表8.1)。

0162

解凍した薬物溶液アリコートを、3K分画分子量(MWCO)膜を備えた透析カセットに入れた。このカセットを、アルギニン、スクロース及びマンニトールとともにトリスまたはリン酸塩のいずれかを含有する緩衝液に入れた。薬物溶液を収容したそれぞれのカセットを、2Lの緩衝液に入れ、4時間透析した。2時間後に緩衝液を新しく足し、その溶液をさらに4時間または一晩、2〜8℃で透析した。その溶液を、18G注射針を備えたBDシリンジを使用して透析カセットから取り出し、3K MWCO膜を備えた遠心ろ過チューブに入れた。そのチューブを、およそ3000RPMで20から30分間遠心分離し、NanoDrop 2000分光光度計を使用して溶液の濃度を確認した。溶液を、10mg/mLまたは25mg/mL超に濃縮し、適切な緩衝液を使用して適切な濃度に希釈し、1%のポリソルベート80の溶液を使用してポリソルベート濃度を0.01%に調節した。その溶液を0.22μmのシリンジフィルターによりろ過し、3mLのガラス管バイアルに各バイアル当たり0.25mL及び0.8mLで入れた。その溶液を保存的サイクル(表8.2)を使用してフリーズドライし、25℃及び40℃で最大2か月間安定性を評価した。

0163

各溶液のサンプルのフリーズドライに先立ってDSC及びFDMを使用した熱分析のために取っておいた。

0164

追加の熱解析及び凍結乾燥サイクルの開発試験は、タンパク質を用いずに調製した緩衝液を使用して完了した。マンニトールの結晶化を妨げないと同時にタンパク質を可溶化するのに製剤中に必要とされるアルギニンの最小濃度を求めるために実験を行った。タンパク質を可溶化するために必要とされるアルギニンの最小濃度を求めるために取引先が溶解性試験を行った。1熱挙動、凍結乾燥サイクル条件及びケークの外観に対するアルギニン及びマンニトール濃度の影響を試験するためにBaxterが実験を行った。緩衝液には、pH7.8の2%のスクロースとともに10mMのトリス緩衝剤が含まれた。アルギニン濃度は95mMから9.5mMまで変動させ、マンニトール濃度は2%から5%の間で変動させた。

0165

熱挙動、ケークの外観及び短期間加速安定性データに基づいて優良な製剤候補を特定した。さらなる開発のために提示した製剤は、10〜25mg/mLのr−Antidote、pH7.8の10mMのトリス、45mMのアルギニン、2%のスクロース、5%のマンニトール及び0.01%のポリソルベート80を含む。初期の試験は、3mLの各バイアル当たり0.2mLから1mLを使用した。低アルギニン製剤を使用した最初の安定性試験を、25mg/mLの薬物濃度を使用して行い、保存的サイクルを使用して凍結乾燥した。サンプルの安定性を25℃及び40℃で最大3か月間評価した。

0166

プロセスを確認するために行ったサイクルは、各バイアル当たり5mLで10mLのバイアルに入れた薬物溶液を使用した。二次乾燥の試験の間に水分含有量の影響を試験するために同じバイアル及び充填体積を使用した。これらの試験のための製剤を、実験室規模タンジェンシャルフローろ過(TFFユニットを使用し、適切な緩衝剤に交換した薬物溶液を使用して調製した。TFFユニットは、管を備えたタンジェンシャルフローフィルターに接続された溶液の収容容器を備えているものとした。その容器を薬物溶液で満たし、適切な緩衝剤に交換し、10KDa MWCO膜によりろ過することによって10から25mg/mLに濃縮した。十分な量の1%のポリソルベート80(PS80)を添加して0.01%のPS80濃度を作り出した。最終溶液を0.22μmのシリンジフィルターまたは真空ろ過ステムによりろ過した。

0167

凍結乾燥サイクルは、冷却変動速度及び一次乾燥と二次乾燥の間の変動速度ならびにアニーリング及び一次乾燥中の棚温度などのプロセスパラメータを調べた。二次乾燥の開始時ならびに40℃における4、8及び10時間後にサンプルを取り出すことによって残存水分試験を行った。40℃における8時間後ならびに50℃における1及び2時間後にサンプルを取り出すことによって第2の試験を行った。Karl Fischer分析を使用してサンプルを残存水分に関して試験した、残存水分に関する値がプラトーに達したら乾燥が完了したと見なした。二次乾燥中の特定の残存水分値に対応する時点にサンプルを取り出すことによって製剤の安定性に対する残存水分の影響を試験した。40℃において最大2か月間及び50℃において1週間、サンプルの安定性を評価した。

0168

10mg/mLのr−Antidote、10mMのトリス、45mMのアルギニン、2%のスクロース、5%のマンニトール及び0.01%のポリソルベート80、pH7.8を含有する提示した薬物製剤のための凍結乾燥サイクルデザインスペースを作り出した。製剤を各バイアル当たり5mLの溶液を使用して10mLのガラス管バイアルに入れた。デザインスペースの開発には、製剤の崩壊温度及びバイアルの熱伝達係数と組み合わせた設備能力の知識が必要とされる。製品に使用されるまさにそのガラス管バイアルを使用し、水でバイアルを満たし、生成物を乾燥するための対象棚温度を使用して氷を昇華させてバイアルの熱伝達係数を測定した。チャンバー圧力をおよそ25mTorrからおよそ400mTorrまで変化させながら生成物温度及び質量流量データを収集した。波長可変半導体レーザ吸収分光法(TDLAS)を使用して各圧力における質量流量データを収集し、圧力とともに質量流量の変化を使用してバイアルの熱伝達係数を算出した。

0169

結果:
1.示差走査熱量測定(DSC)
緩衝剤製剤の熱挙動に対するそれぞれの構成成分の影響を判定するために、各緩衝剤構成成分の個々の溶液を調製し、DSCを使用して試験した。一般に、製剤の熱挙動は、最も高い濃度で存在する構成成分によって決まる。熱挙動の変化は、他の賦形剤または薬物の添加により起こる可能性がある。例えば、塩の添加により、製剤中の非結晶の材料のTg’が低下することがある。提示する薬物製剤は、マンニトールを含む。結晶化増量剤として働くようマンニトールを賦形剤として凍結乾燥製剤に添加する。マンニトールは、溶液中で初めに凍結されると非結晶である。マンニトールがケークのための構造体を提供できるようマンニトールの結晶化を促進するために凍結中にアニーリング工程が一般に含まれる。製剤中のその他の賦形剤及び/または活性成分がマンニトールの結晶化を妨げるか、または遅延させる場合がある。本セクションで論述する試験は、マンニトールの結晶化及び溶液の熱挙動に対するトリス、リン酸塩及びアルギニンの影響を試験した。

0170

pH7.8で調製した10mMのトリス溶液を、DSCを使用して1℃/分で−50℃まで冷却した(図2)。サーモグラムは、およそ−20℃で開始した氷の結晶化発熱に続き、−32℃のトリスの結晶化発熱を示している。

0171

製剤中に95mMのアルギニンが含まれる場合、結晶化発熱がもはや存在しない(図3)。この試験の温度範囲では氷の融解吸熱の他に熱現象が観察されなかった。

0172

10mMのトリス、95mMのアルギニン製剤が4%のスクロースを含む場合、およそ−42℃の中間点のTg’が観察される。スクロース単独のTg’の中間点は、一般におよそ−33℃である。この試験は、トリス/アルギニン混合物がスクロースのTg’を低下させることを示している。Tg’が−40℃未満の溶液は、凍結乾燥に好適な候補ではない。一次乾燥中にそのような低い生成物温度を維持するのは難しい。マンニトールなどの結晶化構成成分の添加は、一次乾燥の開始前にマンニトールが結晶化する限り、構造体をもたらし、凍結乾燥の可能性を向上させることができる。

0173

製剤中の合計糖含有量が4%に維持されるようマンニトールを製剤に2%W/Vで添加し、スクロース濃度を2%まで低減した。10mMのトリス、2%のスクロース及び2%のマンニトールを用いて調製した溶液は、マンニトールがおよそ−20℃で結晶化し始めることを示している(図4)。その溶液に95mMのアルギニンを添加した場合、マンニトールの結晶化が妨げられる(図5)。凍結溶液を−20℃で最大5時間アニーリングした場合でもマンニトールは結晶化しなかった(図6)。

0174

製剤の熱挙動に対する緩衝剤の影響を試験するために同じセットの熱解析を10mMのリン酸ナトリウムを用いて調製した溶液に対して行った。10mMの溶液としてpH7.8で調製した場合、リン酸ナトリウムは冷却工程中に結晶化した(図7)。

0175

10mMのリン酸ナトリウムと95mMのアルギニン及び4%のスクロースとの混合物は、およそ−38℃の中間点を有するTg’を示す。

0176

トリス溶液と同様に、スクロース及びマンニトールを含有するリン酸塩溶液は、マンニトールの結晶化発熱を示す(図8)。その混合物に95mMのアルギニンを添加した場合、結晶化発熱は観察されない(図9)。トリスを用いて調製した製剤と同様に、リン酸塩製剤を−20℃で5時間アニーリングした場合でもマンニトールの結晶化発熱は観察されなかった。

0177

この試験は、トリスまたはリン酸塩のいずれかを含有する製剤に95mMのアルギニンを添加すると、スクロースのTg’が激しく低下することになり、マンニトールの結晶化が妨げられることになることを示している。このデータは、成功した凍結乾燥ケークのためにマンニトールの結晶化を促進するのに製剤の変更が必要であることを示した。この試験の時点において、データは、タンパク質の溶解性を維持するために95mMのアルギニンまたは10mMから20mMのシトラートのいずれかが必要であることを示唆していた。よって、製剤中のアルギニンの代用として、2%のスクロース及び5%のマンニトールとともに10mMのトリス中に10mMまたは20mMのシトラートを含有する溶液を使用して試験を行った。マンニトールの結晶化の可能性を高めるために、マンニトール濃度を増加し、スクロース濃度を低減した。アルギニンとともに2%のスクロース及び5%のマンニトールを使用した試験については、この報告の後に記載する。

0178

シトラートを含有する溶液を−25℃でアニーリングした。10mMのシトラートでは−25℃で24分に開始した結晶化発熱(図10)、及び20mMのシトラートでは−25℃で30分に開始した結晶化発熱(図11)が観察された。

0179

2.フリーズドライ顕微鏡法(FDM)
10mg/mLのr−Antidote、95mMのアルギニン、2%のスクロース及び2%のマンニトールとともに10mMのリン酸塩または10mMのトリスを用いてpH7.8で調製した製剤を、FDMを使用して調べた。トリス製剤を用いて行った実験は、−25℃で最大3時間アニーリングした場合、およそ−34℃で製剤崩壊の開始を示していた。

0180

10mMのリン酸塩を含有する製剤は、さらに高い崩壊温度を有した。−32℃で安定した乾燥層が観察され、−30℃で崩壊の開始が観察された。

0181

FDMデータは、両製剤が機械生産に適用できる条件を使用して凍結乾燥することができることを示唆している。これは、DSCを使用して得たデータと対応していない。FDMを使用して行った実験は、温度制御されたステージ直接接触した2枚のカバーガラスの間の溶液の薄層を利用する。これらの条件は、乾燥が容易であるためDSCデータと対応せず、DSCデータをその関連性を得る次の試験のために信用することとした。

0182

3.凍結乾燥及び安定性
95mMのアルギニン、2%のスクロース及び2%のマンニトールとともに10mg/mL及び25mg/mLのr−Antidoteを用いてpH7.8で調製したリン酸塩製剤及びトリス製剤を溶液及び凍結乾燥サンプルとして安定性に関して調べた。それぞれの溶液を各バイアル当たり0.20mLで3mLのバイアルに入れた。サンプルの一部を5℃及び25℃で最大2週間保管し、サンプルの残りの部分を保存的サイクルを使用して凍結乾燥し、25℃で最大3か月間及び40℃で最大2か月間安定性を評価した。

0183

−30℃で凍結乾燥する前にサンプルを−25℃で1時間アニーリングした。二次乾燥も20℃の棚温度を用いた保存的条件を使用して行った。タンパク質の温度感受性についてほとんどわかっていなかったため、保存的で非従来的なサイクルを使用した。凍結乾燥サイクルは、およそ21時間以内に完了した。そのバイアルを凍結乾燥機から取り出す前に栓で封をし、キャップを付けて、安定性を評価した。

0184

凍結乾燥ケークは、崩壊の形跡がなく許容できるように見え、精製水で速やかに再構成された。確実にマンニトールの結晶化が生じる場合、それがバイアルを破損しないようにするために、薬物を含まない同じ製剤を使用した第2の試験を同時に行った。プラセボ製剤を20mLのバイアルにそれぞれ10mLの溶液で入れた。バイアルを一杯にした1つのトレーを1℃/分で−40℃まで冷却し、120分間等温的に保持した後、3時間のアニーリングのために1℃/分で−25℃まで上昇させた。バイアルの第2のセットを−25℃まで冷却し、3時間等温的に保持し、−35℃まで冷却した後、バイアルを一杯にしたトレーを収容する乾燥機に移した。すべてのバイアルを−30℃で凍結乾燥し、二次乾燥のために25℃で乾燥した。両製剤が入ったバイアルで崩壊が観察された。

0185

これは、マンニトールが結晶化しなかったことを示唆し、アルギニンがマンニトールの結晶化を妨げていたというDSCを使用した熱分析中に出された結論を裏付けている。したがって、製剤開発に対するその関連性からFDMの結果よりもDSC及び凍結乾燥データをその後の実験のために信用することとした。

0186

次の実施例に記載されている試験は、アルギニンの低減ならびにタンパク質の溶解性及びマンニトールの結晶化に対するその影響に焦点を当てた。上記の95mMのアルギニンを用いて調製したリン酸塩製剤及びトリス製剤は、安定したままであり、初期データを得た。

0187

5℃及び25℃で最大2週間保管した場合、溶液サンプルの濃度の低下は観察されず、液体サンプルと凍結乾燥サンプルの間にT0における濃度の差はなかった(図12及び13)。

0188

同様に、25℃で最大3か月間(図14)または40℃で最大2か月間保管したいずれの凍結乾燥製剤でも濃度の低下は観察されなかった。

0189

SECデータは、溶液製剤を5℃で最大2週間保管した場合に主ピークの低下がなかったことを示している。25℃で最大2週間保管した場合、10mg/mLのサンプルで1%を超えて、25mg/mLのサンプルで3%を超えてパーセント主ピークが低下した。

0190

したがって、製剤の化学的安定性は許容できるように見えるが、凍結乾燥中に物理的安定性が不十分なため製剤に対して変更が必要であった。不十分な物理的安定性は、プラセボ製剤に対して観察された崩壊したケークが示していた。DSC実験のデータは、アルギニン濃度を低下させ、マンニトール濃度を増加させると、マンニトールの結晶化が促進され、凍結乾燥ケークの物理的安定性が改善されるであろうことを示唆している。

0191

実施例8.凍結乾燥サンプルの熱挙動及び外観に対するアルギニン及びマンニトール濃度の影響
熱挙動及びケークの外観に対するアルギニン濃度及びマンニトール濃度の影響を試験するためにプラセボ製剤を使用してこの実施例を行った。この試験は、トリス緩衝剤を用いて調製したプラセボ製剤に焦点を当てた。トリス緩衝剤は原薬溶液を調製するために使用される緩衝剤であり、トリス及びリン酸ナトリウムを用いて調製したサンプルの化学的安定性に差がなかったためトリス緩衝剤を選択した。

0192

以下の試験は、9.5mMから95mMのアルギニン濃度範囲及び2%から5%のマンニトール濃度範囲を使用して調べた。

0193

1.熱分析
熱分析実験の目的は、製剤中の固体の濃度を実質的に増加させることなくマンニトールの結晶化を促進するアルギニンの濃度及びマンニトールの濃度を求めることであった。高濃度の固体は、凍結乾燥中の物質移動に対する抵抗力を増加させ、極端に長い凍結乾燥サイクルをもたらす可能性がある。

0194

マンニトール濃度を一定に維持しながら10mMのトリス、2%のスクロース、2%のマンニトール及び0.01%のPS80製剤中のアルギニン濃度を低下させた。結晶化を促進するために製剤を−15℃から−25℃で最大5時間アニーリングした。マンニトールの結晶化は、アルギニン濃度が9.5mMに低減され、アニーリング温度が−22℃以上であった場合にのみ観察された。マンニトールの結晶化は、−22℃におけるアニーリングの開始時に始まった(図15)。

0195

マンニトールの結晶化の開始は、濃度が4%に増加され、アルギニン濃度が95mMから47.5mMに低減されると−25℃のアニーリングの30分後に起こる(図16)。より高温でアニーリングが行われた場合の凍結乾燥ケークの外観に対する変化は観察したため、より低いアニーリング温度を試験した。アニーリングが−15℃で行われた場合、外観に対する変化には、ケークの収縮が含まれた。

0196

製剤に2%の濃度を使用した場合のマンニトールの結晶化は、アルギニンの濃度が47.5mMより高い場合、遅延されるか、または妨げられる。マンニトールの結晶化に影響を及ぼすことなく製剤に含ませることができるアルギニンの最高濃度は47.5mMである。2%のマンニトール及び47.5mM、71mMまたは85.5mMのアルギニンを含むプラセボ製剤を使用して行った凍結乾燥実験を使用してこの主張を確認した。47.5mMのアルギニンを用いて調製したサンプルは、薬学的に許容されたが、さらに多くのアルギニンを用いて調製したサンプルは崩壊を示した。マンニトールの濃度を増加させると、結晶化の可能性を高めることができる。アルギニンの濃度が47.5mMを超える場合にマンニトールの濃度を4%及び5%に増加させると、結晶化を促進するために凍結溶液のアニーリングが必要とされる。

0197

5%のマンニトール及び47.5mMのアルギニンを含有する製剤中でマンニトールは容易に結晶化した。10mMのトリス、47.5mMのアルギニン、2%のスクロース、5%のマンニトール及び0.01%のPS80を含有する製剤を1℃/分で−40℃までゆっくりと冷却した(図17)。製剤を1℃/分で冷却した場合、冷却工程中にマンニトールの結晶化発熱が観察された。

0198

製剤のサンプルを−40℃まで急速に冷却した(10℃/分よりも速く冷却した)後−25℃でアニーリングした(図18)。溶液を−25℃でアニーリングした場合、マンニトールは23分後に結晶化した。この実験は、アルギニン濃度が47.5mM未満である限り、製剤中でマンニトールは容易に結晶化することを示している。

0199

熱分析データは、アルギニン濃度が47.5mM以下である場合、4%以上の濃度のマンニトールは、凍結乾燥プロセスの適度な時期において容易に結晶化することを裏付けている。

0200

2.凍結乾燥
熱分析実験と同時に凍結乾燥の試験を行った。10mMのトリス、9.5mMから23.75mMのアルギニン、2%のスクロース及び2%から4%のマンニトールを用いて、または4%のスクロースあり、もしくはなしで47.5mMのアルギニンとともに10mMのトリスを用いてプラセボ溶液を調製した。10mMのトリス、47.5mMのアルギニン、2%のスクロース及び5%のマンニトールを含有する製剤も含まれた。その溶液を、各バイアル当たり3mLの溶液を使用して20mLのバイアルに入れた。保存的で非従来的な凍結乾燥サイクルを、許容できるケークが生成できるか判定するために使用した。サンプルを1℃/分で−20℃まで冷却し、3時間アニーリングし、1℃/分で−40℃まで冷却し、2時間保持した。100mTorrの真空にし、棚温度を0.5℃/分で−30℃まで上昇させた。ピラニ真空計の値がキャパシタンスマノメータ(CM)の値と一致するまでサンプルを−30℃に保持し、その後、0.5℃/分で25℃の二次乾燥に進んだ。ピラニ真空計の値がCMの値と一致したとき二次乾燥が完了した。およそ30時間後に一次乾燥が完了し、二次乾燥は数時間だけ必要とされた。

0201

トリス及びアルギニンだけを用いて調製したサンプルは完全に崩壊し、4%のスクロースを含んだサンプルはケークが収縮した。

0202

47.5mM以下のアルギニン及び2%から5%のマンニトールを含有するすべての製剤は許容できるケークであるように見えた。

0203

10mLの充填体積を使用した冷却変動中のアニーリングの影響を試験するための試験が含まれた。この試験は、23.75mM及び47.5mMのアルギニンとともに10mMのトリス、2%のスクロースならびに2%から5%のマンニトールを用いて調製したサンプルを使用した。その溶液を1℃/分で−25℃まで冷却し、3時間保持し、100mTorrの真空にし、棚温度を0.5℃/分で−20℃まで上げた。そのサンプルを−20℃で乾燥し、二次乾燥のためにを25℃にまで温めた。すべてのサンプルは、崩壊の形跡がなく許容できるように見えた。

0204

凍結乾燥ケークの外観に対する冷却速度の影響を調べるために同じ製剤を使用した。1セットのサンプルを1℃/分で−25℃まで冷却し、3時間アニーリングした。第2のセットのサンプルを5℃/分で−25℃まで冷却し、3時間アニーリングした。これらのセットのサンプルを1つの乾燥機中で組み合わせ、一次乾燥のために−30℃で、続いて二次乾燥のために25℃で凍結乾燥した。

0205

すべてのサンプルは、崩壊の形跡がなく許容できるように見えた。このデータは、1℃/分から5℃/分の間の冷却速度がサンプルの外観に影響を及ぼさないことを裏付けている。

ページトップへ

この技術を出願した法人

この技術を発明した人物

ページトップへ

関連する挑戦したい社会課題

関連する公募課題

該当するデータがありません

ページトップへ

技術視点だけで見ていませんか?

この技術の活用可能性がある分野

分野別動向を把握したい方- 事業化視点で見る -

(分野番号表示ON)※整理標準化データをもとに当社作成

ページトップへ

おススメ サービス

おススメ astavisionコンテンツ

新着 最近 公開された関連が強い技術

この 技術と関連性が強い技術

関連性が強い 技術一覧

この 技術と関連性が強い人物

関連性が強い人物一覧

この 技術と関連する社会課題

関連する挑戦したい社会課題一覧

この 技術と関連する公募課題

該当するデータがありません

astavision 新着記事

サイト情報について

本サービスは、国が公開している情報(公開特許公報、特許整理標準化データ等)を元に構成されています。出典元のデータには一部間違いやノイズがあり、情報の正確さについては保証致しかねます。また一時的に、各データの収録範囲や更新周期によって、一部の情報が正しく表示されないことがございます。当サイトの情報を元にした諸問題、不利益等について当方は何ら責任を負いかねることを予めご承知おきのほど宜しくお願い申し上げます。

主たる情報の出典

特許情報…特許整理標準化データ(XML編)、公開特許公報、特許公報、審決公報、Patent Map Guidance System データ