図面 (/)

技術 ミリメートル波長ワイヤレスアクセスネットワークにおけるチャネル拡張

出願人 クゥアルコム・インコーポレイテッド
発明者 リュ、ジュン・ホスブラマニアン、サンダーリ、ジュンイサンパス、アシュウィンハンペル、カール・ゲオルグ
出願日 2015年6月3日 (5年5ヶ月経過) 出願番号 2016-573544
公開日 2017年8月17日 (3年3ヶ月経過) 公開番号 2017-523680
状態 特許登録済
技術分野 無線伝送方式一般(ダイバーシチ方式等) 移動無線通信システム 伝送一般の監視、試験
主要キーワード センチメートル波 結果モジュール クレーム要素 チャネル拡張 ビーム掃引 RFビーム 電気的消去可能プログラマブルROM 長ワイヤ
関連する未来課題
重要な関連分野

この項目の情報は公開日時点(2017年8月17日)のものです。
また、この項目は機械的に抽出しているため、正しく解析できていない場合があります

図面 (14)

課題・解決手段

基地局(アンカーノード)は、UEについてのチャネル品質がしきい値品質よりも低いと決定し、前記チャネル品質がしきい値品質よりも低いと決定されたかどうかに基づいて、UEとのビーム掃引を実行する周期性を調整するように1つまたは複数の基地局に指令する。基地局(mmW基地局)は、UEに関連するチャネル品質に基づいて、UEとのビーム掃引を実行するための周期性を調整し、調整された周期性においてビーム掃引を実行する。ビーム掃引は、基地局またはUEのうちの1つによる複数の異なる送信空間方向におけるビームの複数の送信、および基地局またはUEのうちの1つの他方による複数の異なる走査空間方向におけるビームの複数の走査である。

概要

背景

[0003]ワイヤレス通信システムは、電話ビデオ、データ、メッセージング、およびブロードキャストなど、様々な電気通信サービスを提供するために広く展開されている。典型的なワイヤレス通信システムは、利用可能なシステムリソース(たとえば、帯域幅送信電力)を共有することによって複数のユーザとの通信サポートすることが可能な多元接続技術を採用し得る。そのような多元接続技術の例としては、符号分割多元接続(CDMA)システム時分割多元接続TDMA)システム、周波数分割多元接続FDMA)システム、直交周波数分割多元接続(OFDMA)システム、シングルキャリア周波数分割多元接続(SC−FDMA)システム、および時分割同期符号分割多元接続(TD−SCDMA)システムがある。

[0004]これらの多元接続技術は、異なるワイヤレスデバイス都市国家、地域、さらには地球規模で通信することを可能にする共通プロトコルを与えるために様々な電気通信規格において採用されている。新生の電気通信規格の一例はロングタームエボリューションLTE登録商標):Long Term Evolution)である。LTEは、第3世代パートナーシッププロジェクト(3GPP(登録商標):Third Generation Partnership Project)によって公表されたユニバーサルモバイルテレコミュニケーションズシステム(UMTS:Universal Mobile Telecommunications System)モバイル規格拡張のセットである。LTEは、スペクトル効率を改善すること、コストを下げること、サービスを改善すること、新しいスペクトルを利用すること、およびダウンリンク(DL)上ではOFDMAを使用し、アップリンク(UL)上ではSC−FDMAを使用し、多入力多出力MIMO)アンテナ技術を使用して他のオープン規格とより良く統合することによって、モバイルブロードバンドインターネットアクセスをより良くサポートするように設計されている。しかしながら、モバイルブロードバンドアクセスに対する需要が増加し続けるにつれて、2GHキャリア周波数においてまたはその近くで動作する、LTE技術のさらなる改善が必要である。好ましくは、これらの改善は、他の多元接続技術と、これらの技術を採用する電気通信規格とに適用可能であるべきである。

[0005]モバイルブロードバンドに対する増加する需要を満たすための1つの方法は、LTEに加えてミリメートル波長スペクトルを利用することである。しかしながら、ミリメートル波長無線周波数帯域を使用する通信は、極めて高い経路損失および短いレンジを有する。極度の高い経路損失および短いレンジを補償するためにビームフォーミングが使用され得る。ビームフォーミング技法および方法が、連続的に変化するワイヤレス環境において、モバイルUEのためのシームレスで連続的なカバレージを与えるために現在必要とされている。

概要

基地局(アンカーノード)は、UEについてのチャネル品質がしきい値品質よりも低いと決定し、前記チャネル品質がしきい値品質よりも低いと決定されたかどうかに基づいて、UEとのビーム掃引を実行する周期性を調整するように1つまたは複数の基地局に指令する。基地局(mmW基地局)は、UEに関連するチャネル品質に基づいて、UEとのビーム掃引を実行するための周期性を調整し、調整された周期性においてビーム掃引を実行する。ビーム掃引は、基地局またはUEのうちの1つによる複数の異なる送信空間方向におけるビームの複数の送信、および基地局またはUEのうちの1つの他方による複数の異なる走査空間方向におけるビームの複数の走査である。

目的

[0003]ワイヤレス通信システムは、電話、ビデオ、データ、メッセージング、およびブロードキャストなど、様々な電気通信サービスを提供する

効果

実績

技術文献被引用数
0件
牽制数
1件

この技術が所属する分野

ライセンス契約や譲渡などの可能性がある特許掲載中! 開放特許随時追加・更新中 詳しくはこちら

請求項1

基地局のワイヤレス通信の方法であって、ユーザ機器(UE)についてのチャネル品質がしきい値品質よりも低いと決定することと、前記チャネル品質が前記しきい値品質よりも低いと決定されたかどうかに基づいて、前記UEとのビーム掃引を実行する周期性を調整するように1つまたは複数の基地局に指令することとを備える、方法。

請求項2

前記チャネル品質に基づいて、前記UEがしきい値変動性よりも大きいチャネル変動性を有すると決定することをさらに備え、ここにおいて、前記指令することは、前記UEが前記しきい値変動性よりも大きいチャネル変動性を有すると決定されたとき、前記ビーム掃引を実行する周期性を増大させるように、前記UEをサービスする基地局に指令することを備える、請求項1に記載の方法。

請求項3

前記チャネル品質に基づいて、前記UEが第1の基地局から第2の基地局にハンドオフされる必要があると決定することをさらに備え、ここにおいて、前記指令することが、前記第1の基地局から前記第2の基地局への前記UEの前記ハンドオフを容易にするために、前記UEとの前記ビーム掃引を実行する周期性を増大させるように、前記第1の基地局または前記第2の基地局のうちの少なくとも1つに指令することを備える、請求項1に記載の方法。

請求項4

前記第1の基地局、前記第2の基地局、および前記UEからのビーム掃引結果を含むビーム掃引結果情報を、前記第1の基地局および前記第2の基地局から受信することをさらに備え、ここにおいて、前記ハンドオフ決定が前記受信されたビーム結果情報に基づく、請求項3に記載の方法。

請求項5

前記UEの前記ハンドオフ決定が、前記第1の基地局から前記第2の基地局へのUEの前のハンドオフの知識にさらに基づく、請求項4に記載の方法。

請求項6

前記第1の基地局または前記第2の基地局のうちの前記少なくとも1つに前記指令することは、前記第2の基地局が前記第1の基地局からの前記ハンドオフにおいて前記UEを受信する前に、前記ビーム掃引を実行する前記周期性を増大させるように、前記第1の基地局または前記第2の基地局のうちの前記少なくとも1つに指令することを備える、請求項3に記載の方法。

請求項7

前記第1の基地局または前記第2の基地局のうちの前記少なくとも1つに前記指令することは、前記第2の基地局が前記ハンドオフにおいて前記第1の基地局から前記UEを受信成功した後に、前記ビーム掃引を実行する前記周期性を減少させるように、前記第1の基地局または前記第2の基地局のうちの前記少なくとも1つに指令することを備える、請求項3に記載の方法。

請求項8

前記UEが前記第2の基地局にハンドオフされる前に、前記第1の基地局に前記UEについてのデータパケットフォワーディングすることと、前記UEが前記第1の基地局から前記第2の基地局にハンドオフされた後に、前記第2の基地局に前記UEについてのデータパケットをフォワーディングすることとをさらに備える、請求項3に記載の方法。

請求項9

前記ビーム掃引が、基地局または前記UEのうちの1つによる複数の異なる送信空間方向におけるビームの複数の送信、および前記基地局または前記UEのうちの前記1つの他方による複数の異なる走査空間方向における前記ビームの複数の走査である、請求項1に記載の方法。

請求項10

基地局のワイヤレス通信の方法であって、ユーザ機器(UE)に関連するチャネル品質に基づいて、前記UEとのビーム掃引を実行するための周期性を調整することと、前記ビーム掃引が、前記基地局または前記UEのうちの1つによる複数の異なる送信空間方向におけるビームの複数の送信、および前記基地局または前記UEのうちの前記1つの他方による複数の異なる走査空間方向における前記ビームの複数の走査である、前記調整された周期性において前記ビーム掃引を実行することとを備える、方法。

請求項11

前記UEに関連する前記チャネル品質およびチャネル変動性に基づく、前記周期性を調整するようにとの要求を受信することをさらに備え、ここにおいて、前記基地局は、前記チャネル品質がしきい値品質よりも低く、前記チャネル変動性が変動性しきい値よりも大きいとき、前記ビーム掃引を実行する前記周期性を増大させ、前記チャネル品質が第2のしきい値品質よりも高く、前記チャネル変動性が第2の変動性しきい値よりも小さいとき、前記ビーム掃引を実行する前記周期性を減少させる、請求項10に記載の方法。

請求項12

前記UEの前記チャネル品質およびハンドオフ状態に基づく、前記周期性を調整するようにとの要求を受信することをさらに備え、ここにおいて、前記基地局は、前記基地局が第2の基地局に前記UEをハンドオフしているか、または前記第2の基地局からのハンドオフにおいて前記UEを受信しているとき、前記ビーム掃引を実行する前記周期性を増大させ、前記UEが前記第2の基地局にハンドオフ成功されたか、または前記第2の基地局からのハンドオフにおいて受信成功されたとき、前記ビーム掃引を実行する前記周期性を減少させる、請求項10に記載の方法。

請求項13

ワイヤレス通信のための装置であって、前記装置が基地局であり、ユーザ機器(UE)についてのチャネル品質がしきい値品質よりも低いと決定するための手段と、前記チャネル品質が前記しきい値品質よりも低いと決定されたかどうかに基づいて、前記UEとのビーム掃引を実行する周期性を調整するように1つまたは複数の基地局に指令するための手段とを備える、装置。

請求項14

前記チャネル品質に基づいて、前記UEがしきい値変動性よりも大きいチャネル変動性を有すると決定するための手段をさらに備え、ここにおいて、指令するための前記手段は、前記UEが前記しきい値変動性よりも大きいチャネル変動性を有すると決定されたとき、前記ビーム掃引を実行する周期性を増大させるように、前記UEをサービスする基地局に指令するように構成される、請求項13に記載の装置。

請求項15

前記チャネル品質に基づいて、前記UEが第1の基地局から第2の基地局にハンドオフされる必要があると決定するための手段をさらに備え、ここにおいて、指令するための前記手段が、前記第1の基地局から前記第2の基地局への前記UEの前記ハンドオフを容易にするために、前記UEとの前記ビーム掃引を実行する周期性を増大させるように、前記第1の基地局または前記第2の基地局のうちの少なくとも1つに指令するように構成される、請求項13に記載の装置。

請求項16

前記第1の基地局、前記第2の基地局、および前記UEからのビーム掃引結果を含むビーム掃引結果情報を、前記第1の基地局および前記第2の基地局から受信するための手段をさらに備え、ここにおいて、前記ハンドオフ決定が前記受信されたビーム結果情報に基づく、請求項15に記載の装置。

請求項17

前記UEの前記ハンドオフ決定が、前記第1の基地局から前記第2の基地局へのUEの前のハンドオフの知識にさらに基づく、請求項16に記載の装置。

請求項18

前記第1の基地局または前記第2の基地局のうちの前記少なくとも1つに指令するための前記手段は、前記第2の基地局が前記第1の基地局からの前記ハンドオフにおいて前記UEを受信する前に、前記ビーム掃引を実行する前記周期性を増大させるように、前記第1の基地局または前記第2の基地局のうちの前記少なくとも1つに指令するように構成される、請求項15に記載の装置。

請求項19

前記第1の基地局または前記第2の基地局のうちの前記少なくとも1つに指令するための前記手段は、前記第2の基地局が前記ハンドオフにおいて前記第1の基地局から前記UEを受信成功した後に、前記ビーム掃引を実行する前記周期性を減少させるように、前記第1の基地局または前記第2の基地局のうちの前記少なくとも1つに指令するように構成される、請求項15に記載の装置。

請求項20

前記UEが前記第2の基地局にハンドオフされる前に、前記第1の基地局に前記UEについてのデータパケットをフォワーディングするための手段と、前記UEが前記第1の基地局から前記第2の基地局にハンドオフされた後に、前記第2の基地局に前記UEについてのデータパケットをフォワーディングするための手段とをさらに備える、請求項15に記載の装置。

請求項21

前記ビーム掃引が、基地局または前記UEのうちの1つによる複数の異なる送信空間方向におけるビームの複数の送信、および前記基地局または前記UEのうちの前記1つの他方による複数の異なる走査空間方向における前記ビームの複数の走査である、請求項13に記載の装置。

請求項22

ワイヤレス通信のための装置であって、前記装置が基地局であり、ユーザ機器(UE)に関連するチャネル品質に基づいて、前記UEとのビーム掃引を実行するための周期性を調整するための手段と、前記ビーム掃引が、前記基地局または前記UEのうちの1つによる複数の異なる送信空間方向におけるビームの複数の送信、および前記基地局または前記UEのうちの前記1つの他方による複数の異なる走査空間方向における前記ビームの複数の走査である、前記調整された周期性において前記ビーム掃引を実行するための手段とを備える、装置。

請求項23

前記UEに関連する前記チャネル品質およびチャネル変動性に基づく、前記周期性を調整するようにとの要求を受信するための手段をさらに備え、ここにおいて、調整するための前記手段は、前記チャネル品質がしきい値品質よりも低く、前記チャネル変動性が変動性しきい値よりも大きいとき、前記ビーム掃引を実行する前記周期性を増大させ、前記チャネル品質が第2のしきい値品質よりも高く、前記チャネル変動性が第2の変動性しきい値よりも小さいとき、前記ビーム掃引を実行する前記周期性を減少させる、請求項22に記載の装置。

請求項24

前記UEの前記チャネル品質およびハンドオフ状態に基づく、前記周期性を調整するようにとの要求を受信するための手段をさらに備え、ここにおいて、調整するための前記手段は、前記基地局が第2の基地局に前記UEをハンドオフしているか、または前記第2の基地局からのハンドオフにおいて前記UEを受信しているとき、前記ビーム掃引を実行する前記周期性を増大させ、前記UEが前記第2の基地局にハンドオフ成功されたか、または前記第2の基地局からのハンドオフにおいて受信成功されたとき、前記ビーム掃引を実行する前記周期性を減少させる、請求項22に記載の装置。

技術分野

0001

関連出願の相互参照
[0001]本出願は、その全体が参照により本明細書に明確に組み込まれる、2014年6月18日に出願された「CHANNEL ENHANCEMENTINMILLIMETERWAVELENGTH WIRELESSACCESS NETWORKS」と題する米国特許出願第14/308,614号の利益を主張する。

0002

[0002]本開示は、一般に通信ステムに関し、より詳細には、ミリメートル波長ワイヤレスアクセスネットワークにおけるチャネル拡張に関する。

背景技術

0003

[0003]ワイヤレス通信システムは、電話ビデオ、データ、メッセージング、およびブロードキャストなど、様々な電気通信サービスを提供するために広く展開されている。典型的なワイヤレス通信システムは、利用可能なシステムリソース(たとえば、帯域幅送信電力)を共有することによって複数のユーザとの通信をサポートすることが可能な多元接続技術を採用し得る。そのような多元接続技術の例としては、符号分割多元接続(CDMA)システム、時分割多元接続TDMA)システム、周波数分割多元接続FDMA)システム、直交周波数分割多元接続(OFDMA)システム、シングルキャリア周波数分割多元接続(SC−FDMA)システム、および時分割同期符号分割多元接続(TD−SCDMA)システムがある。

0004

[0004]これらの多元接続技術は、異なるワイヤレスデバイス都市国家、地域、さらには地球規模で通信することを可能にする共通プロトコルを与えるために様々な電気通信規格において採用されている。新生の電気通信規格の一例はロングタームエボリューションLTE登録商標):Long Term Evolution)である。LTEは、第3世代パートナーシッププロジェクト(3GPP(登録商標):Third Generation Partnership Project)によって公表されたユニバーサルモバイルテレコミュニケーションズシステム(UMTS:Universal Mobile Telecommunications System)モバイル規格拡張のセットである。LTEは、スペクトル効率を改善すること、コストを下げること、サービスを改善すること、新しいスペクトルを利用すること、およびダウンリンク(DL)上ではOFDMAを使用し、アップリンク(UL)上ではSC−FDMAを使用し、多入力多出力MIMO)アンテナ技術を使用して他のオープン規格とより良く統合することによって、モバイルブロードバンドインターネットアクセスをより良くサポートするように設計されている。しかしながら、モバイルブロードバンドアクセスに対する需要が増加し続けるにつれて、2GHキャリア周波数においてまたはその近くで動作する、LTE技術のさらなる改善が必要である。好ましくは、これらの改善は、他の多元接続技術と、これらの技術を採用する電気通信規格とに適用可能であるべきである。

0005

[0005]モバイルブロードバンドに対する増加する需要を満たすための1つの方法は、LTEに加えてミリメートル波長スペクトルを利用することである。しかしながら、ミリメートル波長無線周波数帯域を使用する通信は、極めて高い経路損失および短いレンジを有する。極度の高い経路損失および短いレンジを補償するためにビームフォーミングが使用され得る。ビームフォーミング技法および方法が、連続的に変化するワイヤレス環境において、モバイルUEのためのシームレスで連続的なカバレージを与えるために現在必要とされている。

0006

[0006]本開示の一態様では、方法、コンピュータプログラム製品、および装置が提供される。本装置基地局であり得る。基地局は、ユーザ機器(UE)についてのチャネル品質がしきい値品質よりも低いと決定する。さらに、基地局は、チャネル品質がしきい値品質よりも低いと決定されたかどうかに基づいて、UEとのビーム掃引(beam sweep)を実行する周期性を調整するように1つまたは複数の基地局に指令する。

0007

[0007]本開示の一態様では、方法、コンピュータプログラム製品、および装置が提供される。本装置は基地局であり得る。基地局は、UEに関連するチャネル品質に基づいて、UEとのビーム掃引を実行するための周期性を調整する。ビーム掃引は、基地局またはUEのうちの1つによる複数の異なる送信空間方向におけるビームの複数の送信、および基地局またはUEのうちの1つの他方による複数の異なる走査空間方向におけるビームの複数の走査である。基地局は、調整された周期性においてビーム掃引を実行する。

0008

[0008]本装置は、メモリと、メモリに結合された少なくとも1つのプロセッサとを含み得る。少なくとも1つのプロセッサは、基地局の上述のステップを実行するように構成され得る。コンピュータ可読媒体に記憶されたコンピュータプログラム製品は、少なくとも1つのプロセッサ上で実行されたとき、少なくとも1つのプロセッサに、基地局の上述のステップを実行させ得るコードを備える。

図面の簡単な説明

0009

[0009]ネットワークアーキテクチャの一例を示す図。
[0010]アクセスネットワークの一例を示す図。
[0011]LTEにおけるDLフレーム構造の一例を示す図。
[0012]LTEにおけるULフレーム構造の一例を示す図。
[0013]ユーザプレーンおよび制御プレーンのための無線プロトコルアーキテクチャの一例を示す図。
[0014]アクセスネットワーク中の発展型ノードBおよびユーザ機器の一例を示す図。
[0015]ミリメートル波長ワイヤレスアクセスネットワークにおけるチャネル拡張に関連する例示的な方法を示すための図。
[0016]ワイヤレス通信の第1の方法のフローチャート
[0017]ワイヤレス通信の第2の方法のフローチャート。
[0018]第1の例示的な装置中の異なるモジュール/手段/構成要素間のデータフローを示すデータフロー図
[0019]処理システムを採用する第1の装置のためのハードウェア実装形態の一例を示す図。
[0020]第2の例示的な装置中の異なるモジュール/手段/構成要素間のデータフローを示すデータフロー図。
[0021]処理システムを採用する第2の装置のためのハードウェア実装形態の一例を示す図。

実施例

0010

[0022]添付の図面に関して以下に記載する発明を実施するための形態は、様々な構成を説明するものであり、本明細書で説明する概念が実施され得る構成のみを表すものではない。発明を実施するための形態は、様々な概念の完全な理解を与えるための具体的な詳細を含む。ただし、これらの概念はこれらの具体的な詳細なしに実施され得ることが当業者には明らかであろう。いくつかの例では、そのような概念を不明瞭にしないように、よく知られている構造および構成要素をブロック図の形式で示す。

0011

[0023]次に、様々な装置および方法に関して電気通信システムのいくつかの態様を提示する。これらの装置および方法を、以下の発明を実施するための形態において説明し、(「要素」と総称される)様々なブロック、モジュール、構成要素、回路、ステップ、プロセス、アルゴリズムなどによって添付の図面に示す。これらの要素は、電子ハードウェア、コンピュータソフトウェア、またはそれらの任意の組合せを使用して実装され得る。そのような要素がハードウェアとして実装されるか、ソフトウェアとして実装されるかは、特定の適用例および全体的なシステムに課せられる設計制約に依存する。

0012

[0024]例として、要素、または要素の任意の部分、または要素の任意の組合せは、1つまたは複数のプロセッサを含む「処理システム」を用いて実装され得る。プロセッサの例としては、マイクロプロセッサマイクロコントローラデジタル信号プロセッサ(DSP)、フィールドプログラマブルゲートアレイFPGA)、プログラマブル論理デバイスPLD)、ステートマシンゲート論理、個別ハードウェア回路、および本開示全体にわたって説明する様々な機能を実行するように構成された他の好適なハードウェアがある。処理システム内の1つまたは複数のプロセッサはソフトウェアを実行し得る。ソフトウェアは、ソフトウェア、ファームウェアミドルウェアマイクロコードハードウェア記述言語などの名称にかかわらず、命令命令セット、コード、コードセグメントプログラムコードプログラムサブプログラムソフトウェアモジュールアプリケーションソフトウェアアプリケーションソフトウェアパッケージルーチンサブルーチンオブジェクト実行ファイル実行スレッドプロシージャ関数などを意味すると広く解釈されたい。

0013

[0025]したがって、1つまたは複数の例示的な実施形態では、説明する機能は、ハードウェア、ソフトウェア、ファームウェア、またはそれらの任意の組合せで実装され得る。ソフトウェアで実装される場合、機能は、コンピュータ可読媒体上に記憶されるか、あるいはコンピュータ可読媒体上に1つまたは複数の命令またはコードとして符号化され得る。コンピュータ可読媒体はコンピュータ記憶媒体を含む。記憶媒体は、コンピュータによってアクセスされ得る任意の利用可能な媒体であり得る。限定ではなく例として、そのようなコンピュータ可読媒体は、ランダムアクセスメモリ(RAM)、読取り専用メモリ(ROM)、電気的消去可能プログラマブルROM(EEPROM(登録商標))、コンパクトディスクROM(CD−ROM)または他の光ディスクストレージ磁気ディスクストレージまたは他の磁気ストレージデバイス、あるいは命令またはデータ構造の形態の所望のプログラムコードを搬送または記憶するために使用され得、コンピュータによってアクセスされ得る、任意の他の媒体を備えることができる。上記の組合せもコンピュータ可読媒体の範囲内に含まれるべきである。

0014

[0026]図1は、ネットワークアーキテクチャ100を示す図である。ネットワークアーキテクチャ100は、1つまたは複数のユーザ機器(UE)102と、発展型UMTS地上波無線アクセスネットワーク(E−UTRAN)104と、発展型パケットコア(EPC)110とを含むLTEネットワークアーキテクチャを含む。ネットワークアーキテクチャ100は、mmW基地局130と1つまたは複数のUE102とを含むミリメートル波長(mmW)ネットワークをさらに含む。LTEネットワークアーキテクチャは発展型パケットシステムEPS:Evolved Packet System)と呼ばれることがある。EPSは、1つまたは複数のUE102と、E−UTRAN104と、EPC110と、事業者インターネットプロトコル(IP)サービス122とを含み得る。EPSは他のアクセスネットワークと相互接続することができるが、簡単のために、それらのエンティティインターフェースは図示されていない。図示のように、EPSはパケット交換サービスを提供するが、当業者なら容易に諒解するように、本開示全体にわたって提示する様々な概念は、回線交換サービスを提供するネットワークに拡張され得る。

0015

[0027]E−UTRANは、発展型ノードB(eNB)106と他のeNB108とを含み、マルチキャスト協調エンティティ(MCE:Multicast Coordination Entity)128を含み得る。eNB106は、UE102に対してユーザプレーンプロトコル終端と制御プレーンプロトコル終端とを与える。eNB106は、バックホール(たとえば、X2インターフェース)を介して他のeNB108に接続され得る。MCE128は発展型マルチメディアブロードキャストマルチキャストサービス(MBMS)(eMBMS)のために時間/周波数無線リソース割り振り、eMBMSのために無線構成(たとえば、変調およびコーディング方式(MCS:modulation and coding scheme))を決定する。MCE128は別個のエンティティ、またはeNB106の一部であり得る。eNB106は、基地局、ノードB、アクセスポイント基地トランシーバ局無線基地局無線トランシーバトランシーバ機能、基本サービスセットBSS:basicservice set)、拡張サービスセット(ESS:extended service set)、または何らかの他の好適な用語で呼ばれることもある。eNB106は、UE102にEPC110へのアクセスポイントを与える。UE102の例としては、セルラーフォンスマートフォンセッション開始プロトコルSIP:session initiation protocol)電話、ラップトップ携帯情報端末(PDA)、衛星無線全地球測位システムマルチメディアデバイス、ビデオデバイス、デジタルオーディオプレーヤ(たとえば、MP3プレーヤ)、カメラゲーム機タブレット、または任意の他の同様の機能デバイスがある。UE102は、当業者によって、移動局加入者局モバイルユニット加入者ユニットワイヤレスユニットリモートユニットモバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイスリモートデバイスモバイル加入者局アクセス端末モバイル端末ワイヤレス端末リモート端末ハンドセットユーザエージェントモバイルクライアントクライアント、または何らかの他の好適な用語で呼ばれることもある。

0016

[0028]eNB106はEPC110に接続される。EPC110は、モビリティ管理エンティティ(MME:Mobility Management Entity)112と、ホーム加入者サーバ(HSS)120と、他のMME114と、サービングゲートウェイ116と、マルチメディアブロードキャストマルチキャストサービス(MBMS)ゲートウェイ124と、ブロードキャストマルチキャストサービスセンタ(BM−SC:Broadcast Multicast Service Center)126と、パケットデータネットワーク(PDN:Packet Data Network)ゲートウェイ118とを含み得る。MME112は、UE102とEPC110との間のシグナリングを処理する制御ノードである。概して、MME112はベアラおよび接続管理を行う。すべてのユーザIPパケットはサービングゲートウェイ116を通して転送され、サービングゲートウェイ116自体はPDNゲートウェイ118に接続される。PDNゲートウェイ118はUEのIPアドレス割振りならびに他の機能を与える。PDNゲートウェイ118およびBM−SC126はIPサービス122に接続される。IPサービス122は、インターネットイントラネットIPマルチメディアサブシステム(IMS:IP Multimedia Subsystem)、PSストリーミングサービス(PSS:PS Streaming Service)、および/または他のIPサービスを含み得る。BM−SC126は、MBMSユーザサービスプロビジョニングおよび配信のための機能を与え得る。BM−SC126は、コンテンツプロバイダMBMS送信のためのエントリポイントとして働き得、PLMN内のMBMSベアラサービス許可し、開始するために使用され得、MBMS送信をスケジュールし、配信するために使用され得る。MBMSゲートウェイ124は、特定のサービスをブロードキャストするマルチキャストブロードキャスト単一周波数ネットワーク(MBSFNエリアに属するeNB(たとえば、106、108)にMBMSトラフィックを配信するために使用され得、セッション管理(開始/停止)と、eMBMS関係の課金情報収集することとを担当し得る。

0017

[0029]図2は、LTEネットワークアーキテクチャにおけるアクセスネットワーク200の一例を示す図である。この例では、アクセスネットワーク200は、いくつかのセルラー領域(セル)202に分割される。1つまたは複数のより低い電力クラスのeNB208は、セル202のうちの1つまたは複数と重複するセルラー領域210を有し得る。より低い電力クラスのeNB208は、フェムトセル(たとえば、ホームeNB(HeNB:home eNB))、ピコセルマイクロセル、またはリモートラジオヘッドRRH:remote radio head)であり得る。1つまたは複数のmmW基地局212は、セル202のうちの1つまたは複数と重複するカバレージ領域214を有し得る。mmW基地局212は、UE206およびマクロeNB204と通信し得る。マクロeNB204は各々、それぞれのセル202に割り当てられ、セル202中のすべてのUE206にEPC110へのアクセスポイントを与えるように構成される。アクセスネットワーク200のこの例には集中コントローラはないが、代替構成では集中コントローラが使用され得る。eNB204は、無線ベアラ制御、承認制御モビリティ制御スケジューリングセキュリティ、およびサービングゲートウェイ116への接続性を含む、すべての無線関係機能を担当する。eNBは1つまたは複数の(たとえば、3つの)(セクタとも呼ばれる)セルをサポートし得る。「セル」という用語は、eNBの最も小さいカバレージエリアを指すことがあり、および/またはeNBサブシステムサービングは特定のカバレージエリアである。さらに、「eNB」、「基地局」、および「セル」という用語は、本明細書では互換的に使用され得る。

0018

[0030]アクセスネットワーク200によって採用される変調および多元接続方式は、展開されている特定の電気通信規格に応じて異なり得る。LTE適用例では、周波数分割複信FDD)と時分割複信(TDD)の両方をサポートするために、OFDMがDL上で使用され、SC−FDMAがUL上で使用される。当業者なら以下の詳細な説明から容易に諒解するように、本明細書で提示する様々な概念は、LTE適用例に好適である。ただし、これらの概念は、他の変調および多元接続技法を採用する他の電気通信規格に容易に拡張され得る。例として、これらの概念は、エボリューションデータオプティマイズド(EVDO:Evolution-Data Optimized)またはウルトラモバイルブロードバンド(UMB:Ultra Mobile Broadband)に拡張され得る。EV−DOおよびUMBは、CDMA2000規格ファミリーの一部として第3世代パートナーシッププロジェクト2(3GPP2:3rd Generation Partnership Project 2)によって公表されたエアインターフェース規格であり、移動局にブロードバンドインターネットアクセスを提供するためにCDMAを採用する。これらの概念はまた、広帯域CDMA(W−CDMA(登録商標))とTD−SCDMAなどのCDMAの他の変形態とを採用するユニバーサル地上波無線アクセス(UTRA:Universal Terrestrial Radio Access)、TDMAを採用するモバイル通信グローバルシステム(GSM(登録商標):Global System for Mobile Communications)、ならびに、OFDMAを採用する、発展型UTRA(E−UTRA:Evolved UTRA)、IEEE802.11(Wi−Fi(登録商標))、IEEE802.16(WiMAX(登録商標))、IEEE802.20、およびFlash−OFDMに拡張され得る。UTRA、E−UTRA、UMTS、LTEおよびGSMは、3GPP団体からの文書に記載されている。CDMA2000およびUMBは、3GPP2団体からの文書に記載されている。採用される実際のワイヤレス通信規格および多元接続技術は、特定の適用例およびシステムに課せられる全体的な設計制約に依存することになる。

0019

[0031]eNB204は、MIMO技術をサポートする複数のアンテナを有し得る。MIMO技術の使用により、eNB204は、空間多重化と、ビームフォーミングと、送信ダイバーシティとをサポートするために空間領域を活用することが可能になる。空間多重化は、データの異なるストリームを同じ周波数上で同時に送信するために使用され得る。データストリームは、データレートを増加させるために単一のUE206に送信されるか、または全体的なシステム容量を増加させるために複数のUE206に送信され得る。これは、各データストリームを空間的にプリコーディングし(すなわち、振幅および位相スケーリングを適用し)、次いでDL上で複数の送信アンテナを通して空間的にプリコーディングされた各ストリームを送信することによって達成される。空間的にプリコーディングされたデータストリームは、異なる空間シグネチャとともに(1つまたは複数の)UE206に到着し、これにより、(1つまたは複数の)UE206の各々がそのUE206に宛てられた1つまたは複数のデータストリームを復元することが可能になる。UL上で、各UE206は、空間的にプリコーディングされたデータストリームを送信し、これにより、eNB204は、空間的にプリコーディングされた各データストリームのソース識別することが可能になる。

0020

[0032]空間多重化は、概して、チャネル状態が良好であるときに使用される。チャネル状態があまり良好でないときは、送信エネルギーを1つまたは複数の方向に集中させるためにビームフォーミングが使用され得る。これは、複数のアンテナを通して送信するためのデータを空間的にプリコーディングすることによって達成され得る。セルのエッジにおいて良好なカバレージを達成するために、送信ダイバーシティと組み合わせてシングルストリームビームフォーミング送信が使用され得る。

0021

[0033]以下の詳細な説明では、DL上でOFDMをサポートするMIMOシステムを参照しながらアクセスネットワークの様々な態様について説明する。OFDMは、OFDMシンボル内のいくつかのサブキャリアを介してデータを変調するスペクトル拡散技法である。サブキャリアは正確な周波数で離間される。離間は、受信機がサブキャリアからデータを復元することを可能にする「直交性」を与える。時間領域では、OFDMシンボル間干渉をなくすために、ガードインターバル(たとえば、サイクリックプレフィックス)が各OFDMシンボルに追加され得る。ULは、高いピーク対平均電力比PAPR)を補償するために、SC−FDMAをDFT拡散OFDM信号の形態で使用し得る。

0022

[0034]図3は、LTEにおけるDLフレーム構造の一例を示す図300である。フレーム(10ms)は、等しいサイズの10個のサブフレームに分割され得る。各サブフレームは、2つの連続するタイムスロットを含み得る。2つのタイムスロットを表すためにリソースグリッドが使用され得、各タイムスロットはリソースブロックを含む。リソースグリッドは複数のリソース要素に分割される。LTEでは、ノーマルサイクリックプレフィックスの場合、リソースブロックは、合計84個のリソース要素について、周波数領域中に12個の連続するサブキャリアを含んでおり、時間領域中に7個の連続するOFDMシンボルを含んでいる。拡張サイクリックプレフィックスの場合、リソースブロックは、合計72個のリソース要素について、周波数領域中に12個の連続するサブキャリアを含んでおり、時間領域中に6個の連続するOFDMシンボルを含んでいる。R302、304として示されるリソース要素のうちのいくつかは、DL基準信号(DL−RS:DL reference signal)を含む。DL−RSは、(共通RSと呼ばれることもある)セル固有RS(CRS:Cell-specific RS)302と、UE固有RS(UE−RS:UE-specific RS)304とを含む。UE−RS304は、対応する物理DL共有チャネルPDSCH:physical DL shared channel)がマッピングされるリソースブロック上のみで送信される。各リソース要素によって搬送されるビット数変調方式に依存する。したがって、UEが受信するリソースブロックが多いほど、また変調方式が高いほど、UEのデータレートは高くなる。

0023

[0035]図4は、LTEにおけるULフレーム構造の一例を示す図400である。ULのための利用可能なリソースブロックは、データセクション制御セクションとに区分され得る。制御セクションは、システム帯域幅の2つのエッジにおいて形成され得、構成可能なサイズを有し得る。制御セクション内のリソースブロックは、制御情報を送信するためにUEに割り当てられ得る。データセクションは、制御セクション中に含まれないすべてのリソースブロックを含み得る。ULフレーム構造は、単一のUEがデータセクション中の連続サブキャリアのすべてを割り当てられることを可能にし得る、連続サブキャリアを含むデータセクションを生じる。

0024

[0036]UEは、eNBに制御情報を送信するために、制御セクション中のリソースブロック410a、410bを割り当てられ得る。UEは、eNBにデータを送信するために、データセクション中のリソースブロック420a、420bをも割り当てられ得る。UEは、制御セクション中の割り当てられたリソースブロック上の物理UL制御チャネル(PUCCH:physical UL control channel)中で制御情報を送信し得る。UEは、データセクション中の割り当てられたリソースブロック上の物理UL共有チャネル(PUSCH:physical UL shared channel)中でデータのみまたはデータと制御情報の両方を送信し得る。UL送信は、サブフレームの両方のスロットにわたり得、周波数上でホッピングし得る。

0025

[0037]初期システムアクセスを実行し、物理ランダムアクセスチャネル(PRACH:physical random access channel)430中でUL同期を達成するために、リソースブロックのセットが使用され得る。PRACH430は、ランダムシーケンスを搬送し、いかなるULデータ/シグナリングをも搬送することができない。各ランダムアクセスプリアンブルは、6つの連続するリソースブロックに対応する帯域幅を占有する。開始周波数はネットワークによって指定される。すなわち、ランダムアクセスプリアンブルの送信は、ある時間リソースおよび周波数リソースに制限される。周波数ホッピングはPRACHにはない。PRACH試みは単一のサブフレーム(1ms)中でまたは少数の連続サブフレームのシーケンス中で搬送され、UEは、フレーム(10ms)ごとに単一のPRACH試みのみを行うことができる。

0026

[0038]図5は、LTEにおけるユーザプレーンおよび制御プレーンのための無線プロトコルアーキテクチャの一例を示す図500である。UEおよびeNBのための無線プロトコルアーキテクチャは、3つのレイヤ、すなわち、レイヤ1、レイヤ2、およびレイヤ3とともに示されている。レイヤ1(L1レイヤ)は最下位レイヤであり、様々な物理レイヤ信号処理機能を実装する。L1レイヤを本明細書では物理レイヤ506と呼ぶ。レイヤ2(L2レイヤ)508は、物理レイヤ506の上にあり、物理レイヤ506を介したUEとeNBとの間のリンクを担当する。

0027

[0039]ユーザプレーンでは、L2レイヤ508は、ネットワーク側のeNBにおいて終端される、メディアアクセス制御(MAC:media access control)サブレイヤ510と、無線リンク制御(RLC:radio link control)サブレイヤ512と、パケットデータコバージェンスプトコル(PDCP:packet data convergence protocol)514サブレイヤとを含む。図示されていないが、UEは、ネットワーク側のPDNゲートウェイ118において終端されるネットワークレイヤ(たとえば、IPレイヤ)と、接続の他端(たとえば、ファーエンドUE、サーバなど)において終端されるアプリケーションレイヤとを含めてL2レイヤ508の上にいくつかの上位レイヤを有し得る。

0028

[0040]PDCPサブレイヤ514は、異なる無線ベアラと論理チャネルとの間の多重化を行う。PDCPサブレイヤ514はまた、無線送信オーバーヘッドを低減するための上位レイヤデータパケットのヘッダ圧縮と、データパケットを暗号化することによるセキュリティと、UEに対するeNB間のハンドオーバサポートとを与える。RLCサブレイヤ512は、上位レイヤデータパケットのセグメンテーションおよびリアセンブリと、紛失データパケットの再送信と、ハイブリッド自動再送要求(HARQ:hybrid automatic repeat request)による、順が狂った受信を補正するためのデータパケットの並べ替えとを行う。MACサブレイヤ510は、論理チャネルとトランスポートチャネルとの間の多重化を行う。MACサブレイヤ510はまた、UEの間で1つのセル内の様々な無線リソース(たとえば、リソースブロック)を割り振ることを担当する。MACサブレイヤ510はまた、HARQ動作を担当する。

0029

[0041]制御プレーンでは、UEおよびeNBのための無線プロトコルアーキテクチャは、制御プレーンのためのヘッダ圧縮機能がないことを除いて、物理レイヤ506およびL2レイヤ508について実質的に同じである。制御プレーンはまた、レイヤ3(L3レイヤ)中に無線リソース制御(RRC)サブレイヤ516を含む。RRCサブレイヤ516は、無線リソース(たとえば、無線ベアラ)を取得することと、eNBとUEとの間のRRCシグナリングを使用して下位レイヤを構成することとを担当する。

0030

[0042]図6は、アクセスネットワーク中でUE650と通信している基地局610のブロック図である。基地局610は、eNBまたはmmW基地局であり得る。DLでは、コアネットワークからの上位レイヤパケットが、コントローラ/プロセッサ675に与えられる。コントローラ/プロセッサ675は、L2レイヤの機能を実装する。DLでは、コントローラ/プロセッサ675は、様々な優先度メトリックに基づいて、ヘッダ圧縮と、暗号化と、パケットのセグメンテーションおよび並べ替えと、論理チャネルとトランスポートチャネルとの間の多重化と、UE650への無線リソース割振りとを行う。コントローラ/プロセッサ675はまた、HARQ動作と、紛失パケットの再送信と、UE650へのシグナリングとを担当する。

0031

[0043]送信(TX)プロセッサ616は、L1レイヤ(すなわち、物理レイヤ)のための様々な信号処理機能を実装する。信号処理機能は、UE650における前方誤り訂正(FEC:forward error correction)と、様々な変調方式(たとえば、2位相シフトキーイング(BPSK:binary phase-shift keying)、4位相シフトキーイング(QPSK:quadrature phase-shift keying)、M位相シフトキーイング(M−PSK:M-phase-shift keying)、多値直交振幅変調(M−QAM:M-quadrature amplitude modulation))に基づいた信号コンスタレーションへのマッピングとを容易にするために、コーディングインターリービングとを含む。コーディングされ、変調されたシンボルは、次いで並列ストリームに分割される。各ストリームは、次いで、時間領域OFDMシンボルストリームを搬送する物理チャネルを生成するために、OFDMサブキャリアにマッピングされ、時間領域および/または周波数領域中で基準信号(たとえば、パイロット)と多重化され、次いで逆高速フーリエ変換IFFT)を使用して互いに合成される。OFDMストリームは、複数の空間ストリームを生成するために空間的にプリコーディングされる。チャネル推定器674からのチャネル推定値は、コーディングおよび変調方式を決定するために、ならびに空間処理のために使用され得る。チャネル推定値は、UE650によって送信される基準信号および/またはチャネル状態フィードバックから導出され得る。次いで、各空間ストリームは、別個の送信機618TXを介して異なるアンテナ620に与えられ得る。各送信機618TXは、送信のためにそれぞれの空間ストリームでRFキャリアを変調し得る。

0032

[0044]UE650において、各受信機654RXは、それのそれぞれのアンテナ652を通して信号を受信する。各受信機654RXは、RFキャリア上に変調された情報を復元し、受信機(RX)プロセッサ656に情報を与える。RXプロセッサ656は、L1レイヤの様々な信号処理機能を実装する。RXプロセッサ656は、UE650に宛てられた任意の空間ストリームを復元するために、情報に対して空間処理を実行し得る。複数の空間ストリームがUE650に宛てられた場合、それらはRXプロセッサ656によって単一のOFDMシンボルストリームに合成され得る。RXプロセッサ656は、次いで高速フーリエ変換FFT)を使用してOFDMシンボルストリームを時間領域から周波数領域に変換する。周波数領域信号は、OFDM信号のサブキャリアごとに別々のOFDMシンボルストリームを備える。各サブキャリア上のシンボルと基準信号とは、基地局610によって送信される、可能性が最も高い信号コンスタレーションポイントを決定することによって復元され、復調される。これらの軟判定は、チャネル推定器658によって計算されるチャネル推定値に基づき得る。軟判定は、次いで、物理チャネル上で基地局610によって最初に送信されたデータと制御信号とを復元するために復号され、デインターリーブされる。データおよび制御信号は、次いで、コントローラ/プロセッサ659に与えられる。

0033

[0045]コントローラ/プロセッサ659はL2レイヤを実装する。コントローラ/プロセッサは、プログラムコードとデータとを記憶するメモリ660に関連付けられ得る。メモリ660はコンピュータ可読媒体と呼ばれることがある。ULでは、コントローラ/プロセッサ659は、コアネットワークからの上位レイヤパケットを復元するために、トランスポートチャネルと論理チャネルとの間の多重分離と、パケットリアセンブリと、復号(decipher)と、ヘッダ復元(decompression)と、制御信号処理とを行う。上位レイヤパケットは、次いで、L2レイヤの上のすべてのプロトコルレイヤを表すデータシンク662に与えられる。また、様々な制御信号がL3処理のためにデータシンク662に与えられ得る。コントローラ/プロセッサ659はまた、HARQ動作をサポートするために肯定応答ACK)および/または否定応答(NACK)プロトコルを使用した誤り検出を担当する。

0034

[0046]ULでは、データソース667は、コントローラ/プロセッサ659に上位レイヤパケットを与えるために使用される。データソース667は、L2レイヤの上のすべてのプロトコルレイヤを表す。基地局610によるDL送信に関して説明した機能と同様に、コントローラ/プロセッサ659は、ヘッダ圧縮と、暗号化と、パケットのセグメンテーションおよび並べ替えと、基地局610による無線リソース割振りに基づく論理チャネルとトランスポートチャネルとの間の多重化とを行うことによって、ユーザプレーンおよび制御プレーンのためのL2レイヤを実装する。コントローラ/プロセッサ659はまた、HARQ動作と、紛失パケットの再送信と、基地局610へのシグナリングとを担当する。

0035

[0047]基地局610によって送信される基準信号またはフィードバックからの、チャネル推定器658によって導出されるチャネル推定値は、適切なコーディングおよび変調方式を選択することと、空間処理を容易にすることとを行うために、TXプロセッサ668によって使用され得る。TXプロセッサ668によって生成される空間ストリームは、別個の送信機654TXを介して異なるアンテナ652に与えられ得る。各送信機654TXは、送信のためにそれぞれの空間ストリームでRFキャリアを変調し得る。

0036

[0048]UL送信は、UE650における受信機機能に関して説明した方法と同様の方法で基地局610において処理される。各受信機618RXは、それのそれぞれのアンテナ620を通して信号を受信する。各受信機618RXは、RFキャリア上に変調された情報を復元し、その情報をRXプロセッサ670に与える。RXプロセッサ670はL1レイヤを実装し得る。

0037

[0049]コントローラ/プロセッサ675はL2レイヤを実装する。コントローラ/プロセッサ675は、プログラムコードとデータとを記憶するメモリ676に関連付けられ得る。メモリ676はコンピュータ可読媒体と呼ばれることがある。ULでは、コントロール/プロセッサ675は、UE650からの上位レイヤパケットを復元するために、トランスポートチャネルと論理チャネルとの間の多重分離と、パケットリアセンブリと、復号と、ヘッダ復元と、制御信号処理とを行う。コントローラ/プロセッサ675からの上位レイヤパケットは、コアネットワークに与えられ得る。コントローラ/プロセッサ675はまた、HARQ動作をサポートするためにACKおよび/またはNACKプロトコルを使用した誤り検出を担当する。

0038

[0050]基地局610がmmW基地局である場合、基地局610は、ビームフォーミングを実行するためのハードウェアを含み得る。さらに、UE650は、ビームフォーミングを実行するためのハードウェアを含み得る。

0039

[0051]極高周波EHF)は、電磁スペクトルにおけるRFの一部である。EHFは、30GHz〜300GHzのレンジと、1ミリメートルから10ミリメートルの間の波長とを有する。帯域における電波は、ミリメートル波(mmW)と呼ばれることがある。ニアmmW(Near mmW)は、100ミリメートルの波長をもつ、3GHzの周波数まで及び得る(超高周波SHF)帯域は、3GHzから30GHzの間に及び、センチメートル波とも呼ばれる)。本明細書の開示はmmWを参照するが、本開示は、ニアmmWにも適用されることを理解されたい。さらに、本明細書の開示はmmW基地局に言及するが、本開示は、ニアmmW基地局にも適用されることを理解されたい。ミリメートル波長RFチャネルは、極めて高い経路損失および短いレンジを有する。ミリメートル波長スペクトルにおける有用な通信ネットワーク構築するために、極度の高い経路損失を補償するためにビームフォーミング技法が使用され得る。ビームフォーミング技法は、RFビームが狭い方向においてより遠くに伝搬することを可能にするために、RFエネルギーをその方向に集束させる。ビームフォーミング技法を使用して、ミリメートル波長スペクトルにおける非見通し線NLOS)RF通信は、UEに達するために、ビームの反射および/または回折に依拠し得る。UEの移動、または環境(たとえば、障害湿度、雨など)の変化のいずれかが原因で、その方向が遮断された場合、ビームは、UEに到達できないことがある。したがって、UEが連続的でシームレスなカバレージを有することを保証するために、できるだけ多くの異なる方向におけるマルチプルなビームが利用可能であり得る。

0040

[0052]連続的でシームレスなカバレージを与えるために、UEの近傍にあるいくつかのmmW基地局の各々は、UEと基地局との間のチャネルを測定し、UEに到達するために基地局が送信することができる最良ビーム方向を見つけ得る。さらに、基地局の各々は、どのmmW基地局が最良のビーム方向を有するかを決定するために、他のmmW基地局と協調し得る。さらに、基地局の各々は、最良のビームの激しい減衰を引き起こし得る突然の変化の場合に、2次ビームを計画し得る。

0041

[0053]各UEについて、UEの近傍にあるmmW基地局は、そのUEのためのアクティブセットを形成し得る。アクティブセットのためのアンカーノードが、アクティブセット中のmmW基地局を協調させるために選定され得る。アンカーノードは基地局であり、mmW基地局であることもmmW基地局でないこともある。アンカーノードは、UEをサービスするために、アクティブセット中の特定のmmW基地局からの特定の方向を選定し得る。その特定の基地局からのその特定の方向におけるビームが遮断された(または激しく減衰した)場合、アンカーノードは、UEをカバーされた状態に保つために、別のビームを選定し得る。アクティブセットは、UEのモビリティに基づいて発展または適応し得る。アンカーノードは、UEが、いくつかのmmW基地局に近づき、他のmmW基地局から遠ざかるにつれて、アクティブセットにおよびそれからmmW基地局を追加および/または削除し得る。さらに、アクティブセットは、ハンドオフを実行するためにアンカーノードがmmW基地局を協調させることを可能にし得る。アクティブセットは、UEをカバーすることができる複数の基地局からのビームを探索し、追跡し得る。最良のビームを選択すること、急激な激しい減衰の場合にビームを変更すること、ハンドオフを実行することなどのために、協調がアクティブセット中のノード間で実行され得る。

0042

[0054]連続的に変化するワイヤレス環境において、モバイルUEのためのシームレスで連続的なカバレージを与えるためのビームフォーミング技法および方法が、以下で与えられる。

0043

[0055]図7は、ミリメートル波長ワイヤレスアクセスネットワークにおけるチャネル拡張に関連する例示的な方法を示すための図700である。図7を参照すると、UE710は、範囲内のmmW基地局とのビーム掃引を実行する。ビーム掃引は、図750および/または図760に示されているように実行され得る。図750を参照すると、ビーム掃引において、mmW基地局720は、複数の異なる空間方向においてm個のビームを送信する。UE710は、n個の異なる受信空間方向においてmmW基地局720からのビーム送信リッスン/走査する。ビーム送信をリッスン/走査するとき、UE710は、n個の異なる受信空間方向の各々において、mmW基地局720からのビーム掃引送信をm回(合計m*n回の走査)リッスン/走査し得る。図760を参照すると、ビーム掃引において、UE710は、複数の異なる空間方向においてn個のビームを送信する。mmW基地局720は、m個の異なる受信空間方向においてUE710からのビーム送信をリッスン/走査する。ビーム送信をリッスン/走査するとき、mmW基地局720は、m個の異なる受信空間方向の各々において、UE710からのビーム掃引送信をn回(合計m*n回の走査)リッスン/走査し得る。

0044

[0056]実行されたビーム掃引に基づいて、UEおよび/またはmmW基地局は、実行されたビーム掃引に関連するチャネル品質を決定する。たとえば、図750中のビーム掃引プロセスが実行された場合、UE710は、実行されたビーム掃引に関連するチャネル品質を決定し得る。しかしながら、図760中のビーム掃引プロセスが実行された場合、mmW基地局720は、実行されたビーム掃引に関連するチャネル品質を決定し得る。UE710が、実行されたビーム掃引に関連するチャネル品質を決定した場合、UE710は、アンカーノード702に(ビーム掃引結果情報とも呼ばれる)チャネル品質情報を送る。アンカーノード702は、mmW基地局であることもmmW基地局でないこともある。UE710は、アンカーノード702が範囲内にある場合、アンカーノード702にビーム掃引結果情報を直接送り得、またはアンカーノード702にビーム掃引結果情報をフォワーディングするサービングmmW基地局にビーム掃引結果情報を送り得る。mmW基地局720が、実行されたビーム掃引に関連するチャネル品質を決定した場合、mmW基地局720は、アンカーノード702にビーム掃引結果情報を送る。

0045

[0057]アンカーノード702は、mmW基地局704、706、および708から、ビーム掃引結果情報中のチャネル品質情報を受信する。mmW基地局704、706、および708からのビーム掃引結果情報に基づいて、アンカーノード702は、mmW基地局がUE710(710’および710”)とのビーム掃引を実行する周期性を調整する(714、716、718)ように、mmW基地局704、706、および708のうちの1つまたは複数に指令し得る。より大きいビーム掃引周期性の場合、UE送信/受信空間方向およびmmW基地局送信/受信空間方向は、UEとmmW基地局との間の通信を改善するために迅速に調整され得る。より低いビーム掃引周期性の場合、UEおよびmmW基地局は、ビーム掃引に対してより少ない電力を消耗することによって電力を節約するが、UEとmmW基地局との間の通信が、あまり望ましくない送信/受信空間方向を使用する可能性が高くなる結果として、より大きい減衰を受け得ることになる。

0046

[0058]図7に関して、アンカーノード702は、mmW基地局704とUE710’との間のビーム掃引に関連するチャネル品質情報を受信する。アンカーノード702が、UE710’およびmmW基地局704についてのチャネル品質が第1のしきい値品質よりも低いと決定した場合、アンカーノード702は、mmW基地局704がUE710’とのビーム掃引を実行する周期性を増大させるようにmmW基地局704に指令し得る。アンカーノード702が、UE710’およびmmW基地局704についてのチャネル品質が第1のしきい値品質よりも高いが、第2のしきい値品質よりも低いと決定した場合、アンカーノード702は、mmW基地局704がUE710’とのビーム掃引を実行する周期性を調整するようにmmW基地局704に要求しないことがある。しかしながら、アンカーノード702が、UE710’およびmmW基地局704についてのチャネル品質が第2のしきい値品質よりも高いと決定した場合、アンカーノード702は、mmW基地局704がUE710’とのビーム掃引を実行する周期性を減少させるようにmmW基地局704に指令し得る。第1のしきい値品質は、それを下回るとカバレージがシームレスで連続的でないことがあるチャネル品質であり得る。第1のしきい値品質よりも高い第2のしきい値品質は、それを上回るとシームレスで連続的なカバレージが著しく改善されないことがあるチャネル品質であり得る。

0047

[0059]アンカーノード702は、受信されたチャネル品質情報に基づいて、UE710’とmmW基地局704との間のチャネルのチャネル変動性を決定し得る。チャネル変動性は、チャネルがUE710’とmmW基地局704との間でどのくらい急速に変動しているかである。UE710’とmmW基地局704との間のチャネルは、経路770に沿った、または経路770中のUE710’の移動に基づいて急速に変動し得る。移動は、(最良のUE送信/受信空間方向を変化させる)ユーザの手の中でユーザがUEを把持し、回転させることなどによるUEの回転、あるいは、チャネル品質を急速に変動させる、障害の背後の経路に沿った、または特定の環境条件(たとえば、雨、湿度)内での移動によるものであり得る。チャネル変動性に基づいて、アンカーノード702は、mmW基地局704とUE710’との間で実行されるビーム掃引の周期性を調整し得る。たとえば、チャネル品質が第1のしきい値品質よりも低く、チャネル変動性が第1のしきい値変動性よりも大きい場合、アンカーノード702は、mmW基地局704がUE710’とのビーム掃引を実行する周期性を増大させるようにmmW基地局704に要求し得る。別の例として、チャネル品質が第2のしきい値品質よりも高く、チャネル変動性が第2のしきい値変動性よりも小さい場合、アンカーノード702は、mmW基地局704がUE710’とのビーム掃引を実行する周期性を減少させるようにmmW基地局704に要求し得る。第2のしきい値品質は第1のしきい値品質よりも高く、第2のしきい値変動性は第1のしきい値変動性よりも小さい。

0048

[0060]UE710’が経路770に沿って進むにつれて、(今度はUE710”と呼ばれる)UEは、mmW基地局704とmmW基地局706との間の重複カバレージ領域中に移動する。ビーム掃引結果情報に基づいて、アンカーノード702は、UE710”がmmW基地局704からmmW基地局706にハンドオーバされるべきであるかどうか、およびいつハンドオーバされるべきであるかを決定し得る。ハンドオーバが予想されるとき、アンカーノード702は、ビーム掃引の周期性を増大または減少させるように、ハンドオフに潜在的に参加することができるすべてのmmW基地局とUE710”とに指令し得る。

0049

[0061]したがって、アンカーノード702は、受信されたチャネル品質情報に基づいて、UE710”がmmW基地局704からmmW基地局706にハンドオフされる必要があると決定し得る。ハンドオフを容易にするために、アンカーノード702は、UE710”とのビーム掃引を実行する周期性を増大させるようにmmW基地局704および/またはmmW基地局706に指令し得る。アンカーノード702は、UE710”がmmW基地局706にハンドオフされる前にUE710”がmmW基地局704との無線リンク障害を受けないように、UE710”とのビーム掃引を実行する周期性を増大させるようにmmW基地局704に指令し得る。アンカーノード702は、mmW基地局706へのハンドオフが成功する可能性を向上させるために、UE710”とのビーム掃引を実行する周期性を増大させるようにmmW基地局706に指令し得る。

0050

[0062]アンカーノード702は、将来のハンドオフを予測する際に使用するために、ビーム掃引結果情報からの測定データを収集し、保存し得る。アンカーノード702は、いつハンドオフが起こり得るか(すなわち、将来のハンドオフ)を予測するために、経路770に沿ったUEの移動に関連する情報をも収集し、保存し得る。したがって、アンカーノード702は、mmW基地局704からmmW基地局706へのUEの前のハンドオフの知識に基づいて、UE710”がmmW基地局704からmmW基地局706にハンドオフされるべきであるかどうかを決定し得る。さらに、アンカーノード702は、過去のハンドオフイベント履歴分析および/またはmmW基地局のカバレージ内の経路770の方向に基づいて、mmW基地局708への別のハンドオフがいつ起こり得るかを予測し得る。UE710”がmmW基地局704からmmW基地局706へのハンドオフに成功した後、アンカーノード702は、ビーム掃引が実行される周期性を減少させるようにmmW基地局704および706に指令し得る。ハンドオフの後、アンカーノード702は、UE710”に宛てられたすべてのデータをmmW基地局706にフォワーディングし得る。したがって、アンカーノード702は、UE710”がmmW基地局706にハンドオフされる前に、mmW基地局704にUE710”についてのデータパケットをフォワーディングし、UE710”がmmW基地局704からmmW基地局706にハンドオフされた後に、mmW基地局706にUE710”についてのデータパケットをフォワーディングする。

0051

[0063]図8は、ワイヤレス通信の第1の方法のフローチャート800である。方法は、アンカーノード702などのアンカーノードである基地局によって実行され得る。ステップ802において、基地局は、第1の基地局および第2の基地局から、第1の基地局、第2の基地局、およびUEからのビーム掃引結果を含むビーム掃引結果情報を受信する。上記で説明したように、ビーム掃引は、基地局またはUEのうちの1つによる複数の異なる送信空間方向におけるビームの複数の送信であり、基地局またはUEのうちの1つの他方による複数の異なる走査空間方向におけるビームの複数の走査である。たとえば、図7を参照すると、アンカーノード702は、mmW基地局704およびmmW基地局706から、mmW基地局704、mmW基地局706、およびUE710(710’/710”)からのビーム掃引結果を含むビーム掃引結果情報を受信し得る。ビーム掃引は、図750または図760に示されているように実行され得る。

0052

[0064]ステップ804において、ステップ802からの受信されたビーム掃引結果情報に基づいて、基地局は、UEについてのチャネル品質がしきい値品質よりも低いと決定する。たとえば、図7を参照すると、アンカーノード702は、UE710(710’/710”)についてのチャネル品質がしきい値品質よりも低いと決定し得る。

0053

[0065]ステップ804において、基地局は、チャネル品質に基づいて、UEがしきい値変動性よりも大きいチャネル変動性を有すると決定する。そのような状況では、チャネル品質がしきい値品質よりも低く、チャネル変動性がしきい値変動性よりも大きいので、基地局は、ビーム掃引を実行する周期性を増大させるように、UEをサービスする基地局に指令し得る。たとえば、図7を参照すると、アンカーノード702は、チャネル品質に基づいて、UE710’が、しきい値品質よりも低いチャネル品質と、しきい値変動性よりも大きいチャネル変動性とを有すると決定し得る。そのような状況では、アンカーノード702は、ビーム掃引を実行する周期性を増大させるように、UE710’をサービスするmmW基地局704に指令し得る。詳細には、アンカーノード702は、UE710’が、第1のしきい値品質よりも低いチャネル品質と、第1のしきい値変動性よりも大きいチャネル変動性とを有すると決定されたとき、ビーム掃引を実行する周期性を増大させるように、UE710’をサービスするmmW基地局704に指令し得る。さらに、アンカーノード702は、UE710’が、第2のしきい値品質よりも高いチャネル品質と、第2のしきい値変動性よりも小さいチャネル変動性とを有すると決定されたとき、ビーム掃引を実行する周期性を減少させるように、UE710’をサービスするmmW基地局704に指令し得る。第1のしきい値品質は第2のしきい値品質よりも低く、第2のしきい値変動性は第1のしきい値変動性よりも小さい。

0054

[0066]ステップ804において、基地局は、チャネル品質に基づいて、UEが第1の基地局から第2の基地局にハンドオフされる必要があると決定する。ハンドオフ決定は、第1の基地局から第2の基地局へのUEの前のハンドオフの知識にも基づき得る。そのような状況では、基地局は、第1の基地局から第2の基地局へのUEのハンドオフを容易にするために、UEとのビーム掃引を実行する周期性を増大させるように、第1の基地局または第2の基地局のうちの少なくとも1つに指令する。たとえば、図7を参照すると、アンカーノード702は、チャネル品質に基づいて、UE710”がmmW基地局704からmmW基地局706にハンドオフされる必要があると決定し得る。そのような状況では、基地局は、mmW基地局704からmmW基地局706へのUE710”のハンドオフを容易にするために、UE710”とのビーム掃引を実行する周期性を増大させるように、mmW基地局704またはmmW基地局706のうちの少なくとも1つに指令する。

0055

[0067]ステップ806において、基地局は、チャネル品質がしきい値品質よりも低いと決定されたかどうかに基づいて、UEとのビーム掃引を実行する周期性を調整するように1つまたは複数の基地局に指令する。たとえば、図7を参照すると、アンカーノード702は、チャネル品質がしきい値品質よりも低いと決定されたかどうかに基づいて、UE710’/710”とのビーム掃引を実行する周期性を調整するようにmmW基地局704および/またはmmW基地局706に指令し得る。基地局は、第2の基地局が第1の基地局からのハンドオフにおいてUEを受信する前に、ビーム掃引を実行する周期性を増大させるように、第1の基地局または第2の基地局のうちの少なくとも1つに指令し得る。基地局は、第2の基地局がハンドオフにおいて第1の基地局からUEの受信に成功した後に、ビーム掃引を実行する周期性を減少させるように、第1の基地局または第2の基地局のうちの少なくとも1つに指令し得る。

0056

[0068]ステップ808において、基地局は、UEが第2の基地局にハンドオフされる前に、第1の基地局にUEについてのデータパケットをフォワーディングし、UEが第1の基地局から第2の基地局にハンドオフされた後に、第2の基地局にUEについてのデータパケットをフォワーディングする。

0057

[0069]図9は、ワイヤレス通信の第2の方法のフローチャート900である。方法は、mmW基地局704および706などの基地局によって実行され得る。ステップ902において、基地局は、UEのチャネル品質に基づく、ビーム掃引の周期性を調整するようにとの要求を受信する。周期性を調整するようにとの要求は、UEとmmW基地局との間のチャネルのチャネル変動性および/またはUEのハンドオフ状態にさらに基づき得る。ビーム掃引は、基地局またはUEのうちの1つによる複数の異なる送信空間方向におけるビームの複数の送信、および基地局またはUEのうちの1つの他方による複数の異なる走査空間方向におけるビームの複数の走査である(図7の図750/760参照)。ステップ904において、基地局は、UEに関連するチャネル品質に基づいて、UEとのビーム掃引を実行するための周期性を調整する。基地局は、チャネル変動性および/またはUEのハンドオフ状態にさらに基づいて、UEとのビーム掃引を実行する周期性を調整し得る。ステップ906において、基地局は、調整された周期性においてビーム掃引を実行する。

0058

[0070]ビーム掃引周期性を調整するようにとの要求が、UEに関連するチャネル品質およびチャネル変動性に基づくときには、基地局は、チャネル品質がしきい値品質よりも低く、チャネル変動性が変動性しきい値よりも大きいとき、ビーム掃引を実行する周期性を増大させ、チャネル品質が第2のしきい値品質よりも高く、チャネル変動性が第2の変動性しきい値よりも小さいとき、ビーム掃引を実行する周期性を減少させ得る。

0059

[0071]ビーム掃引周期性を調整するようにとの要求がUEのチャネル品質およびハンドオフ状態に基づくときには、基地局は、基地局が第2の基地局にUEをハンドオフしているか、または第2の基地局からのハンドオフにおいてUEを受信しているとき、ビーム掃引を実行する周期性を増大させ、UEが第2の基地局にハンドオフ成功されたか、または第2の基地局からのハンドオフにおいて受信成功されたとき、ビーム掃引を実行する周期性を減少させ得る。

0060

[0072]図10は、第1の例示的な装置1002中の異なるモジュール/手段/構成要素間のデータフローを示すデータフロー図1000である。本装置は、チャネル品質決定モジュール1006を含む。チャネル品質決定モジュール1006は、UEとmmW基地局との間のチャネルに関連するチャネル品質を決定するように構成され得、そのようなチャネルおよび/またはUEのハンドオフ状態に関連するチャネル変動性を決定するようにさらに構成され得る。チャネル品質決定モジュール1006は、UEについてのチャネル品質がしきい値品質よりも低いかどうかを決定するように構成される。チャネル品質決定モジュール1006は、チャネル品質がしきい値品質よりも低いと決定されたかどうかに基づいて、UEとのビーム掃引を実行する周期性を調整するように1つまたは複数の基地局に指令するために、送信モジュール1012と通信し得る。

0061

[0073]チャネル品質決定モジュール1006は、チャネル品質に基づいて、UEがしきい値変動性よりも大きいチャネル変動性を有すると決定するように構成され得る。送信モジュール1012は、UEがしきい値変動性よりも大きいチャネル変動性を有すると決定されたとき、ビーム掃引を実行する周期性を増大させるように、UEをサービスする基地局1050に指令するように構成され得る。チャネル品質決定モジュール1006は、チャネル品質に基づいて、UEが第1の基地局から第2の基地局にハンドオフされる必要があると決定するように構成され得る。送信モジュール1012は、第1の基地局から第2の基地局へのUEのハンドオフを容易にするために、UEとのビーム掃引を実行する周期性を増大させるように、第1の基地局または第2の基地局のうちの少なくとも1つに指令するように構成され得る。本装置は、第1の基地局および第2の基地局から、第1の基地局、第2の基地局、およびUEからのビーム掃引結果を含むビーム掃引結果情報を受信するように構成された受信モジュール1004をさらに含み得る。受信モジュール1004は、ビーム掃引結果モジュール1008に、受信されたビーム掃引結果情報を与えるように構成され得る。ハンドオフ決定を行うとき、ビーム掃引結果モジュール1008との通信をもつ、チャネル品質決定モジュール1006は、受信されたビーム結果情報に基づいて決定を行うように構成され得る。チャネル品質決定モジュール1006は、第1の基地局から第2の基地局へのUEの前のハンドオフの知識にさらに基づいて、UEのハンドオフ決定を行うように構成され得る。第1の基地局または第2の基地局のうちの少なくとも1つに指令するとき、送信モジュール1012は、第2の基地局が第1の基地局からのハンドオフにおいてUEを受信する前に、ビーム掃引を実行する周期性を増大させるように、第1の基地局または第2の基地局のうちの少なくとも1つに指令するように構成され得る。第1の基地局または第2の基地局のうちの少なくとも1つに指令するとき、送信モジュール1012は、第2の基地局がハンドオフにおいて第1の基地局からUEを受信成功した後に、ビーム掃引を実行する周期性を減少させるように、第1の基地局または第2の基地局のうちの少なくとも1つに指令するように構成され得る。本装置は、送信モジュール1012にデータパケットを与えるように構成されたデータモジュール1010を含み得る。送信モジュール1012は、UEが第2の基地局にハンドオフされる前に、第1の基地局にUEについての受信されたデータパケットをフォワーディングし、UEが第1の基地局から第2の基地局にハンドオフされた後に、第2の基地局にUEについての受信されたデータパケットをフォワーディングするように構成され得る。

0062

[0074]本装置は、図8の上述のフローチャート中のアルゴリズムのステップの各々を実行する追加のモジュールを含み得る。したがって、図8の上述のフローチャート中の各ステップは1つのモジュールによって実行され得、本装置は、それらのモジュールのうちの1つまたは複数を含み得る。それらのモジュールは、述べられたプロセス/アルゴリズムを行うように特に構成された1つまたは複数のハードウェア構成要素であるか、述べられたプロセス/アルゴリズムを実行するように構成されたプロセッサによって実装されるか、プロセッサによる実装のためにコンピュータ可読媒体内に記憶されるか、またはそれらの何らかの組合せであり得る。

0063

[0075]図11は、処理システム1114を採用する第1の装置1002’のためのハードウェア実装形態の一例を示す図1100である。処理システム1114は、バス1124によって概略的に表されるバスアーキテクチャを用いて実装され得る。バス1124は、処理システム1114の特定の適用例および全体的な設計制約に応じて、任意の数の相互接続バスおよびブリッジを含み得る。バス1124は、プロセッサ1104によって表される1つまたは複数のプロセッサおよび/またはハードウェアモジュールと、モジュール1004、1006、1008、1010、および1012と、コンピュータ可読媒体/メモリ1106とを含む様々な回路を互いにリンクする。バス1124はまた、タイミングソース周辺機器電圧調整器、および電力管理回路など、様々な他の回路をリンクし得るが、これらの回路は当技術分野においてよく知られており、したがって、これ以上説明しない。

0064

[0076]処理システム1114はトランシーバ1110に結合され得る。トランシーバ1110は1つまたは複数のアンテナ1120に結合される。トランシーバ1110は、伝送媒体を介して様々な他の装置と通信するための手段を与える。トランシーバ1110は、1つまたは複数のアンテナ1120から信号を受信し、受信された信号から情報を抽出し、抽出された情報を処理システム1114に与える。さらに、トランシーバ1110は、処理システム1114から情報を受信し、受信された情報に基づいて、1つまたは複数のアンテナ1120に適用されるべき信号を生成する。処理システム1114は、コンピュータ可読媒体/メモリ1106に結合されたプロセッサ1104を含む。プロセッサ1104は、コンピュータ可読媒体/メモリ1106に記憶されたソフトウェアの実行を含む一般的な処理を担当する。ソフトウェアは、プロセッサ1104によって実行されたとき、処理システム1114に、特定の装置のための上記で説明した様々な機能を実行させる。コンピュータ可読媒体/メモリ1106はまた、ソフトウェアを実行するときにプロセッサ1104によって操作されるデータを記憶するために使用され得る。処理システムは、モジュール1004、1006、1008、1010、および1012のうちの少なくとも1つをさらに含む。それらのモジュールは、プロセッサ1104中で動作するか、コンピュータ可読媒体/メモリ1106中に常駐する/記憶されたソフトウェアモジュールであるか、プロセッサ1104に結合された1つまたは複数のハードウェアモジュールであるか、またはそれらの何らかの組合せであり得る。処理システム1114は、mmW基地局720の構成要素であり得る。

0065

[0077]一構成では、ワイヤレス通信のための装置1002/1002’は、UEについてのチャネル品質がしきい値品質よりも低いと決定するための手段と、前記チャネル品質がしきい値品質よりも低いと決定されたかどうかに基づいて、UEとのビーム掃引を実行する周期性を調整するように1つまたは複数の基地局に指令するための手段とを含む。本装置は、前記チャネル品質に基づいて、UEがしきい値変動性よりも大きいチャネル変動性を有すると決定するための手段をさらに含み得る。指令するための手段は、UEがしきい値変動性よりも大きいチャネル変動性を有すると決定されたとき、ビーム掃引を実行する周期性を増大させるように、UEをサービスする基地局に指令するように構成され得る。本装置は、前記チャネル品質に基づいて、UEが第1の基地局から第2の基地局にハンドオフされる必要があると決定するための手段をさらに含み得る。指令するための手段は、第1の基地局から第2の基地局へのUEのハンドオフを容易にするために、UEとのビーム掃引を実行する周期性を増大させるように、第1の基地局または第2の基地局のうちの少なくとも1つに指令するように構成され得る。本装置は、第1の基地局および第2の基地局から、第1の基地局、第2の基地局、およびUEからのビーム掃引結果を含むビーム掃引結果情報を受信するための手段をさらに含み得る。ハンドオフ決定は、受信されたビーム結果情報に基づき得る。UEのハンドオフ決定は、第1の基地局から第2の基地局へのUEの前のハンドオフの知識にさらに基づき得る。第1の基地局または第2の基地局のうちの少なくとも1つに指令するための手段は、第2の基地局が第1の基地局からのハンドオフにおいてUEを受信する前に、ビーム掃引を実行する周期性を増大させるように、第1の基地局または第2の基地局のうちの少なくとも1つに指令するように構成され得る。第1の基地局または第2の基地局のうちの少なくとも1つに指令するための手段は、第2の基地局がハンドオフにおいて第1の基地局からUEを受信成功した後に、ビーム掃引を実行する周期性を減少させるように、第1の基地局または第2の基地局のうちの少なくとも1つに指令するように構成され得る。本装置は、UEが第2の基地局にハンドオフされる前に、第1の基地局にUEについてのデータパケットをフォワーディングするための手段と、UEが第1の基地局から第2の基地局にハンドオフされた後に、第2の基地局にUEについてのデータパケットをフォワーディングするための手段とをさらに含み得る。

0066

[0078]上述の手段は、上述の手段によって具陳された機能を実行するように構成された、装置1002、および/または装置1002’の処理システム1114の上述のモジュールのうちの1つまたは複数であり得る。

0067

[0079]図12は、第2の例示的な装置1202中の異なるモジュール/手段/構成要素間のデータフローを示すデータフロー図1200である。本装置は、UEに関連するチャネル品質に基づいて、UEとのビーム掃引を実行するための周期性を調整するように構成された周期性調整モジュール1206を含む。ビーム掃引は、基地局またはUEのうちの1つによる複数の異なる送信空間方向におけるビームの複数の送信、および基地局またはUEのうちの1つの他方による複数の異なる走査空間方向におけるビームの複数の走査である。本装置は、調整された周期性においてビーム掃引を実行するように構成された受信モジュール1204および送信モジュール1208をさらに含む。受信モジュール1204は、UEに関連するチャネル品質およびチャネル変動性に基づく、周期性を調整するようにとの要求をアンカーノード1250から受信するように構成され得る。周期性調整モジュール1206は、チャネル品質がしきい値品質よりも低く、チャネル変動性が変動性しきい値よりも大きいとき、ビーム掃引を実行する周期性を増大させ、チャネル品質が第2のしきい値品質よりも高く、チャネル変動性が第2の変動性しきい値小さいとき、ビーム掃引を実行する周期性を減少させるように構成され得る。受信モジュール1204は、UEのチャネル品質およびハンドオフ状態に基づく、周期性を調整するようにとの要求をアンカーノード1250から受信するように構成され得る。周期性調整モジュール1206は、基地局が第2の基地局にUEをハンドオフしているか、または第2の基地局からのハンドオフにおいてUEを受信しているとき、ビーム掃引を実行する周期性を増大させ、UEが第2の基地局にハンドオフ成功されたか、または第2の基地局からのハンドオフにおいて受信成功されたとき、ビーム掃引を実行する周期性を減少させるように構成され得る。

0068

[0080]本装置は、図9の上述のフローチャート中のアルゴリズムのステップの各々を実行する追加のモジュールを含み得る。したがって、図9の上述のフローチャート中の各ステップは1つのモジュールによって実行され得、本装置は、それらのモジュールのうちの1つまたは複数を含み得る。それらのモジュールは、述べられたプロセス/アルゴリズムを行うように特に構成された1つまたは複数のハードウェア構成要素であるか、述べられたプロセス/アルゴリズムを実行するように構成されたプロセッサによって実装されるか、プロセッサによる実装のためにコンピュータ可読媒体内に記憶されるか、またはそれらの何らかの組合せであり得る。

0069

[0081]図13は、処理システム1314を採用する第2の装置1202’のためのハードウェア実装形態の一例を示す図1300である。処理システム1314は、バス1324によって概略的に表されるバスアーキテクチャを用いて実装され得る。バス1324は、処理システム1314の特定の適用例および全体的な設計制約に応じて、任意の数の相互接続バスおよびブリッジを含み得る。バス1324は、プロセッサ1304によって表される1つまたは複数のプロセッサおよび/またはハードウェアモジュールと、モジュール1204、1206、および1208と、コンピュータ可読媒体/メモリ1306とを含む様々な回路を互いにリンクする。バス1324はまた、タイミングソース、周辺機器、電圧調整器、および電力管理回路など、様々な他の回路をリンクし得るが、これらの回路は当技術分野においてよく知られており、したがって、これ以上説明しない。

0070

[0082]処理システム1314はトランシーバ1310に結合され得る。トランシーバ1310は1つまたは複数のアンテナ1320に結合される。トランシーバ1310は、伝送媒体を介して様々な他の装置と通信するための手段を与える。トランシーバ1310は、1つまたは複数のアンテナ1320から信号を受信し、受信された信号から情報を抽出し、抽出された情報を処理システム1314に与える。さらに、トランシーバ1310は、処理システム1314から情報を受信し、受信された情報に基づいて、1つまたは複数のアンテナ1320に適用されるべき信号を生成する。処理システム1314は、コンピュータ可読媒体/メモリ1306に結合されたプロセッサ1304を含む。プロセッサ1304は、コンピュータ可読媒体/メモリ1306に記憶されたソフトウェアの実行を含む一般的な処理を担当する。ソフトウェアは、プロセッサ1304によって実行されたとき、処理システム1314に、特定の装置のための上記で説明した様々な機能を実行させる。コンピュータ可読媒体/メモリ1306はまた、ソフトウェアを実行するときにプロセッサ1304によって操作されるデータを記憶するために使用され得る。処理システムは、モジュール1204、1206、および1208のうちの少なくとも1つをさらに含む。それらのモジュールは、プロセッサ1304中で動作するか、コンピュータ可読媒体/メモリ1306中に常駐する/記憶されたソフトウェアモジュールであるか、プロセッサ1304に結合された1つまたは複数のハードウェアモジュールであるか、またはそれらの何らかの組合せであり得る。処理システム1314は、mmW基地局720の構成要素であり得る。

0071

[0083]一構成では、ワイヤレス通信のための装置1202/1202’は、UEに関連するチャネル品質に基づいて、UEとのビーム掃引を実行するための周期性を調整するための手段を含む。ビーム掃引は、基地局またはUEのうちの1つによる複数の異なる送信空間方向におけるビームの複数の送信、および基地局またはUEのうちの1つの他方による複数の異なる走査空間方向におけるビームの複数の走査である。本装置は、調整された周期性においてビーム掃引を実行するための手段をさらに含む。本装置は、UEに関連するチャネル品質およびチャネル変動性に基づく、周期性を調整するようにとの要求を受信するための手段をさらに含み得る。調整するための手段は、チャネル品質がしきい値品質よりも低く、チャネル変動性が変動性しきい値よりも大きいとき、ビーム掃引を実行する周期性を増大させ、チャネル品質が第2のしきい値品質よりも高く、チャネル変動性が第2の変動性しきい値よりも小さいとき、ビーム掃引を実行する周期性を減少させるように構成され得る。本装置は、UEのチャネル品質およびハンドオフ状態に基づく、周期性を調整するようにとの要求を受信するための手段をさらに含み得る。調整するための手段は、基地局が第2の基地局にUEをハンドオフしているか、または第2の基地局からのハンドオフにおいてUEを受信しているとき、ビーム掃引を実行する周期性を増大させ、UEが第2の基地局にハンドオフ成功されたか、または第2の基地局からのハンドオフにおいて受信成功されたとき、ビーム掃引を実行する周期性を減少させるように構成され得る。

0072

[0084]上述の手段は、上述の手段によって具陳された機能を実行するように構成された、装置1202、および/または装置1202’の処理システム1314の上述のモジュールのうちの1つまたは複数であり得る。

0073

[0085]開示したプロセス/フローチャートにおけるステップの特定の順序または階層は、例示的な手法の一例であることを理解されたい。設計上の選好に基づいて、プロセス/フローチャート中のステップの特定の順序または階層は再構成され得ることを理解されたい。さらに、いくつかのステップは組み合わされるかまたは省略され得る。添付の方法クレームは、様々なステップの要素を例示的な順序で提示したものであり、提示された特定の順序または階層に限定されるものではない。

0074

[0086]以上の説明は、本明細書で説明した様々な態様を当業者が実施できるようにするために与えたものである。これらの態様に対する様々な変更は当業者には容易に明らかであり、本明細書で定義した一般的原理は他の態様に適用され得る。したがって、特許請求の範囲は、本明細書で示した態様に限定されるものではなく、特許請求の範囲の言い回し矛盾しない全範囲を与えられるべきであり、単数形の要素への言及は、そのように明記されていない限り、「唯一無二の」を意味するものではなく、「1つまたは複数の」を意味するものである。「例示的」という単語は、本明細書では「例、事例、または例示の働きをすること」を意味するために使用される。「例示的」として本明細書で説明するいかなる態様も、必ずしも他の態様よりも好適または有利であると解釈されるべきであるとは限らない。別段に明記されていない限り、「いくつか(some)」という用語は1つまたは複数を指す。「A、B、またはCのうちの少なくとも1つ」、「A、B、およびCのうちの少なくとも1つ」、ならびに「A、B、C、またはそれらの任意の組合せ」などの組合せは、A、B、および/またはCの任意の組合せを含み、複数のA、複数のB、または複数のCを含み得る。詳細には、「A、B、またはCのうちの少なくとも1つ」、「A、B、およびCのうちの少なくとも1つ」、および「A、B、C、またはそれらの任意の組合せ」などの組合せは、Aのみ、Bのみ、Cのみ、AおよびB、AおよびC、BおよびC、またはAおよびBおよびCであり得、ここで、いかなるそのような組合せも、A、B、またはCのうちの1つまたは複数のメンバーを含んでいることがある。当業者に知られている、または後に知られることになる、本開示全体にわたって説明した様々な態様の要素のすべての構造的および機能的均等物は、参照により本明細書に明確に組み込まれ、特許請求の範囲に包含されるものである。さらに、本明細書に開示するいかなることも、そのような開示が特許請求の範囲に明示的に具陳されているかどうかにかかわらず、公に供するものではない。いかなるクレーム要素も、その要素が「のための手段」という語句を使用して明確に具陳されていない限り、ミーンズプラスファンクションとして解釈されるべきではない。

ページトップへ

この技術を出願した法人

この技術を発明した人物

ページトップへ

関連する挑戦したい社会課題

関連する公募課題

ページトップへ

おススメ サービス

おススメ astavisionコンテンツ

新着 最近 公開された関連が強い技術

この 技術と関連性が強い技術

関連性が強い 技術一覧

この 技術と関連性が強い人物

関連性が強い人物一覧

この 技術と関連する社会課題

関連する挑戦したい社会課題一覧

この 技術と関連する公募課題

関連する公募課題一覧

astavision 新着記事

サイト情報について

本サービスは、国が公開している情報(公開特許公報、特許整理標準化データ等)を元に構成されています。出典元のデータには一部間違いやノイズがあり、情報の正確さについては保証致しかねます。また一時的に、各データの収録範囲や更新周期によって、一部の情報が正しく表示されないことがございます。当サイトの情報を元にした諸問題、不利益等について当方は何ら責任を負いかねることを予めご承知おきのほど宜しくお願い申し上げます。

主たる情報の出典

特許情報…特許整理標準化データ(XML編)、公開特許公報、特許公報、審決公報、Patent Map Guidance System データ