図面 (/)

技術 圧電アクチュエータのための一体型前負荷機構

出願人 ニューポート・コーポレイション
発明者 リ,ホンチ
出願日 2015年4月8日 (5年7ヶ月経過) 出願番号 2016-562550
公開日 2017年6月1日 (3年5ヶ月経過) 公開番号 2017-514439
状態 特許登録済
技術分野 圧電、電歪、磁歪装置 光学要素の取付・調整
主要キーワード アームヒンジ 横バンド 本体区分 調節シャフト 変形面 横断距離 フレームアーム 非弾性変形
関連する未来課題
重要な関連分野

この項目の情報は公開日時点(2017年6月1日)のものです。
また、この項目は機械的に抽出しているため、正しく解析できていない場合があります

図面 (20)

課題・解決手段

調節シャフトを回転させるために使用され得る、アクチュエータの第1の接触表面と第2の接触表面との間に弾性復元力を提供する一体バイアスバンドを有する、モノリシックフレームを含み得る、圧電アクチュエータ。ある場合には、前負荷機構もまた、フレームとともに含まれてもよい。そのような圧電アクチュエータは、光学搭載デバイス等の調節可能光学搭載デバイスに使用され得る。本願のバイアスバンドの寸法、製造方法、および材料は、生成される復元力一貫性を有意に向上させ得る。バイアスバンド構成は、製造プロセス中のバイアスバンドの材料の非弾性変形を排除し得る。いくつかのバイアスバンド構成はまた、より一貫した制御された結果のために、製造中に復元力の調節を可能にし得る。アクチュエータフレームの一体バイアスバンド構成は、小型であり、製造のために費用効率的である。

概要

背景

(関連特許出願)
本願は、2014年4月15日に出願された、発明者Honqi Liによる、INTEGRAL PRELOAD MECHAISMFOR PIEZOELECTRIC ACTUATORと題された、米国実用特許出願第14/253,087号(代理人管理番号NPT−0339−UT)の利益を主張するものでありその全内容は、参照により本明細書中に援用される。

レンズ、鏡、波長板フィルタ体積ブラッグ格子プリズム、および同等物等の光学デバイスまたは要素は、多くの場合、調節可能光学マウントを用いて、光学ステム、具体的には、実験的光学システムに搭載される。光学システムの実施例は、1つの光学デバイスから次の光学デバイスに光線指向する光路を提供するよう、ある配向で基部に搭載された複数の光学デバイスおよび構成要素を有する、光学ベンチまたは基部を含んでもよい。レーザまたは他の光源からのビームが、概して、そのような用途に使用される。そのような配列に関して、調節可能光学マウントは、光学システムの光学ベンチまたは他の構成要素に光学要素をしっかり締結し、依然として光学要素の配向のある程度の調節を可能にする機構を提供する。

既存の調節可能光学マウントは、そこに固着された光学要素を有するように構成される第1の板を有する、実施形態を含んでもよい。第2の板は、第1の板に隣接して配置され、第2の板から第1の板まで延在する3つの接点を含む。接点のうちの1つまたはそれを上回るものは、第2の板に螺合される、調節ねじ等の調節シャフトの端部上に配置されてもよい。接点はまた、第1の板に対する接点の回転を可能にするが、接点が第1の板に沿って摺動する、または横方向に変位させられることを防止する、第1の板上の戻り止めの中に配置されてもよい。ばねもしくは磁石等の1つまたはそれを上回る後退部材が、ばね、複数のばね、磁石、または複数の磁石の復元力を用いて、強制的に板を引き寄せるよう、第1および第2の板の間に締結される。板の間で後退部材によって生成される引力は、第1の板のそれぞれの戻り止めに対して3つの接点によって抵抗される。そのような配列では、調節ねじまたはシャフトの回転は、調節ねじ位置における板の間の分離、したがって、第2の板への第1の板の相対配向を調節するために、第2の板に対して調節ねじを移動させる。

ある場合には、圧電型アクチュエータが、調節ねじを回転させるために使用されてもよい。第1の方向への調節可能光学マウントのねじ山付きシャフトに対する隣接ジョー要素往復運動は、ねじ山付きシャフトと隣接ジョーとの間の摩擦係数がジョーの運動をねじ山付きシャフトに伝達するように、往復運動が十分に遅いときに、ねじ山付きシャフトの単純回転運動に変換されてもよい。ねじ山付きシャフトの回転運動は、ねじ山付きシャフトの並進運動、ならびに第1の板およびそこに固着された光学要素等の任意の要素のそれぞれの移動をもたらす。第2の方向へのねじ山付きシャフトに対する隣接ジョー要素の往復運動は、ねじ山付きシャフトの慣性が、それが隣接ジョー要素の往復運動に関与することを防止し、それによって、ねじ山付きシャフトの位置の保存をもたらすように、比較的速くあり得る。ある場合には、各ジョーがねじ山付きシャフトに印加する復元力は、各ジョー要素に連結され得るクランプばね等の別個前負荷機構によって提供されてもよい。

クランプばねによって印加されるようなねじ山付きシャフトと隣接ジョーとの間の復元力の変動は、トルク測定デバイスを用いてねじ山付きシャフトを回転させることによって測定される静的および動的トルクの変動をもたらし得る。これは、マウントの性能に悪影響を及ぼし得る。クランプばねによって隣接ジョーに印加される復元力の変動は、組立中のクランプばねの変形、製造の変動、クランプばねの処理または材料、もしくは同等物によって引き起こされ得る。必要とされているものは、隣接ジョーおよびねじ山付きシャフトの接触表面の間に一貫した復元力を供給する、前負荷機構である。

概要

調節シャフトを回転させるために使用され得る、アクチュエータの第1の接触表面と第2の接触表面との間に弾性復元力を提供する一体バイアスバンドを有する、モノリシックフレームを含み得る、圧電アクチュエータ。ある場合には、前負荷機構もまた、フレームとともに含まれてもよい。そのような圧電アクチュエータは、光学搭載デバイス等の調節可能光学搭載デバイスに使用され得る。本願のバイアスバンドの寸法、製造方法、および材料は、生成される復元力の一貫性を有意に向上させ得る。バイアスバンド構成は、製造プロセス中のバイアスバンドの材料の非弾性変形を排除し得る。いくつかのバイアスバンド構成はまた、より一貫した制御された結果のために、製造中に復元力の調節を可能にし得る。アクチュエータフレームの一体バイアスバンド構成は、小型であり、製造のために費用効率的である。

目的

光学システムの実施例は、1つの光学デバイスから次の光学デバイスに光線を指向する光路を提供する

効果

実績

技術文献被引用数
0件
牽制数
0件

この技術が所属する分野

ライセンス契約や譲渡などの可能性がある特許掲載中! 開放特許随時追加・更新中 詳しくはこちら

請求項1

圧電アクチュエータであって、A.アクチュエータフレームであって、(i)前記アクチュエータフレームの全ての要素が単一の連続的な途切れない材料から形成されている、モノリシック構成と、(ii)第1の接触表面を含む、第1の支持要素と、(iii)第2の接触表面を含む第2の支持要素であって、前記第2の接触表面は、前記第1の接触表面に対して離間し、実質的に対向した関係で配置される、第2の支持要素と、(iv)前記第1の支持要素と前記第2の支持要素との間に配置され、前記第2の接触表面から離れた前記第1の接触表面の垂直変位抵抗する弾性復元力を提供するように構成される、バイアスバンドと、(v)前記アクチュエータフレームの第1のマウント表面と前記アクチュエータフレームの第2のマウント表面との間に配置される、圧電要素空洞とを備える、アクチュエータフレームと、B.前記圧電要素空洞内に配置された圧電要素であって、前記圧電要素は、前記第1のマウント表面に固着された第1の端部を有し、前記圧電要素は、前記第2のマウント表面に固着された第2の端部を有し、前記圧電要素は、前記圧電要素に伝送される電気ドライバ信号に応答して拡張および収縮するように構成され、前記圧電要素は、前記圧電要素の拡張または収縮が前記第1の接触表面と前記第2の接触表面との間にそれぞれの実質的に平行な往復変位をもたらすように構成される、圧電要素とを備える、圧電アクチュエータ。

請求項2

前記アクチュエータフレームはさらに、前記第1の支持要素と第2の支持要素との間に配置されて連結される、縮小材料断面のヒンジ区分を備え、前記ヒンジ区分は、前記ヒンジ区分内のアクチュエータフレーム材料の弾性変形による、前記第1の接触表面と前記第2の接触表面との間の相対往復平行変位を可能にするように構成される、請求項1に記載の圧電アクチュエータ。

請求項3

前記アクチュエータフレームの前記バイアスバンドによって提供される前記復元力を調節するように構成される、バイアス調節機構をさらに備える、請求項1に記載の圧電アクチュエータ。

請求項4

前記バイアス調節機構は、前記バイアスバンドと接触して配置される調節可能止めねじを備える、請求項3に記載の圧電アクチュエータ。

請求項5

前記第1のマウント表面は、前記第1の支持要素から横方向に内向きに延在する、第1のマウント支柱上に配置され、前記第2のマウント表面は、前記第2の支持要素から横方向に内向きに延在する、第2のマウント支柱上に配置される、請求項1に記載の圧電アクチュエータ。

請求項6

前記フレームは、弾性金属を含む、請求項1に記載の圧電アクチュエータ。

請求項7

前記弾性金属は、ステレンス鋼を含む、請求項1に記載の圧電アクチュエータ。

請求項8

前記第1の接触表面と前記第2の接触表面との間の公称横断距離は、約2mm〜約20mmである、請求項1に記載の圧電アクチュエータ。

請求項9

前記第1の接触表面と前記第2の接触表面との間の公称横断距離は、約5mm〜約10mmである、請求項1に記載の圧電アクチュエータ。

請求項10

前記バイアスバンドは、前記第1の支持要素の遠位部分から遠位に延在し、前記第1の接触表面と前記第2の接触表面の間および前記第2の支持要素の遠位端の周囲の両方に配置される空間の周囲に延在し、前記第2の支持要素の外面上に配置される噛合横溝係合させられる横拡張部を含み、前記横溝は、前記第2の接触表面の実質的に反対側の前記第2の支持要素の遠位部分の外面上に配置される、請求項1に記載の圧電アクチュエータ。

請求項11

前記バイアスバンドは、前記第1の接触表面と前記第2の接触表面の間に配置される空間の周囲の前記第1の支持要素の遠位部分から前記第2の支持要素の遠位部分まで遠位に延在し、前記バイアスバンドは、前記第2の支持要素の前記遠位部分の遠位に配置されるジグザグ部分を備え、前記ジグザグ部分は、前記ジグザグ部分の頂点に配置される少なくとも1つのバンドヒンジ区分を含む、請求項1に記載の圧電アクチュエータ。

請求項12

前記ジグザグ部分は、前記ジグザグ部分のそれぞれの頂点に配置される少なくとも2つのバンドヒンジ区分を備える、請求項11に記載の圧電アクチュエータ。

請求項13

前記第2のマウント表面は、前記アクチュエータフレームのねじ山付きチャネル内に螺合可能に係合させられる、調節可能圧電マウント支持体上に配置される、請求項11に記載の圧電アクチュエータ。

請求項14

前記バイアスバンドは、前記アクチュエータフレームの前面から後面までの方向に沿って前記バイアスバンドを実質的に分岐させるよう、本方向に沿って延在するスロットを有する、スロット付きバイアスバンドを備える、請求項11に記載の圧電アクチュエータ。

請求項15

前記バイアスバンドは、前記第1の支持要素の遠位部分から前記第2の支持要素に向かって遠位に延在する、第1のバイアスバンド部分と、前記第1のバイアスバンド部分に縦方向重複するよう、前記第2の支持部材の遠位部分から前記第1の支持要素に向かって遠位に延在する、第2のバイアスバンド部分と、前記第1のバイアスバンド部分が前記第2のバイアスバンド部分に重複する重複区分内で、前記第1のバイアスバンド部分から第2のバイアスバンド部分まで延在する、縦方向に配向されたリブとを備える、請求項1に記載の圧電アクチュエータ。

請求項16

前記バイアスバンドは、前記第1のバイアスバンド部分と前記第2のバイアスバンド部分との間に配置される複数の横バンドヒンジ区分を組み込み、前記横ヒンジ区分は、前記バイアスバンドの曲げモーメントを低減させるように構成される、請求項15に記載の圧電アクチュエータ。

請求項17

前記第2のマウント表面は、前記アクチュエータフレームのねじ山付きチャネル内に螺合可能に係合させられる、調節可能圧電マウント支持体上に配置される、請求項15に記載の圧電アクチュエータ。

請求項18

圧電アクチュエータであって、A.アクチュエータフレームであって、(i)前記アクチュエータフレームの全ての要素が単一の連続的な途切れない材料から形成されている、モノリシック構成と、(ii)第1の接触表面を含む、第1の支持要素と、(iii)第2の接触表面を含む第2の支持要素であって、前記第2の接触表面は、前記第1の接触表面に対して離間し、実質的に対向した関係で配置される、第2の支持要素と、(iv)前記第2の接触表面から離れた前記第1の接触表面の垂直変位に抵抗する弾性復元力を提供するように構成される、バイアスバンドであって、前記バイアスバンドは、前記第1の支持要素の遠位部分から遠位に延在し、前記第1の接触表面と前記第2の接触表面との間に配置される空間の周囲に延在し、前記第2の接触表面と実質的に反対側に配置される前記第2の支持要素の外面に沿って前記第2の支持要素の遠位部分の周囲に延在し、かつ前記第2の支持要素の裏側のバンドヒンジ区分における前記第2の支持要素で終端する、バイアスバンドと、(v)前記アクチュエータフレームの第1のマウント表面と前記アクチュエータフレームの第2のマウント表面との間に配置される、圧電要素空洞とを備える、アクチュエータフレームと、B.前記圧電要素空洞内に配置された圧電要素であって、前記圧電要素は、前記第1のマウント表面に固着された第1の端部を有し、前記圧電要素は、前記第2のマウント表面に固着された第2の端部を有し、前記圧電要素は、前記圧電要素に伝送される電気ドライバ信号に応答して拡張および収縮するように構成され、前記圧電要素は、前記圧電要素の拡張または収縮が前記第1の接触表面と前記第2の接触表面との間にそれぞれの実質的に平行な往復変位をもたらすように構成される、圧電要素とを備える、圧電アクチュエータ。

請求項19

前記アクチュエータフレームはさらに、前記第1の支持要素と第2の支持要素との間に配置されて連結される、縮小材料断面のヒンジ区分を備え、前記ヒンジ区分は、前記ヒンジ区分内のアクチュエータフレーム材料の弾性変形による、前記第1の接触表面と前記第2の接触表面との間の相対往復平行変位を可能にするように構成される、請求項18に記載の圧電アクチュエータ。

請求項20

前記第2のマウント表面は、前記アクチュエータフレームのねじ山付きチャネル内に螺合可能に係合させられる、調節可能圧電マウント支持体上に配置される、請求項18に記載の圧電アクチュエータ。

請求項21

前記アクチュエータフレームの前記バイアスバンドによって提供される前記復元力を調節するように構成される、バイアス調節機構をさらに備える、請求項18に記載の圧電アクチュエータ。

請求項22

前記バイアス調節機構は、前記バイアスバンドと接触して配置される調節可能止めねじを備える、請求項21に記載の圧電アクチュエータ。

請求項23

圧電アクチュエータであって、A.アクチュエータフレームであって、(i)前記アクチュエータフレームの全ての要素が単一の連続的な途切れない材料から形成されている、モノリシック構成と、(ii)第1の接触表面を含む、第1の支持要素と、(iii)第2の接触表面含む第2の支持要素であって、前記第2の接触表面は、前記第1の接触表面に対して離間し、実質的に対向した関係で配置される、第2の支持要素と、(iv)前記第2の接触表面から離れた前記第1の接触表面の垂直変位に抵抗する弾性復元力を提供するように構成される、バイアスバンドであって、前記バイアスバンドは、前記第1の接触表面と実質的に反対側に配置される前記第1の支持要素の外面に沿って前記第1の支持要素の遠位部分の周囲で前記第1の支持要素の遠位部分から遠位に延在し、前記第1の接触表面と前記第2の接触表面との間に配置される空間の周囲に延在し、前記第2の接触表面と実質的に反対側に配置される前記第2の支持要素の外面に沿って前記第2の支持要素の遠位部分の周囲に延在し、かつ前記第2の支持要素の裏側に位置するバンドヒンジ区分で終端する、バイアスバンドと、(v)前記アクチュエータフレームの第1のマウント表面と前記アクチュエータフレームの第2のマウント表面との間に配置される、圧電要素空洞とを備える、アクチュエータフレームと、B.前記圧電要素空洞内に配置された圧電要素であって、前記圧電要素は、前記第1のマウント表面に固着された第1の端部を有し、前記圧電要素は、前記第2のマウント表面に固着された第2の端部を有し、前記圧電要素に伝送される電気ドライバ信号に応答して拡張および収縮するように構成され、前記圧電要素は、前記圧電要素の拡張または収縮が前記第1の接触表面と前記第2の接触表面との間にそれぞれの実質的に平行な往復変位をもたらすように構成される、圧電要素とを備える、圧電アクチュエータ。

請求項24

前記アクチュエータフレームはさらに、前記第1の支持要素と第2の支持要素との間に配置されて連結される、縮小材料断面のヒンジ区分を備え、前記ヒンジ区分は、前記ヒンジ区分内のアクチュエータフレーム材料の弾性変形による、前記第1の接触表面と前記第2の接触表面との間の相対往復平行変位を可能にするように構成される、請求項23に記載の圧電アクチュエータ。

請求項25

前記第2のマウント表面は、前記アクチュエータフレームのねじ山付きチャネル内に螺合可能に係合させられる、調節可能圧電マウント支持体上に配置される、請求項23に記載の圧電アクチュエータ。

請求項26

前記バイアスバンドと前記第1の支持要素との間の接合点における第1のバンドヒンジ区分と、前記バイアスバンドと前記第2の支持要素との間の接合点における第2のバンドヒンジ区分とをさらに備える、請求項23に記載の圧電アクチュエータ。

請求項27

前記アクチュエータフレームの前記バイアスバンドによって提供される前記復元力を調節するように構成される、バイアス調節機構をさらに備える、請求項26に記載の圧電アクチュエータ。

請求項28

前記バイアス調節機構は、前記バイアスバンドと接触して配置される調節可能止めねじを備える、請求項27に記載の圧電アクチュエータ。

請求項29

調節可能光学マウントであって、I.光学要素受容し、そこに前記光学要素を固着するように構成される、光学マウントデバイスと、II.安定表面にしっかりと搭載されるように構成され、調節可能光学マウント機構によって前記光学マウントデバイスに連結される、基部であって、前記調節可能光学マウント機構は、少なくとも1自由度に沿って前記光学マウントデバイスと前記基部との間の相対的かつ調節可能な変位を可能にするように構成される、基部と、III.前記調節可能光学マウント機構に動作可能に連結される、圧電アクチュエータアセンブリとを備え、前記圧電アクチュエータは、A.アクチュエータフレームであって、(i)前記アクチュエータフレームの全ての要素が単一の連続材料から切断されている、モノリシック構成と、(ii)第1の接触表面を含む、第1の支持要素と、(iii)第2の接触表面を含む第2の支持要素であって、前記第2の接触表面は、前記第1の接触表面に対して離間し、実質的に対向した関係で配置される、第2の支持要素と、(iv)第1の支持要素と第2の支持要素との間に連結され、前記第1の接触表面と前記第2の接触表面との間の相対変位のための復元力を提供するように構成される、バイアスバンドと、(v)前記アクチュエータフレームの第1のマウント表面と前記アクチュエータフレームの第2のマウント表面との間に配置される、圧電要素空洞とを備える、アクチュエータフレームと、B.前記圧電要素空洞内に配置された圧電要素であって、前記圧電要素は、前記第1のマウント表面に固着された第1の端部を有し、前記圧電要素は、前記第2のマウント表面に固着された第2の端部を有し、前記圧電要素は、前記圧電要素に伝送される電気ドライバ信号に応答して拡張および収縮するように構成され、前記圧電要素は、前記圧電要素の拡張または収縮が前記第1の接触表面と前記第2の接触表面との間にそれぞれの実質的に平行な往復変位をもたらすように構成される、圧電要素とを備える、調節可能光学マウント。

請求項30

前記アクチュエータフレームはさらに、前記第1の支持要素と第2の支持要素との間に配置されて連結される、縮小材料断面のヒンジ区分を備え、前記ヒンジ区分は、前記ヒンジ区分内のアクチュエータフレーム材料の弾性変形による、前記第1の接触表面と前記第2の接触表面との間の相対往復平行変位を可能にするように構成される、請求項29に記載の圧電アクチュエータ。

請求項31

前記調節可能光学マウント機構は、前記調節可能光学マウントのねじ山付きシャフトの回転が、前記1自由度に沿って前記光学マウントデバイスと前記基部との間の相対距離を調節するように、前記調節可能光学マウントのねじ山付きシャフトを備え、前記第1の接触表面および第2の接触表面は、前記ねじ山付きシャフトの外面と対向バイアス接触して配置される、ねじ山付き接触表面を備える、請求項29に記載の調節可能光学マウント。

請求項32

前記圧電要素に動作可能に連結され、所望の回転方向で前記ねじ山付き接触表面の間で前記ねじ山付きシャフトを回転させる駆動信号を生成するように構成される、圧電ドライバをさらに備える、請求項29に記載の圧電アクチュエータ。

請求項33

前記光学マウントデバイスは、円盤形状の光学要素をしっかりと搭載するように構成される、光学搭載板を備える、請求項29に記載の圧電アクチュエータ。

請求項34

一片の連続高強度材料からアクチュエータフレームを切断するステップを含む、圧電アクチュエータ用モノリシックアクチュエータフレームを製造する方法であって、前記切断されたアクチュエータフレームは、(i)前記アクチュエータフレームの全ての要素が単一の連続的な途切れない材料から形成されている、モノリシック構成と、(ii)第1の接触表面を含む、第1の支持要素と、(iii)第2の接触表面を含む第2の支持要素であって、前記第2の接触表面は、前記第1の接触表面に対して離間し、実質的に対向した関係で配置される、第2の支持要素と、(iv)前記第1の支持要素と前記第2の支持要素との間に配置され、前記第2の接触表面から離れた前記第1の接触表面の垂直変位に抵抗する弾性復元力を提供するように構成される、バイアスバンドと、(v)前記アクチュエータフレームの第1のマウント表面と前記アクチュエータフレームの第2のマウント表面との間に配置される、圧電要素空洞とを含む、方法。

請求項35

前記アクチュエータフレームを切断するステップは、連続的な一片のステレンス鋼を切断するステップを含む、請求項34に記載の方法。

請求項36

前記アクチュエータフレームを切断するステップは、EDMプロセスによって一片の連続高強度材料を切断するステップを含む、請求項34に記載の方法。

請求項37

前記アクチュエータフレームを切断するステップは、レーザ機械加工プロセスによって一片の連続高強度材料を切断するステップを含む、請求項34に記載の方法。

請求項38

前記アクチュエータフレームを切断するステップは、水噴射機械加工プロセスによって一片の連続高強度材料を切断するステップを含む、請求項34に記載の方法。

請求項39

前記アクチュエータフレームを切断するステップは、CNC機械加工プロセスによって一片の連続高強度材料を切断するステップを含む、請求項34に記載の方法。

背景技術

0001

(関連特許出願)
本願は、2014年4月15日に出願された、発明者Honqi Liによる、INTEGRAL PRELOAD MECHAISMFOR PIEZOELECTRIC ACTUATORと題された、米国実用特許出願第14/253,087号(代理人管理番号NPT−0339−UT)の利益を主張するものでありその全内容は、参照により本明細書中に援用される。

0002

レンズ、鏡、波長板フィルタ体積ブラッグ格子プリズム、および同等物等の光学デバイスまたは要素は、多くの場合、調節可能光学マウントを用いて、光学ステム、具体的には、実験的光学システムに搭載される。光学システムの実施例は、1つの光学デバイスから次の光学デバイスに光線指向する光路を提供するよう、ある配向で基部に搭載された複数の光学デバイスおよび構成要素を有する、光学ベンチまたは基部を含んでもよい。レーザまたは他の光源からのビームが、概して、そのような用途に使用される。そのような配列に関して、調節可能光学マウントは、光学システムの光学ベンチまたは他の構成要素に光学要素をしっかり締結し、依然として光学要素の配向のある程度の調節を可能にする機構を提供する。

0003

既存の調節可能光学マウントは、そこに固着された光学要素を有するように構成される第1の板を有する、実施形態を含んでもよい。第2の板は、第1の板に隣接して配置され、第2の板から第1の板まで延在する3つの接点を含む。接点のうちの1つまたはそれを上回るものは、第2の板に螺合される、調節ねじ等の調節シャフトの端部上に配置されてもよい。接点はまた、第1の板に対する接点の回転を可能にするが、接点が第1の板に沿って摺動する、または横方向に変位させられることを防止する、第1の板上の戻り止めの中に配置されてもよい。ばねもしくは磁石等の1つまたはそれを上回る後退部材が、ばね、複数のばね、磁石、または複数の磁石の復元力を用いて、強制的に板を引き寄せるよう、第1および第2の板の間に締結される。板の間で後退部材によって生成される引力は、第1の板のそれぞれの戻り止めに対して3つの接点によって抵抗される。そのような配列では、調節ねじまたはシャフトの回転は、調節ねじ位置における板の間の分離、したがって、第2の板への第1の板の相対配向を調節するために、第2の板に対して調節ねじを移動させる。

0004

ある場合には、圧電型アクチュエータが、調節ねじを回転させるために使用されてもよい。第1の方向への調節可能光学マウントのねじ山付きシャフトに対する隣接ジョー要素往復運動は、ねじ山付きシャフトと隣接ジョーとの間の摩擦係数がジョーの運動をねじ山付きシャフトに伝達するように、往復運動が十分に遅いときに、ねじ山付きシャフトの単純回転運動に変換されてもよい。ねじ山付きシャフトの回転運動は、ねじ山付きシャフトの並進運動、ならびに第1の板およびそこに固着された光学要素等の任意の要素のそれぞれの移動をもたらす。第2の方向へのねじ山付きシャフトに対する隣接ジョー要素の往復運動は、ねじ山付きシャフトの慣性が、それが隣接ジョー要素の往復運動に関与することを防止し、それによって、ねじ山付きシャフトの位置の保存をもたらすように、比較的速くあり得る。ある場合には、各ジョーがねじ山付きシャフトに印加する復元力は、各ジョー要素に連結され得るクランプばね等の別個前負荷機構によって提供されてもよい。

0005

クランプばねによって印加されるようなねじ山付きシャフトと隣接ジョーとの間の復元力の変動は、トルク測定デバイスを用いてねじ山付きシャフトを回転させることによって測定される静的および動的トルクの変動をもたらし得る。これは、マウントの性能に悪影響を及ぼし得る。クランプばねによって隣接ジョーに印加される復元力の変動は、組立中のクランプばねの変形、製造の変動、クランプばねの処理または材料、もしくは同等物によって引き起こされ得る。必要とされているものは、隣接ジョーおよびねじ山付きシャフトの接触表面の間に一貫した復元力を供給する、前負荷機構である。

課題を解決するための手段

0006

圧電アクチュエータのいくつかの実施形態は、アクチュエータフレームの要素の全てが連続的な途切れない一片の材料から形成されている、モノリシック構成を伴うアクチュエータフレームを含む。アクチュエータフレームは、第1の接触表面を有する第1の支持要素と、第2の接触表面を有する第2の支持要素とを含む。第2の接触表面は、第1の接触表面に対して離間し、実質的に対向した関係で配置される。アクチュエータフレームはまた、第1の支持要素と第2の支持要素との間に配置されて連結される、縮小材料断面の随意ヒンジ区分を含んでもよい。ヒンジ区分は、ヒンジ区分内のアクチュエータフレーム材料の変形による、第1の接触表面と第2の接触表面との間の相対往復平行変位を可能にするように構成される。アクチュエータフレームはまた、第1の支持要素と第2の支持要素との間に配置される、バイアスバンドも含む。バイアスバンドは、第2の接触表面から離れた第1の接触表面の垂直変位に抵抗する弾性復元力を提供するように構成される。アクチュエータフレームはまた、第1のマウント表面と第2のマウント表面との間に配置される、圧電要素空洞を含んでもよい。圧電アクチュエータはまた、圧電要素空洞内に配置される、圧電要素も含む。圧電要素は、第1のマウント表面に固着される第1の端部と、第2のマウント表面に固着される第2の端部とを有する。圧電要素は、圧電要素の拡張または収縮が第1の接触表面と第2の接触表面との間にそれぞれの実質的に平行な往復変位をもたらすように、圧電アクチュエータに送信される電気ドライバ信号に応答して拡張および収縮するように構成される。

0007

圧電アクチュエータのいくつかの実施形態は、アクチュエータフレームの要素の全てが連続的な途切れない一片の材料から形成されている、モノリシック構成を伴うアクチュエータフレームを含む。アクチュエータフレームは、第1の接触表面を有する第1の支持要素と、第2の接触表面を有する第2の支持要素とを含む。第2の接触表面は、第1の接触表面に対して離間し、実質的に対向した関係で配置される。アクチュエータフレームはまた、第1の支持要素と第2の支持要素との間に配置されて連結される、縮小材料断面の随意のヒンジ区分を含んでもよい。ヒンジ区分は、ヒンジ区分内のアクチュエータフレーム材料の変形による、第1の接触表面と第2の接触表面との間の相対往復平行変位を可能にするように構成される。アクチュエータフレームはまた、第2の接触表面から離れた第1の接触表面の垂直変位に抵抗する、またはその逆も同様である復元力を提供するように構成される、バイアスバンドも含む。バイアスバンドは、第1の支持要素の遠位部分から遠位に延在し、第1の支持要素と第2の支持要素との間に配置される空間の周囲に延在する。バイアスバンドはまた、第2の接触表面と実質的に反対側に配置される第2の支持要素の外面の周囲で、第2の支持要素の遠位部分の周囲に延在する。バイアスバンドはまた、第2の支持要素の裏側に位置するバンドヒンジ区分における第2の支持要素で終端する。アクチュエータフレームはまた、第1のマウント表面と第2のマウント表面との間に配置される、圧電要素空洞を含んでもよい。圧電アクチュエータはまた、圧電要素空洞内に配置される、圧電要素も含む。圧電要素は、第1のマウント表面に固着される第1の端部と、第2のマウント表面に固着される第2の端部とを有する。圧電要素は、圧電要素の拡張または収縮が第1の接触表面と第2の接触表面との間にそれぞれの実質的に平行な往復変位をもたらすように、圧電アクチュエータに送信される電気ドライバ信号に応答して拡張および収縮するように構成される。

0008

圧電アクチュエータのいくつかの実施形態は、アクチュエータフレームの要素の全てが連続的な途切れない一片の材料から形成されている、モノリシック構成を伴うアクチュエータフレームを含む。アクチュエータフレームは、第1の接触表面を有する第1の支持要素と、第2の接触表面を有する第2の支持要素とを含む。第2の接触表面は、第1の接触表面に対して離間し、実質的に対向した関係で配置される。アクチュエータフレームはまた、第1の支持要素と第2の支持要素との間に配置されて連結される、縮小材料断面の随意のヒンジ区分を含んでもよい。ヒンジ区分は、ヒンジ区分内のアクチュエータフレーム材料の変形による、第1の接触表面と第2の接触表面との間の相対往復平行変位を可能にするように構成される。アクチュエータフレームはまた、第2の接触表面から離れた第1の接触表面の垂直変位に抵抗する、またはその逆も同様である復元力を提供するように構成される、バイアスバンドも含む。バイアスバンドは、第1の支持要素の遠位部分の周囲で第1の支持要素の外面に沿って、第1の支持要素から遠位に延在し、外面は、第1の接触表面の実質的に反対にある。バイアスバンドはまた、第1の接触表面と第2の接触表面との間に配置される空間と、第2の接触表面と実質的に反対側に配置される第2の支持要素の外面に沿って第2の支持要素の遠位部分との周囲に延在する。バイアスバンドは、第2の支持要素の裏側に位置するバンドヒンジ区分で終端する。アクチュエータフレームはまた、第1のマウント表面と第2のマウント表面との間に配置される、圧電要素空洞を含んでもよい。圧電アクチュエータはまた、圧電要素空洞内に配置される、圧電要素も含む。圧電要素は、第1のマウント表面に固着される第1の端部と、第2のマウント表面に固着される第2の端部とを有する。圧電要素は、圧電要素の拡張または収縮が第1の接触表面と第2の接触表面との間にそれぞれの実質的に平行な往復変位をもたらすように、圧電アクチュエータに送信される電気ドライバ信号に応答して拡張および収縮するように構成される。

0009

調節可能光学マウントのいくつかの実施形態は、光学要素を受容し、そこに光学要素を固着するように構成される、光学マウントデバイスを含む。調節可能光学マウントはまた、安定表面にしっかりと搭載されるように構成され、調節可能光学マウント機構によって光学マウントデバイスに連結される、基部も含む。調節可能光学マウント機構は、少なくとも1自由度に沿って光学マウントデバイスと基部との間の相対的かつ調節可能な変位を可能にするように構成される。調節可能光学マウントはまた、調節可能光学マウント機構に動作可能に連結される、圧電アクチュエータアセンブリも含む。圧電アクチュエータアセンブリは、アクチュエータフレームの要素の全てが連続的な一片の材料から切断されている、モノリシック構成を有する、アクチュエータフレームを含む。圧電アクチュエータアセンブリはまた、第1の接触表面を有する第1の支持要素と、第2の接触表面を有する第2の支持要素とを含む。第2の接触表面は、第1の接触表面に対して離間し、実質的に対向した関係で配置される。アクチュエータフレームはまた、第1の支持要素と第2の支持要素との間に配置される、縮小材料断面の随意のヒンジ区分を含んでもよい。ヒンジ区分は、ヒンジ区分内のアクチュエータフレーム材料の弾性変形による、第1の接触表面と第2の接触表面との間の相対変位を可能にするように構成される。アクチュエータフレームはまた、第1の支持要素と第2の支持要素との間に連結され、第1の接触表面と第2の接触表面との間の相対変位のための弾性復元力を提供するように構成される、バイアスバンドも含む。アクチュエータフレームはまた、第1のマウント表面と第2のマウント表面との間に配置される、圧電要素空洞を含んでもよい。圧電アクチュエータアセンブリはまた、第1のマウント表面に固着された圧電要素の第1の端部および第2のマウント表面に固着された圧電要素の第2の端部ととともに、圧電要素空洞内に配置される圧電要素を含んでもよい。圧電要素はまた、圧電要素に伝送される電気ドライバ信号に応答して拡張および収縮するように構成される。圧電アクチュエータアセンブリは、圧電要素の拡張または収縮が第1の接触表面と第2の接触表面との間にそれぞれの実質的に平行な変位をもたらすように構成される。

0010

ある実施形態が、以下の説明、実施例、請求項、および図面でさらに説明される。これらの実施形態の特徴は、添付の例示的図面と併せて解釈されたときに、以下の発明を実施するための形態からより明白となるであろう。

図面の簡単な説明

0011

図面は、技術の実施形態を図示し、限定的ではない。図示を明確かつ容易にするために、図面は、一定の縮尺で作製されない場合があり、ある場合には、種々の側面が、特定の実施形態の理解を促進するように誇張または拡大されて示され得る。
図1は、調節可能光学マウントを組み込む光学アセンブリの斜視図である。
図2は、アクチュエータカバー板およびアクチュエータ保持筐体を示す、図1の調節可能光学マウントの斜視図である。
図3は、アクチュエータ保持筐体内に配置される複数の圧電アクチュエータを示す、アクチュエータカバー板およびアクチュエータ保持筐体が隠された図1の調節可能光学マウントの斜視図である。
図4Aは、アクチュエータ保持筐体、アクチュエータカバー板、およびアクチュエータ保持筐体内に配置された複数の圧電アクチュエータを示す、図1の調節可能光学マウントの分解斜視図である。
図4Bは、光学マウントデバイス、基板、アクチュエータ筐体、圧電アクチュエータ、および基板のスロットに連結する圧電アクチュエータのフレームガイドを示す、分解図である。
図5は、アクチュエータ保持筐体内に配置される複数の圧電アクチュエータを示す、アクチュエータカバー板が隠された図1の調節可能光学マウントの立面図である。
図6Aは、アクチュエータフレームと、アクチュエータシャフトと、圧電アクチュエータとを備える、圧電アクチュエータアセンブリの実施形態を描写する、斜視図である。
図6Bは、図6Aの圧電アクチュエータアセンブリの断面における斜視図である。
図6Cは、第1の支持要素、第2の支持要素、ヒンジ区分、およびバイアスバンドを示す、アクチュエータフレームの実施形態の立面図である。
図6Dは、第2の接触表面を示す、図6Cのアクチュエータフレームの実施形態の断面における斜視図である。
図6Eは、第1の接触表面を示す、図6Cのアクチュエータフレームの実施形態の断面における斜視図である。
図6Fは、中立状態における圧電アクチュエータおよび中立状態におけるアクチュエータフレームを示す、図6Aの圧電アクチュエータおよびアクチュエータフレームの両方の立面図である。
図6Gは、伸長状態における圧電アクチュエータおよび変形状態におけるアクチュエータフレームを示す、図6Fの圧電アクチュエータおよびアクチュエータフレームの両方の立面図である。
図6Hは、図6Aのアクチュエータフレームの立面図である。
図6Iは、図6Aのアクチュエータフレームの立面図である。
図7Aは、アクチュエータフレームと、アクチュエータシャフトと、圧電アクチュエータとを備える、圧電アクチュエータアセンブリの実施形態を描写する、斜視図である。
図7Bは、図7Aの圧電アクチュエータアセンブリの断面における斜視図である。
図7Cは、第1の支持要素、第2の支持要素、ヒンジ区分、およびバイアスバンドを示す、アクチュエータフレームの実施形態の立面図である。
図7Dは、第2の接触表面を示す、図7Cのアクチュエータフレームの実施形態の断面における斜視図である。
図7Eは、第1の接触表面を示す、図7Cのアクチュエータフレームの実施形態の断面における斜視図である。
図7Fは、中立状態における圧電アクチュエータおよび中立状態におけるアクチュエータフレームを示す、図7Aの圧電アクチュエータおよびアクチュエータフレームの両方の立面図である。
図7Gは、伸長状態における圧電アクチュエータおよび変形状態におけるアクチュエータフレームを示す、図7Fの圧電アクチュエータおよびアクチュエータフレームの両方の立面図である。
図7Hは、図7Aのアクチュエータフレームの立面図である。
図7Iは、図7Aのアクチュエータフレームの立面図である。
図8Aは、アクチュエータフレームと、アクチュエータシャフトと、圧電アクチュエータとを備える、圧電アクチュエータアセンブリの実施形態を描写する、斜視図である。
図8Bは、図8Aの圧電アクチュエータアセンブリの断面における斜視図である。
図8Cは、第1の支持要素、第2の支持要素、ヒンジ区分、およびバイアスバンドを示す、アクチュエータフレームの実施形態の立面図である。
図8Dは、第2の接触表面を示す、図8Cのアクチュエータフレームの実施形態の断面における斜視図である。
図8Eは、第1の接触表面を示す、図8Cのアクチュエータフレームの実施形態の断面における斜視図である。
図8Fは、中立状態における圧電アクチュエータおよび中立状態におけるアクチュエータフレームを示す、図8Aの圧電アクチュエータおよびアクチュエータフレームの両方の立面図である。
図8Gは、伸長状態における圧電アクチュエータおよび変形状態におけるアクチュエータフレームを示す、図8Fの圧電アクチュエータおよびアクチュエータフレームの両方の立面図である。
図8Hは、図8Aのアクチュエータフレームの立面図である。
図8Iは、図8Aのアクチュエータフレームの立面図である。
図9Aは、アクチュエータフレームと、アクチュエータシャフトと、圧電アクチュエータとを備える、圧電アクチュエータアセンブリの実施形態を描写する、斜視図である。
図9Bは、図9Aの圧電アクチュエータアセンブリの断面における斜視図である。
図9Cは、第1の支持要素、第2の支持要素、ヒンジ区分、およびバイアスバンドを示す、アクチュエータフレームの実施形態の立面図である。
図9Dは、第2の接触表面を示す、図9Cのアクチュエータフレームの実施形態の断面における斜視図である。
図9Eは、第1の接触表面を示す、図9Cのアクチュエータフレームの実施形態の断面における斜視図である。
図9Fは、中立状態における圧電アクチュエータおよび中立状態におけるアクチュエータフレームを示す、図9Aの圧電アクチュエータおよびアクチュエータフレームの両方の立面図である。
図9Gは、伸長状態における圧電アクチュエータおよび変形状態におけるアクチュエータフレームを示す、図9Fの圧電アクチュエータおよびアクチュエータフレームの両方の立面図である。
図9Hは、図9Aのアクチュエータフレームの立面図である。
図9Iは、図9Aのアクチュエータフレームの立面図である。
図10Aは、アクチュエータフレームと、アクチュエータシャフトと、圧電アクチュエータとを備える、圧電アクチュエータアセンブリの実施形態を描写する、斜視図である。
図10Bは、図10Aの圧電アクチュエータアセンブリの断面における斜視図である。
図10Cは、第1の支持要素、第2の支持要素、ヒンジ区分、およびバイアスバンドを示す、アクチュエータフレームの実施形態の立面図である。
図10Dは、第2の接触表面を示す、図10Cのアクチュエータフレームの実施形態の断面における斜視図である。
図10Eは、第1の接触表面を示す、図10Cのアクチュエータフレームの実施形態の断面における斜視図である。
図10Fは、中立状態における圧電アクチュエータおよび中立状態におけるアクチュエータフレームを示す、図10Aの圧電アクチュエータおよびアクチュエータフレームの両方の立面図である。
図10Gは、伸長状態における圧電アクチュエータおよび変形状態におけるアクチュエータフレームを示す、図10Fの圧電アクチュエータおよびアクチュエータフレームの両方の立面図である。
図10Hは、図10Aのアクチュエータフレームの立面図である。
図10Iは、図10Aのアクチュエータフレームの立面図である。
図11は、製造プロセスの斜視図である。

実施例

0012

本明細書で開示される実施形態は、ある場合には、光学マウントに固着された光学デバイスおよび/または光学要素の並進および/または回転調節を提供し得る、圧電アクチュエータを含む、小型電動駆動機構を対象とする。そのような例示的光学マウントは、光学調節のための他の電動調節可能光学マウントに対して、角度範囲制限が殆どまたは全くなく、光学マウントを通る中心開口可用性、光学マウントへの電力損失の場合の位置安定性、良好な感受性、および低い費用を有するように構成されてもよい。そのような圧電アクチュエータによって駆動され得る光学マウントの実施例は、回転ステージ等の回転光学マウント、運動学的光学マウント等の枢動または接合されて角度傾転のために構成される光学マウント、並進ステージを含み得る並進マウント、および同等物を含んでもよい。圧電アクチュエータの実施形態は、所与の光学マウント内に好適に配置されてもよく、マウントに固着される光学デバイスもしくは構成要素の並進および/または回転運動を提供するように構成されてもよい。圧電アクチュエータの例示的実施形態は、参照することによってその全体として本明細書に組み込まれる、Piezoelectric Actuator for Optical Alignment Screwsと題された、Lueckeらによって1993年4月6日に出願された米国特許第5,410,206号で議論されている。組み込まれた第5,410,206号特許で議論される実施形態の任意の好適な特徴、寸法、または材料が、本明細書で議論される実施形態のうちのいずれかと併せて使用されてもよい。

0013

図1に示される光学アセンブリ10は、圧電アクチュエータを利用するシステムの実施例として示されている、マイケルソン干渉計システムの実施形態である。光学アセンブリ10は、光学ベンチ12に固着され得る他の光学要素のための安定したプラットフォームを提供する、光学ベンチ12を含んでもよい。光学アセンブリ10はまた、ビーム分割キューブ16に向かって指向され得る、レーザまたは同等物の形態の放射線源14を含んでもよい。光学アセンブリ10はまた、手動光学マウント20に固着される第1の鏡18を含んでもよい。第1の鏡20の位置は、全て手動光学マウント20に回転固着される、第1の手動ノブ22a、第2の手動ノブ22b、または第3の手動ノブ22cによって手動で調節されてもよい。

0014

光学アセンブリ10はまた、光学要素を受容するように、およびその光学要素を調節可能光学マウント24に固着するように構成される、調節可能光学マウント24を含んでもよい。調節可能光学マウント24の実施形態が、図1−5に示されている。調節可能光学マウント24は、順に光学ベンチ12に固着される、調節可能光学マウント24の基部28に固着される、調節可能マウント機構26を含んでもよい。調節可能光学マウント24はまた、少なくとも1自由度に沿って光学マウントデバイス30と基部28との間の相対的かつ調節可能な変位を可能にするように構成される、調節可能マウント機構26に回転および並進連結される、光学マウントデバイス30を含んでもよい。

0015

第2の鏡32が、光学マウントデバイス30に固着されてもよい。調節可能マウント機構26は、図3に示されるように、第1のねじ山付きシャフト36に固着される第1の駆動ノブ34と、第2のねじ山付きシャフト40に固着される第2の駆動ノブ38と、第3のねじ山付きシャフト44に固着される第3の駆動ノブ42とを含んでもよい。第2の鏡32の位置は、調節可能マウント機構26内に配置される第1の圧電アクチュエータ50、第2の圧電アクチュエータ52、および第3の圧電アクチュエータ54(図3参照)に順に動作可能に連結される、電子コントローラ48に動作可能に連結される、ジョイスティック制御デバイス46を使用することによって、調節されてもよい。それらが電子コントローラ48によって起動されるとき、第1の圧電アクチュエータ50が第1のねじ山付きシャフト36を駆動し、第2の圧電アクチュエータ52が第2のねじ山付きシャフト40を駆動し、第3の圧電アクチュエータ54が第3のねじ山付きシャフト44を駆動する。3つの圧電アクチュエータのうちのいずれか1つまたは組み合わせは、光学マウントデバイス30内に配置される第2の鏡32の並進および/または回転運動を提供するために、ねじ山付きシャフトの任意のそれぞれの組み合わせを駆動するために電子コントローラ48によって起動されることができる。

0016

レーザ14によって生成される入射ビームは、入射ビームの第1のビーム部分が第1の鏡18に送信され、入射ビームの第2のビーム部分が第2の鏡32に送信され得るように、ビーム分割キューブ16において分割されてもよい。入射ビームの第1のビーム部分および入射ビームの第2のビーム部分は、それぞれ、第1の鏡18および第2の鏡32から反射されてもよく、次いで、第1のビーム部分および第2のビーム部分は、ビーム分割キューブ16において再結合され、次いで、視認画面56に指向されてもよい。この場合、入射ビームの第1のビーム部分の方向は、第1の手動ノブ22a、第2の手動ノブ22b、および/または第3の手動ノブ22cを使用して、第1の鏡18を調節することによって、調節されてもよい。入射ビームの第2のビーム部分の方向は、調節可能マウント機構26内に配置され、それぞれ、第1のねじ山付きシャフト36、第2のねじ山付きシャフト40、および第3のねじ山付き44シャフトに動作可能に連結される、第1の圧電アクチュエータ50、第2の圧電アクチュエータ52、または第3の圧電アクチュエータ54の移動もしく配置の任意の所望の組み合わせを起動するように、電子コントローラ48に命令し、または別様に情報信号を提供する、ジョイスティックコントローラ46を使用することによって、調節されてもよい。

0017

光学マウントデバイス30は、光学要素(第2の鏡32等)を受容するように、およびその光学要素に固着するように構成される、搭載領域58を組み込む。搭載領域58は、種々のレンズ、フィルタ、鏡、または任意の他の好適な光学要素と連結するように構成される。調節可能マウント機構26は、順に光学ベンチ12に固着される、基部28に取り付けるための搭載孔60を含んでもよい。調節可能マウントデバイスは、基板61を含んでもよい。調節可能マウント機構26は、基板61に固着される、アクチュエータ筐体62およびアクチュエータ筐体カバー64を含んでもよい。アクチュエータ筐体62は、ねじ66または任意の他の好適な締結具を用いてアクチュエータ筐体カバー64に固着されてもよい。光学マウントデバイス30は、ばね68(図示せず)によって調節可能マウント機構26に取り付けられてもよく、ばね68は、調節可能マウント機構26および基部28に対する光学マウントデバイス30の回転および並進を可能にする。第1のねじ山付きシャフト36、第2のねじ山付きシャフト40、および第3のねじ山付きシャフト44は、光学マウントデバイス30の前面70上に位置する浅いレセプタクル(図示せず)の中で光学マウントデバイス30に接触してもよい。電子コントローラ48をマウント機構26に動作可能に連結するケーブル72は、ケーブル開口74を通るアクチュエータ筐体カバー64を通して送給されてもよい。

0018

図3は、アクチュエータ筐体カバー64が除去され、それによって、第1の圧電アクチュエータ50、第2の圧電アクチュエータ52、および第3の圧電アクチュエータ54を公開する、調節可能光学マウント24を描写する。第1のねじ山付きシャフト36は、第1の圧電アクチュエータ50の対向接触表面の間に配置され、第2のねじ山付きシャフト40は、第2の圧電アクチュエータ52の対向接触表面の間に配置され、第3のねじ山付きシャフト44は、第3の圧電アクチュエータ54の対向接触表面の間に配置される。それぞれのねじ山付きシャフトがそれぞれの圧電アクチュエータによって回転移動で駆動されるとき、それぞれのねじ山付きシャフトは、それぞれの圧電アクチュエータ内で、および基板61のそれぞれのねじ穴内で回転してもよく、次いで、光学マウントデバイス30の前面70を押し、それによって、光学マウントデバイス30と調節可能マウント機構26の基板61との間の間隙76を増大させてもよい。代替として、それぞれのねじ山付きシャフトがそれぞれの圧電アクチュエータによって反対方向に駆動されるとき、それぞれのねじ山付きシャフトは、それぞれの圧電アクチュエータ内で、および基板61のそれぞれのねじ穴内で回転してもよく、ばねが光学マウントデバイス30の前面70を後退させることを可能にし、それによって、光学マウントデバイス30と調節可能マウント機構26との間の間隙76を縮小してもよい。圧電アクチュエータ50、52、または54のうちのいずれかは、同一の目的で本明細書に議論され、同一の方法およびデバイスによって制御される、圧電アクチュエータの実施形態の任意の組み合わせを含み得ることに留意されたい。

0019

図4Aは、調節可能光学マウント24の分解図である。第1の圧電アクチュエータ50は、アクチュエータ筐体62の第1のアクチュエータ開口78内に配置され、第2の圧電アクチュエータ52は、アクチュエータ筐体62の第2のアクチュエータ開口80内に配置され、第3の圧電アクチュエータ54は、アクチュエータ筐体62の第3のアクチュエータ開口82内に配置される。第1の圧電アクチュエータ50は、アクチュエータ筐体62に対する第1の圧電アクチュエータ50の回転を防止するように、しっかりした嵌合領域84を有してもよく、第1の圧電アクチュエータ50は、電子コントローラ48によって駆動されるにつれて第1の圧電アクチュエータ50の変形を可能にするために、緩い嵌合領域86を有してもよい。同様に、第2の圧電アクチュエータ52は、アクチュエータ筐体62に対する第2の圧電アクチュエータ52の回転を防止するように、しっかりした嵌合領域88を有してもよく、第2の圧電アクチュエータ52は、電子コントローラ48によって駆動されるにつれて第2の圧電アクチュエータ52の変形を可能にするために、緩い嵌合領域90を有してもよい。同様に、第3の圧電アクチュエータ54は、アクチュエータ筐体62に対する第3の圧電アクチュエータ54の回転を防止するように、しっかりした嵌合領域92を有してもよく、第3の圧電アクチュエータ54は、電子コントローラ48によって駆動されるにつれて第3の圧電アクチュエータ54の変形を可能にするために、緩い嵌合領域94を有してもよい。

0020

図5は、エラストマー材料の第1の弾性パッド96、エラストマー材料の第2の弾性パッド98、およびエラストマー材料の第3の弾性パッド100を示す、アクチュエータ筐体カバー64が除去された調節可能光学マウント24の立面図である。第1の弾性パッド96は、第1のアクチュエータ開口78と第1の圧電アクチュエータ50との間に位置し、第1の弾性パッド96は、起動されたときに第1の圧電アクチュエータ50が第1のアクチュエータ開口78内で回転することを防止するように作用する。同様に、第2の弾性パッド98は、第2のアクチュエータ開口80と第2の圧電アクチュエータ52との間に位置し、第2の弾性パッド98は、起動されたときに第2の圧電アクチュエータ52が第2のアクチュエータ開口80内で回転することを防止するように作用する。同様に、第3の弾性パッド100は、第3のアクチュエータ開口82と第3の圧電アクチュエータ54との間に位置し、第3の弾性パッド100は、起動されたときに第3の圧電アクチュエータ54が第3のアクチュエータ開口82内で回転することを防止するように作用する。

0021

上記で議論される調節可能光学マウントならびに他の好適な光学実施形態は、ねじ山付きシャフトまたは光学マウントの他の部分を駆動するために、任意の好適な圧電アクチュエータを含んでもよい。そのような圧電アクチュエータの実施形態の1つの問題は、調節可能光学マウントのねじ山付きシャフトに対するアクチュエータの接触表面における一定の力の重要性である。

0022

一定および/または制御された復元力を提供するように構成される圧電アクチュエータ102の実施形態が、図6A−6Iに示されている。上記で議論されるように、ねじ山付きシャフト等の表面を握持するための復元力を生成するために使用される、別個のクリップ型ばねを伴う圧電アクチュエータは、ある設計困難点を被る傾向があり得る。図6A−6Gに示される圧電アクチュエータの実施形態102は、アクチュエータフレーム104の要素の全てが単一の連続的な途切れない材料から形成されている、モノリシック構成を有する、アクチュエータフレーム104を含んでもよい。アクチュエータフレームは、第1の接触表面108を有する第1の支持要素106と、第2の接触表面112を有する第2の支持要素110とを含んでもよい。第1の接触表面108は、第2の接触表面112に対して離間し、実質的に対向した関係で配置される。第1の接触表面108および第2の接触表面112は、第1の接触表面108と第2の接触表面112との間で回転固着され得る、光学マウントのねじ山付きシャフト114に選択的に係合するように構成されてもよい。第1の接触表面108および第2の接触表面112は、随意に、ねじ山付きシャフト114に効果的に係合するために、図6Dおよび6Eに示されるようにねじ山付き表面として構成されてもよい。第1の接触表面108および第2の接触表面112の相対往復運動が、ねじ山付きシャフト114と選択的に係合し、それを回転させるために使用されてもよい。

0023

アクチュエータフレーム104のいくつかの外面が、アクチュエータフレームの実施形態104の特徴および/または寸法について議論するために、基準表面として使用されてもよい。この場合、アクチュエータフレーム104は、アクチュエータフレーム104の前外面105およびアクチュエータフレーム104の後外面107を組み込んでもよい。アクチュエータフレーム104の前外面105は、アクチュエータフレーム104の後外面107に対して離間し、実質的に対向した関係で配置されてもよい。前外面105はまた、後外面107と実質的に平行であり得る。アクチュエータフレーム104はまた、前外面105および後外面107の両方と実質的に垂直であるように配置される、第1の外側面109を組み込んでもよい。アクチュエータフレーム104はまた、第1の外側面109に対して離間し、実質的に対向した関係で配置される、第2の外側面111を組み込んでもよい。第1の外側面109はまた、第2の外側面111と実質的に平行であり得る。

0024

アクチュエータフレーム104は、正方形長方形、または同等物等の任意の好適な構成を有してもよい。ある場合には、第1の外側面109から第2の外側面111までのアクチュエータフレーム104の横寸法は、約0.1インチ〜約0.33インチ、より具体的には、約0.11インチ〜約0.22インチであってもよい。さらに、前外面105から後外面107までのアクチュエータフレーム104の横寸法は、約0.15インチ〜約0.45インチ、より具体的には、約0.27インチ〜約0.33インチであってもよい。さらに、アクチュエータフレーム104の高さは、約0.3インチ〜約1インチ、より具体的には、約0.54インチ〜約0.66インチであってもよい。

0025

上記で議論されるように、第1の接触表面108と第2の接触表面112との間の一貫した復元力が、ある場合には、所望の方向への回転運動を提供するように、ねじ山付きシャフト114との接触表面の選択的係合を可能にするために、必要とされ得る。図6A−6Gの圧電アクチュエータの実施形態102のアクチュエータフレーム104は、第1の支持要素106と第2の支持要素110との間に配置され、それらに連結され得、かつ第1の接触表面108から離れた第2の接触表面112の垂直相対変位に抵抗するであろう復元力を提供するように構成され得る、一体バイアスバンド部分116を組み込む。ある場合には、一体バイアスバンド116は、いくつかの前の圧電アクチュエータの実施形態と比較して、接触表面の間により一貫した復元力を提供してもよい。

0026

第1の接触表面108から離れた第2の接触表面112の垂直変位は、偏向し、後にその中立状態に戻るにつれて、従来のばねと同様に挙動する、バイアスバンド116の偏向をもたらす。バイアスバンド116が第2の接触表面112に提供する復元力は、偏向の規模、バイアスバンド116の慣性モーメント、およびある場合にはバイアスバンド116が形成されるアクチュエータフレーム104材料の弾性率に実質的に比例し得る。バイアスバンド116は、図6Aに示されるようにその厚さより数倍の幅がある、アクチュエータフレーム104の材料の領域として構成されてもよい。バイアスバンド116の幅または厚さの増加は、バイアスバンド116の慣性モーメントの増加、したがって、バイアスバンド116が接触表面に提供する復元力の増加につながるであろう。

0027

バイアスバンド116によって提供される復元力が、バイアスバンド116の断面寸法に依存するため、バイアスバンド116の一貫した寸法が、一貫した復元力を接触表面に提供してもよい。バイアスバンド116は、モノリシックアクチュエータフレーム104の連続領域として製造されてもよい。ワイヤ放電機械加工(EDM)等の製造プロセスが、図11に示されるような連続的な一片の高強度弾性材料113からアクチュエータフレーム104(ならびに以下で議論されるアクチュエータフレーム342等の本明細書で議論されるアクチュエータフレームの実施形態のうちのいずれか)を処理または別様に切断するために、使用されてもよい。EDM等の切断および機械加工プロセスは、概して、アクチュエータフレーム104の接触表面上で一貫した制御可能な復元力を生成するために有用である、精密寸法公差を生成する。EDMに加えて、アクチュエータフレーム104は、CNC機械加工、水噴射切断、レーザ切断、または任意の他の好適な加工および機械加工プロセスを含む、従来の機械加工で使用されるような任意の好適な切断ツール117を使用して、製造もしくは別様に切断されてもよい。ある場合には、切断されている弾性材料の弾性率特性に影響を及ぼし得る、熱影響域を誘発しない、切断プロセスを使用することが望ましくあり得る。水噴射切断およびEDMは、ある場合には、そのような要件に十分であり得る。

0028

バイアスバンド116の復元力はまた、アクチュエータフレーム10材料の弾性率に依存し得る。高弾性率材料から製造されるアクチュエータフレーム104は、アクチュエータフレーム104と同一の寸法をとり、より低い弾性率の材料から製造されるアクチュエータフレーム104より大きい復元力を有するであろう。これは、アクチュエータフレーム104材料の弾性率を緊密に制御するために、復元力の一貫性にとって有益であり得る。図6A−6Iに示される実施形態に関して、アクチュエータフレーム104は、任意の好適弾性材料から製造されてもよい。例えば、アクチュエータフレーム104は、ステレンス鋼406等の任意のステレンス鋼、アルミニウムチタン真鍮、銅、任意の好適な複合材料、または同等物から製造されてもよい。ある場合には、炭素繊維複合材料または同等物等の連続的な一片の複合材料からアクチュエータフレームを切断もしくは別様に形成することが望ましくあり得る。さらに、アクチュエータフレーム104は、第1の接触表面108と第2の接触表面104との間の公称横断距離が、約2mm〜約20mm、より具体的には、約5〜約10mmであり得るように構成されてもよい。

0029

図6A−6Iに示されるように、バイアスバンド116は、第1の支持要素106の遠位部分118から遠位に延在し、第1の接触表面108と第2の接触表面112の間および第2の支持要素110の遠位部分122の周囲の両方に配置される空間120の周囲に延在する。バイアスバンド116はまた、第2の支持要素110上に配置される噛合横溝126と係合させられる横拡張部124を含んでもよく、横溝126は、第2の接触表面112の実質的に反対側の第2の支持要素110の近位部分132の外面130上に配置される。

0030

バイアスバンド116はまた、それが駆動サイクル中に接触表面に提供する復元力が、バイアス調節機構を用いて調節されることができるように、構成されてもよい。バイアス調節機構の一実施形態は、バイアスバンド116と接触して配置される調節可能止めねじ130であろう。調節可能止めねじ130は、図6Aに示される。

0031

圧電アクチュエータ102はまた、圧電結晶として構成される、圧電要素132を含んでもよい。圧電要素132は、長方形、正方形、円筒形、または同等物等の任意の好適な構成を有してもよい。ある場合には、圧電要素132は、約1mm〜約20mm、より具体的には、約4mm〜約6mmの軸長を有してもよい。さらに、圧電要素132は、約1mm〜約5mm、より具体的には、約2mm〜約4mmの横寸法を有してもよい。圧電要素132は、アクチュエータフレーム104の圧電要素空洞134の中でアクチュエータフレーム104内に配置されて図6Bに示されている。圧電要素132は、アクチュエータフレーム104の第1のマウント表面138に固着される第1の端部136と、アクチュエータフレーム104の第2のマウント表面142に固着される第2の端部140とを有する。第1のマウント表面138と第2のマウント表面142との間の空間は、ある場合には、圧電要素空洞134を画定する役割を果たしてもよい。圧電要素102は、任意の好適な圧電材料から加工されてもよい。例えば、圧電要素は、石英ベルリナイトトルマリンチタン酸バリウムタンタル酸リチウム、または任意の他の好適な圧電材料から加工されてもよい。

0032

アクチュエータフレームの実施形態102はまた、概して、アクチュエータフレーム104の縮小材料断面であり得る、縮小材料断面の1つまたはそれを上回るヒンジ区分を含んでもよい。縮小材料断面は、ヒンジ区分144に直接隣接するアクチュエータフレーム104の断面に対して縮小される。ある場合には、本明細書で議論されるアクチュエータフレームの実施形態のうちのいずれかに関して、公称隣接アクチュエータフレーム材料断面に対するヒンジ区分の材料断面の縮小は、断面の約1%縮小〜断面の約30%縮小、より具体的には、断面の約5%縮小〜断面の約25%縮小であってもよい。第1のアームヒンジ区分144が、フレームアーム区分146とフレーム本体区分148との間のヒンジ連結回転変位を可能にするよう、アクチュエータフレーム104のフレームアーム区分146とアクチュエータフレーム104のフレーム本体区分148との間に配置されてもよい。アクチュエータフレームの実施形態102はまた、第1のアームヒンジ区分144と第1の支持要素106との間に配置される、第2のアームヒンジ区分150を含んでもよい。アクチュエータフレーム104はまた、第1のアームヒンジ区分144の遠位に配置される、フレームスロット152を含んでもよい。フレームスロット152は、フレームアーム区分146とフレーム本体区分148との間の実質的に独立した相対運動を可能にするよう、フレームアーム区分146とフレーム本体区分148との間にアクチュエータフレーム104材料内の間隙154を含む。

0033

アクチュエータフレームの実施形態102のヒンジ区分は、ヒンジ区分内の(およびおそらく、それほどの重要性はないがフレーム構造内の他の場所の)アクチュエータフレーム104材料の弾性変形による、第1の接触表面108と第2の接触表面112との間の相対往復平行変位を可能にするように構成される。第1のアームヒンジ区分144は、第1のアームヒンジ区分144におけるフレーム構造内の材料の縮小断面または慣性モーメントによって形成されてもよい。縮小断面は、圧電要素132の拡張または収縮によってフレーム構造に印加される力の結果としてのフレーム構造の歪みが集中させられ得る、断面を提供する。材料の縮小断面における歪みの集中は、第1の接触表面108および第2の接触表面112等のアクチュエータフレームの種々の構成要素の間の公知のまたは予測可能な移動をもたらし得る。第1のアームヒンジ区分144は、フレームアーム区分146に対するフレーム本体区分148のヒンジ連結型回転変位のみを可能にし、回転変位は、歪みの集中が起こるであろう、第1のアームヒンジ区分144を中心とする。

0034

本明細書で議論される圧電アクチュエータに関して、アクチュエータフレームの構成要素の変位の全てまたは殆どは、フレームの好ましい変形面があるように、フレーム構造の枢動もしくはヒンジ連結部材ならびにバイアスバンドが、厚さを実質的に上回る幅を有するため、実質的に単一の面内で起こる。実施例として、図6Aは、圧電アクチュエータの実施形態102のバイアスバンド116の斜視図を示す。バイアスバンド116は、その厚さ(寸法158)を実質的に上回る幅(第1の外側面109から第2の外側面111まで及ぶ寸法156)を有することが分かる。バイアスバンド116の寸法構成は、アクチュエータフレーム104の外面107と平行である第2の面に沿った偏向よりも容易に、それがアクチュエータフレーム104の第1の外側面109と平行である第1の面に沿って偏向することを可能にする。これは、第1の面に対するバイアスバンド116の曲げモーメントが第2の面に対するバイアスバンド116の曲げモーメントよりはるかに低いためである。

0035

フレーム本体区分148は、本体区分148の縦軸168(図6Fおよび6G参照)に沿ったフレーム本体区分148の軸方向拡張および収縮を促進するように構成される、複数の本体ヒンジ区分164をジグザグ部分166の中に含む。本体ヒンジ区分164は、アクチュエータフレーム104の材料の縮小断面によって形成され、第1のアームヒンジ区分144に対して上記で議論されるように機能してもよい。本体ヒンジ区分164は、第1のマウント表面138から第2のマウント表面142まで延在する、フレーム構造上に配置されてもよい。フレーム本体区分148のフレーム構造の本ジグザグ部分166は、本体ヒンジ区分164の間に配置される可撓性コネクタ区分170を含んでもよい。本体ヒンジ区分164は、本体ヒンジ区分164ならびに本体ヒンジ区分164の間に延在する比較的薄いフレーム要素である可撓性コネクタ区分170の弾性変形を通して、縦軸168に沿ったフレーム本体区分148の偏向(軸方向拡張または収縮等)を可能にする。ある場合には、フレーム本体区分148の軸方向拡張および収縮は、本体ヒンジ区分164、可撓性コネクタ区分170の弾性変形、または本体ヒンジ区分164および可撓性コネクタ区分170の両方のそのような変形を含んでもよい。圧電要素132の作動によるフレーム本体区分148への軸方向応力は、可撓性コネクタ区分170の変形をもたらし得る。可撓性コネクタ区分170への本応力はまた、各本体ヒンジ区分164において歪みの集中をもたらし得る。縦軸168に沿ったフレーム本体区分148の偏向(軸方向拡張または収縮等)は、フレームスロット152によってフレームアーム区分146から実質的に隔離され、これは、フレーム本体区分148の偏向中にフレームアーム区分146が比較的静止したままであることを可能にする。ある場合には、本明細書で議論されるアクチュエータフレームの実施形態に関して、アクチュエータフレームのフレーム本体区分のジグザグ部分は、フレーム本体区分内に配置される対応する圧電要素よりもその縦軸に沿って実質的に低剛性であるように構成されてもよい。本構成は、アクチュエータフレームによる実質的な拘束を伴わずに、圧電要素が自由に拡張および収縮することを可能にしてもよい。

0036

アクチュエータフレーム104のいくつかの実施形態に関して、ねじ山付きシャフト上で接触表面の往復移動によって生成されるトルクは、ねじ山付きシャフト114の縦軸115の周囲でアクチュエータフレーム104のトルクをもたらし得る。アクチュエータフレーム104と基板61との間に延在するフレームガイド172は、接触表面からのトルクの全てが、光学マウント24の基板61に対するねじ山付きシャフト114の回転をもたらすように、ねじ山付きシャフト114の縦軸115の周囲のアクチュエータフレーム104の回転を防止する。フレームガイド172は、種々の好適な構成においてアクチュエータフレーム104と光学マウント24との間に固着されてもよい。示される実施形態に関して、フレームガイド172は、鋼鉄または同等物等の高強度材料の剛性伸長ピンであり、アクチュエータフレーム104のフレームガイド孔174の中へフレームガイド172を固着することによって、アクチュエータフレーム104に固着される。フレームガイド172はまた、基板61の一部を摺動して係合するように構成される、拡大横寸法を有する先端区分も含む。フレームガイド172は、フレームガイド172(したがって、アクチュエータフレーム104)が縦軸168に沿って軸方向に自由に移動できるように、基板61のスロット63(図4B参照)内等の光学マウント24の任意の好適な部分内に摺動可能に配置されてもよい。フレームガイド172はまた、フレーム本体区分148の拡張または収縮中に往復接触表面によって生成されるトルクにより、フレームガイド172がアクチュエータフレーム102の回転を最小限にする、もしくは排除するように、光学マウント24内に配置されてもよい。

0037

フレームガイド172は、ねじ山付き接合部、接着結合溶接、アクチュエータフレーム104との一体形成、または同等物等の任意の好適な手段によって、フレームガイド孔174に固着されてもよい。例えば、フレームガイド172のねじ山付き外面が、フレームガイド孔174のねじ山付き内面に固着されてもよい。加えて、(図6Bに示されるような)接着剤173の薄い層が、フレームガイド172のねじ山付き外面をフレームガイド孔174のねじ山付き内面に結合するために使用されてもよい。シアノアクリレートスレッドロック等の任意の好適な接着剤173が、フレームガイド172をフレームガイド孔174に固着するために使用されてもよい。

0038

示される実施形態に関して、第2の支持要素110は、フレーム本体区分148から遠位に延在し、第1の支持要素106は、フレームアーム区分146から遠位に延在する。第2の支持要素110がフレーム本体区分148と連続的であるため、縦軸168に沿ったフレーム本体区分148の偏向は、縦軸168に沿った第2の支持要素110の運動をもたらす。第1の支持要素106が、フレームスロット152によって縦軸168に沿ったフレーム本体区分148の偏向から実質的に隔離されるフレームアーム区分146と連続的であるため、縦軸168に沿ったフレーム本体区分148の偏向は、第1のアームヒンジ区分144によってフレームアーム区分146の最小回転として伝達されてもよい。フレームアーム区分146は、第1のアームヒンジ区分144を通して伝達され得る、縦軸168に沿ったフレーム本体区分148の偏向によって引き起こされる、公称量の回転を受けてもよい。縦軸168に沿ったフレーム本体区分148の偏向の結果は、第1の支持要素106および第2の支持要素110の正味往復運動、したがって、第1の接触表面108と第2の接触表面112との間の正味往復運動である。第1の支持要素106を第2の支持要素110に接続するバイアスバンド116もまた、偏向させられ、第1の接触表面108および第2の接触表面112の分離に対抗する伸縮弾性または実質的に弾性の復元力、ならびに第1の接触表面108および第2の接触表面112の本往復運動に抵抗する伸縮弾性または実質的に弾性の復元力を提供する。

0039

中立状態から偏向状態へのアクチュエータフレーム104の弾性変形が、図6Fおよび6Gで図示されている。アクチュエータフレーム104は、圧電要素空洞134内に配置された圧電要素132とともに示されるが、明確にする目的で、調節可能光学マウントのねじ山付きシャフト114は、図6Fまたは図6Gに示されていない。第1の電気ドライバ信号が図1に示される電子コントローラ48から圧電要素132に伝送される場合、(第2のマウント表面142に固着される)圧電要素132は、拡張してもよく、順に、第1のマウント表面138と第2のマウント表面142との間の付加的分離および変位を引き起こす。第2のマウント表面142の変位は、第1の支持要素106の相対運動が最小限にされている間に、縦軸168に沿った第2の支持要素110の運動を引き起こす、縦軸168に沿ったフレーム本体区分148の偏向をもたらす。これは、図6Fおよび図6G鎖線によって示されるように、第1の接触表面108と第2の接触表面112との間の相対往復運動をもたらす。第2の支持要素の偏向の規模は、図6Gで寸法176によって示される。そのような駆動サイクル中に、アクチュエータフレーム104の他の部分、具体的には、アクチュエータフレーム104のヒンジ区分はまた、弾性または実質的に弾性の変形を受けてもよく、また、アクチュエータフレーム104への復元力に寄与してもよい。

0040

電子コントローラ48から圧電要素132に伝送される第2の電気ドライバ信号は、圧電要素132をその中立状態に戻らせ得、これは、図6Fおよび図6G実線によって示されるように、フレーム本体区分148をその中立状態に戻す。バイアスバンド116は、(図6Fおよび図6Gで鎖線によって示される)その偏向状態から回復し、第2の支持要素110が、図6Fおよび図6Gで実線によって示されるようにその中立位置に戻るように、復元力を第2の支持要素110に提供する。電子コントローラ48によって駆動されるような圧電要素132の単一の拡張および後続の単一の収縮は、駆動サイクルと称されるであろう。

0041

電子コントローラ48によって圧電要素132に送信される電気ドライバ信号の構成は、第1の接触表面108および第2の接触表面112が所与の駆動サイクル中に調節可能光学マウント24のねじ山付きシャフト114と相互作用する程度を判定してもよい。第1の駆動サイクルは、第1の接触表面108と第2の接触表面112との間の相対往復運動中に、第1の角度方向に調節可能光学マウント24のねじ山付きシャフト112を回転させるように構成されてもよい。第1の駆動サイクルは、第1の接触表面108および第2の接触表面112が調節可能光学マウント24のねじ山付きシャフト114と係合し、それを第1の角度方向に回転させるように構成される、第1の電気ドライバ信号を含んでもよい。第1の駆動サイクルはまた、第1の接触表面108および第2の接触表面112が、接触表面によってねじ山付きシャフト114に印加される回転力を上回るねじ山付きシャフト114の慣性により、静止または実質的に静止したままである調節可能光学マウント24のねじ山付きシャフト114を覆って滑動するように構成される、第2の電気ドライバ信号を含んでもよい。

0042

第2の駆動サイクルは、第2の角度方向に調節可能光学マウント24のねじ山付きシャフト114を回転させるように構成されてもよい。第2の駆動サイクルはまた、第1の接触表面108および第2の接触表面112が、静止したままである調節可能光学マウント24のねじ山付きシャフト114を覆って滑動するように構成される、第1の電気ドライバ信号を含んでもよい。第2の駆動サイクルはまた、第1の接触表面108および第2の接触表面112が調節可能光学マウント24のねじ山付きシャフト114と係合し、それを第2の角度方向に回転させるように構成される、第2の電気ドライバ信号を含んでもよい。

0043

第1の接触表面108および第2の接触表面112が、調節可能光学マウント24のねじ山付きシャフト114と適切かつ制御可能に係合し、それを回転させるために、電気駆動信号は、それぞれの印加された最大または最小電圧に達するまで、印加された電圧の規模がゆっくり増加もしくは減少するように構成されてもよい。第1の接触表面108および第2の接触表面112の比較的遅い往復運動は、調節可能光学マウント24のねじ山付きシャフト114の慣性力を克服する、バイアスバンド116によって印加される復元力をもたらし、それによって、ねじ山付きシャフト114の後続の回転とともに、第1の接触表面108および第2の接触表面112と調節可能光学マウント24のねじ山付きシャフト114との間の係合をもたらす。

0044

第1の接触表面108および第2の接触表面112が、調節可能光学マウント24のねじ山付きシャフト114を覆って滑動するために、電気駆動信号は、印加された電圧の規模が迅速に増加または減少するように構成されてもよい。第1の接触表面108および第2の接触表面104の比較的迅速な往復運動は、バイアスバンド116によって印加される復元力を克服する、ねじ山付きシャフト114の慣性力をもたらすように構成されてもよい。これは、後にねじ山付きシャフト114が静止したままで、第1の接触表面108および第2の接触表面112とねじ山付きシャフト114との間で滑動を引き起こす。

0045

バイアスバンドの寸法、製造方法、および材料は、生成される復元力の一貫性を有意に向上させ得る。バイアスバンド構成は、製造プロセス中のバイアスバンドの材料の非弾性変形を排除し得る。いくつかのバイアスバンド構成はまた、より一貫した制御された結果のために、製造中に復元力の調節を可能にし得る。アクチュエータフレームの一体バイアスバンド構成は、小型であり、製造のために費用効率的である。

0046

上記ならびに他の好適な光学実施形態で議論される調節可能光学マウント24で使用され得る、圧電アクチュエータ178の別の実施形態が、図7A−7Iに示されている。圧電アクチュエータ178は、上記で議論され、図6A−6Iに示される圧電アクチュエータの実施形態102のものに類似する特徴、材料、および/または寸法を有してもよい。

0047

図7A−7Gに示される圧電アクチュエータの実施形態178は、(上記で議論される切断方法によって等)アクチュエータフレーム180の要素の全てが単一の連続的な途切れない材料から形成されている、モノリシック構成を有する、アクチュエータフレーム180を含んでもよい。アクチュエータフレーム180は、第1の接触表面184を有する第1の支持要素182と、第2の接触表面188を有する第2の支持要素186とを含んでもよい。第1の接触表面184は、第2の接触表面188に対して離間し、実質的に対向した関係で配置される。第1の接触表面184および第2の接触表面188は、第1の接触表面184と第2の接触表面188との間で回転固着され得る、光学マウントのねじ山付きシャフト190に選択的に係合するように構成されてもよい。第1の接触表面184および第2の接触表面188は、随意に、ねじ山付きシャフト190に効果的に係合するために、図7Dおよび7Eに示されるようにねじ山付き表面として構成されてもよい。第1の接触表面184および第2の接触表面188の往復運動が、ねじ山付きシャフト190と選択的に係合し、それを回転させるために使用されてもよい。

0048

アクチュエータフレーム180のいくつかの外面が、アクチュエータフレームの実施形態180の特徴および/または寸法について議論するために、基準表面として使用されてもよい。この場合、アクチュエータフレーム180は、アクチュエータフレームの前外面181およびアクチュエータフレームの後外面183を組み込んでもよい。アクチュエータフレーム180の前外面181は、アクチュエータフレーム180の後外面183に対して離間し、実質的に対向した関係で配置されてもよく、また、後外面183と実質的に平行であり得る。アクチュエータフレーム180はまた、前外面181および後外面183の両方と実質的に垂直であるように配置される、第1の外側面185を組み込んでもよい。アクチュエータフレーム180はまた、第1の外側面185に対して離間し、実質的に対向した関係で配置され、また、第1の外側面185と実質的に平行であり得る、第2の外側面187を組み込んでもよい。

0049

前の実施形態と同様に、第1の接触表面184と第2の接触表面188との間の一貫した復元力が、ある場合には、所望の方向への回転運動を提供するように、ねじ山付きシャフト190との接触表面の選択的係合を可能にするために必要とされ得る。図7A−7Gの圧電アクチュエータの実施形態178のアクチュエータフレーム180は、第1の支持要素182と第2の支持要素186との間に配置され、それらに連結され得、第1の接触表面184に対する中立位置に向かった、またはそこから離れた第2の接触表面188の垂直変位に抵抗するであろう、復元力を提供するように構成され得る、一体的に形成されたバイアスバンド部分192を組み込む。バイアスバンド192は、接触表面の間に一貫した弾性または実質的に弾性の復元力を提供するように構成される。

0050

図7A−7Iに示されるように、バイアスバンド194は、第1の接触表面184と第2の接触表面188の間に配置される空間196の周囲の第1の支持要素182の遠位部分194から第2の支持要素186の遠位部分198まで遠位に延在する。バイアスバンド192は、接触表面の間の空間196の頂点に配置され得る、バンドジグザグ部分200を含む。バンドジグザグ部分200は、図7Fおよび7Gに示される縦軸204に沿ったバイアスバンド192の屈曲を促進するように構成され得る、少なくとも1つのバンドヒンジ区分202を含んでもよい。アクチュエータフレーム180のヒンジ区分は、上記で議論されるアクチュエータフレーム104のヒンジ区分に類似する特徴および機能を有してもよい。圧電アクチュエータの実施形態178は、バンドジグザグ部分200の対向端に配置される2つのバンドヒンジ区分202を組み込む。示される実施形態に関して、バイアスバンド192は、バイアスバンドスロット193を組み込む。バイアスバンドスロット193は、図7Aに示されるように、アクチュエータフレーム180の前外面181からアクチュエータフレーム180の後外面183までバイアスバンド192を横断する。バイアスバンドスロット193は、バイアスバンド192の残りの部分の幅の合計がバイアスバンドスロット193の幅と実質的に幅が等しいように、バイアスバンド192を実質的に二等分してもよい。

0051

バイアスバンド192はまた、それが接触表面184および188に提供する公称復元力がバイアス調節機構を用いて調節されることができるように、構成されてもよい。そのようなバイアス調節機構の一実施形態は、バイアスバンド206と接触して配置される、もしくは以下で議論されるフレームアーム区分232およびフレーム本体区分234等のアクチュエータフレーム180の他の構成要素の間に配置される、1つまたはそれを上回る調節可能止めねじ206を含むことができる。調節可能止めねじ206は、図7Aに示されている。

0052

圧電アクチュエータ178はまた、上記で議論されるような圧電結晶として構成される、圧電要素208を含んでもよい。圧電要素208は、図7Bのアクチュエータフレーム180の圧電要素空洞210の中でアクチュエータフレーム180内に配置されて示されている。圧電要素208は、アクチュエータフレーム180の第1のマウント表面214に固着される第1の端部212と、アクチュエータフレーム180の第2のマウント表面218に固着される第2の端部216とを有する。第1のマウント表面214と第2のマウント表面218との間の空間は、ある場合には、圧電要素空洞210を画定する役割を果たしてもよい。圧電アクチュエータ178はまた、同様に図7Bに示される調節可能圧電マウント支持体220を含んでもよい。調節可能圧電マウント支持体220は、アクチュエータフレーム180のねじ山付きチャネル222内で螺合可能に係合されてもよい。アクチュエータフレーム180のねじ山付きチャネル222は、アクチュエータフレーム180の縦軸204と平行である、または同一の広がりを持つ縦軸を有する。調節可能圧電マウント支持体220は、ねじ山付きチャネル222のねじ山付き内面226と係合させられたマウント支持体のねじ山付き外面224を伴って、ねじ山付きチャネル222内で回転させられてもよい。そのような相対回転は、圧電要素空洞210の中への圧電要素208の組立の前、間、および後に、第2のマウント表面218に対して第1のマウント表面214(本実施形態ではマウント支持体220の平坦な遠位表面228上に配置される)を位置付けるために使用されてもよい。

0053

そのような配列は、圧電要素および任意の所望の接着剤等の挿入のための圧電要素より長い圧電空洞を提供するために、有用であり得る。その後、調節可能圧電マウント支持体220は、圧電要素空洞210の有効軸長を短縮し、存在すれば、所望の量の前負荷また圧着型力を用いて、第1のマウント表面214および第2のマウント表面218を両方とも圧電要素208の対応する表面と接触させるよう、回転させられてもよい。マウント表面によって圧電要素208に印加される接触力は、縦軸204と平行であるねじ山付きチャネル222の中心軸に沿って、ねじ山付きチャネル222内の調節可能圧電マウント支持体220の位置を変化させることによって、調節されることができる。

0054

アクチュエータフレームの実施形態178はまた、アクチュエータフレーム180の縮小材料断面の1つまたはそれを上回るヒンジ区分を含んでもよい。例えば、第1のアームヒンジ区分230は、フレームアーム区分232とフレーム本体区分234との間のヒンジ連結型回転変位を可能にするよう、アクチュエータフレーム180のフレームアーム区分232とアクチュエータフレーム180のフレーム本体区分234との間に配置されてもよい。アクチュエータフレームの実施形態180はまた、第1のアームヒンジ区分230と第1の支持要素182との間に配置される、第2のアームヒンジ区分236を含んでもよい。アクチュエータフレーム180はまた、第1のアームヒンジ区分230の遠位に配置される、フレームスロット238を含んでもよい。フレームスロット238は、フレームアーム区分232とフレーム本体区分234との間の実質的に独立した相対運動を可能にするよう、フレームアーム区分232とフレーム本体区分234との間にフレーム材料内の間隙240を含む。

0055

アクチュエータフレームの実施形態180のヒンジ区分は、ヒンジ区分内の(およびおそらく、それほどの重要性はないがフレーム構造内の他の場所の)アクチュエータフレーム180材料の弾性変形による、第1の接触表面184と第2の接触表面188との間の相対往復平行変位を可能にするように構成される。第1のアームヒンジ区分230は、第1のアームヒンジ区分230におけるフレーム構造内の材料の縮小断面または慣性モーメントによって形成されてもよい。縮小断面は、圧電要素208の拡張または収縮によってフレーム構造に印加される力の結果としてのフレーム構造の歪みが集中させられ得る、断面を提供する。材料の縮小断面における歪みの集中は、第1の接触表面184および第2の接触表面188等のアクチュエータフレームの種々の構成要素の間の公知のまたは予測可能な移動をもたらし得る。第1のアームヒンジ区分230は、フレームアーム区分232に対するフレーム本体区分234のヒンジ連結型回転変位のみを可能にし、回転変位は、歪みの集中が起こるであろう、第1のアームヒンジ区分230を中心とする。

0056

フレーム本体区分234は、フレーム本体区分234の縦軸204に沿ったフレーム本体区分234の軸方向拡張および収縮を促進するように構成される、複数の本体ヒンジ区分242をジグザグ部分244の中に含む。本体ヒンジ区分242は、アクチュエータフレーム180の材料の縮小断面によって形成され、第1のアームヒンジ区分230に対して上記で議論されるように機能してもよい。本体ヒンジ区分242は、第1のマウント表面214から第2のマウント表面218まで延在する、フレーム構造上に配置されてもよい。フレーム本体区分234のフレーム構造のジグザグ部分244は、本体ヒンジ区分242の間に配置される可撓性コネクタ区分246を含んでもよい。本体ヒンジ区分242は、本体ヒンジ区分242ならびに本体ヒンジ区分242の間に延在する比較的薄いフレーム要素である可撓性コネクタ区分246の弾性変形を通して、縦軸204に沿ったフレーム本体区分234の偏向(軸方向拡張または収縮等)を可能にする。ある場合には、フレーム本体区分234の軸方向拡張および収縮は、本体ヒンジ区分242、可撓性コネクタ区分246の弾性変形、または本体ヒンジ区分242および可撓性コネクタ区分246の両方のそのような変形を含んでもよい。圧電要素208の作動によるフレーム本体区分234への軸方向応力は、可撓性コネクタ区分246の変形をもたらし得る。可撓性コネクタ区分246への本応力はまた、各本体ヒンジ区分242において歪みの集中をもたらし得る。縦軸204に沿ったフレーム本体区分234の偏向(軸方向拡張または収縮等)は、フレームスロット238によってフレームアーム区分232から実質的に隔離され、これは、フレーム本体区分234の偏向中にフレームアーム区分232が比較的静止したままであることを可能にする。

0057

上記で議論されるように、ねじ山付きシャフト190上で接触表面の往復移動によって生成されるトルクは、ねじ山付きシャフト190の縦軸の周囲でアクチュエータフレーム180上にトルクをもたらし得る。上記で議論されるフレームガイド172と同一または類似の特徴、寸法、および材料を有し得る、フレームガイド248が、アクチュエータフレーム180上の本トルクに対抗するために使用されてもよい。フレームガイド248は、フレームガイド172に関して上記で議論される方法等の任意の好適な方法を使用して、アクチュエータフレーム180のフレームガイド孔250内に固着されてもよい。例えば、任意の好適な接着剤またはエポキシ249が、図7Bに示されるように使用されてもよい。フレームガイド248は、フレームガイド248が光学マウント24に対するねじ山付きシャフト190の周囲のアクチュエータフレーム180の任意の回転を効果的に排除し、または少なくとも最小限にするように、光学マウント24とアクチュエータフレーム180との間に連結されてもよい。フレームガイド248はまた、フレームガイド248が縦軸204に沿ったフレーム本体区分234の軸方向変位(軸方向拡張および収縮)を可能にするように、光学マウント24に連結されてもよい。フレームガイド248、アクチュエータフレーム180、および光学マウント24の基板61のスロット63(図4B参照)の間の接続の構成は、図6A−6Iおよび図4Bに示される実施形態について上記で議論された、フレームガイド172、アクチュエータフレーム104、およびスロット63の間の接続の構成と同一または類似であり得る。

0058

示される実施形態に関して、第2の支持要素186は、フレーム本体区分234から遠位に延在し、第1の支持要素182は、フレームアーム区分232から遠位に延在する。第2の支持要素186がフレーム本体区分234と連続的であるため、縦軸204に沿ったフレーム本体区分234の偏向は、縦軸204に沿った第2の支持要素186の運動をもたらす。第1の支持要素182が、フレームスロット238によって縦軸204に沿ったフレーム本体区分234の偏向から実質的に隔離されるフレームアーム区分232と連続的であるため、縦軸204に沿ったフレーム本体区分234の偏向は、第1のアームヒンジ区分230によってフレームアーム区分232の最小回転として伝達されてもよい。フレームアーム区分232は、第1のアームヒンジ区分230を通して伝達され得る、縦軸204に沿ったフレーム本体区分234の偏向によって引き起こされる、公称量の回転を受けてもよい。縦軸204に沿ったフレーム本体区分234の偏向の結果は、第1の支持要素182および第2の支持要素186の正味往復運動、したがって、第1の接触表面184と第2の接触表面188との間の正味往復運動である。第1の支持要素182を第2の支持要素186に接続するバイアスバンド192もまた、偏向させられ、第1の接触表面184および第2の接触表面188の分離に対抗する復元力、ならびに第1の接触表面184および第2の接触表面188の本往復運動に抵抗する復元力を提供する。

0059

バイアスバンド192の偏向中に、バンドジグザグ部分200は、バイアスバンド192の偏向の方向にバイアスバンド192の屈曲および弾性変形を促進する。示されるようなアクチュエータフレームの実施形態180に関して、バイアスバンド192のバンドジグザグ部分200は、2つのバンドヒンジ区分202を含有する。バンドヒンジ区分202は、同様にバイアスバンド192内に配置されるバンドヒンジスロット203を含む。バンドヒンジスロット203は、アクチュエータフレーム180の第1の外側面185からアクチュエータフレーム180の第2の外側面187まで、バイアスバンド192を横断して横方向に延在する。バンド可撓性コネクタ区分252は、バンドヒンジ区分202の間に配置される。バイアスバンド192の偏向は、バンド可撓性コネクタ区分252を弾性的に変形させ、それによって、バンドヒンジ区分202において歪みをもたらす。次いで、バンドヒンジ区分202の縮小厚構成が、バンドヒンジ区分202内で歪みの集中をもたらし得る。バンドヒンジ区分202における歪みの集中は、バイアスバンド190の偏向の方向にバイアスバンド190の曲げモーメントを低減させることによって、バイアスバンド190の偏向を促進する。

0060

中立状態から偏向状態へのアクチュエータフレーム180の弾性変形が、図7Fおよび7Gで図示されている。アクチュエータフレーム180は、圧電要素空洞210内に配置された圧電要素208とともに示されるが、明確にする目的で、調節可能光学マウントのねじ山付きシャフト190は、図7Fまたは図7Gに示されていない。第1の電気ドライバ信号が図1に示される電子コントローラ48から圧電要素208に伝送される場合、(第2のマウント表面21に固着される)圧電要素208は、拡張してもよく、順に、第1のマウント表面214と第2のマウント表面218との間の付加的分離および変位を引き起こす。第2のマウント表面218の変位は、第1の支持要素182が実質的に静止したままである間に、縦軸204に沿った第2の支持要素186の運動を引き起こす、縦軸204に沿ったフレーム本体区分234の偏向をもたらす。これは、図7Fおよび図7Gで鎖線によって示されるように、第1の接触表面184と第2の接触表面188との間の相対往復運動をもたらす。第2の支持要素の偏向の規模は、図7Gで寸法254によって示される。

0061

電子コントローラ48から圧電要素208に伝送される第2の電気ドライバ信号は、圧電要素208をその中立状態に戻らせ得、これは、図7Fおよび図7Gで実線によって示されるように、フレーム本体区分234をその中立状態に戻す。バイアスバンド192は、(図7Fおよび図7Gで鎖線によって示される)その偏向状態から回復し、第2の支持要素186が、図7Fおよび図7Gで実線によって示されるようにその中立位置に戻るように、弾性復元力を第2の支持要素186に提供する。

0062

上記ならびに他の好適な光学実施形態で議論される調節可能光学マウント24で使用され得る、圧電アクチュエータ256の別の実施形態が、図8A−8Iに示されている。圧電アクチュエータ256は、上記で議論され、図6A−6Iに示される圧電アクチュエータの実施形態102のものに類似する特徴、材料、および/または寸法を有してもよい。

0063

図8A−8Iに示される圧電アクチュエータの実施形態256は、上記で議論されるように、アクチュエータフレーム258の要素の全てが単一の連続的な途切れない材料から形成されている(切断されている等)、モノリシック構成を有する、アクチュエータフレーム258を含んでもよい。アクチュエータフレーム258は、第1の接触表面262を有する第1の支持要素260と、第2の接触表面268を有する第2の支持要素264とを含んでもよい。第1の接触表面262は、第2の接触表面264に対して離間し、実質的に対向した関係で配置される。第1の接触表面260および第2の接触表面264は、第1の接触表面262と第2の接触表面268との間で回転固着され得る、光学マウントのねじ山付きシャフト270に選択的に係合するように構成されてもよい。第1の接触表面260および第2の接触表面268は、随意に、ねじ山付きシャフト270に効果的に係合するために、図8Dおよび8Eに示されるようにねじ山付き表面として構成されてもよい。第1の接触表面262および第2の接触表面268の往復運動が、ねじ山付きシャフト270と選択的に係合し、それを回転させるために使用されてもよい。

0064

アクチュエータフレーム258のいくつかの外面が、アクチュエータフレームの実施形態258の特徴および/または寸法について議論するために、基準表面として使用されてもよい。この場合、アクチュエータフレーム258は、アクチュエータフレーム258の前外面259およびアクチュエータフレーム258の後外面261を組み込んでもよい。アクチュエータフレーム258の前外面259は、アクチュエータフレーム258の後外面261に対して離間し、実質的に対向した関係で配置されてもよく、また、後外面261と実質的に平行であり得る。アクチュエータフレーム258はまた、前外面259および後外面261の両方と実質的に垂直であるように配置される、第1の外側面263を組み込んでもよい。アクチュエータフレーム258はまた、第1の外側面263に対して離間し、実質的に対向した関係で配置され、また、第1の外側面263と実質的に平行であり得る、第2の外側面265を組み込んでもよい。

0065

前の実施形態と同様に、第1の接触表面262と第2の接触表面268との間の一貫した弾性復元力が、ある場合には、所望の方向へのねじ山付きシャフト270の回転運動を提供するように、ねじ山付きシャフト270との接触表面の選択的係合を可能にするために必要とされ得る。図8A−8Gの圧電アクチュエータの実施形態256のアクチュエータフレーム258は、第1の支持要素260と第2の支持要素264との間に配置され、それらに連結され得、第1の接触表面262に対する中立位置に向かった、またはそこから離れた第2の接触表面264の垂直変位に抵抗するであろう、復元力を提供するように構成され得る、一体バイアスバンド部分272を組み込む。バイアスバンド272は、接触表面の間に一貫した弾性復元力を提供するように構成される。

0066

図8A−8Iに示されるように、バイアスバンド272は、第1の支持要素260の遠位部分276から第2の支持要素264に向かって遠位に延在する、第1のバイアスバンド部分274を組み込む。バイアスバンド272はまた、第1のバイアスバンド部分274に縦方向重複するよう、第2の支持部材264の遠位部分280から第1の支持要素260に向かって遠位に延在する、第2のバイアスバンド部分278も含みこむ。バイアスバンド272はまた、第1のバイアスバンド部分274が第2のバイアスバンド部分278に重複する重複区分284内で、第1のバイアスバンド部分274から第2のバイアスバンド部分278まで延在する、縦方向に配向されたリブ282も含みこむ。重複区分284は、それが図8Gおよび8Fに示される縦軸286に沿ったバイアスバンド272の屈曲を可能にするように構成される。

0067

バイアスバンド272は、それが駆動サイクル中に接触表面に提供する弾性復元力が、バイアス調節機構を用いて調節されることができるように、構成されてもよい。バイアス調節機構の一実施形態は、バイアスバンド272と接触して、もしくは以下で議論されるアーム区分316および本体区分318等のアクチュエータフレーム258の他の構成要素の間に配置される、1つまたはそれを上回る調節可能止めねじ288を含むことができる。調節可能止めねじ288は、図8Aに示されている。

0068

圧電アクチュエータ256は、上記で議論されるような圧電結晶として構成される、圧電要素290を含んでもよい。圧電要素290は、図8Bに示されるように、アクチュエータフレーム258の圧電要素空洞292の中でアクチュエータフレーム258内に配置されて示されている。圧電要素290は、第1のマウント表面296に固着される第1の端部294と、アクチュエータフレーム258の第2のマウント表面300に固着される第2の端部298とを有する。第1のマウント表面296と第2のマウント表面300との間の空間302は、ある場合には、圧電要素空洞292を画定する役割を果たしてもよい。

0069

圧電アクチュエータ256はまた、同様に図8Bに示される調節可能圧電マウント支持体304を含んでもよい。調節可能圧電マウント支持体304は、アクチュエータフレーム258のねじ山付きチャネル306内で螺合可能に係合されてもよい。アクチュエータフレーム258のねじ山付きチャネル306は、アクチュエータフレーム258の縦軸286と平行である、または同一の広がりを持つ縦軸を有する。調節可能圧電マウント支持体304は、ねじ山付きチャネル306のねじ山付き内面310と係合させられた調節可能圧電マウント支持体304のねじ山付き外面308を伴って、ねじ山付きチャネル306内で回転させられてもよい。そのような相対回転は、圧電要素空洞292の中への圧電要素290の組立の前、間、および後に、第2のマウント表面300に対して第1のマウント表面296(本実施形態では調節可能圧電マウント支持体304の平坦な遠位表面312上に配置される)を位置付けるために使用されてもよい。

0070

そのような配列は、圧電要素290および任意の所望の接着剤等の挿入のための圧電要素290より長い圧電空洞292を提供するために、有用であり得る。その後、調節可能圧電マウント支持体304は、圧電要素空洞292の有効軸長を短縮し、存在すれば、所望の量の前負荷また圧着型力を用いて、第1のマウント表面296および第2のマウント表面300を両方とも圧電要素290の対応する表面と接触させるよう、回転させられてもよい。マウント表面によって圧電要素290に印加される接触力は、縦軸286と平行であるねじ山付きチャネル306の中心軸に沿って、ねじ山付きチャネル306内の調節可能圧電マウント支持体304の位置を変化させることによって、調節されることができる。

0071

アクチュエータフレームの実施形態256はまた、上記で議論されるヒンジ区分のものと類似する特徴および機能を有し得る、アクチュエータフレーム258の縮小材料断面の1つまたはそれを上回るヒンジ区分を含んでもよい。例えば、第1のアームヒンジ区分314は、フレームアーム区分316とフレーム本体区分318との間のヒンジ連結型回転変位を可能にするよう、アクチュエータフレーム258のフレームアーム区分316とアクチュエータフレーム258のフレーム本体区分318との間に配置されてもよい。アクチュエータフレームの実施形態256はまた、第1のアームヒンジ区分314と第1の支持要素260との間に配置される、第2のアームヒンジ区分320を含んでもよい。アクチュエータフレーム256はまた、第1のアームヒンジ区分314の遠位に配置される、フレームスロット322を含んでもよい。フレームスロット322は、フレームアーム区分316とフレーム本体区分318との間の実質的に独立した相対運動を可能にするよう、フレームアーム区分316とフレーム本体区分318との間にフレーム材料内の間隙324を含む。

0072

アクチュエータフレームの実施形態のヒンジ区分は、ヒンジ区分内の(およびおそらく、それほどの重要性はないがフレーム構造内の他の場所の)アクチュエータフレーム258材料の弾性変形による、第1の接触表面262と第2の接触表面268との間の相対往復平行変位を可能にするように構成される。第1のアームヒンジ区分314は、第1のアームヒンジ区分314におけるフレーム構造内の材料の縮小断面または慣性モーメントによって形成されてもよい。縮小断面は、圧電要素290の拡張または収縮によってフレーム構造に印加される力の結果としてのフレーム構造の歪みが集中させられ得る、断面を提供する。材料の縮小断面における歪みの集中は、第1の接触表面262および第2の接触表面268等のアクチュエータフレーム258の種々の構成要素の間の公知のまたは予測可能な移動をもたらし得る。第1のアームヒンジ区分314は、フレームアーム区分316に対するフレーム本体区分318のヒンジ連結型回転変位のみを可能にし、回転変位は、歪みの集中が起こるであろう、第1のアームヒンジ区分314を中心とする。

0073

フレーム本体区分318は、フレーム本体区分318の縦軸286に沿ったフレーム本体区分318の軸方向拡張および収縮を促進するように構成される、複数の本体ヒンジ区分326をジグザグ部分328の中に含む。本体ヒンジ区分326は、アクチュエータフレーム258材料の縮小断面によって形成され、第1のアームヒンジ区分314に対して上記で議論されるように機能してもよい。本体ヒンジ区分326は、第1のマウント表面296から第2のマウント表面300まで延在する、フレーム構造上に配置されてもよい。フレーム本体区分318のフレーム構造の本ジグザグ部分328は、本体ヒンジ区分326の間に配置される可撓性コネクタ区分330を含んでもよい。本体ヒンジ区分326は、本体ヒンジ区分326ならびに本体ヒンジ区分326の間に延在する比較的薄いフレーム要素である可撓性コネクタ区分330の弾性変形を通して、縦軸286に沿ったフレーム本体区分318の偏向(軸方向拡張または収縮等)を可能にする。ある場合には、フレーム本体区分318の軸方向拡張および収縮は、本体ヒンジ区分326、可撓性コネクタ区分330の弾性変形、または本体ヒンジ区分326および可撓性コネクタ区分330の両方のそのような変形を含んでもよい。圧電要素290の作動によるフレーム本体区分318への軸方向応力は、可撓性コネクタ区分330の変形をもたらし得る。可撓性コネクタ区分330への本応力はまた、各本体ヒンジ区分326において歪みの集中をもたらし得る。縦軸286に沿ったフレーム本体区分318の偏向(軸方向拡張または収縮等)は、フレームスロット322によってフレームアーム区分316から実質的に隔離され、これは、フレーム本体区分318の偏向中にフレームアーム区分316が比較的静止したままであることを可能にする。

0074

上記で議論されるように、ねじ山付きシャフト270上で接触表面の往復移動によって生成されるトルクは、ねじ山付きシャフト270の縦軸の周囲でアクチュエータフレーム258上にトルクをもたらし得る。上記で議論されるフレームガイド172と同一または類似の特徴、寸法、および材料を有し得る、フレームガイド332が、アクチュエータフレーム258上の本トルクに対抗するために使用されてもよい。フレームガイド332は、フレームガイド172に関して上記で議論される方法等の任意の好適な方法を使用して、アクチュエータフレーム258のフレームガイド孔334内に固着されてもよい。例えば、任意の好適な接着剤またはエポキシ333が、図8Bに示されるように使用されてもよい。フレームガイド332は、フレームガイド332が光学マウント24に対するねじ山付きシャフト270の周囲のアクチュエータフレーム258の任意の回転を効果的に排除し、または少なくとも最小限にするように、光学マウント24とアクチュエータフレーム258との間に連結されてもよい。フレームガイド332はまた、フレームガイド332が縦軸286に沿ったフレーム本体区分318の軸方向変位(軸方向拡張および収縮)を可能にするように、光学マウント24に連結されてもよい。フレームガイド332、アクチュエータフレーム258、および光学マウント24の基板61のスロット63(図4B参照)の間の接続の構成は、図6A−6Iおよび図4Bに示される実施形態について上記で議論される、フレームガイド172、アクチュエータフレーム104、およびスロット63の間の接続の構成と同一または類似であり得る。

0075

示される実施形態に関して、第2の支持要素264は、フレーム本体区分318から遠位に延在し、第1の支持要素260は、フレームアーム区分316から遠位に延在する。第2の支持要素264がフレーム本体区分318と連続的であるため、縦軸286に沿ったフレーム本体区分318の偏向は、縦軸286に沿った第2の支持要素264の運動をもたらす。第1の支持要素260が、フレーム間隙324によって縦軸286に沿ったフレーム本体区分318の偏向から実質的に隔離されるフレームアーム区分316と連続的であるため、縦軸286に沿ったフレーム本体区分318の偏向は、第1のアームヒンジ区分314によってフレームアーム区分316の最小回転として伝達されてもよい。フレームアーム区分316は、第1のアームヒンジ区分314を通して伝達され得る、縦軸286に沿ったフレーム本体区分318の偏向によって引き起こされる、公称量の回転を受けてもよい。縦軸286に沿ったフレーム本体区分318の偏向の結果は、第1の支持要素260および第2の支持要素264の正味往復運動、したがって、第1の接触表面262と第2の接触表面268との間の正味往復運動である。第1の支持要素260を第2の支持要素264に接続するバイアスバンド272もまた、偏向させられ、第1の接触表面262および第2の接触表面268の分離に対抗する弾性復元力、ならびに第1の接触表面262および第2の接触表面268の本往復運動に抵抗する復元力を提供する。

0076

バイアスバンド272の偏向中に、バイアスバンドの重複区分284は、バイアスバンド272の偏向の方向にバイアスバンド272の屈曲を促進する。示されるような実施形態に関して、バイアスバンド272の重複区分284は、2つのバンドヒンジ区分336を含有する。バンドヒンジ区分336は、アクチュエータフレーム180の前外面259からアクチュエータフレーム180の後外面261までの方向に対応する方向にバイアスバンド272を横断して横方向に延在する、バンドヒンジスロット337を含む。バイアスバンド272の偏向は、バンドヒンジ区分336において歪みの集中をもたらす。バンドヒンジ区分336における歪みの集中は、バイアスバンド272の偏向の方向にバイアスバンド272の曲げモーメントを低減させることによって、バイアスバンド272の偏向を促進する。

0077

中立状態から偏向状態へのアクチュエータフレーム258の弾性変形が、図8Fおよび8Gで図示されている。アクチュエータフレーム258は、圧電要素空洞292内に配置された圧電要素290とともに示されるが、明確にする目的で、調節可能光学マウント24のねじ山付きシャフト270は、図8Fまたは図8Gに示されていない。第1の電気ドライバ信号が図1に示される電子コントローラ48から圧電要素290に伝送される場合、(第2のマウント表面300に固着される)圧電要素290は、拡張してもよく、順に、第1のマウント表面296と第2のマウント表面300との間の付加的分離および変位を引き起こす。第2のマウント表面300の変位は、第1の支持要素260が実質的に静止したままである間に、縦軸286に沿った第2の支持要素264の運動を引き起こす、縦軸286に沿ったフレーム本体区分318の偏向をもたらす。これは、図8Fおよび図8Gで鎖線によって示されるように、第1の接触表面262と第2の接触表面268との間の相対往復運動をもたらす。第2の支持要素の偏向の規模は、図8Gで寸法338によって示される。

0078

電子コントローラ48から圧電要素290に伝送される第2の電気ドライバ信号は、圧電要素290をその中立状態に戻らせ得、これは、図8Fおよび図8Gで実線によって示されるように、フレーム本体区分318をその中立状態に戻す。バイアスバンド272は、(図8Fおよび図8Gで鎖線によって示される)その偏向状態から回復し、第2の支持要素264が、図8Fおよび図8Gで実線によって示されるようにその中立位置に戻るように、弾性復元力を第2の支持要素264に提供する。

0079

上記ならびに他の好適な光学実施形態で議論される調節可能光学マウント24で使用され得る、圧電アクチュエータ340の別の実施形態が、図9A−9Iに示されている。圧電アクチュエータ340は、上記で議論され、図6A−6Iに示される圧電アクチュエータの実施形態102のものに類似する特徴、材料、および/または寸法を有してもよい。

0080

図9A−9Iに示される圧電アクチュエータの実施形態340は、上記で議論されるように、アクチュエータフレーム342の要素の全てが単一の連続的な途切れない材料から形成されている(切断されている等)、モノリシック構成を有する、アクチュエータフレーム342を含んでもよい。アクチュエータフレーム342は、第1の接触表面346を有する第1の支持要素344と、第2の接触表面350を有する第2の支持要素348とを含んでもよい。第1の接触表面346は、第2の接触表面350に対して離間し、実質的に対向した関係で配置される。第1の接触表面346および第2の接触表面350は、第1の接触表面346と第2の接触表面350との間で回転固着され得る、光学マウントのねじ山付きシャフト352に選択的に係合するように構成されてもよい。第1の接触表面346および第2の接触表面350は、随意に、ねじ山付きシャフト352に効果的に係合するために、図9Dおよび9Eに示されるようにねじ山付き表面として構成されてもよい。第1の接触表面346および第2の接触表面350の往復運動が、ねじ山付きシャフト352と選択的に係合し、それを回転させるために使用されてもよい。

0081

アクチュエータフレーム342のいくつかの外面が、アクチュエータフレームの実施形態342の特徴および/または寸法について議論するために、基準表面として使用されてもよい。この場合、アクチュエータフレーム342は、アクチュエータフレーム342の前外面343およびアクチュエータフレーム342の後外面345を組み込んでもよい。アクチュエータフレーム342の前外面343は、アクチュエータフレーム342の後外面345に対して離間し、実質的に対向した関係で配置されてもよく、また、後外面345と実質的に平行であり得る。アクチュエータフレーム342はまた、前外面343および後外面345の両方と実質的に垂直であるように配置される、第1の外側面347を組み込んでもよい。アクチュエータフレーム342はまた、第1の外側面347に対して離間し、実質的に対向した関係で配置され、また、第1の外側面347と実質的に平行であり得る、第2の外側面349を組み込んでもよい。

0082

前の実施形態と同様に、第1の接触表面346と第2の接触表面350との間の一貫した弾性復元力が、ある場合には、所望の方向への回転運動を提供するように、ねじ山付きシャフト352との接触表面346および350の選択的係合を可能にするために必要とされ得る。図9A−9Gの圧電アクチュエータの実施形態340のアクチュエータフレーム342は、第1の支持要素344と、第2の支持要素348の近位区分358に配置される第2のバンドヒンジ区分356との間に配置され、それらに連結され得る、一体的に形成されたバイアスバンド部分354を組み込む。バイアスバンドはまた、第1の支持要素344の遠位部分360と第2の支持要素348の遠位部分364との間でバイアスバンド354上に配置される、第1のバンドヒンジ区分355を含んでもよい。バイアスバンド354は、第1の接触表面346に対する中立位置に向かった、またはそこから離れた第2の接触表面350の垂直変位に抵抗するであろう、弾性復元力を提供するように構成されてもよい。バイアスバンド354は、接触表面の間に一貫した弾性復元力を提供するように構成される。

0083

図9A−9Iに示されるように、バイアスバンド354は、第1の接触表面346と第2の接触表面350との間に配置される空間362の周囲で第1の支持要素344の遠位部分360から遠位に延在する。バイアスバンド354はまた、第2の接触表面350と実質的に反対側に配置される第2の支持要素348の外面366に沿って第2の支持要素348の遠位部分364の周囲に延在する。バイアスバンド354は、第2の支持要素348の外面366上のバンドヒンジ区分368における第2の支持要素348の近位区分358で終端する。

0084

バイアスバンド354はまた、それが駆動サイクル中に接触表面に提供する復元力がバイアス調節機構を用いて調節されることができるように、構成されてもよい。バイアス調節機構の一実施形態は、バイアスバンド354と以下で議論される第2の支持要素348もしくは本体区分404等のアクチュエータフレーム342の別の部分の間に接触して配置される、1つまたはそれを上回る調節可能止めねじ372を含むことができる。複数の調節可能止めねじ372が、図9Aに示されている。

0085

圧電アクチュエータ340はまた、上記で議論されるような圧電結晶として構成される、圧電要素374を含んでもよい。圧電要素374は、図9Bのアクチュエータフレーム340の圧電要素空洞376の中でアクチュエータフレーム342内に配置されて示されている。圧電要素374は、第1のマウント表面380に固着される第1の端部378と、アクチュエータフレーム342の第2のマウント表面384に固着される第2の端部382とを有する。第1のマウント表面380と第2のマウント表面384との間の空間386は、ある場合には、圧電要素空洞376を画定する役割を果たしてもよい。圧電アクチュエータ340はまた、同様に図9Bに示される調節可能圧電マウント支持体388を含んでもよい。調節可能圧電マウント支持体388は、アクチュエータフレーム342のねじ山付きチャネル390内で螺合可能に係合されてもよい。アクチュエータフレーム342のねじ山付きチャネル390は、アクチュエータフレーム342の縦軸392(図9Fおよび9G参照)と平行である、または同一の広がりを持つ縦軸を有する。調節可能圧電マウント支持体388は、ねじ山付きチャネル390のねじ山付き内面396と係合させられた調節可能圧電マウント支持体388のねじ山付き外面394を伴って、ねじ山付きチャネル390内で回転させられてもよい。そのような相対回転は、圧電要素空洞376の中への圧電要素374の組立の前、間、および後に、第2のマウント表面384に対して第1のマウント表面(本実施形態では調節可能圧電マウント支持体388の平坦な遠位表面398上に配置される)を位置付けるために使用されてもよい。そのような配列は、圧電要素374および任意の所望の接着剤等の挿入のための圧電要素374より長い圧電空洞376を提供するために、有用であり得る。その後、調節可能圧電マウント支持体388は、圧電要素空洞376の有効軸長を短縮し、存在すれば、所望の量の前負荷また圧着型力を用いて、第1のマウント表面380および第2のマウント表面384を両方とも圧電要素374の対応する表面と接触させるよう、回転させられてもよい。マウント表面によって圧電要素374に印加される接触力は、縦軸392と実質的に平行なねじ山付きチャネル390内の調節可能圧電マウント支持体388の位置を変化させることによって、調節されることができる。

0086

アクチュエータフレームの実施形態342はまた、上記で議論されるようなアクチュエータフレーム342の縮小材料断面の1つまたはそれを上回るヒンジ区分を含んでもよい。例えば、第1のアームヒンジ区分400は、フレームアーム区分402とフレーム本体区分404との間のヒンジ連結型回転変位を可能にするよう、アクチュエータフレーム340のフレームアーム区分402とアクチュエータフレーム342のフレーム本体区分404との間に配置されてもよい。アクチュエータフレームの実施形態340はまた、第1のアームヒンジ区分400と第1の支持要素344との間に配置される、第2のアームヒンジ区分406を含んでもよい。アクチュエータフレーム342はまた、第1のアームヒンジ区分400の遠位に配置される、フレームスロット408を含んでもよい。フレームスロット408は、フレームアーム区分402とフレーム本体区分404との間の実質的に独立した相対運動を可能にするよう、フレームアーム区分402とフレーム本体区分404との間にフレーム材料内の間隙410を含む。

0087

アクチュエータフレームの実施形態のヒンジ区分は、ヒンジ区分内の(およびおそらく、それほどの重要性はないがフレーム構造内の他の場所の)アクチュエータフレーム342材料の弾性変形による、第1の接触表面346と第2の接触表面350との間の相対往復平行変位を可能にするように構成される。第1のアームヒンジ区分400は、第1のアームヒンジ区分400におけるフレーム構造内の材料の縮小断面または慣性モーメントによって形成されてもよい。縮小断面は、圧電要素374の拡張または収縮によってフレーム構造に印加される力の結果としてのフレーム構造の歪みが集中させられ得る、断面を提供する。材料の縮小断面における歪みの集中は、第1の接触表面346および第2の接触表面350等のアクチュエータフレーム342の種々の構成要素の間の公知のまたは予測可能な移動をもたらし得る。第1のアームヒンジ区分400は、フレームアーム区分402に対するフレーム本体区分404のヒンジ連結型回転変位のみを可能にし、回転変位は、歪みの集中が起こるであろう、第1のアームヒンジ区分400を中心とする。

0088

フレーム本体区分404は、フレーム本体区分404の縦軸392に沿ったフレーム本体区分404の軸方向拡張および収縮を促進するように構成される、複数の本体ヒンジ区分412をジグザグ部分414の中に含む。本体ヒンジ区分412は、アクチュエータフレーム342材料の縮小断面によって形成され、第1のアームヒンジ区分400に対して上記で議論されるように機能してもよい。本体ヒンジ区分412は、第1のマウント表面380から第2のマウント表面384まで延在する、フレーム構造上に配置されてもよい。フレーム本体区分404のフレーム構造の本ジグザグ部分414は、本体ヒンジ区分412の間に配置される可撓性コネクタ区分416を含んでもよい。本体ヒンジ区分412は、本体ヒンジ区分412ならびに本体ヒンジ区分412の間に延在する比較的薄いフレーム要素である可撓性コネクタ区分416の弾性変形を通して、縦軸392に沿ったフレーム本体区分404の偏向(軸方向拡張または収縮等)を可能にする。ある場合には、フレーム本体区分404の軸方向拡張および収縮は、本体ヒンジ区分412、可撓性コネクタ区分416の弾性変形、または本体ヒンジ区分412および可撓性コネクタ区分416の両方のそのような弾性変形を含んでもよい。圧電要素374の作動によるフレーム本体区分404への軸方向応力は、可撓性コネクタ区分416の変形をもたらし得る。可撓性コネクタ区分416への本応力はまた、各本体ヒンジ区分412において歪みの集中をもたらし得る。縦軸392に沿ったフレーム本体区分404の偏向(軸方向拡張または収縮等)は、フレームスロット408によってフレームアーム区分402から実質的に隔離され、これは、フレーム本体区分404の偏向中にフレームアーム区分402が比較的静止したままであることを可能にする。

0089

上記で議論されるように、ねじ山付きシャフト352上で接触表面の往復移動によって生成されるトルクは、ねじ山付きシャフト352の縦軸の周囲でアクチュエータフレーム342上にトルクをもたらし得る。上記で議論されるフレームガイド172と同一または類似の特徴、寸法、および材料を有し得る、フレームガイド418が、アクチュエータフレーム342上の本トルクに対抗するために使用されてもよい。フレームガイド418は、フレームガイド172に関して上記で議論される方法等の任意の好適な方法を使用して、アクチュエータフレーム342のフレームガイド孔420内に固着されてもよい。例えば、任意の好適な接着剤またはエポキシ419が、図9Bに示されるように使用されてもよい。フレームガイド418は、フレームガイド418が光学マウント24に対するねじ山付きシャフト352の周囲のアクチュエータフレーム342の任意の回転を効果的に排除し、または少なくとも最小限にするように、光学マウント24とアクチュエータフレーム342との間に連結されてもよい。フレームガイド418はまた、フレームガイド418が縦軸392に沿ったフレーム本体区分404の軸方向変位(軸方向拡張および収縮)を可能にするように、光学マウント24に連結されてもよい。フレームガイド418、アクチュエータフレーム342、および光学マウント24の基板61のスロット63(図4B参照)の間の接続の構成は、図6A−6Iおよび図4Bに示される実施形態について上記で議論される、フレームガイド172、アクチュエータフレーム104、およびスロット63の間の接続の構成と同一または類似であり得る。

0090

示される実施形態に関して、第2の支持要素348は、フレーム本体区分404から遠位に延在し、第1の支持要素344は、フレームアーム区分402から遠位に延在する。第2の支持要素348がフレーム本体区分404と連続的であるため、縦軸392に沿ったフレーム本体区分404の偏向は、縦軸392に沿った第2の支持要素348の運動をもたらす。第1の支持要素344が、フレーム間隙410によって縦軸392に沿ったフレーム本体区分404の偏向から実質的に隔離されるフレームアーム区分402と連続的であるため、縦軸392に沿ったフレーム本体区分404の偏向は、第1のアームヒンジ区分406によってフレームアーム区分402の最小回転として伝達されてもよい。フレームアーム区分402は、第1のアームヒンジ区分400を通して伝達され得る、縦軸392に沿ったフレーム本体区分404の偏向によって引き起こされる、公称量の回転を受けてもよい。縦軸392に沿ったフレーム本体区分404の偏向の結果は、第1の支持要素344および第2の支持要素348の正味往復運動、したがって、第1の接触表面346と第2の接触表面350との間の正味往復運動である。第1の支持要素344を第2のバンドヒンジ区分356に接続するバイアスバンド354もまた、偏向させられ、第1の接触表面346および第2の接触表面350の分離に対抗する弾性復元力、ならびに第1の接触表面346および第2の接触表面350の本往復運動に抵抗する復元力を提供する。

0091

バイアスバンド354の偏向中に、第1のバンドヒンジ区分355および第2のバンドヒンジ区分356は、バイアスバンド354の偏向の方向にバイアスバンド354の屈曲を促進する。示される実施形態に関して、バイアスバンド354の第2のバンドヒンジ区分356は、第2の支持要素348の外面366上に配置され、第1のバンドヒンジ区分355は、第1の支持要素344と第2の支持要素348との間に配置される空間362に隣接する、バイアスバンド354の内面上に配置される。バイアスバンド354の偏向は、第1のバンドヒンジ区分355および第2のバンドヒンジ区分356において歪みの集中をもたらす。第1のバンドヒンジ区分355および第2のバンドヒンジ区分356における歪みの集中は、バイアスバンド354の偏向の方向にバイアスバンド354の曲げモーメントを低減させることによって、バイアスバンド354の偏向を促進する。

0092

中立状態から偏向状態へのアクチュエータフレーム342の弾性変形が、図9Fおよび9Gで図示されている。アクチュエータフレーム342は、圧電要素空洞376内に配置された圧電要素374とともに示されるが、明確にする目的で、調節可能光学マウント24のねじ山付きシャフト352は、図9Fまたは図9Gに示されていない。第1の電気ドライバ信号が図1に示される電子コントローラ48から圧電要素374に伝送される場合、(第2のマウント表面384に固着される)圧電要素374は、拡張してもよく、順に、第1のマウント表面380と第2のマウント表面384との間の付加的分離および変位を引き起こす。第2のマウント表面384の変位は、第1の支持要素344が実質的に静止したままである間に、縦軸392に沿った第2の支持要素348の運動を引き起こす、縦軸392に沿ったフレーム本体区分404の偏向をもたらす。これは、図9Fおよび図9Gで鎖線によって示されるように、第1の接触表面346と第2の接触表面350との間の相対往復運動をもたらす。第2の支持要素の偏向の規模は、図9Gで寸法422によって示される。

0093

電子コントローラ48から圧電要素374に伝送される第2の電気ドライバ信号は、圧電要素374をその中立状態に戻らせ得、これは、図9Fおよび図9Gで実線によって示されるように、フレーム本体区分404をその中立状態に戻す。バイアスバンド354は、(図9Fおよび図9Gで鎖線によって示される)その偏向状態から回復し、第2の支持要素348が、図9Fおよび図9Gで実線によって示されるようにその中立位置に戻るように、弾性復元力を第2の支持要素348に提供する。

0094

上記ならびに他の好適な光学実施形態で議論される調節可能光学マウント24で使用され得る、圧電アクチュエータ424の別の実施形態が、図10A−10Iに示されている。圧電アクチュエータ424は、上記で議論され、図6A−6Iに示される圧電アクチュエータの実施形態102のものに類似する特徴、材料、および/または寸法を有してもよい。

0095

図10A−10Iに示される圧電アクチュエータの実施形態424は、アクチュエータフレーム426の要素の全てが単一の連続的な途切れない材料から形成されている(切断されている等)、モノリシック構成を有する、アクチュエータフレーム426を含んでもよい。アクチュエータフレーム426は、第1の接触表面430を有する第1の支持要素428と、第2の接触表面434を有する第2の支持要素432とを含んでもよい。第1の接触表面430は、第2の接触表面434に対して離間し、実質的に対向した関係で配置される。第1の接触表面430および第2の接触表面434は、第1の接触表面430と第2の接触表面434との間で回転固着され得る、光学マウントのねじ山付きシャフト436に選択的に係合するように構成されてもよい。第1の接触表面430および第2の接触表面434は、随意に、ねじ山付きシャフト436に効果的に係合するために、図10Dおよび10Eに示されるようにねじ山付き表面として構成されてもよい。第1の接触表面430および第2の接触表面434の往復運動が、ねじ山付きシャフト436と選択的に係合し、それを回転させるために使用されてもよい。

0096

アクチュエータフレーム426のいくつかの外面が、アクチュエータフレームの実施形態426の特徴および/または寸法について議論するために、基準表面として使用されてもよい。この場合、アクチュエータフレーム426は、アクチュエータフレーム426の前外面427およびアクチュエータフレーム426の後外面429を組み込んでもよい。アクチュエータフレーム426の前外面427は、アクチュエータフレーム426の後外面429に対して離間し、実質的に対向した関係で配置されてもよく、後外面429と実質的に平行であり得る。アクチュエータフレーム426はまた、前外面427および後外面429の両方と実質的に垂直であるように配置される、第1の外側面431を組み込んでもよい。アクチュエータフレーム426はまた、第1の外側面431に対して離間し、実質的に対向した関係で配置され、第1の外側面431と実質的に平行であり得る、第2の外側面433を組み込んでもよい。

0097

前の実施形態と同様に、第1の接触表面430と第2の接触表面434との間の一貫した復元力が、ある場合には、所望の方向への回転運動を提供するように、ねじ山付きシャフト436との接触表面の選択的係合を可能にするために必要とされ得る。図10A−10Gの圧電アクチュエータの実施形態424のアクチュエータフレーム426は、第1の支持要素428と第2の支持要素432との間に配置され得、第1の接触表面430の中立位置に向かった、またはそこから離れた第2の接触表面434の垂直変位に抵抗するであろう、復元力を提供するように構成され得る、一体バイアスバンド部分438を組み込む。バイアスバンド438は、接触表面430および434の間に一貫した弾性復元力を提供するように構成される。

0098

図10A−10Iに示されるように、バイアスバンド438は、第1の支持要素428の遠位部分444の周囲で、第1の接触表面430と実質的に反対側に配置される第1の支持要素428の外面446に沿って、第1の支持要素の近位区分442上に配置される第1のバンドヒンジ440から遠位に延在する。バイアスバンドはまた、第1の接触表面430と第2の接触表面434との間に配置される空間448の周囲に延在する。バイアスバンド438はまた、第2の支持要素の遠位部分450の周囲で、第2の接触表面434と実質的に反対側に配置される第2の支持要素452の外面に沿って延在する。バイアスバンド438は、第2の支持要素432の近位区分456上に配置される第2のバンドヒンジ区分454で終端する。

0099

バイアスバンド438はまた、それが駆動サイクル中に接触表面に提供する復元力がバイアス調節機構を用いて調節されることができるように、構成されてもよい。バイアス調節機構の一実施形態は、バイアスバンド438と以下で議論される第2の支持要素432もしくはフレーム本体区分490等のアクチュエータフレーム426の別の部分の間に接触して配置される、1つまたはそれを上回る調節可能止めねじ458を含むことができる。そのような配列または上記で議論される任意の類似配列に関して、止めねじ458は、アクチュエータフレーム426の一部のねじ穴と螺合係合し、アクチュエータフレーム426の別の部分と接触している1つまたは複数のねじ458の先端を有することができる。このようにして、1つまたは複数のねじ458を調節することによって、アクチュエータフレームの2つの部分の間の公称分離もしくは前負荷が調節されることができる。図10Aに示される実施形態426に関して、ねじ458は、第2の支持要素432の外面と接触したねじ458の先端を伴って、バイアスバンド438のそれぞれのねじ穴の中で螺合して係合させられる。本実施形態では、ねじ458は、第2の支持要素432とバイアスバンド438との間の公称分離および/または前負荷を調節するために使用されることができ、これは、順に、ねじ山付きシャフト436に対して接触表面430および432によって及ぼされる公称力を調節することができる。複数の調節可能止めねじ458が、図10Aに示されている。

0100

圧電アクチュエータ424はまた、上記で議論されるような圧電結晶として構成される、圧電要素460を含んでもよい。圧電要素460は、図10Bのアクチュエータフレーム426の圧電要素空洞462の中でアクチュエータフレーム426内に配置されて示されている。圧電要素460は、第1のマウント表面466に固着される第1の端部464と、アクチュエータフレーム426の第2のマウント表面470に固着される第2の端部468とを有する。第1のマウント表面466と第2のマウント表面470との間の空間472は、ある場合には、圧電要素空洞462を画定する役割を果たしてもよい。圧電アクチュエータ424はまた、同様に図10Bに示される調節可能圧電マウント支持体474を含んでもよい。調節可能圧電マウント支持体474は、アクチュエータフレーム426のねじ山付きチャネル476内で螺合可能に係合されてもよい。アクチュエータフレーム426のねじ山付きチャネル476は、アクチュエータフレーム426の縦軸478(図10Fおよび10G参照)と平行である、または同一の広がりを持つ縦軸を有する。調節可能圧電マウント支持体474は、ねじ山付きチャネル476のねじ山付き内面482と係合させられた調節可能圧電マウント支持体474のねじ山付き外面480を伴って、ねじ山付きチャネル476内で回転させられてもよい。そのような相対回転は、圧電要素空洞462の中への圧電要素460の組立の前、間、および後に、第2のマウント表面470に対して第1のマウント表面466(本実施形態では調節可能圧電マウント支持体474の平坦な遠位表面484上に配置される)を位置付けるために使用されてもよい。そのような配列は、圧電要素460および任意の所望の接着剤等の挿入のための圧電要素460より長い圧電空洞462を提供するために、有用であり得る。その後、調節可能圧電マウント支持体474は、圧電要素空洞462の有効軸長を短縮し、存在すれば、所望の量の前負荷また圧着型力を用いて、第1のマウント表面466および第2のマウント表面470を両方とも圧電要素460の対応する表面と接触させるよう、回転させられてもよい。マウント表面によって圧電要素460に印加される接触力は、縦軸478と実質的に平行なねじ山付きチャネル476内の調節可能圧電マウント支持体474の位置を変化させることによって、調節されることができる。

0101

アクチュエータフレームの実施形態424はまた、アクチュエータフレーム426の縮小材料断面の1つまたはそれを上回るヒンジ区分を含んでもよい。例えば、第1のアームヒンジ区分486は、フレームアーム区分488とフレーム本体区分490との間のヒンジ連結型回転変位を可能にするよう、アクチュエータフレーム426のフレームアーム区分488とアクチュエータフレーム426のフレーム本体区分490との間に配置されてもよい。アクチュエータフレーム426はまた、1つまたはそれを上回るフレームスロットを含んでもよい。例えば、第1のフレームスロット492は、第1の支持要素428の近位区分442とフレーム本体区分490の中心部分494との間に配置されてもよい。第2のフレームスロット496は、アクチュエータフレーム426の近位区分498に沿って配置されてもよい。各フレームスロットは、フレームアーム区分488とフレーム本体区分490との間の実質的に独立した相対運動を可能にするよう、フレームアーム区分488とフレーム本体区分490との間にフレーム材料内の間隙500を含む。

0102

アクチュエータフレームの実施形態426のアームヒンジ区分486は、ヒンジ区分486内のアクチュエータフレーム426材料の弾性変形による、第1の接触表面430と第2の接触表面434との間の相対往復平行変位を可能にするように構成される。アームヒンジ区分486は、アームヒンジ区分486におけるフレーム構造内の材料の縮小断面または慣性モーメントによって形成されてもよい。縮小断面は、圧電要素460の拡張または収縮によってフレーム構造に印加される力の結果としてのフレーム構造の歪みが集中させられ得る、断面を提供する。材料の縮小断面における歪みの集中は、第1の接触表面430および第2の接触表面434等のアクチュエータフレーム426の種々の構成要素の間の公知のまたは予測可能な移動をもたらし得る。アームヒンジ区分486は、フレームアーム区分488に対するフレーム本体区分490のヒンジ連結型回転変位のみを可能にし、回転変位は、歪みの集中が起こるであろう、アームヒンジ区分486を中心とする。縦軸478に沿ったフレーム本体区分490の偏向(軸方向拡張または収縮等)は、第1のフレームスロット492および第2のフレームスロット496によってフレームアーム区分488から実質的に隔離され、これは、フレーム本体区分490の偏向中にフレームアーム区分488が比較的静止したままであることを可能にする。

0103

フレームガイド孔504は、図10Aに示されるように、アクチュエータフレーム426内に配置されてもよい。フレームガイド孔504はまた、ピン(図示せず)を使用したアクチュエータフレーム426と光学マウント24との間の連結が、光学マウント24に対するねじ山付きシャフト436の周囲のアクチュエータフレーム426の回転を効果的に排除し、または少なくとも最小限にするように、そのようなピンを使用して光学マウント24に連結されてもよい。アクチュエータフレーム426と光学マウント24との間の本連結配列はまた、縦軸478に沿ったフレーム本体区分490の軸方向変位(軸方向拡張および収縮)が許可されるように、ピンを使用して構成されてもよい。本連結配列はまた、図6A−6Iおよび図4Bに示される実施形態について上記で議論される、フレームガイド172、アクチュエータフレーム104、および光学マウント24の間の接続の構成と同一または類似であり得る。

0104

示される実施形態に関して、第2の支持要素432は、フレーム本体区分490から遠位に延在し、第1の支持要素428は、フレームアーム区分488から遠位に延在する。第2の支持要素432がフレーム本体区分490と連続的であるため、縦軸478に沿ったフレーム本体区分490の偏向は、縦軸478に沿った第2の支持要素432の運動をもたらす。第1の支持要素428が、フレームスロットによって縦軸478に沿ったフレーム本体区分490の偏向から実質的に隔離されるフレームアーム区分488と連続的であるため、縦軸478に沿ったフレーム本体区分490の偏向は、アームヒンジ区分486によってフレームアーム区分488の最小回転として伝達されてもよい。フレームアーム区分488は、アームヒンジ区分486を通して伝達され得る、縦軸478に沿ったフレーム本体区分490の偏向によって引き起こされる、公称量の回転を受けてもよい。縦軸478に沿ったフレーム本体区分490の偏向の結果は、第1の支持要素428および第2の支持要素432の正味往復運動、したがって、第1の接触表面430と第2の接触表面434との間の正味往復運動である。第1のバンドヒンジ区分440を第2のバンドヒンジ区分454に接続するバイアスバンド438もまた、偏向させられ、第1の接触表面430および第2の接触表面434の分離に対抗する復元力、ならびに第1の接触表面430および第2の接触表面434の本往復運動に抵抗する復元力を提供する。

0105

バイアスバンド438の偏向中に、第1のバンドヒンジ区分440および第2のバンドヒンジ区分454は、バイアスバンド438の偏向の方向にバイアスバンド438の屈曲および弾性変形を促進する。第1のバンドヒンジ区分440は、第1の支持要素428の近位区分442に配置され、第2のバンドヒンジ区分454は、第2の支持要素432の近位区分456に配置される。バイアスバンド438の偏向は、バイアスバンド438を弾性的に変形させ、それによって、バンドヒンジ区分において歪みをもたらす。バンドヒンジ区分の縮小厚構成は、バンドヒンジ区分内で歪みの集中をもたらす。バンドヒンジ区分における歪みの集中は、バイアスバンド438の偏向の方向にバイアスバンド438の曲げモーメントを低減させることによって、バイアスバンド438の偏向を促進する。

0106

中立状態から偏向状態へのアクチュエータフレーム426の弾性変形が、図10Fおよび10Gで図示されている。アクチュエータフレーム426は、圧電要素空洞462内に配置された圧電要素460とともに示されるが、明確にする目的で、調節可能光学マウント24のねじ山付きシャフト436は、図10Fまたは図10Gに示されていない。第1の電気ドライバ信号が図1に示される電子コントローラ48から圧電要素460に伝送される場合、(第2のマウント表面470に固着される)圧電要素460は、拡張してもよく、順に、第1のマウント表面466と第2のマウント表面470との間の付加的分離および変位を引き起こす。第2のマウント表面470の変位は、第1の支持要素428が実質的に静止したままである間に、縦軸478に沿った第2の支持要素432の運動を引き起こす、縦軸478に沿ったフレーム本体区分490の偏向をもたらす。これは、図10Fおよび図10Gで鎖線によって示されるように、第1の接触表面430と第2の接触表面434との間の相対往復運動をもたらす。第2の支持要素の偏向の規模は、図10Gで寸法506によって示される。

0107

電子コントローラ48から圧電要素460に伝送される第2の電気ドライバ信号は、圧電要素460をその中立状態に戻らせ得、これは、図10Fおよび図10Gで実線によって示されるように、フレーム本体区分490をその中立状態に戻す。バイアスバンド438は、(図10Fおよび図10Gで鎖線によって示される)その偏向状態から回復し、第2の支持要素432が、図10Fおよび図10Gで実線によって示されるようにその中立位置に戻るように、復元力を第2の支持要素432に提供する。

0108

上記の発明を実施するための形態に関して、その中で使用される類似参照数字は、同一または類似寸法、材料、および構成を有し得る、類似要素を指し得る。実施形態の特定の形態が図示および説明されているが、議論される実施形態の精神および範囲から逸脱することなく、種々の修正が行うことができることが明白となるであろう。したがって、本発明が先述の発明を実施するための形態によって限定されることは意図されない。

0109

本明細書で参照される各特許、特許出願、出版物、および文書の全体は、参照することによって本明細書に組み込まれる。上記の特許、特許出願、出版物、および文書の引用は、先述のうちのいずれかが関連従来技術であるという許可でもなく、これらの文書の内容または日付に関していかなる許可も構成することもない。

0110

修正が、本技術の基本的側面から逸脱することなく、先述の実施形態に行われてもよい。本技術は、1つまたはそれを上回る具体的実施形態を参照して実質的に詳細に説明され得るが、変更が本願で具体的に開示される実施形態に行われてもよく、それにもかかわらず、これらの修正および改良は、本技術の範囲および精神内である。本明細書に例証的に説明される技術は、本明細書に具体的に開示されていない任意の要素がない場合に実践されてもよい。したがって、例えば、本明細書の各事例において、「を備える」、「本質的に〜から成る」、および「から成る」という用語のうちのいずれかは、他方の2つの用語のいずれか一方と置換されてもよい。採用されている用語および表現は、限定ではなく説明の用語として使用され、そのような用語および表現の使用は、図示および説明される特徴またはそれらの部分のいかなる均等物も除外せず、種々の修正が、請求される技術の範囲内で可能である。「a」または「an」という用語は、要素のうちのいずれか1つまたは要素のうちの1つより多くが説明されることが文脈上明確ではない限り、それが修飾する要素のうちの1つまたは複数を指し得る(例えば、「試薬(a reagent)」は、1つまたはそれを上回る試薬を意味することができる)。本技術は、代表的な実施形態および随意の特徴によって具体的に開示されているが、本明細書に開示される概念の修正および変更が行われてもよく、そのような修正および変更は、本技術の範囲内と見なされ得る。

0111

本技術のある実施形態が、以下に続く請求項に記載される。

ページトップへ

この技術を出願した法人

この技術を発明した人物

ページトップへ

関連する挑戦したい社会課題

関連する公募課題

該当するデータがありません

ページトップへ

技術視点だけで見ていませんか?

この技術の活用可能性がある分野

分野別動向を把握したい方- 事業化視点で見る -

ページトップへ

おススメ サービス

おススメ astavisionコンテンツ

新着 最近 公開された関連が強い技術

この 技術と関連性が強い技術

関連性が強い 技術一覧

この 技術と関連性が強い人物

関連性が強い人物一覧

この 技術と関連する社会課題

関連する挑戦したい社会課題一覧

この 技術と関連する公募課題

該当するデータがありません

astavision 新着記事

サイト情報について

本サービスは、国が公開している情報(公開特許公報、特許整理標準化データ等)を元に構成されています。出典元のデータには一部間違いやノイズがあり、情報の正確さについては保証致しかねます。また一時的に、各データの収録範囲や更新周期によって、一部の情報が正しく表示されないことがございます。当サイトの情報を元にした諸問題、不利益等について当方は何ら責任を負いかねることを予めご承知おきのほど宜しくお願い申し上げます。

主たる情報の出典

特許情報…特許整理標準化データ(XML編)、公開特許公報、特許公報、審決公報、Patent Map Guidance System データ