図面 (/)

この項目の情報は公開日時点(2017年12月28日)のものです。
また、この項目は機械的に抽出しているため、正しく解析できていない場合があります

図面 (19)

課題

容易に検出するのに十分なコピーを得るために核酸配列コピー数を増加させるのに有用な核酸のin vitro増幅のための方法および組成物を提供する。

解決手段

本発明は、同一オリゴヌクレオチド中に標的特異的配列およびユニバーサル配列の両方を含む1つ以上の標的特異的ユニバーサル(TSU)オリゴヌクレオチドプライマーを含む組成物を提供する。本発明のTSUプライマーは、5’プロモーター配列、第1の内部ユニバーサル配列(U1)、および標的核酸中に含まれる標的配列に特異的に結合する第1の3’標的特異的配列(TS1)から構成される少なくとも1つのTSUプロモータープライマーオリゴヌクレオチドを含む。かかる組成物は、さらに、第2の5’ユニバーサル配列(U2)およびTS1と異なる第2の3’標的特異的配列(TS2)から構成される少なくとも1つのTSU非プロモータープライマーオリゴヌクレオチドを含み得る。

概要

背景

核酸増幅により、比較的珍しい未知核酸配列コピーをより多く作製するための、核酸供給源を同定するための、または十分な核酸を作製して容易に検出可能な量を提供するための手段が得られる。増幅は、多数の用途(例えば、診断薬品開発、法医学検査環境分析、および食品試験)で有用である。

in vitroでの核酸配列の増幅方法は多数公知であり、ポリメラーゼ連鎖反応PCR)、リガーゼ連鎖反応(LCR)、レプリカーゼ媒介増幅、鎖置換増幅(SDA)、「ローリングサークル」型の増幅、および種々の転写関連増幅方法が含まれる。これらの公知の方法は、異なる技術を使用して増幅配列を作製し、通常、増幅配列を種々の方法の使用によって検出する。PCR増幅は、DNAポリメラーゼオリゴヌクレオチドプライマー、および二本鎖DNAdsDNA)またはcDNAから作製したdsDNAの両方の鎖の複数のコピーを合成するためのサーマルサイクリングを使用する(Mullisらに付与された米国特許第4,683,195号、同第4,683,202号、および同第4,800,159号)。LCR増幅は、連続的な標的配列ハイブリッド形成する過剰な一本鎖プローブの2つの相補対を使用し、ライゲーションして元の標的に相補的な融合プローブを形成する。それにより、融合プローブは、複数のハイブリッド形成、ライゲーション、および変性サイクルにおけるさらなる融合物テンプレートとしての機能を果たすことが可能である(Backmanらに付与された米国特許第5,516,663号および欧州特許第0320308B1号)。レプリカーゼ媒介増幅は、分析配列に結合した自己複製RNA配列およびレプリカーゼ(Qβ−レプリカーゼなど)を使用し、選択したレプリカーゼに特異的な自己複製配列(Qβウイルス配列など)のコピーを合成する(Kramerらに付与された米国特許第4,786,600号)。増幅配列を、分析配列の置換分子またはレポーター分子として検出する。SDAは、制限エンドヌクレアーゼ認識部位を含むプライマーを使用し、それにより、エンドヌクレアーゼが標的配列を含む半修飾(hemimodified)dsDNAの一方の鎖をニッキングし、その後の一連プライマー伸長および鎖置換工程を行うことが可能である(Walkerらに付与された米国特許第5,422,252A号およびNadeauらに付与された米国特許第5,547,861号)。ローリングサークル型の増幅は、テンプレートから複数の一本鎖コピーを酵素的に複製するために使用されるテンプレートとしての機能を果たす環状または連続した核酸構造に依存する(例えば、Koolに付与された米国特許第5,714,320号およびStemmerらに付与された米国特許第5,834,252号)。転写関連増幅は、核酸テンプレートからの複数の転写物の産生によって配列を増幅する方法をいう。かかる方法は、一般に、1つ以上のオリゴヌクレオチド(その1つからプロモーター配列が得られる)ならびに標的配列付近に機能的プロモーター配列を作製するためのRNAポリメラーゼ活性およびDNAポリメラーゼ活性を有する酵素を使用し、その後にプロモーターから標的配列を転写する(例えば、Kacianらに付与された米国特許第5,399,491号および同第5,554,516号,Burgらに付与された米国特許第5,437,990号、GingerasらのWO1988010315 A1号,Malekらに付与された米国特許第5,130,238号、Urdeaらに付与された米国特許第4,868,105号および同第5,124,246号、およびBeckerらの米国特許出願公開第2006/0046265(A1)号)。核酸増幅方法は、特異的標的配列(例えば、遺伝子配列)、関連標的配列群、または代替配列(分析配列の代わりに増幅および検出されるタグまたはレポーター配列と呼ぶことができる)を増幅することができる。代替配列は、分析標的配列が反応中にいくつかの点で存在する場合のみに増幅される。

修飾核酸増幅方法は、「ユニバーサル」プライマーまたはユニバーサルプライミングの使用によって1つを超える潜在的標的配列を増幅することができる。1つのPCR増幅形態は、PCR反応で保存された配列に結合して関連配列を増幅するためのユニバーサルプライマーを使用する(非特許文献1,非特許文献2)。ユニバーサルプライマーを使用する方法は、しばしば、種特異的プライマー、遺伝子特異的プライマー、または型特異的プライマー、あるいは種、遺伝子バリアント、またはウイルス型固有の増幅配列を生成するためのプライマーの使用と組み合わされ、これを、増幅核酸配列決定またはいくつかの他の特徴の検出によって同定することができる。例えば、ある方法では同一の増幅工程で1つのユニバーサルプライマーおよび1つの特異的プライマーを使用することができる。別の例として、ある方法では、「ネステッド」PCRを使用することができる。これは、最初の増幅工程でユニバーサルプライマー対を使用して多数の潜在的な標的配列を増幅し、その後の増幅工程で特異的プライマー対を使用して最初のアンプリコン中に含まれる1つ以上の特異的標的配列を増幅する。

アンカードPCRは、部分的にしか知られていない配列を増幅するためにユニバーサルプライマーまたは「アダプター」プライマーを使用する別の修飾PCR法である。アンカードPCRは、「アダプター」または「ユニバーサル」配列をcDNAに導入し、その後の増幅工程で導入配列に結合するプライマーを使用する。一般に、アンカードPCRは、既知の配列に指向するプライマーを使用してcDNAを作製し、既知の配列(例えば、ポリG)をcDNAに付加するかcDNA中の共通配列(例えば、ポリT)を使用し、付加した配列またはcDNA中の共通配列に結合するユニバーサルプライマーおよび下流標的特異的プライマーの使用によってPCRを行う(非特許文献3;非特許文献4)。ネステッドPCRは、分析標的配列と無関係のユニバーサル配列を含むプライマーを使用して反応中で未知の標的配列から核酸を増幅することができる(非特許文献5;非特許文献6)。

他の増幅形態は、標的特異的配列およびアダプター配列上流および下流に存在するユニバーサルプライミング部位分子ジップコード(molecular zip−code)と呼ぶことができる)を導入するためのプローブまたはプローブ組を使用する。上流および下流プライミング部位を使用して、通常アレイ上で検出されるアダプター配列を含む核酸を増幅し、反応物中に存在する標的を同定する(Fanらに付与された米国特許第6,812,005号および同第6,890,741号)。標的配列上の極めて近接して結合する2つのプローブを共にライゲーションし、その後に上流および下流のユニバーサルプライミング部位の使用によって増幅することができる。

別のアッセイ方法は、プローブハイブリッド形成および種々の分析物特異的プローブ中に含まれる共通配列の使用による線形シグナル増幅(linear signal amplification)を使用することができる(例えば、Hudsonらの米国特許出願公開第2007/0111200号)。この方法は、複数の分析物を検出するための共通配列に相補的な配列を含む標識カセットを使用する。

概要

容易に検出するのに十分なコピーを得るために核酸配列のコピー数を増加させるのに有用な核酸のin vitro増幅のための方法および組成物を提供する。本発明は、同一オリゴヌクレオチド中に標的特異的配列およびユニバーサル配列の両方を含む1つ以上の標的特異的ユニバーサル(TSU)オリゴヌクレオチドプライマーを含む組成物を提供する。本発明のTSUプライマーは、5’プロモーター配列、第1の内部ユニバーサル配列(U1)、および標的核酸中に含まれる標的配列に特異的に結合する第1の3’標的特異的配列(TS1)から構成される少なくとも1つのTSUプロモータープライマーオリゴヌクレオチドを含む。かかる組成物は、さらに、第2の5’ユニバーサル配列(U2)およびTS1と異なる第2の3’標的特異的配列(TS2)から構成される少なくとも1つのTSU非プロモータープライマーオリゴヌクレオチドを含み得る。なし

目的

核酸増幅により、比較的珍しいか未知の核酸配列のコピーをより多く作製するための、核酸供給源を同定するための、または十分な核酸を作製して容易に検出可能な量を提供する

効果

実績

技術文献被引用数
0件
牽制数
0件

この技術が所属する分野

ライセンス契約や譲渡などの可能性がある特許掲載中! 開放特許随時追加・更新中 詳しくはこちら

請求項1

サンプルから標的核酸を分離するための標的捕獲反応混合物であって、該反応混合物は、以下:a.以下:i.5’プロモーター配列、第1の内部ユニバーサル配列(U1)、および、標的核酸中に含まれる標的配列に特異的に結合することができる第1の3’標的特異的配列(TS1)を含んでいる、TSUプロモーターオリゴヌクレオチドであって、該TSUプロモーターオリゴヌクレオチドは、ポリメラーゼによって伸長することができる3’末端を有するTSUプロモータープライマーであるか、または、ポリメラーゼによって伸長することができない遮断3’末端を有するTSUプロモータープロバイダーオリゴヌクレオチドであり、以下のiiに直接または間接的に連結した、TSUプロモーターオリゴヌクレオチド、ii.第2の5’ユニバーサル配列(U2)およびTS1と異なる第2の3’標的特異的配列(TS2)から構成されるTSU非プロモータープライマーオリゴヌクレオチドであって、TS2が、該標的核酸中の相補配列ハイブリッド形成することができる、TSU非プロモータープライマーオリゴヌクレオチド、から構成される標的特異的ユニバーサル(TSU)プライマー複合体と、b.該TSUプロモーターオリゴヌクレオチドの該TS配列、または、該TSU非プロモータープライマーの該TS配列とハイブリッド形成する該標的核酸中の配列とは異なる、該標的核酸中の配列と特異的にハイブリッド形成する標的特異的配列(TS3)を含み、かつ、固体支持体に該標的核酸を結合するための手段を含む、標的特異的捕獲オリゴヌクレオチドと、を含み、ここで、該TSUプロモーターオリゴヌクレオチドは、(A)ポリヌクレオチドリンカー配列、もしくは、非ヌクレオチド脱塩リンカー化合物である共有結合を介して;(B)該TSUプロモーターオリゴヌクレオチド上の該5’プロモーター配列または該第1の内部ユニバーサル配列(U1)または該第1の3’標的特異的配列(TS1)と、該TSUプロモーターオリゴヌクレオチド上の該第1の配列に相補的な、該TSU非プロモータープライマー上の該第2の5’ユニバーサル配列(U2)または該第2の3’標的特異的配列(TS2)との間のハイブリッド形成複合体を介して;あるいは(C)該TSUプロモーターオリゴヌクレオチド内の配列に相補的な第1の配列と、該TSU非プロモータープライマーオリゴヌクレオチド内の配列に相補的な第2の配列とを含む、S−オリゴヌクレオチドを含むハイブリッド形成複合体を介して該TSU非プロモータープライマーに連結される、反応混合物。

請求項2

前記TSUプロモーターオリゴヌクレオチドが、前記TSU非プロモータープライマーオリゴヌクレオチドに対して直接、該TSUプロモーターオリゴヌクレオチド上の前記第1の配列と、該TSUプロモーターオリゴヌクレオチド上の該第1の配列に相補的な、該TSU非プロモータープライマー上の前記第2の配列との間のハイブリッド形成複合体を介して、連結される、請求項1に記載の標的捕獲反応混合物。

請求項3

固体支持体に前記標的核酸を結合するための前記手段が、該固体支持体に付着された固定プローブに結合する、固定プローブ結合領域であり、該固定プローブ結合領域は、特異的な結合対相互作用によって該固定プローブに結合する、請求項1または請求項2に記載の標的捕獲反応混合物。

請求項4

前記固定プローブ結合領域が核酸配列である、請求項3に記載の標的捕獲反応混合物。

請求項5

前記固定プローブ結合領域が、ポリA配列を含み、該ポリA配列が、前記標的特異的捕獲オリゴヌクレオチドの標的特異的配列の3’末端に付加される、請求項4に記載の標的捕獲反応混合物。

請求項6

前記反応混合物が、前記固体支持体をさらに含む、請求項1〜5のいずれかに記載の標的捕獲反応混合物。

請求項7

前記反応混合物が前記固体支持体をさらに含み、該固体支持体が、固定ポリT配列を含む、請求項5に記載の標的捕獲反応混合物。

請求項8

標的核酸鎖中の、前記TSUプロモーターオリゴヌクレオチドの前記TS配列、または、前記TSU非プロモータープライマーオリゴヌクレオチドの前記TS配列が結合する配列とは異なる、該標的核酸鎖中の配列と特異的にハイブリッド形成するブロッカーオリゴヌクレオチドをさらに含み、該ブロッカーオリゴヌクレオチドが、ポリメラーゼによって伸長することができない遮断3’末端を有する、請求項1〜7のいずれかに記載の標的捕獲反応混合物。

請求項9

さらに以下:c.5’プロモーター配列、および、前記TSUプロモーターオリゴヌクレオチドの前記ユニバーサル配列と同じ3’ユニバーサル配列から構成される、ユニバーサルプロモータープライマー、ならびにd.前記TSU非プロモータープライマーオリゴヌクレオチドの前記ユニバーサル配列と同じユニバーサル配列から構成される、ユニバーサルプライマーのうち少なくとも1つを含む、請求項1〜8のいずれかに記載の標的捕獲反応混合物。

請求項10

前記混合物が、複数の異なる標的特異的ユニバーサル(TSU)プライマー複合体と、各々がそのそれぞれの標的核酸に特異的である標的特異的捕獲オリゴヌクレオチドとを含む、請求項1〜9のいずれかに記載の標的捕獲反応混合物。

請求項11

標的核酸を捕獲する方法であって、以下:a.請求項1〜10のいずれかに記載の標的捕獲反応混合物を、該標的核酸を含むサンプルと混合する工程;b.前記標的特異的捕獲オリゴヌクレオチドおよびTSUプライマー複合体を、該サンプル中の該標的核酸中の前記相補配列とハイブリッド形成させて、複合体を形成する工程;c.該複合体を支持体に付着させて、該標的核酸を、他のサンプル成分から分離させる工程を包含する、方法。

請求項12

標的核酸を増幅するための方法であって、以下:a.請求項11に従って該標的核酸を捕獲する工程;およびb.前記支持体に付着したかまたは該支持体から脱離した、前記分離した複合体を、増幅試薬と混合して、該標的核酸を増幅する工程を包含する、方法。

技術分野

0001

本発明は、分子生物学、より具体的には、容易に検出するのに十分なコピーを得るために核酸配列コピー数を増加させるのに有用な核酸のin vitro増幅に関する。

背景技術

0002

核酸増幅により、比較的珍しい未知の核酸配列のコピーをより多く作製するための、核酸供給源を同定するための、または十分な核酸を作製して容易に検出可能な量を提供するための手段が得られる。増幅は、多数の用途(例えば、診断薬品開発、法医学検査環境分析、および食品試験)で有用である。

0003

in vitroでの核酸配列の増幅方法は多数公知であり、ポリメラーゼ連鎖反応PCR)、リガーゼ連鎖反応(LCR)、レプリカーゼ媒介増幅、鎖置換増幅(SDA)、「ローリングサークル」型の増幅、および種々の転写関連増幅方法が含まれる。これらの公知の方法は、異なる技術を使用して増幅配列を作製し、通常、増幅配列を種々の方法の使用によって検出する。PCR増幅は、DNAポリメラーゼオリゴヌクレオチドプライマー、および二本鎖DNAdsDNA)またはcDNAから作製したdsDNAの両方の鎖の複数のコピーを合成するためのサーマルサイクリングを使用する(Mullisらに付与された米国特許第4,683,195号、同第4,683,202号、および同第4,800,159号)。LCR増幅は、連続的な標的配列ハイブリッド形成する過剰な一本鎖プローブの2つの相補対を使用し、ライゲーションして元の標的に相補的な融合プローブを形成する。それにより、融合プローブは、複数のハイブリッド形成、ライゲーション、および変性サイクルにおけるさらなる融合物テンプレートとしての機能を果たすことが可能である(Backmanらに付与された米国特許第5,516,663号および欧州特許第0320308B1号)。レプリカーゼ媒介増幅は、分析配列に結合した自己複製RNA配列およびレプリカーゼ(Qβ−レプリカーゼなど)を使用し、選択したレプリカーゼに特異的な自己複製配列(Qβウイルス配列など)のコピーを合成する(Kramerらに付与された米国特許第4,786,600号)。増幅配列を、分析配列の置換分子またはレポーター分子として検出する。SDAは、制限エンドヌクレアーゼ認識部位を含むプライマーを使用し、それにより、エンドヌクレアーゼが標的配列を含む半修飾(hemimodified)dsDNAの一方の鎖をニッキングし、その後の一連プライマー伸長および鎖置換工程を行うことが可能である(Walkerらに付与された米国特許第5,422,252A号およびNadeauらに付与された米国特許第5,547,861号)。ローリングサークル型の増幅は、テンプレートから複数の一本鎖コピーを酵素的に複製するために使用されるテンプレートとしての機能を果たす環状または連続した核酸構造に依存する(例えば、Koolに付与された米国特許第5,714,320号およびStemmerらに付与された米国特許第5,834,252号)。転写関連増幅は、核酸テンプレートからの複数の転写物の産生によって配列を増幅する方法をいう。かかる方法は、一般に、1つ以上のオリゴヌクレオチド(その1つからプロモーター配列が得られる)ならびに標的配列付近に機能的プロモーター配列を作製するためのRNAポリメラーゼ活性およびDNAポリメラーゼ活性を有する酵素を使用し、その後にプロモーターから標的配列を転写する(例えば、Kacianらに付与された米国特許第5,399,491号および同第5,554,516号,Burgらに付与された米国特許第5,437,990号、GingerasらのWO1988010315 A1号,Malekらに付与された米国特許第5,130,238号、Urdeaらに付与された米国特許第4,868,105号および同第5,124,246号、およびBeckerらの米国特許出願公開第2006/0046265(A1)号)。核酸増幅方法は、特異的標的配列(例えば、遺伝子配列)、関連標的配列群、または代替配列(分析配列の代わりに増幅および検出されるタグまたはレポーター配列と呼ぶことができる)を増幅することができる。代替配列は、分析標的配列が反応中にいくつかの点で存在する場合のみに増幅される。

0004

修飾核酸増幅方法は、「ユニバーサル」プライマーまたはユニバーサルプライミングの使用によって1つを超える潜在的標的配列を増幅することができる。1つのPCR増幅形態は、PCR反応で保存された配列に結合して関連配列を増幅するためのユニバーサルプライマーを使用する(非特許文献1,非特許文献2)。ユニバーサルプライマーを使用する方法は、しばしば、種特異的プライマー、遺伝子特異的プライマー、または型特異的プライマー、あるいは種、遺伝子バリアント、またはウイルス型固有の増幅配列を生成するためのプライマーの使用と組み合わされ、これを、増幅核酸配列決定またはいくつかの他の特徴の検出によって同定することができる。例えば、ある方法では同一の増幅工程で1つのユニバーサルプライマーおよび1つの特異的プライマーを使用することができる。別の例として、ある方法では、「ネステッド」PCRを使用することができる。これは、最初の増幅工程でユニバーサルプライマー対を使用して多数の潜在的な標的配列を増幅し、その後の増幅工程で特異的プライマー対を使用して最初のアンプリコン中に含まれる1つ以上の特異的標的配列を増幅する。

0005

アンカードPCRは、部分的にしか知られていない配列を増幅するためにユニバーサルプライマーまたは「アダプター」プライマーを使用する別の修飾PCR法である。アンカードPCRは、「アダプター」または「ユニバーサル」配列をcDNAに導入し、その後の増幅工程で導入配列に結合するプライマーを使用する。一般に、アンカードPCRは、既知の配列に指向するプライマーを使用してcDNAを作製し、既知の配列(例えば、ポリG)をcDNAに付加するかcDNA中の共通配列(例えば、ポリT)を使用し、付加した配列またはcDNA中の共通配列に結合するユニバーサルプライマーおよび下流標的特異的プライマーの使用によってPCRを行う(非特許文献3;非特許文献4)。ネステッドPCRは、分析標的配列と無関係のユニバーサル配列を含むプライマーを使用して反応中で未知の標的配列から核酸を増幅することができる(非特許文献5;非特許文献6)。

0006

他の増幅形態は、標的特異的配列およびアダプター配列上流および下流に存在するユニバーサルプライミング部位分子ジップコード(molecular zip−code)と呼ぶことができる)を導入するためのプローブまたはプローブ組を使用する。上流および下流プライミング部位を使用して、通常アレイ上で検出されるアダプター配列を含む核酸を増幅し、反応物中に存在する標的を同定する(Fanらに付与された米国特許第6,812,005号および同第6,890,741号)。標的配列上の極めて近接して結合する2つのプローブを共にライゲーションし、その後に上流および下流のユニバーサルプライミング部位の使用によって増幅することができる。

0007

別のアッセイ方法は、プローブハイブリッド形成および種々の分析物特異的プローブ中に含まれる共通配列の使用による線形シグナル増幅(linear signal amplification)を使用することができる(例えば、Hudsonらの米国特許出願公開第2007/0111200号)。この方法は、複数の分析物を検出するための共通配列に相補的な配列を含む標識カセットを使用する。

先行技術

0008

Okamotoら.,1992,J.Gen.Virol.73(Pt.3):673−9
Persingら,1992,J.Clin.Microbiol.30(8):2097−103
Lohら,1989,Science 243(4888):217−20
Linら,1990,Mol.Cell.Biol.10(4):1818−21
Sullivanら,1991,Electrophoresis 12(1):17−21
Sugimotoら,1991,Agric.Biol.Chem.55(11):2687−92

課題を解決するための手段

0009

5’プロモーター配列、第1の内部ユニバーサル配列(internal first universal sequence)(U1)、および標的核酸中に含まれる標的配列に特異的に結合する第1の3’標的特異的配列(3’first target specific sequence)(TS1)を含むTSUプロモーターオリゴヌクレオチドであって、TSUプロモーターオリゴヌクレオチドが、ポリメラーゼによって伸長することができる3’末端を有するTSUプロモータープライマーであるか、ポリメラーゼによって伸長することができない遮断3’末端を有するTSUプロモータープロバイダーオリゴヌクレオチド(TSU promoter provider oligonucleotide)である、TSUプロモーターオリゴヌクレオチド、第2の5’ユニバーサル配列(U2)およびTS1と異なる第2の3’標的特異的配列(TS2)で構成されるTSU非プロモータープライマーオリゴヌクレオチド、およびTSUプロモーターオリゴヌクレオチドをTSU非プロモータープライマーオリゴヌクレオチドに直接または間接的に連結し、それにより、標的特異的ユニバーサル(TSU)プライマー複合体を形成する手段を含む、組成物を開示する。1つの実施形態では、TSUプロモーターオリゴヌクレオチドをTSU非プロモータープライマーオリゴヌクレオチドに直接連結する手段は共有結合である。別の実施形態では、共有結合はポリヌクレオチドリンカー配列を介して形成され、これは非ヌクレオチド脱塩リンカー化合物を介して形成される共有結合であり得る。別の実施形態は、TSUプロモーターオリゴヌクレオチドおよびTSU非プロモータープライマーオリゴヌクレオチドを支持体に連結するための結合対メンバー非共有結合である、TSUプロモーターオリゴヌクレオチドをTSU非プロモータープライマーオリゴヌクレオチドに間接的に連結する手段であって、結合対の一方のメンバーがTSUプロモーターオリゴヌクレオチド上またはTSU非プロモータープライマーオリゴヌクレオチド上に存在し、結合対の他方のメンバーが支持体に結合する、手段を使用する。別の実施形態では、TSUプロモーターオリゴヌクレオチドをTSU非プロモータープライマーオリゴヌクレオチドに直接連結する手段は、TSUプロモーターオリゴヌクレオチド上の第1の配列とTSUプロモーターオリゴヌクレオチド上の第1の配列と相補的なTSU非プロモータープライマー上の第2の配列との間のハイブリッド形成複合体である。TSUプロモーターオリゴヌクレオチドをTSU非プロモータープライマーオリゴヌクレオチドに間接的に連結する手段は、TSUプロモーターオリゴヌクレオチド中の配列に相補的な第1の配列およびTSU非プロモータープライマーオリゴヌクレオチド中の配列に相補的な第2の配列を含むS−オリゴヌクレオチドを含むハイブリッド形成複合体であり得る。1つの実施形態では、S−オリゴヌクレオチドはTSUプロモーターオリゴヌクレオチド中のユニバーサル配列に相補的な第1の配列を含み、S−オリゴヌクレオチドはTSU非プロモータープライマーオリゴヌクレオチド中のユニバーサル配列に相補的な第2の配列を含む。組成物はまた、TSUプロモーターオリゴヌクレオチドのTS配列またはTSU非プロモータープライマーのTS配列とハイブリッド形成する標的核酸中の配列と異なる配列で、TSUプロモーターオリゴヌクレオチドおよびTSU非プロモータープライマーの標的配列中の配列と特異的にハイブリッド形成する配列を含む標的特異的捕獲オリゴヌクレオチドを含むことができ、これは、標的核酸を支持体に結合する手段を含む。組成物はまた、5’プロモーター配列およびTSUプロモーターオリゴヌクレオチドのユニバーサル配列と同一の3’ユニバーサル配列から構成されるユニバーサルプロモータープライマーを含むことができる。別の実施形態は、TSU非プロモータープライマーオリゴヌクレオチドのユニバーサル配列と同一のユニバーサル配列から構成されるユニバーサルプライマーをさらに含む組成物である。組成物はまた、標的核酸鎖中のTSUプロモーターオリゴヌクレオチドのTS配列またはTSU非プロモータープライマーオリゴヌクレオチドのTS配列が結合する配列と異なる標的核酸鎖中の配列と特異的にハイブリッド形成するブロッカーオリゴヌクレオチド(blocker oligonucleotide)を含むことができ、ブロッカーオリゴヌクレオチドはポリメラーゼによって伸長することができない3’遮断末端(3’ blocked terminus)を有する。S−オリゴヌクレオチドを含むいくつかの実施形態では、S−オリゴヌクレオチドは、(1)TSUプロモータープライマーのU1配列に相補的な第1の末端領域配列および(2)TSU非プロモータープライマーのU2配列に相補的な第2の末端領域配列、および(3)第1および第2の末端領域配列を連結する連結部分から構成される。連結部分は、第1および第2の末端領域配列を共有結合する非核酸化合物であり得る。組成物はまた、5’プロモーター配列および3’U1配列から構成される少なくとも1つのユニバーサルプロモータープライマーならびにTSUプロモータープライマーオリゴヌクレオチドの3’末端の合成伸長から作製されたcDNA配列を含む二本鎖DNAから作製されたRNA転写物中に含まれる配列と相補的な配列から構成される少なくとも1つの標的特異的プライマー(TSP)を含むことができる。

0010

標的核酸に特異的に結合し、かつ、結合した標的核酸を、混合物から分離される支持体に結合する手段を提供する標的捕獲プローブの、標的核酸への結合、さらに、(1)5’プロモーター配列、第1の内部ユニバーサル配列(U1)、標的核酸中に含まれる標的配列に特異的に結合する第1の3’標的特異的配列(TS1)、およびポリメラーゼによって伸長することができる3’末端を含むTSUプロモータープライマーオリゴヌクレオチド、(2)第2の5’ユニバーサル配列(U2)およびTS1と異なる第2の3’標的特異的配列(TS2)から構成されるTSU非プロモータープライマーオリゴヌクレオチド、および(3)TSUプロモーターオリゴヌクレオチドをTSU非プロモータープライマーオリゴヌクレオチドと直接または間接的に連結するための手段から構成される標的特異的ユニバーサル(TSU)プライマー複合体の、混合物における標的核酸とのハイブリッド形成によって、混合物から標的核酸を単離する工程を含む、標的核酸を増幅する方法も開示する。本方法は、TSUプロモータープライマー中のTS配列を介してTSUプロモータープライマーオリゴヌクレオチドを標的核酸中の標的配列とハイブリッド形成させる工程、ポリメラーゼin vitro核酸合成の使用によって標的核酸とハイブリッド形成したTSUプロモータープライマーオリゴヌクレオチドの3’末端を合成的に伸長させる工程であって、標的核酸が第1のcDNA鎖を作製するためのテンプレートである、合成的に伸長させる工程、第1のcDNA鎖中に含まれる標的配列とのTSU非プロモータープライマーオリゴヌクレオチド中のTS配列の特異的ハイブリッド形成によって第1のcDNA鎖とTSU非プロモータープライマーオリゴヌクレオチドをハイブリッド形成する工程、ポリメラーゼin vitro核酸合成によって第1のcDNA鎖とハイブリッド形成したTSU非プロモータープライマーオリゴヌクレオチドの3’末端を合成的に伸長して第2のDNA鎖を作製し、それにより、機能的プロモーター配列およびU1配列を含む実質的に二本鎖のDNAを作製する工程、実質的に二本鎖のDNAの機能的プロモーター配列からRNA転写物を酵素的に転写して、5’U1領域配列、第1の標的特異的配列(TS1)、第2の標的特異的配列(TS2’)、およびU2配列に相補的な3’ユニバーサル配列(U2’)を含むRNA転写物を作製する工程、U2’配列でRNA転写物とユニバーサル配列U2を含むユニバーサルプライマーオリゴヌクレオチド(UP2)をハイブリッド形成させる工程、等温条件下で、酵素的in vitro核酸合成によってUP2の3’末端を合成的に伸長してcDNA鎖を作製し、RNA転写物の鎖を酵素的に除去する工程、U1’配列で前の工程で作製したcDNAとユニバーサル配列U1を含むユニバーサルプロモータープライマーオリゴヌクレオチド(UP1)をハイブリッド形成させる工程、等温条件下で、酵素的in vitro核酸合成によってUP1の3’末端を合成的に伸長して機能的プロモーターを含むdsDNAを作製する工程、およびdsDNAの機能的プロモーターから複数のRNA転写物を転写する工程であって、転写物がUP2プライマーの結合および合成工程の反復による等温条件下でのさらなる酵素的in vitro核酸合成のテンプレートとしての機能を果たすことができる増幅産物である、転写する工程を含む。本方法はまた、増幅産物を検出して標的核酸が単離された混合物中の分析物の存在を示す工程を含むことができる。

0011

別の開示の標的核酸増幅方法は、標的核酸に特異的に結合し、かつ、結合した標的核酸を、混合物から分離される支持体に結合する手段を提供する標的捕獲プローブの、標的核酸への結合、さらに、(1)5’プロモーター配列、第1の内部ユニバーサル配列(U1)、および標的核酸中に含まれる標的配列に特異的に結合する第1の3’標的特異的配列(TS1)を含むTSUプロモーターオリゴヌクレオチドであって、TSUプロモーターオリゴヌクレオチドがポリメラーゼによって伸長することができない遮断3’末端を有するTSUプロモータープロバイダーオリゴヌクレオチドである、TSUプロモーターオリゴヌクレオチド、(2)第2の5’ユニバーサル配列(U2)およびTS1と異なる第2の3’標的特異的配列(TS2)から構成されるTSU非プロモータープライマーオリゴヌクレオチド、および(3)TSUプロモーターオリゴヌクレオチドをTSU非プロモータープライマーオリゴヌクレオチドと直接または間接的に連結するための手段から構成される標的特異的ユニバーサル(TSU)プライマー複合体の、混合物における標的核酸とのハイブリッド形成によって、混合物から標的核酸を単離する工程を含む。本方法の工程はまた、TSU非プロモータープライマー中のTS配列を介して標的核酸中の標的配列とTSU非プロモータープライマーオリゴヌクレオチドをハイブリッド形成させる工程、任意に、ポリメラーゼによって合成的に伸長することができない3’遮断末端を有するブロッカーオリゴヌクレオチドを標的核酸中のTSU非プロモータープライマーオリゴヌクレオチドがハイブリッド形成する位置から下流の標的核酸上の配列とハイブリッド形成させる工程、ポリメラーゼin vitro核酸合成の使用によって標的核酸とハイブリッド形成したTSU非プロモータープライマーの3’末端を合成的に伸長させる工程であって、標的核酸が第1のcDNA鎖を作製するためのテンプレートである、合成的に伸長させる工程、第1のcDNA鎖中に含まれる標的配列とのTSUプロモータープロバイダーオリゴヌクレオチド中のTS配列の特異的ハイブリッド形成によって第1のcDNA鎖とTSUプロモータープロバイダーオリゴヌクレオチドをハイブリッド形成させる工程、テンプレートとしてTSUプロモータープロバイダー中の配列を使用することによって第1のcDNAの3’末端を合成的に伸長して、機能的プロモーター配列およびU1配列を含む実質的に二本鎖のDNAを作製する工程、機能的プロモーター配列からRNA転写物を酵素的に転写して、5’U1領域配列、第1の標的特異的配列(TS1)、第2の標的特異的配列(TS2’)、およびU2配列に相補的な3’ユニバーサル配列(U2’)を含むRNA転写物を作製する工程、U2’配列でRNA転写物とユニバーサル配列U2を含むユニバーサルプライマーオリゴヌクレオチド(UP2)をハイブリッド形成させる工程、等温条件下で、酵素的in vitro核酸合成によってUP2の3’末端を合成的に伸長してcDNA鎖を作製し、RNA転写物の鎖を酵素的に除去する工程、U1’配列で前の工程で作製したcDNAとプロモーター配列、ユニバーサル配列U1、および3’遮断末端を含むユニバーサルプロモーターオリゴヌクレオチド(UP1)をハイブリッド形成させる工程、等温条件下で、テンプレートとしてのUP1オリゴヌクレオチドの使用によってcDNAの3’末端を合成的に伸長して機能的二本鎖プロモーターを作製し、酵素的in vitro核酸合成によって機能的プロモーターを含むdsDNAを作製する工程、およびdsDNAの機能的プロモーターから複数のRNA転写物を転写する工程であって、転写物がUP2プライマーの結合および合成工程の反復による等温条件下でのさらなる酵素的in vitro核酸合成のテンプレートとしての機能を果たすことができる増幅産物である、転写する工程を含む。本方法は、増幅産物を検出して標的核酸が単離されたサンプル中の分析物の存在を示す工程をさらに含むことができる。

0012

標的核酸に特異的に結合し、かつ、結合した標的核酸を、混合物から分離される支持体に結合する手段を提供する標的捕獲プローブの、標的核酸への結合、さらに、5’プロモーター配列、第1の内部ユニバーサル配列(U1)、標的核酸中に含まれる標的配列に特異的に結合する第1の3’標的特異的配列(TS1)、およびポリメラーゼによって伸長することができる3’末端を含む標的特異的ユニバーサル(TSU)プロモータープライマーオリゴヌクレオチドの、混合物における標的核酸とのハイブリッド形成によって、混合物から標的核酸を単離する工程、ポリメラーゼin vitro核酸合成の使用によって標的核酸とハイブリッド形成したTSUプロモータープライマーオリゴヌクレオチドの3’末端を合成的に伸長させる工程であって、標的核酸が第1のcDNA鎖を作製するためのテンプレートである、合成的に伸長させる工程、TS1と異なる第2の標的特異的配列(TS2)を含む標的特異的(TS)非プロモータープライマーを増幅反応混合物に添加する工程、第1のcDNA鎖中に含まれる標的配列とのT2配列の特異的ハイブリッド形成によって第1のcDNA鎖とTS非プロモータープライマーオリゴヌクレオチドをハイブリッド形成させる工程、ポリメラーゼin vitro核酸合成によって第1のcDNA鎖とハイブリッド形成したTS非プロモータープライマーオリゴヌクレオチドの3’末端を合成的に伸長して第2のDNA鎖を作製し、それにより、機能的プロモーター配列およびU1配列を含む実質的に二本鎖のDNAを作製する工程、実質的に二本鎖のDNAの機能的プロモーター配列からRNA転写物を酵素的に転写して、5’U1領域配列、第1の標的特異的配列(TS1)、第2の標的特異的配列(TS2’)を含むRNA転写物を作製する工程、U1配列でRNA転写物とユニバーサル配列U1’を含むユニバーサルプロモータープライマーオリゴヌクレオチドをハイブリッド形成させる工程、等温条件下で、酵素的in vitro核酸合成によってユニバーサルプロモータープライマーの3’末端を合成的に伸長してcDNA鎖を作製し、RNA転写物の鎖を酵素的に除去する工程、前の工程で作製したcDNA中の特異的配列とTS非プロモータープライマーオリゴヌクレオチドをハイブリッド形成する工程、等温条件下で、酵素的in vitro核酸合成によってTS非プロモータープライマーの3’末端を合成的に伸長して機能的プロモーターを含むdsDNAを作製する工程、およびdsDNAの機能的プロモーターから複数のRNA転写物を転写する工程であって、転写物が合成工程の反復による等温条件下でのさらなる酵素的in vitro核酸合成のテンプレートとしての機能を果たすことができる増幅産物である、転写する工程を含む標的核酸を増幅する方法も開示する。本方法は、増幅産物を検出して標的核酸が単離された混合物中の分析物の存在を示す工程をさらに含むことができる。

0013

別の開示の標的核酸増幅方法は、標的核酸に特異的に結合し、かつ、結合した標的核酸を、混合物から分離される支持体に結合する手段を提供する標的捕獲プローブの、標的核酸への結合、さらに、5’ユニバーサル配列(U2)および3’標的特異的配列(TS2)から構成されるTSU非プロモータープライマーオリゴヌクレオチドの、混合物における標的核酸とのハイブリッド形成によって、混合物から標的核酸を単離する工程、標的核酸中の相補配列に対するTS2配列を介して、標的核酸中の標的配列とTSU非プロモータープライマーオリゴヌクレオチドをハイブリッド形成させる工程、ポリメラーゼによって合成的に伸長することができない3’遮断末端を有するブロッカーオリゴヌクレオチドを標的核酸中のTSU非プロモータープライマーオリゴヌクレオチドがハイブリッド形成する位置から下流の標的核酸上の配列とハイブリッド形成させる工程、ポリメラーゼin vitro核酸合成の使用によって標的核酸とハイブリッド形成したTSU非プロモータープライマーの3’末端を合成的に伸長させる工程であって、標的核酸が第1のcDNA鎖を作製するためのテンプレートである、合成的に伸長させる工程、第1のcDNA鎖中の相補配列とのTS1配列の特異的ハイブリッド形成によって、5’プロモーター配列、標的核酸中に含まれる標的配列に特異的に結合する3’標的特異的配列(TS1)、およびポリメラーゼによって伸長することができない遮断3’末端を含む標的特異的TSプロモータープロバイダーオリゴヌクレオチドを第1のcDNA鎖とハイブリッド形成させる工程、テンプレートとしてのTSプロモータープロバイダー中の配列の使用によって第1のcDNAの3’末端を合成的に伸長して、機能的プロモーター配列およびTS1配列を含む実質的に二本鎖のDNAを作製する工程、機能的プロモーター配列からRNA転写物を酵素的に転写して、5’標的特異的配列TS1、標的特異的配列TS2’、およびU2’配列を含むRNA転写物を作製する工程、U2’配列でRNA転写物とユニバーサル配列U2を含むユニバーサルプライマーオリゴヌクレオチド(UP2)をハイブリッド形成させる工程、等温条件下で、酵素的in vitro核酸合成によってUP2の3’末端を合成的に伸長してcDNA鎖を作製し、RNA転写物の鎖を酵素的に除去する工程、プロモーター配列および3’遮断末端を含むTSプロモータープロバイダーオリゴヌクレオチドを前の工程で作製したcDNAとハイブリッド形成させる工程、等温条件下で、テンプレートとしてのTSプロモータープロバイダーオリゴヌクレオチドの使用、および機能的プロモーターを含むdsDNAを作製するための酵素的in vitro核酸合成によって、機能的二本鎖プロモーターを作製するためにcDNAの3’末端を合成的に伸長する工程、およびdsDNAの機能的プロモーターから複数のRNA転写物を転写する工程であって、転写物が合成工程の反復による等温条件下でのさらなる酵素的in vitro核酸合成のテンプレートとしての機能を果たすことができる増幅産物である、転写する工程を含む。本方法はまた、増幅産物を検出して標的核酸が単離されたサンプル中の分析物の存在を示す工程を含むことができる。
本発明は、例えば以下の項目を提供する。
(項目1)
5’プロモーター配列、第1の内部ユニバーサル配列(internal first universal sequence)(U1)、および標的核酸中に含まれる標的配列に特異的に結合する第1の3’標的特異的配列(3’first target specific sequence)(TS1)を含むTSUプロモーターオリゴヌクレオチドであって、前記TSUプロモーターオリゴヌクレオチドが、ポリメラーゼによって伸長することができる3’末端を有するTSUプロモータープライマーであるか、ポリメラーゼによって伸長することができない遮断3’末端を有するTSUプロモータープロバイダーオリゴヌクレオチド(TSU promoter provider oligonucleotide)である、TSUプロモーターオリゴヌクレオチド、
第2の5’ユニバーサル配列(U2)およびTS1と異なる第2の3’標的特異的配列(TS2)で構成されるTSU非プロモータープライマーオリゴヌクレオチド、
TSUプロモーターオリゴヌクレオチドをTSU非プロモータープライマーオリゴヌクレオチドに直接または間接的に連結し、それにより、標的特異的ユニバーサル(TSU)プライマー複合体を形成する手段
を含む、組成物。
(項目2)
前記TSUプロモーターオリゴヌクレオチドをTSU非プロモータープライマーオリゴヌクレオチドに直接連結する手段が、共有結合である、項目1に記載の組成物。
(項目3)
前記共有結合がポリヌクレオチドリンカー配列を介して形成される、項目2に記載の組成物。
(項目4)
前記共有結合が非ヌクレオチド脱塩基リンカー化合物を介して形成される、項目2に記載の組成物。
(項目5)
前記TSUプロモーターオリゴヌクレオチドをTSU非プロモータープライマーオリゴヌクレオチドに間接的に連結する手段が、前記TSUプロモーターオリゴヌクレオチドおよび前記TSU非プロモータープライマーオリゴヌクレオチドを支持体に連結するための結合対のメンバーの非共有結合であり、前記結合対の一方のメンバーが前記TSUプロモーターオリゴヌクレオチド上または前記TSU非プロモータープライマーオリゴヌクレオチド上に存在し、前記結合対の他方のメンバーが支持体に結合する、項目1に記載の組成物。
(項目6)
前記TSUプロモーターオリゴヌクレオチドをTSU非プロモータープライマーオリゴヌクレオチドに直接連結する手段が、前記TSUプロモーターオリゴヌクレオチド上の第1の配列と前記TSUプロモーターオリゴヌクレオチド上の第1の配列と相補的なTSU非プロモータープライマー上の第2の配列との間のハイブリッド形成複合体である、項目1に記載の組成物。
(項目7)
前記TSUプロモーターオリゴヌクレオチドをTSU非プロモータープライマーオリゴヌクレオチドに間接的に連結する手段が、前記TSUプロモーターオリゴヌクレオチド中の配列に相補的な第1の配列および前記TSU非プロモータープライマーオリゴヌクレオチド中の配列に相補的な第2の配列を含むS−オリゴヌクレオチドを含むハイブリッド形成複合体である、項目1に記載の組成物。
(項目8)
前記S−オリゴヌクレオチドが前記TSUプロモーターオリゴヌクレオチド中のユニバーサル配列に相補的な第1の配列を含み、前記S−オリゴヌクレオチドが前記TSU非プロモータープライマーオリゴヌクレオチド中のユニバーサル配列に相補的な第2の配列を含む、項目7に記載の組成物。
(項目9)
TSUプロモーターオリゴヌクレオチドのTS配列またはTSU非プロモータープライマーのTS配列とハイブリッド形成する標的核酸中の配列と異なる配列において、TSUプロモーターオリゴヌクレオチドおよびTSU非プロモータープライマーの標的核酸中の配列と特異的にハイブリッド形成する配列を含み、かつ、標的核酸を支持体に結合する手段を含む標的特異的捕獲オリゴヌクレオチドをさらに含む、項目1に記載の組成物。
(項目10)
5’プロモーター配列およびTSUプロモーターオリゴヌクレオチドのユニバーサル配列と同一の3’ユニバーサル配列から構成されるユニバーサルプロモータープライマーをさらに含む、項目1に記載の組成物。
(項目11)
TSU非プロモータープライマーオリゴヌクレオチドのユニバーサル配列と同一のユニバーサル配列から構成されるユニバーサルプライマーをさらに含む、項目1に記載の組成物。
(項目12)
標的核酸鎖中のTSUプロモーターオリゴヌクレオチドのTS配列またはTSU非プロモータープライマーオリゴヌクレオチドのTS配列が結合する配列と異なる標的核酸鎖中の配列と特異的にハイブリッド形成するブロッカーオリゴヌクレオチド(blocker oligonucleotide)をさらに含み、前記ブロッカーオリゴヌクレオチドがポリメラーゼによって伸長することができない3’遮断末端(3’ blocked terminus)を有する、項目1に記載の組成物。
(項目13)
前記S−オリゴヌクレオチドが、(1)TSUプロモータープライマーのU1配列に相補的な第1の末端領域配列および(2)TSU非プロモータープライマーのU2配列に相補的な第2の末端領域配列、および(3)前記第1および第2の末端領域配列を連結する連結部分から構成される、項目7に記載の組成物。
(項目14)
前記連結部分が前記第1および第2の末端領域配列を共有結合する非核酸化合物である、項目13に記載の組成物。
(項目15)
5’プロモーター配列および3’U1配列から構成される少なくとも1つのユニバーサルプロモータープライマーならびにTSUプロモータープライマーオリゴヌクレオチドの3’末端の合成伸長から作製されたcDNA配列を含む二本鎖DNAから作製されたRNA転写物中に含まれる配列と相補的な配列から構成される少なくとも1つの標的特異的プライマー(TSP)をさらに含む、項目1に記載の組成物。
(項目16)
標的核酸を増幅する方法であって、
標的核酸に特異的に結合し、かつ、結合した前記標的核酸を、混合物から分離される支持体に結合する手段を提供する標的捕獲プローブの、標的核酸への結合、さらに、混合物中での、以下:
5’プロモーター配列、第1の内部ユニバーサル配列(U1)、標的核酸中に含まれる標的配列に特異的に結合する第1の3’標的特異的配列(TS1)、およびポリメラーゼによって伸長することができる3’末端を含むTSUプロモータープライマーオリゴヌクレオチド、
第2の5’ユニバーサル配列(U2)およびTS1と異なる第2の3’標的特異的配列(TS2)から構成されるTSU非プロモータープライマーオリゴヌクレオチド、および
TSUプロモーターオリゴヌクレオチドをTSU非プロモータープライマーオリゴヌクレオチドと直接または間接的に連結するための手段
から構成される標的特異的ユニバーサル(TSU)プライマー複合体の標的核酸とのハイブリッド形成によって、混合物から標的核酸を単離する工程、
TSUプロモータープライマー中のTS配列を介してTSUプロモータープライマーオリゴヌクレオチドを標的核酸中の標的配列とハイブリッド形成させる工程、
ポリメラーゼin vitro核酸合成の使用によって標的核酸とハイブリッド形成したTSUプロモータープライマーオリゴヌクレオチドの3’末端を合成的に伸長させる工程であって、前記標的核酸が第1のcDNA鎖を作製するためのテンプレートである、合成的に伸長させる工程、
第1のcDNA鎖中に含まれる標的配列とのTSU非プロモータープライマーオリゴヌクレオチド中のTS配列の特異的ハイブリッド形成によって第1のcDNA鎖とTSU非プロモータープライマーオリゴヌクレオチドをハイブリッド形成させる工程、
ポリメラーゼin vitro核酸合成によって第1のcDNA鎖とハイブリッド形成したTSU非プロモータープライマーオリゴヌクレオチドの3’末端を合成的に伸長して第2のDNA鎖を作製し、それにより、機能的プロモーター配列およびU1配列を含む実質的に二本鎖のDNAを作製する工程、
実質的に二本鎖のDNAの機能的プロモーター配列からRNA転写物を酵素的に転写して、5’U1領域配列、第1の標的特異的配列(TS1)、第2の標的特異的配列(TS2’)、およびU2配列に相補的な3’ユニバーサル配列(U2’)を含むRNA転写物を作製する工程、
U2’配列でRNA転写物とユニバーサル配列U2を含むユニバーサルプライマーオリゴヌクレオチド(UP2)とをハイブリッド形成させる工程、
等温条件下で、酵素的in vitro核酸合成によってUP2の3’末端を合成的に伸長してcDNA鎖を作製し、RNA転写物の鎖を酵素的に除去する工程、
U1’配列で前の工程で作製したcDNAとユニバーサル配列U1を含むユニバーサルプロモータープライマーオリゴヌクレオチド(UP1)とをハイブリッド形成させる工程、
等温条件下で、酵素的in vitro核酸合成によってUP1の3’末端を合成的
に伸長して機能的プロモーターを含むdsDNA鎖を作製する工程、および
dsDNAの機能的プロモーターから複数のRNA転写物を転写する工程であって、前記転写物がUP2プライマーの結合および合成工程の反復による等温条件下でのさらなる酵素的in vitro核酸合成のテンプレートとしての機能を果たすことができる増幅産物である、転写する工程
を含む、方法。
(項目17)
増幅産物を検出して標的核酸が単離された混合物中の分析物の存在を示す工程をさらに含む、項目16に記載の方法。
(項目18)
標的核酸を増幅する方法であって、
標的核酸に特異的に結合し、かつ、結合した前記標的核酸を、混合物から分離される支持体に結合する手段を提供する標的捕獲プローブの、標的核酸への結合、さらに、混合物中での、以下:
5’プロモーター配列、第1の内部ユニバーサル配列(U1)、および標的核酸中に含まれる標的配列に特異的に結合する第1の3’標的特異的配列(TS1)を含むTSUプロモーターオリゴヌクレオチドであって、前記TSUプロモーターオリゴヌクレオチドがポリメラーゼによって伸長することができない遮断3’末端を有するTSUプロモータープロバイダーオリゴヌクレオチドである、TSUプロモーターオリゴヌクレオチド、
第2の5’ユニバーサル配列(U2)およびTS1と異なる第2の3’標的特異的配列(TS2)から構成されるTSU非プロモータープライマーオリゴヌクレオチド、および
TSUプロモーターオリゴヌクレオチドをTSU非プロモータープライマーオリゴヌクレオチドと直接または間接的に連結するための手段
から構成される標的特異的ユニバーサル(TSU)プライマー複合体の標的核酸とのハイブリッド形成によって、混合物から標的核酸を単離する工程、
TSU非プロモータープライマー中のTS配列を介して標的核酸中の標的配列とTSU非プロモータープライマーオリゴヌクレオチドをハイブリッド形成させる工程、
任意に、ポリメラーゼによって合成的に伸長することができない3’遮断末端を有するブロッカーオリゴヌクレオチドを、標的核酸中のTSU非プロモータープライマーオリゴヌクレオチドがハイブリッド形成する位置から下流の標的核酸上の配列とハイブリッド形成させる工程、
ポリメラーゼin vitro核酸合成の使用によって標的核酸とハイブリッド形成したTSU非プロモータープライマーの3’末端を合成的に伸長させる工程であって、前記標的核酸が第1のcDNA鎖を作製するためのテンプレートである、合成的に伸長させる工程、
第1のcDNA鎖中に含まれる標的配列とのTSUプロモータープロバイダーオリゴヌクレオチド中のTS配列の特異的ハイブリッド形成によって第1のcDNA鎖とTSUプロモータープロバイダーオリゴヌクレオチドをハイブリッド形成させる工程、
テンプレートとしてTSUプロモータープロバイダー中の配列を使用することによって第1のcDNAの3’末端を合成的に伸長して、機能的プロモーター配列およびU1配列を含む実質的に二本鎖のDNAを作製する工程、
機能的プロモーター配列からRNA転写物を酵素的に転写して、5’U1領域配列、第1の標的特異的配列(TS1)、第2の標的特異的配列(TS2’)、およびU2配列に相補的な3’ユニバーサル配列(U2’)を含むRNA転写物を作製する工程、
U2’配列でRNA転写物とユニバーサル配列U2を含むユニバーサルプライマーオリゴヌクレオチド(UP2)とをハイブリッド形成させる工程、
等温条件下で、酵素的in vitro核酸合成によってUP2の3’末端を合成的に伸長してcDNA鎖を作製し、RNA転写物の鎖を酵素的に除去する工程、
U1’配列で前の工程で作製したcDNAとプロモーター配列、ユニバーサル配列U1、および3’遮断末端を含むユニバーサルプロモーターオリゴヌクレオチド(UP1)とをハイブリッド形成させる工程、
等温条件下で、テンプレートとしてのUP1オリゴヌクレオチドの使用によってcDNAの3’末端を合成的に伸長して機能的二本鎖プロモーターを作製し、酵素的in vitro核酸合成によって機能的プロモーターを含むdsDNAを作製する工程、および
dsDNAの機能的プロモーターから複数のRNA転写物を転写する工程であって、前記転写物がUP2プライマーの結合および合成工程の反復による等温条件下でのさらなる酵素的in vitro核酸合成のテンプレートとしての機能を果たすことができる増幅産物である、転写する工程
を含む、方法。
(項目19)
増幅産物を検出して標的核酸が単離されたサンプル中の分析物の存在を示す工程をさらに含む、項目18に記載の方法。
(項目20)
標的核酸を増幅する方法であって、
標的核酸に特異的に結合し、かつ、結合した前記標的核酸を、混合物から分離される支持体に結合する手段を提供する標的捕獲プローブの、標的核酸への結合、さらに、混合物中での、5’プロモーター配列、第1の内部ユニバーサル配列(U1)、標的核酸中に含まれる標的配列に特異的に結合する第1の3’標的特異的配列(TS1)、およびポリメラーゼによって伸長することができる3’末端を含む標的特異的ユニバーサル(TSU)プロモータープライマーオリゴヌクレオチドと標的核酸とのハイブリッド形成によって、混合物から標的核酸を単離する工程、
ポリメラーゼin vitro核酸合成の使用によって標的核酸とハイブリッド形成したTSUプロモータープライマーオリゴヌクレオチドの3’末端を合成的に伸長させる工程であって、前記標的核酸が第1のcDNA鎖を作製するためのテンプレートである、合成的に伸長させる工程、
TS1と異なる第2の標的特異的配列(TS2)を含む標的特異的(TS)非プロモータープライマーを増幅反応混合物に添加する工程、
第1のcDNA鎖中に含まれる標的配列とのT2配列の特異的ハイブリッド形成によって第1のcDNA鎖とTS非プロモータープライマーオリゴヌクレオチドをハイブリッド形成させる工程、
ポリメラーゼin vitro核酸合成によって第1のcDNA鎖とハイブリッド形成したTS非プロモータープライマーオリゴヌクレオチドの3’末端を合成的に伸長して第2のDNA鎖を作製し、それにより、機能的プロモーター配列およびU1配列を含む実質的に二本鎖のDNAを作製する工程、
実質的に二本鎖のDNAの機能的プロモーター配列からRNA転写物を酵素的に転写して、5’U1領域配列、第1の標的特異的配列(TS1)、第2の標的特異的配列(TS2’)を含むRNA転写物を作製する工程、
U1配列でRNA転写物とユニバーサル配列U1’を含むユニバーサルプロモータープライマーオリゴヌクレオチドとをハイブリッド形成させる工程、
等温条件下で、酵素的in vitro核酸合成によってユニバーサルプロモータープライマーの3’末端を合成的に伸長してcDNA鎖を作製し、RNA転写物の鎖を酵素的に除去する工程、
前の工程で作製したcDNA中の特異的配列とTS非プロモータープライマーオリゴヌクレオチドをハイブリッド形成させる工程、
等温条件下で、酵素的in vitro核酸合成によってTS非プロモータープライマーの3’末端を合成的に伸長して機能的プロモーターを含むdsDNAを作製する工程、および
dsDNAの機能的プロモーターから複数のRNA転写物を転写する工程であって、前記転写物が合成工程の反復による等温条件下でのさらなる酵素的in vitro核酸
合成のテンプレートとしての機能を果たすことができる増幅産物である、転写する工程
を含む、方法。
(項目21)
増幅産物を検出して標的核酸が単離された混合物中の分析物の存在を示す工程をさらに含む、項目20に記載の方法。
(項目22)
標的核酸を増幅する方法であって、
標的核酸に特異的に結合し、かつ、結合した前記標的核酸を、混合物から分離される支持体に結合する手段を提供する標的捕獲プローブの、標的核酸への結合、さらに、混合物中での、5’ユニバーサル配列(U2)および3’標的特異的配列(TS2)から構成されるTSU非プロモータープライマーオリゴヌクレオチドと標的核酸とのハイブリッド形成によって、混合物から標的核酸を単離する工程、
標的核酸中の相補配列に対してTS2配列を介して標的核酸中の標的配列とTSU非プロモータープライマーオリゴヌクレオチドとをハイブリッド形成させる工程、
ポリメラーゼによって合成的に伸長することができない3’遮断末端を有するブロッカーオリゴヌクレオチドを標的核酸中のTSU非プロモータープライマーオリゴヌクレオチドがハイブリッド形成する位置から下流の標的核酸上の配列とハイブリッド形成させる工程、
ポリメラーゼin vitro核酸合成の使用によって標的核酸とハイブリッド形成したTSU非プロモータープライマーの3’末端を合成的に伸長させる工程であって、前記標的核酸が第1のcDNA鎖を作製するためのテンプレートである、合成的に伸長させる工程、
第1のcDNA鎖中の相補配列とのTS1配列の特異的ハイブリッド形成によって、5’プロモーター配列、標的核酸中に含まれる標的配列に特異的に結合する3’標的特異的配列(TS1)、およびポリメラーゼによって伸長することができない遮断3’末端を含む標的特異的TSプロモータープロバイダーオリゴヌクレオチドを第1のcDNA鎖とハイブリッド形成させる工程、
テンプレートとしてのTSプロモータープロバイダー中の配列の使用によって第1のcDNAの3’末端を合成的に伸長して、機能的プロモーター配列およびTS1配列を含む実質的に二本鎖のDNAを作製する工程、
機能的プロモーター配列からRNA転写物を酵素的に転写して、5’標的特異的配列TS1、標的特異的配列TS2’、およびU2’配列を含むRNA転写物を作製する工程、
U2’配列でRNA転写物とユニバーサル配列U2を含むユニバーサルプライマーオリゴヌクレオチド(UP2)とをハイブリッド形成させる工程、
等温条件下で、酵素的in vitro核酸合成によってUP2の3’末端を合成的に伸長してcDNA鎖を作製し、RNA転写物の鎖を酵素的に除去する工程、
プロモーター配列および3’遮断末端を含むTSプロモータープロバイダーオリゴヌクレオチドを前の工程で作製したcDNAとハイブリッド形成させる工程、
等温条件下で、テンプレートとしてのTSプロモータープロバイダーオリゴヌクレオチドの使用によってcDNAの3’末端を合成的に伸長して機能的二本鎖プロモーターを作製し、酵素的in vitro核酸合成によって機能的プロモーターを含むdsDNAを作製する工程、および
dsDNAの機能的プロモーターから複数のRNA転写物を転写する工程であって、前記転写物が合成工程の反復による等温条件下でのさらなる酵素的in vitro核酸合成のテンプレートとしての機能を果たすことができる増幅産物である、転写する工程
を含む、方法。
(項目23)
増幅産物を検出して標的核酸が単離されたサンプル中の分析物の存在を示す工程をさらに含む、項目22に記載の方法。

0014

添付の図面は、明細書の一部を構成し、本発明のいくつかの実施形態を例証する。これらの図面は、説明と共に、本発明の原理を説明および例証するのに役立つ。

図面の簡単な説明

0015

図1は、以下を示す略図である:Pと記した5’プロモーター配列(実線)、U1と記したユニバーサル配列(破線)、およびTS1と記した3’標的特異的配列(二重線)から構成されるTSUプロモータープライマーを含む3成分標的特異的ユニバーサル(TSU)プライマー複合体。このTSUプロモータープライマーは、U1’と記した5’ユニバーサル配列およびU2’と記した3’ユニバーサル配列を含むS−オリゴヌクレオチド(S状点線)とハイブリッド形成し、S−オリゴヌクレオチドがU2と記した5’ユニバーサル配列(破線)およびTS2と記した3’標的特異的配列(二重線)から構成されるTSU非プロモータープライマーとハイブリッド形成する;TS3と記した5’標的特異的配列(二重線)およびBPMと記した3’結合対メンバー三重線)から構成される標的特異的捕獲オリゴヌクレオチド;Pと記した5’プロモーター配列(実線)およびU1と記した3’ユニバーサル配列(破線)から構成されるユニバーサルプロモータープライマー(UP1);およびU2と記したユニバーサル配列(破線)から構成されるユニバーサル非プロモータープライマー(UP2)。
図2は、以下の標的捕獲を示す略図である:(1)標的捕獲試薬(TCR)は、3つの異なる標的に特異的な複数の3成分標的特異的ユニバーサル(TSU)プライマー複合体(図1を参照のこと)(TSUa、TSUb、TSUcと記した)、および3つの異なる標的に特異的な捕獲プローブを含み、ここで、BPMをポリA配列(AAA)として示し、標的特異的配列をTSa、TSb、およびTScと記した;(2)TCRを「標的a」を含むサンプルと混合し、それにより、TSUaプライマー複合体が標的aとハイブリッド形成可能であり、TSa捕獲プローブが標的aとハイブリッド形成可能である;(3)TSa捕獲プローブのポリA配列が支持体(影つきの円)に結合する固定プローブTTTTと示すポリT配列)とハイブリッド形成し、それにより、支持体に結合した複合体を混合物から分離して、捕獲した標的およびTSUプライマー複合体を回収することができる;そして(4)非結合TSUプライマー複合体を含む部分(TSUbおよびTSUbと記した)を、不要物として破棄する。
図3は、3成分TSUプライマー複合体を示す略図である。これは、標的核酸中の相補TS1’配列とのTSUプロモータープライマーのTS1配列のハイブリッド形成を介して標的鎖に結合し、標的核酸の相補TS3’配列との捕捉プローブの標的特異的TS3配列のハイブリッド形成を介して支持体(影つきの円)に結合し、捕獲プローブのポリA部分が支持体に結合する固定ポリTプローブとハイブリッド形成する。縦方向接続線(vertical connecting lines)(|||||)は、配列ハイブリッド形成を示す。TSUプライマー複合体は、S−オリゴヌクレオチドの相補U2’配列領域とそのU2配列領域でハイブリッド形成するTSU非プロモータープライマーから構成され、ここで、S−オリゴヌクレオチドは、3’遮断末端



、およびTSUプロモータープライマー中の相補U1配列領域とそのU1’配列領域でハイブリッド形成している5’領域を有し、TSUプロモータープライマーは、5’プロモーター配列領域(実線P)および標的鎖中のTS1’配列と相補的な3’標的特異的配列領域(TS1)を含む。標的鎖はまた、TSU非プロモータープライマーのTS2領域と同一の別の標的特異的配列領域(TS2)を含む。捕獲プローブは、標的鎖の一部(TS3’配列)に相補的な5’標的特異的配列(TS3)、および固定プローブのBPMとしての機能を果たすポリT配列に相補的な3’ポリA配列を含む。
図4は、TSUプライマー複合体を示す略図である。これは、上の鎖が3’標的特異的領域(TS2)およびU2(+)と記した5’ユニバーサル配列領域から構成されるTSU非プロモータープライマーである。TSU非プロモータープライマーは、S−オリゴヌクレオチド(S−オリゴと記した)の相補3’U2’配列領域とハイブリッド形成する。S−オリゴヌクレオチドは、3’U2’配列を5’U1’配列領域に連結する脱塩基スペーサーを含む。5’U1’配列領域は、TSUプロモータープライマー中のU1(−)配列領域と相補的であり、ハイブリッド形成する。TSUプロモータープライマーは、5’プロモーター配列(P)および3’標的特異的配列領域(TS1)を含む。示したS−オリゴヌクレオチドは、末端塩基が3’−3’結合(3’−3’Cと記した)によって連結した3’遮断末端、ならびに5’U1’配列および3’U2’配列を共有結合的に連結するスペーサーである内部脱塩基化合物(例えば、(C9)2または(C9)3)を含む。
図5は、最初の増幅期の最初の合成工程に起因する産物を示す略図である。この合成工程は、RNAテンプレート鎖(細い実線)中の相補TS1’配列とそのTS1配列を介してハイブリッド形成されるTSUプロモータープライマーの3’末端を合成的に伸長して、逆転写酵素RT)ポリメラーゼの使用によって第1のcDNA鎖(幅広の実線)を作製する。RNAテンプレート鎖はまた、第1のcDNA鎖中で作製されたTS2’配列に相補的なTS2配列を含む。
図6は、図5に示すRNAテンプレート鎖の分解後の第1のcDNA鎖産物(図5に示す)を示す略図である。このcDNAは、5’プロモーター配列(P)、ユニバーサル配列(U1)、標的特異的配列(TS1)、テンプレート鎖から作製され、第2の標的特異的配列(TS2’)を含むcDNA配列を含む。
図7は、最初の増幅期の第2の合成工程に起因する産物を示す略図である。この産物は、cDNAの相補TS2’配列とのTSU非プロモータープライマーのTS2配列のハイブリッド形成による、第1のcDNA鎖産物(図6を参照のこと)とのTSU非プロモータープライマーのハイブリッド形成、および第2のDNA相補鎖を作製するためのDNAポリメラーゼ(影つきの四角)の使用によるTSU非プロモータープライマーの3’末端の伸長に起因する。第2の鎖は、プライマーの5’U2配列およびTS2配列、標的特異的TS1’配列、ユニバーサル配列U1’、およびcDNAのプロモーター配列に相補的な3’配列を含む第1のcDNA鎖に対する相補鎖を含む。したがって、機能的プロモーター配列を含む二本鎖DNAが作製される。
図8は、第1のcDNA鎖、および第2のDNA鎖(図7を参照のこと)から構成される実質的なdsDNA、ならびに上記dsDNAの上の3つのRNA転写物(太線)を示す略図である。RNA転写物は、その各RNAポリメラーゼ(RNA Polと記した影つきの領域)の使用による機能的二本鎖プロモーター配列(P)から開始される転写によって作製される。RNA転写物は、5’→3’方向に、5’U1配列、TS1配列、標的鎖由来の転写物、TS2’配列、および3’U2’配列を含む。
図9は、最初の等温増幅期由来の図8に示す1つのRNA転写物(このRNA転写物は、末端ユニバーサル配列U1およびU2’を有し、U1およびU2’は標的特異的配列TS1およびTS2’に隣接し、TS1およびTS2’は他の標的鎖配列の転写物に隣接する)、および転写物中の配列U2’に相補的な配列U2を含むユニバーサルプライマー(UP2)を示す略図である。
図10は、第2の等温増幅期における工程を示す略図である。この工程では、RNA転写物(図9に示す)が左下の系に入り、ここでRNA転写物がU2’およびU2配列の相補的対合縦線|||||によって示すハイブリッド形成)を介してユニバーサルプライマーUP2とハイブリッド形成し、逆転写酵素(RTと記した白抜きの円)がUP2に結合し、そのRNA指向DNAポリメラーゼ活性を使用して、テンプレートとしてのRNA転写物の使用によってUP2プライマーを酵素的に伸長させる。右を指す矢印の後の次の工程は、得られたcDNA(下の鎖)のRNAテンプレート(上の鎖)とのハイブリッド形成を示し、上を示す矢印の後の工程で、RT酵素RNアーゼH活性によってこれを消化してcDNA鎖を遊離する。次の上を示す矢印の後、cDNAを、5’プロモーター配列(P)を含むユニバーサルプロモータープライマー(UP1)の相補U1配列とU1’配列を介してハイブリッド形成させ、UP1プライマーをRT酵素のDNA指向DNAポリメラーゼ活性によって伸長して、円の頂点(左上を示す矢印の上)に示すdsDNAを作製する。dsDNAは、鎖あたり2つのユニバーサル配列(上の鎖上のU1およびU2’ならびに下の鎖上のU1’およびU2)(標的特異的配列(上の鎖上のTS1、TS2’、および介在配列ならびに下の鎖上のTS1’、TS2、および介在配列)に隣接する)および機能的プロモーター(P)を含む。左下への矢印の後、機能的プロモーターは、プロモーター配列に特異的なRNAポリメラーゼ(RNA Polと記した楕円)と相互作用してdsDNA由来の転写物を作製し、次の下方向への矢印の後に示すように、2つのユニバーサル配列(U1およびU2’)および標的特異的配列(TS1、TS2’、および介在配列)を含む100〜1000個の転写物またはRNAアンプリコンが得られる。右下への次の矢印の後、これらのRNA転写物は増幅系に入り、示すようにサイクル様式でさらなる等温増幅のためのテンプレートとして使用され、第1期のRNA転写物について上記の工程を繰り返す。
図11は、S−オリゴヌクレオチドを含まないが、支持体に結合したTSUプライマーを使用して行う、第1の等温増幅期で使用することができるTSUプライマーの2つの実施形態の略図である。その後にユニバーサルプライマー(UP1およびUP2)の使用によって第2の等温増幅期を液相で行う。実施形態1では、TSU非プロモータープライマーおよびTSUプロモータープライマーを共有結合または非共有結合によって連結し、第1の結合対メンバー(BPM1と記した影つきの矢印)を介して支持体に結合し、第1の結合対メンバーが支持体(影つきの長方形)に結合した第2の結合対メンバー(BPM2と記した暗色の山形)に特異的に結合する。実施形態2では、TSU非プロモータープライマーおよびTSUプロモータープライマーは、各オリゴマーに結合したBPM1を介して同一の支持体に個別に結合した個別のオリゴヌクレオチドであり、BPM1は支持体(影つきの円)に結合した個別の結合対メンバーBPM2に特異的に結合する。実施形態1および2の両方について、ユニバーサルプライマー(UP1およびUP2)を液相中に準備し、支持体に結合しない。
図12は、実施形態1(線の上半分)および実施形態2(線の下半分)についての最初のプライマー結合(左側、Aと記した)を使用した標的捕獲(TC)工程中で使用した構造、および第2の等温増幅期(右側、Bと記した)で使用したプライマーを示す略図である。実施形態1では、TC工程(上半分の左側)は、支持体に結合した標的核酸から構成される捕獲複合体を含む。この捕獲複合体は、標的特異的捕獲プローブを介して標的鎖とハイブリッド形成し(短い横線と標的鎖を示すより長い横線との間の縦線によって示す)、ポリA配列を介して支持体(影つきの円)に結合した固定ポリT配列ともハイブリッド形成する。標的核酸を、TSUプライマー複合体と、別の位置で結合させる。このTSUプライマー複合体は、標的鎖中の配列およびS−オリゴヌクレオチドと特異的にハイブリッド形成するTSUプロモータープライマーを含み、S−オリゴヌクレオチドは、TSU非プロモータープライマーとハイブリッド形成する(図3に実質的に示す)。実施形態1では、第2の増幅期(上半分の右側)は、以下の2つのユニバーサルプライマーを使用する:TSUプライマー複合体の使用によってRNA転写物中に導入される相補配列とハイブリッド形成する、ユニバーサルプロモータープライマー(UP1)およびユニバーサル非プロモータープライマー(UP2)。実施形態2では、TC工程(下半分の左側)は、実施形態1について示す捕獲複合体、および標的特異的配列を介して標的鎖の別の位置でハイブリッド形成するTSUプロモータープライマーのみを含む。第2の増幅期(下半分の右側)は、1つのユニバーサルプロモータープライマー(UP1)および1つの標的特異的プライマー(TSP)を使用する。
図13は、第1期および/または第2期(左下)由来のRNA転写物を、テンプレートとしてRNA転写物を使用してcDNA鎖(右下)を合成するために、RTによって伸長する標的特異的プライマー(TSP)とハイブリッド形成させること、およびU2、U2’ユニバーサル配列が存在しないこと以外は、実質的に図10に示す第2の等温増幅期中の工程を示す略図である。
図14は、実施形態を示す略図である。この実施形態は、(左下)第1の増幅期で使用するTSUプロモータープライマーを第1の結合対メンバー(BPM1)を介して支持体に結合し、BPM1は支持体(影つきの円)に結合する第2の結合対メンバー(BPM2)に特異的に結合し、液相中のユニバーサルプロモータープライマー(UP1)および標的特異的プライマー(TSP)の混合物を、第2の増幅期で使用する。
図15は、実施形態中の成分を示す略図である。この実施形態において、図の上部は、標的捕獲工程中で作製されたハイブリッド形成複合体を示す。ハイブリッド形成複合体は、非結合ポリAテール、および標的鎖の5’部分とハイブリッド形成するTS配列を有する標的捕獲(TC)プローブとハイブリッド形成する標的核酸鎖、TCプローブとハイブリッド形成する位置から下流で標的鎖とハイブリッド形成するブロッカーオリゴヌクレオチド、ならびに非ハイブリッド形成ユニバーサル(U)配列を有するTS配列を介して標的鎖の3’部分とハイブリッド形成するTSUプライマーから構成される。図の下の部分は、1回のプライマー等温増幅中に存在する核酸が、(1)5’U配列、内部TS配列、およびTSUプライマーの伸長によって標的鎖からコピーされた3’配列からなる標的アンプリコン、(2)5’プロモーター(P)配列、3’TS配列、および遮断3’末端



を含むTSプロモータープロバイダー、および(3)標的アンプリコンのユニバーサル配列に相補的なユニバーサル配列(U’)からなるユニバーサルプライマーを含むことを示す。
図16は、実施形態中の成分を示す略図である。この実施形態において、図の上部は、標的捕獲工程中で作製されたハイブリッド形成複合体を示す。ハイブリッド形成複合体は、非結合ポリAテール、および標的鎖の5’部分とハイブリッド形成するTS配列を有する標的捕獲(TC)プローブとハイブリッド形成する標的核酸鎖、TCプローブとハイブリッド形成する位置から下流で標的鎖とハイブリッド形成するブロッカーオリゴヌクレオチド、ならびに(上の鎖)3’遮断末端



を有するTSUプロモータープロバイダー、S−オリゴマー(中間の鎖、図3に実質的に示す)、およびS−オリゴマー中の相補(U2’)配列とハイブリッド形成するユニバーサル(U2)配列を有し、TSを介して標的鎖の3’部分とハイブリッド形成するTSUプライマー(下の鎖)から構成されるTSUプライマー複合体から構成される。図の下の部分は、1回のプライマー等温増幅中に存在する核酸が、(1)そのU2ユニバーサル配列を含むTSUプライマーのTS2配列の伸長によって作製された伸長産物と、そのTS1配列を介してハイブリッド形成するTSUプロモータープロバイダー、(2)5’プロモーター(P)配列、3’U1’ユニバーサル配列、および遮断3’末端



を含むプロモータープロバイダーオリゴヌクレオチド、および(3)U2ユニバーサル配列に相補的なユニバーサル配列(U2’)からなるユニバーサルプライマーを含むことを示す。
図17は、ハイブリッド形成複合体中の2つのTSUオリゴヌクレオチドを示す実施形態の略図である。ハイブリッド形成複合体は、TSUプライマーのTS1配列を介して標的鎖とハイブリッド形成する。TSUプライマーはU1配列およびプロモーター相補配列(P’)も含む。TSUプライマーは、相補P’配列とTSUプロモータープロバイダーオリゴヌクレオチドのP配列とのハイブリッド形成を介してTSUプロモータープロバイダーオリゴヌクレオチドとハイブリッド形成する。TSUプロモータープロバイダーオリゴヌクレオチドは、U2配列、TS2配列、および遮断3’末端も含む。
図18は、非ヌクレオチドリンカー(−C9−C9−)を介して共有結合する2つのTSUオリゴヌクレオチドを示す実施形態の略図である。これは、3’→5’方向に遮断3’末端、TS2、U2、およびプロモーター(P)配列を含むTSUプロモータープロバイダーに連結したTSUプライマーから構成される複合体を形成し、TSUプライマーは、5’→3’方向にU1およびTS1配列を含む。それにより、複合体中にTSUプライマーのTS1配列を介して標的鎖とハイブリッド形成する1つの伸長可能な3’末端が得られる。標的鎖との以下のハイブリッド形成も示す:ブロッカーオリゴヌクレオチドとのハイブリッド形成、およびそのTS配列を介して標的とハイブリッド形成するTCプローブ(非ハイブリッド形成テール配列と共に示す)。
図19は、反応あたり102、104、および106コピーでサンプル中に存在する単一標的(「PCA3単一」パネル)ならびに反応あたり106コピーでサンプル中に存在する2標的(「PCA3/PSA二重(オリゴ)」パネル)の等温増幅から得たデータを示す。ここでは、増幅産物を、蛍光標識プローブの使用によってリアルタイムで検出した。両パネルについて、x軸は増幅サイクル数を示し、y軸は蛍光単位を示す。

0016

詳細な説明
本発明は、同一オリゴヌクレオチド中に標的特異的配列およびユニバーサル配列の両方を含む1つ以上の標的特異的ユニバーサル(TSU)オリゴヌクレオチドプライマーを含む組成物を含む。本明細書中に記載のTSUプライマーは、5’プロモーター配列、第1の内部ユニバーサル配列(U1)、および標的核酸中に含まれる標的配列に特異的に結合する第1の3’標的特異的配列(TS1)から構成される少なくとも1つのTSUプロモータープライマーオリゴヌクレオチドを含む。かかる組成物は、さらに、第2の5’ユニバーサル配列(U2)およびTS1と異なる第2の3’標的特異的配列(TS2)から構成される少なくとも1つのTSU非プロモータープライマーオリゴヌクレオチドを含むことができる。TSUプロモータープライマーおよびTSU非プロモータープライマーを、複合体中で、TSUプライマーのユニバーサル配列を連結するS−オリゴヌクレオチドの使用によって連結することができ、この連結は、S−オリゴヌクレオチドの相補末端配列へのハイブリッド形成を介する。組成物は、さらに、5’プロモーター配列および3’U1配列から構成される少なくとも1つのユニバーサルプロモータープライマーを含むことができ、第2のユニバーサル配列(U2)と実質的に同一のユニバーサル配列から構成される少なくとも1つのユニバーサルプライマーを含むこともできる。これらの組成物は、オリゴヌクレオチドの構造的態様および機能的態様がこれらの合成のために選択される選択配列中に存在する限り、オリゴヌクレオチドの任意の特定の成分のために使用される任意の特定の配列を必要としない。

0017

本発明は、5’プロモーター配列、第1の内部ユニバーサル配列(U1)、および標的核酸中に含まれる標的配列に特異的に結合する第1の3’標的特異的配列(TS1)から構成される少なくとも1つのTSUプロモータープライマーオリゴヌクレオチドを含む、1つ以上の本明細書中に記載のTSUプライマーを使用する等温増幅方法を含む。本方法は、標的捕獲工程でTSUプライマーを標的核酸に結合する工程を使用し、それにより、結合したTSUプライマーを含む標的核酸が増幅開始前に他の混合成分から分離される。等温増幅は、少なくとも1つの標的特異的配列に隣接する少なくとも1つのユニバーサル配列または2つのユニバーサル配列を含むRNA転写物を作製する第1の期を含む。等温増幅は、第1の期由来のRNA転写物をテンプレートとして使用する第2の期を含む。この第2の期は、少なくとも1つのユニバーサルプライマーおよび酵素的in vitro核酸合成を使用して機能的プロモーターを含むdsDNAを作製し、このdsDNAを使用して増幅産物であるさらなるRNA転写物を転写し、このRNA転写物を等温増幅反応中でさらなるサイクルに供することができるか、このdsDNAを使用して標的核酸が試験サンプル中に存在することを示す検出可能なシグナルを得ることができる。

0018

実質的に等温の条件下にてin vitroで標的核酸配列を増幅してサンプル中の標的核酸の存在を示すために検出することができる増幅配列を産生するのに有用な方法および組成物を開示する。本方法および組成物は、病状の診断および/または予後診断環境サンプルおよび/または食品サンプル純度または質の検出、または法医学的証拠調査のための有用な情報を得るための増幅核酸の合成に有用である。本方法および組成物により、種々の核酸の合成によって広範なダイナミックレンジにわたって高感度アッセイを得ることが可能であり、その実施は比較的迅速且つ安価であり、これにより、高処理系および/または自動化系での使用に適切となるので、本方法および組成物は有益である。本方法および組成物は、複数の異なる遺伝子配列を同時に分析するアッセイ(すなわち、多重増幅系)に有用である。好ましい組成物を、定義したアッセイ成分を含むキット中に提供する。これらは、使用者が所望の標的を増幅するためのアッセイでこれらの成分を共に使用する方法を効率的に実施することが可能なので有用である。

0019

開示の組成物および方法は、核酸の等温増幅の効率を増大させ、例えば、アレイベースのアッセイのために単一反応混合物中で複数の分析物を増幅する多重アッセイで特に有用である。多重等温転写ベースの増幅アッセイは、しばしば、1回の反応において約6個以下の分析標的の増幅に制限される。これは、プライマーの相互作用によって1つ以上の標的の増幅が非効率的になり、アッセイ感度が低下するからである。多数の異なるプライマーおよびプライマーの組み合わせのデザインおよび試験によって多重アッセイにおける増幅効率を増大させることができるが、開示の系は、最初の増幅期で標的特異的プライマーを使用し、その後に第2の増幅期で全ての標的アンプリコンを増幅するためのユニバーサルプライマーを使用することによってプライマー相互作用を最小にする。したがって、多重反応における多数の各プライマーまたはプライマーの組み合わせをデザインおよび試験する必要性を減少しながら増幅効率を増大させる。開示の組成物および方法は、系が複合体混合物中に存在する1つ以上の所望の標的を増幅し得るという利点を提供し、複合体混合物は、1つ以上の内部コントロールまたは内部キャリブレーター標的を含み、これは、アッセイが適切に実施されたという情報を提供するか、結果の定量に使用される情報を提供する。多重アッセイデザインの簡潔化に加えて、開示の組成物および方法により、アッセイ試薬の製造およびアッセイ工程の実施の両方を簡略化できるという利点が得られ、限られた数の試薬が所望の各標的について使用される。すなわち、所望の各標的のために、所望の標的に固有のたった1つまたは対の標的特異的ユニバーサル(TSU)プライマーを、最初の増幅期で使用するためにデザインし、その後の増幅期は多数の標的の増幅に一般的に使用されるユニバーサル試薬を使用する。TSUプライマーは、同一オリゴヌクレオチド中に標的特異的(TS)配列およびユニバーサル(U)配列の両方を含むが、TSUプライマーは、プロモーター配列などのさらなる配列を含むことができる。開示の方法は多用途であり、この方法を使用してすべて1つの反応で増幅された1つの標的または複数の異なる標的を検出することができ、増幅産物を反応の終了時(終点検出)または反応中(リアルタイム検出)に検出することができる。典型的には、TSUプライマーが最初の増幅期で使用される単離標的核酸とハイブリッド形成し、TSUプライマーによって導入されたユニバーサル配列に特異的なユニバーサルプライマーがその後の増幅反応混合物中で使用されるように、標的特異的ユニバーサル(TSU)プライマーを標的捕獲試薬(TCR)中に準備する。

0020

別途記載しない限り、本明細書中で使用される科学用語および技術用語は、技術文献(例えば、Dictionary of Microbiology and Molecular Biology,2nd ed.(Singletonら,1994,John Wiley & Sons,New York,N.Y.)または分子生物学に関連する他の周知の技術刊行物に基づく分子生物学分野の当業者によって一般的に理解されている意味を有する。別途記載しない限り、本明細書中で使用するか意図される技術は、分子生物学分野で周知の標準的方法である。開示の方法および組成物の態様の理解を補助するために、いくつかの用語を、本明細書中に記載の実施形態によってより詳細に記載するか例証する。

0021

核酸は、ポリヌクレオチド化合物をいう。このポリヌクレオチド化合物には、標準的なホスホジエステル結合または他の結合によって共有結合した窒素複素環塩基または塩基アナログを有するヌクレオシドまたはヌクレオシドアナログを含むオリゴヌクレオチドが含まれる。核酸には、RNA、DNA、キメラDNA−RNAポリマー、またはそのアナログが含まれる。核酸では、骨格は、種々の結合(1つ以上の糖−ホスホジエステル結合、ペプチド−核酸(PNA)結合(PCT番号WO95/32305号)、ホスホチオアート結合、メチルホスホナート結合、またはその組み合わせが含まれる)から構成され得る。核酸中の糖部分は、リボースデオキシリボース、または置換(例えば、2’メトキシおよび2’ハライド(例えば、2’−F)置換)を有する類似の化合物であり得る。窒素含有塩基は、従来の塩基(A、G、C、T、U)、そのアナログ(例えば、イノシン;The Biochemistry of the Nucleic Acids5−36,Adamsら,ed.,11th ed.,1992)、プリン塩基またはピリミジン塩基誘導体(例えば、N4−メチルデオキシグアノシンデアザ−またはアザプリン、デアザ−またはアザ−ピリミジン、種々の化学的位置のいずれかに変化した基または置換基を有するピリミジンまたはプリン(例えば、2−アミノ−6−メチルアミノプリン、O6−メチルグアニン、4−チオ−ピリミジン、4−アミノ−ピリミジン、4−ジメチルヒドラジン−ピリミジン、およびO4−アルキル−ピリミジン)、またはピラゾロ化合物(非置換または3置換ピラゾロ[3,4−d]ピリミジンなど)であり得る(例えば、米国特許第5,378,825号、同第6,949,367号、およびPCT番号WO93/13121号)。核酸は、骨格が1つ以上の位置に窒素含有塩基を持たない「脱塩基」位置を含むことができる(Arnoldらに付与された米国特許第5,585,481号)。例えば、1つ以上の脱塩基位置により、個別のオリゴヌクレオチド配列を共に連結するリンカー領域を形成することができる。核酸は、従来のRNAおよびDNAで見出される従来の糖、塩基、および結合のみを含むことができるか、従来の成分および置換基(例えば、2’メトキシ骨格によって連結した従来の塩基または従来の塩基および1つ以上のアナログの混合物を含むポリマー)を含むことができる。この用語には、「ロックド核酸(locked nucleic acids)」(LNA)が含まれる。LNAは、RNA模倣高次構造中閉じ込められた二環式フラノース単位を有する1つ以上のLNAヌクレオチド単量体を含み、ssRNA、ssDNA、またはdsDNA中の相補配列に対するハイブリッド形成親和性を増強する(Vesterら,2004,Biochemistry 43(42):13233−41)。

0022

交換可能な用語「オリゴヌクレオチド」および「オリゴマー」は、一般に1,000未満のヌクレオチド(nt)でできた核酸ポリマー(下限が約2〜5ntで上限が約500〜900ntのサイズ範囲の核酸ポリマーが含まれる)をいう。好ましいオリゴマーのサイズ範囲は、下限が5〜15ntで上限が50〜500ntであり、特に好ましい実施形態のサイズ範囲は、下限が10〜20ntで上限が25〜150ntである。好ましいオリゴヌクレオチドを、任意の周知のin vitroでの化学的または酵素的方法の使用によって合成的に作製し、合成後に標準的方法(例えば、高速液体クロマトグラフィHPLC))の使用によって精製することができる。

0023

増幅オリゴヌクレオチドには、酵素的に伸長せず、標的核酸またはその相補物とハイブリッド形成し、in vitro核酸増幅反応関与するプライマーおよびオリゴヌクレオチドが含まれる。この反応では、新規核酸鎖を合成開始点としてプライマーの末端を使用することによってテンプレート鎖から合成し、この合成は、一般に、酵素ポリメラーゼ活性によって触媒される。酵素的に伸長される増幅オリゴヌクレオチドには、プライマーおよびプロモーター−プライマーが含まれ、これらのプライマーには、分析(標的)核酸配列中に含まれる配列と同一であるか完全に相補的である標的特異的(TS)配列、および分析配列中に含まれないか相補的でないが、分析配列の代替物またはタグとしての機能を果たすために導入されるユニバーサル(U)配列を含むTSUプライマーが含まれる。U配列を、分析物またはTS配列に連結し、これを、分析配列の代わりに増幅および/または検出して混合物中の1つ以上の分析物の存在を示すことができる。TSUプライマーの実施形態は、プロモーター配列などのさらなる配列情報を含むことができ、これにより、TSUプロモータープライマーと呼ばれるTSUプライマーが得られる。TSUプロモータープライマーと区別するために、プロモーター配列を含まないTSUプライマーを、TSU非プロモータープライマーと呼ぶことができる。一般にユニバーサルプライマー(UP)と呼ばれる増幅オリゴヌクレオチドの実施形態は、その後のアッセイ工程で分析物の代替物としての機能を果たすための分析配列に連結したユニバーサル配列またはタグ配列を増幅するために使用される配列を含む。ユニバーサルプライマー(UP)はユニバーサル配列のみを含むことができ、分析物特異的配列を含むことができないが、UPはプロモーター配列などのさらなる機能配列を含むこともできる。「ユニバーサル非プロモータープライマー」または「ユニバーサルプロモータープライマー」などの用語を、異なるUP型を区別するために使用することができる。酵素的に伸長されない増幅オリゴヌクレオチドは、典型的に、酵素の重合開始のための使用を阻害または防止する、化学的または構造的に遮断する3’末端を有するが、これらのオリゴヌクレオチドは機能的に増幅に関与する。酵素的に伸長されない増幅オリゴヌクレオチドの例には、TSUプロモータープロバイダーオリゴヌクレオチドおよびブロッカーオリゴヌクレオチドが含まれ、ブロッカーオリゴヌクレオチドは、ブロッカーオリゴヌクレオチドが結合する標的鎖上の位置を超えて、プライマーの鎖伸長が進行することを阻害または防止するために標的鎖に結合する。

0024

増幅オリゴヌクレオチドのサイズを、一般に、オリゴヌクレオチド中に含まれる機能的部分によって決定する。プロモータープライマーまたはプロモータープロバイダーオリゴヌクレオチドの成分部分には、RNAポリメラーゼ(RNP)に特異的なプロモーター配列が含まれる。RNPおよびその対応するプロモーター配列は周知であり、種々の供給源(例えば、ウイルスバクテリオファージ真菌酵母、細菌、動物、植物、またはヒトの細胞)から精製するか、これら由来の材料の使用によってin vitroで合成的に作製することができる。RNPおよびプロモーターの例には、RNAポリメラーゼIIIおよびそのプロモーター(Agamiらに付与された米国特許第7,241,618号)、バクテリオファージT7 RNAポリメラーゼおよびそのプロモーターまたはその変異体(Zimanらに付与された米国特許第7,229,765号およびHaydockに付与された同第7,078,170号)、高度好熱菌由来のRNAポリメラーゼおよびプロモーター(Sakanyanらに付与された米国特許第7,186,525号)、HIV−1またはHCV由来のRNAポリメラーゼ、および植物に指向するRNP(Odellらに付与された米国特許第7,060,813号)が含まれる。プロモータープライマーまたはプロバイダーオリゴヌクレオチドには、選択されたRNPに機能的に連結するプロモーター配列が含まれる。プロモータープライマーまたはプロモータープロバイダーオリゴヌクレオチドの好ましい実施形態には、T7 RNPと共に使用され、プロモーター配列が25〜30ntの範囲であるT7プロモーター配列(配列番号67または68(配列番号67、aatttaatacgactcactatagggaga;配列番号68、gaaattaata cgactcactatagggaga)のプロモーター配列など)が含まれる。ユニバーサル(U)部分を含む増幅オリゴヌクレオチドには、典型的には、5〜40ntの範囲、好ましい実施形態では10〜25nt、10〜30nt、または15〜30ntの範囲のU配列が含まれる。標的特異的(TS)部分を含む増幅オリゴヌクレオチドには、典型的には、10〜45ntの範囲、好ましい実施形態では10〜35ntまたは20〜30ntの範囲のTS配列が含まれる。複数のU配列および/または複数のTS配列を含む増幅オリゴヌクレオチドは、各機能的配列の長さによって決定されるサイズ範囲であろう。例えば、U配列およびTS配列を含むプロモータープライマーまたはプロバイダーオリゴヌクレオチドのサイズは、プロモーター、U配列、およびTS配列のサイズの和であり、任意に、連結ヌクレオチドまたは非ヌクレオチド部分(例えば、脱塩基リンカー)を含むことができる。本明細書中に記載の複数の機能的成分から構成される増幅オリゴヌクレオチドを、標準的なホスホジエステル結合、核酸アナログ結合、または異なる機能的部分の間の直接的な非核酸結合によって共有結合することができるか、機能的部分の間のスペーサーとしての機能を果たすさらなる核酸配列または非核酸(例えば、脱塩基結合)化合物の使用によって共に共有結合することができる。非共有結合の使用(オリゴヌクレオチド間の結合対メンバーの相互作用(2つ以上のオリゴヌクレオチド中に含まれる相補配列の直接ハイブリッド形成が含まれる)の使用など)によるか、またはオリゴヌクレオチドの各結合対メンバー(例えば、支持体に結合した各オリゴヌクレオチドのための結合対メンバー)が結合する連結成分を介して増幅オリゴヌクレオチドのいくつかの実施形態を共に連結して複合体を形成することができる。

0025

プライマーに加えて、他の増幅オリゴマーには、遮断オリゴヌクレオチドおよびプロモータープロバイダーオリゴマーが含まれ得る(例えば、Kacianらに付与された米国特許第5,399,491号、同第5,554,516号、および同第5,824,518号、Mullisらに付与された米国特許第4,683,195号、同第4,683,202号、および同第4,800,159号、ならびにBeckerらの米国特許出願公開第2006/0046265(A1)号)。遮断オリゴヌクレオチドは、通常3’末端付近または3’末端に化学的および/または構造的な修飾を含み、酵素手段によるオリゴヌクレオチドからのDNA合成の開始を防止または妨害するオリゴヌクレオチドをいう。かかる修飾の例には、3’2’−ジデオキシヌクレオチド塩基、酵素伸長を妨害する3’非ヌクレオチド部分の使用、または2つの5’末端を有する最終オリゴヌクレオチドを作製するための3’→5’方向でのオリゴヌクレオチドへの短い配列の結合(すなわち、その3’末端でのオリゴヌクレオチドの共有結合によって、第2の通常はより短い5’→3’オリゴヌクレオチドに結合した第1の5’→3’オリゴヌクレオチド)が含まれる。別の修飾例は、キャップの5’末端塩基がオリゴヌクレオチドの3’末端塩基に相補的であるような、オリゴヌクレオチドの3’末端における少なくとも3ntに相補的な配列から構成される「キャップ」である。遮断オリゴヌクレオチドは合成的に伸長しないにもかかわらず、これらは、例えば、遮断オリゴヌクレオチドが結合する位置を超えた相補鎖の合成を妨害するための核酸テンプレート鎖上の特異的な位置とのハイブリッド形成によって、核酸増幅に関与し得る。プロモータープロバイダーオリゴヌクレオチドは、通常はオリゴヌクレオチド上にプロモーター配列を含むオリゴヌクレオチドをいう。このオリゴヌクレオチドは、DNAプライマー伸長産物(例えば、cDNA)の3’領域とハイブリッド形成してプロモータープロバイダーオリゴヌクレオチドと伸長産物との間にハイブリッド形成複合体を形成する第1の領域、および第1の領域に対して5’側に存在し、RNAポリメラーゼのためのプロモーター配列である第2の領域を含む。伸長産物を有するハイブリッド形成複合体の形成により、プロモータープロバイダーオリゴヌクレオチドは、機能的プロモーターを含むdsDNAを作製するためのテンプレートとしての機能を果たすことができる。伸長産物またはcDNAをさらなる鎖の合成のためのテンプレートとして使用する場合、すなわち、テンプレートとしてのcDNAの使用、およびテンプレートとしてのプロモータープロバイダーオリゴヌクレオチドのプロモーター配列の使用により作製された新規に合成された鎖の伸長により、機能的プロモーターを含む実質的に二本鎖の構造をin vitroで合成する。

0026

核酸の増幅は、標的核酸配列または標的核酸配列の代替物としての機能を果たすユニバーサル配列もしくはタグ配列の全部または一部と同一または相補的である核酸鎖のin vitroでの作製過程をいい、これら全ては標的核酸がサンプル中に存在する場合のみ作製される。典型的には、核酸増幅は、1つ以上の核酸ポリメラーゼおよび/または転写酵素を使用して、標的ポリヌクレオチドもしくはそのフラグメント、標的ポリヌクレオチドもしくはそのフラグメントに相補的な配列、または標的ポリヌクレオチドの代替物としての機能を果たすために増幅系に導入されたユニバーサル配列もしくはタグ配列の複数のコピーを産生し、検出工程などでアッセイ中のいくつかの点で標的ポリヌクレオチドの存在を示す。in vitro核酸増幅技術は周知であり、転写関連増幅方法(転写媒介増幅(transcription mediated amplification)(TMA)または核酸配列ベースの増幅(nucleic acid sequence based amplification)(NASBA)など)および他の方法(ポリメラーゼ連鎖反応(PCR),逆転写酵素−PCR,レプリカーゼ媒介増幅(replicase mediated amplification)、およびリガーゼ連鎖反応(LCR)など)が含まれる。

0027

本明細書中に開示のいくつかの実施形態の理解を助けるために、以前に詳述されているTMA法(例えば、Kacianらに付与された米国特許第5,399,491号、同第5,554,516号、および同第5,824,518号)を簡潔にまとめる。TMAでは、増幅すべき配列を含む標的核酸を、一本鎖核酸(例えば、ssRNAまたはssDNA)として準備する。二本鎖核酸(例えば、dsDNA)を一本鎖核酸に変換する従来の方法を使用することができる。プロモータープライマーがその標的配列で標的核酸に特異的に結合し、逆転写酵素(RT)がテンプレートとして標的鎖を使用してプロモータープライマーの3’末端を伸長してcDNAコピーを作製し、RNA:cDNA二重鎖が得られる。RNアーゼ活性(例えば、RT酵素のRNアーゼH)が、RNA:cDNA二重鎖のRNAを消化し、第2のプライマーがプロモータープライマー末端から下流のcDNA中のその標的配列に特異的に結合する。次いで、RTがテンプレートとしてcDNAを使用した第2のプライマーの3’末端の伸長によって新規のDNA鎖を合成し、機能的プロモーター配列を含むdsDNAを作製する。機能的プロモーターに特異的なRNAポリメラーゼが転写を開始して、最初の標的鎖の約100〜1000個のRNA転写物(増幅されたコピーまたはアンプリコン)を産生する。第2のプライマーが各アンプリコン中のその標的配列に特異的に結合し、RTがアンプリコンRNAテンプレートからcDNAを作製して、RNA:cDNA二重鎖を産生する。RNアーゼがRNA:cDNA二重鎖由来のアンプリコンRNAを消化し、プロモータープライマーの標的特異的配列が新規に合成されたDNA中のその相補配列に結合し、RTがプロモータープライマーの3’末端を伸長して、RNAポリメラーゼが結合し、かつ標的鎖に相補的なさらなるアンプリコンを転写する、機能的プロモーターを含むdsDNAを作製する。反応中にこれらの工程を繰り返し使用する自己触媒サイクルにより、最初の標的配列の約10億倍に増幅される。アンプリコンを、アンプリコン中に含まれる配列に特異的に結合するプローブの使用によって、増幅中(リアルタイム検出)または反応終点(終点検出)に検出することができる。結合したプローブに起因するシグナルの検出は、サンプル中の標的核酸の存在を示す。

0028

標的核酸の存在を示す転写物の作製によってin vitroで核酸を増幅するために1つのプライマーまたは1つ以上のさらなる増幅オリゴマーを使用する別の転写関連増幅形態は、以前に詳述されている(Beckerらの米国特許出願公開2006/0046265号)。簡潔に述べれば、この単一プライマー法は、プライミングオリゴマー、その3’末端からのDNA合成の開始を防止するように改変されたプロモーターオリゴマー(またはプロモータープロバイダーオリゴヌクレオチド)、および、任意に、標的鎖由来のcDNAの伸長を終結するための結合分子(例えば、3’遮断オリゴマー)を使用する。本方法は、(i)プライマー伸長反応を標的配列の3’末端から開始することができるように標的配列の3’末端とハイブリッド形成するプライミングオリゴヌクレオチド、および(ii)標的配列の5’末端の隣りまたは付近に存在する標的核酸に結合する結合分子を用いた、RNA標的配列を含む標的核酸の処理によって標的配列の複数のコピーを合成する。プライミングオリゴヌクレオチドを、DNAポリメラーゼの使用によってプライマー伸長反応中で伸長して、標的配列に相補的なDNAプライマー伸長産物を得る。このDNAプライマー伸長産物は、結合分子によって決定され、標的配列の5’末端に相補的な3’末端を有する。次いで、本方法は、標的配列を選択的に分解する酵素の使用によって標的配列由来のDNAプライマー伸長産物を分離し、DNAプライマー伸長産物の3’領域とハイブリッド形成し、プロモーターオリゴヌクレオチド:DNAプライマー伸長産物ハイブリッドを形成する、第1の領域、および第1の領域に対して5’側に存在するRNAポリメラーゼのプロモーターである第2の領域から構成されるプロモーターオリゴヌクレオチドでDNAプライマー伸長産物を処理する。ここで、プロモーターオリゴヌクレオチドは、プロモーターオリゴヌクレオチドからのDNA合成の開始を防止するように改変されている。本方法は、プロモーターオリゴヌクレオチド:DNAプライマー伸長産物ハイブリッド中のDNAプライマー伸長産物の3’末端を伸長してプロモーターオリゴヌクレオチドの第2の領域に相補的な配列を付加し、これを使用し、プロモーターを認識して転写を開始するRNAポリメラーゼを使用して、DNAプライマー伸長産物に相補的な複数のRNA産物を転写する。この方法により、標的配列と実質的に同一のRNA転写物が産生される。

0029

1プライマー転写媒介増幅方法の実施形態は、標的配列の3’部分中の位置でのプライマーおよび標的配列の5’部分中の位置での3’遮断オリゴマー(すなわち、結合分子)の標的RNAとのハイブリッド形成によってRNA標的配列の複数のコピーを合成する。次いで、RTのDNAポリメラーゼ活性により、プライマーの3’末端からの伸長が開始されて、テンプレート鎖を有する二重鎖(RNA:cDNA二重鎖)中でcDNAを産生する。結合した3’遮断オリゴマーがこの位置を超えるcDNAの伸長を妨害するので、3’遮断オリゴマーは、増幅すべき配列の意図する5’末端に隣接する位置で標的鎖に結合する。すなわち、伸長産物が標的鎖に結合した遮断分子に到達した場合に重合工程を停止するので、cDNAの3’末端は結合分子の位置によって決定される。RNA:cDNA二重鎖を、RNAを分解するRNアーゼ活性(RTのRNアーゼH)によって分離するが、当業者は任意の鎖分離形態を使用することができることを認識しているであろう。プロモータープロバイダーオリゴマーは、RNAポリメラーゼのための5’プロモーター配列およびハイブリッド形成するcDNAの3’領域中の配列に相補的な3’配列を含む。プロモータープロバイダーオリゴマーは、プロモータープロバイダーオリゴマーの3’末端からのDNA合成の開始を防止するための遮断部分を含む修飾3’末端を有する。cDNAとハイブリッド形成するプロモータープロバイダーでできた二重鎖では、cDNAの3’末端をRTのDNAポリメラーゼ活性の使用によって伸長し、プロモータープロバイダーオリゴマーはcDNAの3’末端にプロモーター配列を付加するためのテンプレートとしての機能を果たし、それにより、プロモータープロバイダーオリゴマー上の配列およびプロモータープロバイダーテンプレートから作製された相補cDNA配列から構成される機能的二本鎖プロモーターを作製する。プロモーター配列に特異的なRNAポリメラーゼは、機能的プロモーターに結合し、cDNAに相補的であり、且つ最初の標的RNA鎖の標的配列と実質的に同一である複数のRNA転写物を転写する。得られた増幅RNAは、プライマーの結合およびさらなるcDNA産生のためのテンプレートとしての機能を果たすことによってこの過程を再度循環し、最終的に、サンプル中に存在する最初の標的核酸から多数のアンプリコンを産生することができる。1プライマー転写関連増幅法の実施形態は、結合分子としての機能を果たす3’遮断オリゴマーを使用する必要がなく、結合分子が含まれない場合、プライマーから作製されたcDNA産物は、中間体3’末端を有するが、増幅は実質的に上記のように進行する。この増幅方法の性質のために、この増幅方法を、実質的に等温の条件下で行う(すなわち、PCRベースの方法で使用されるような鎖を分離するか、プライマーをハイブリッド形成させるためのインキュベーション温度の上昇および低下のサイクルを使用しない)。

0030

増幅産物の検出を、任意の公知の方法の使用によって行うことができる。例えば、増幅核酸を表面に会合させて、検出可能な物理的変化(例えば、電位変化)を得ることができる。増幅核酸を、液相中で検出するか、マトリックス中またはマトリックス上での増幅核酸の濃縮および増幅核酸と会合した標識の検出(例えば、臭化エチジウムまたはサイバーグリーンなどの挿入剤)によって検出することができる。他の検出方法は、増幅産物中の配列に相補的なプローブを使用し、プローブ:産物複合体の存在を検出するか、プローブ複合体を使用して増幅産物から検出されたシグナルを増幅する(例えば、Hoganらに付与された米国特許第5,424,413号および同第5,451,503号、Urdeaらに付与された米国特許第5,849,481号)。他の検出方法は、標識プローブが増幅産物に結合した場合に限ってシグナルが変化することによりシグナル産生が標的配列の存在に関連する、プローブを使用する(分子ビーコン分子トーチ、ハイブリッド形成スイッチプローブなど)(例えば、Lizardiらに付与された米国特許第5,118,801号および同第5,312,728号,Tyagiらに付与された米国特許第5,925,517号および同第6,150,097号,Beckerらに付与された米国特許第6,849,412号、同第6,835,542号、同第6,534,274号、および同第6,361,945号、Beckerらの米国特許出願公開第2006/0068417(A1)号、およびArnoldらの米国特許出願公開第2006/0194240(A1)号)。かかるプローブは、典型的には、プローブの一方の末端に結合している標識(例えば、フルオロフォア)、およびプローブが1つの高次構造中に存在する(「閉じている(closed)」)(増幅産物とハイブリッド形成していないことを示す)場合に標識からのシグナル産生を阻害する、プローブの別の位置に結合している相互作用化合物(例えば、クエンチャー)を使用するが、プローブが増幅産物とハイブリッド形成する(その高次構造が変化する(「開く」))場合に検出可能なシグナルが産生される。増幅産物と特異的に会合する直接または間接的に標識されたプローブ由来のシグナルの検出は、増幅した標的核酸の存在を示す。

0031

特異的結合対(または結合パートナー)のメンバーは、相互に特異的に認識して結合する部分である。メンバーを、第1の結合対メンバー(BPM1)および第2の結合対メンバー(BPM2)と呼ぶことができ、これらは、相互に特異的に結合する種々の部分を示す。特異的結合対の例は、受容体およびそのリガンド、酵素およびその基質補因子、または補酵素、抗体またはFabフラグメントおよびその抗原またはリガンド、糖およびレクチンビオチンおよびストレプトアビジンまたはアビジン、リガンドおよびキレート剤タンパク質またはアミノ酸およびその特異的結合金属(ヒスチジンおよびニッケルなど)、実質的に相補的なポリヌクレオチド配列(完全にまたは部分的に相補的な配列が含まれる)および相補的ホモポリマー配列である。特異的結合対は、天然に存在するもの(例えば、酵素および基質)、合成のもの(例えば、合成受容体および合成リガンド)、または天然に存在するBPMおよび合成BPMの組み合わせであり得る。

0032

標的捕獲は、サンプル混合物の他の成分(細胞フラグメントオルガネラ、タンパク質、脂質、炭水化物、または他の核酸など)からの標的核酸の選択的分離をいう。標的捕獲系は、特異的であり、例えば、意図する標的核酸に特異的な配列の使用によって他のサンプル成分から所定の標的核酸を選択的に分離することができるか、非特異的であり、標的の他の特徴(例えば、物理的特徴を示さない他のサンプル成分と標的核酸を区別する標的核酸の他の性質)の使用によって他のサンプル成分から標的核酸を選択的に分離することができる。好ましい標的捕獲方法および組成物は、以前に詳述されている(Weisburgらに付与された米国特許第6,110,678号および同第6,534,273号ならびにBeckerらの米国特許出願第11/832,367号)。好ましい標的捕獲実施形態は、液相中の捕獲プローブおよび支持体に結合した固定プローブを使用し、標的核酸と複合体を形成し、他の成分から捕獲標的を分離する。

0033

捕獲プローブは、相補核酸配列であり得る結合対メンバーの使用によって標的核酸および固定プローブを連結する少なくとも1つの核酸オリゴマーをいう。1つの捕獲プローブ実施形態は、非特異的に標的核酸に結合し、サンプルからの分離のための支持体と連結するのに対して、別の実施形態は、例えば、特異的結合対相互作用によって標的核酸中の配列に特異的に結合する標的特異的(TS)配列および固定プローブに結合する固定プローブ結合領域を含む。TS配列および固定プローブ結合領域の両方が核酸配列である実施形態では、これらは共有結合によって連結されていても、1つ以上のリンカーによって連結された異なるオリゴヌクレオチド上にあってもよい。固定プローブは、支持体に結合した部分をいい、この部分は、例えば、特異的結合対(非核酸結合(例えば、アビジンのビオチンとの結合)および核酸配列ハイブリッド形成が含まれる)の連結メンバーによって、支持体に捕獲プローブを直接または間接的に連結する。固定プローブには、非結合物質(標的捕獲反応混合物中の他のサンプル成分および/または他のオリゴヌクレオチドなど)からの結合標的の分離を促進するために支持体に結合したオリゴヌクレオチドが含まれる。標的捕獲(TC)複合体には、標的核酸中の配列と特異的にハイブリッド形成する捕獲プローブのTS配列および支持体上の固定プローブに結合した捕獲プローブの固定プローブ結合領域が含まれる。

0034

支持体は、溶液中に分散したマトリックスまたは粒子などの公知の材料をいい、ニトロセルロースナイロンガラスポリアクリラート混合ポリマーポリスチレンシラン、金属、またはポリプロピレンで作製され得る。好ましい支持体は、磁気的に引き付けられる粒子(例えば、一貫した結果を得るために一定サイズ±5%の単分散磁性球体)である。支持体に固定プローブを直接(共有結合、キレート化、またはイオン相互作用を介する)または間接的に(1つ以上のリンカーを介する)連結して、標的捕獲反応で使用した条件下で支持体に固定プローブを安定に結合する。

0035

分離または精製は、混合物中の1つ以上の他の成分からの混合物(サンプルなど)の1つ以上の成分の取り出しである。サンプル成分には、細胞フラグメント、タンパク質、炭水化物、脂質、および他の化合物を含み得る一般に水性液相中の核酸が含まれる。好ましい実施形態は、混合物中の他の成分から標的核酸の少なくとも70%〜80%、より好ましくは約95%を分離または取り出す。

0036

標識は、検出することができるか検出可能な反応を導くことができる分子部分または化合物をいい、この標識を核酸プローブに直接または間接的に連結することができる。直接標識は、標識およびプローブを連結するための結合または相互作用を使用することができる。この結合または相互作用には、共有結合、非共有相互作用(水素結合疎水性相互作用、およびイオン性相互作用)、またはキレートもしくは配位錯体が含まれる。間接標識は、直接または間接的に標識され、シグナルを増幅することができる架橋部分またはリンカー(例えば、抗体、オリゴマー、または他の化合物)を使用することができる。標識には、任意の検出可能な部分(例えば、放射性核種、リガンド(ビオチン、またはアビジン)、酵素、酵素基質反応基発色団(検出可能な色素、粒子、またはビーズ)、フルオロフォア、または発光性化合物生物発光標識、リン光標識、または化学発光標識))が含まれる。好ましい化学発光標識には、アクリジニウムエステル(「AE」)およびその誘導体が含まれる(米国特許第5,656,207号、同第5,658,737号、および同第5,639,604号)。好ましい標識は、非結合形態から結合形態物理的分離を必要とせずに、混合物中の結合標識プローブが非結合標識プローブと比較して検出可能な変化(例えば、安定性または分解の相違)を示す均一系アッセイ中で検出可能である(例えば、米国特許第5,283,174号、同第5,656,207号、および同第5,658,737号)。標識の合成方法、核酸への標識の結合方法、および標識の検出方法は周知である(例えば、Sambrookら,Molecular Cloning,A Laboratory Manual,2nd ed.(Cold Spring Harbor Laboratory Press,Cold Spring Harbor,N.Y.,1989),Chapt.10;米国特許第5,658,737号、同第5,656,207号、同第5,547,842号、同第5,283,174号、および同第4,581,333)。

0037

アレイは、二次元形式または三次元形式に配置された複数の成分をいい、これは、類似の方法または同一の方法の工程を上記成分に対して実質的同時に実施することを可能にする。アレイの例は周知であり、所定の構成で支持体に結合した10〜数千個のオリゴヌクレオチドを含む高密度マイクロアレイまたは遺伝子チップが含まれる。かかるアレイにより、同一条件下で異なる位置における全てのオリゴヌクレオチドに対してアッセイ工程(例えば、アレイに適用したサンプル中の核酸のハイブリッド形成または特異的配列の検出)を実施することが可能である。

0038

サンプルは、目的の分析物を含み得る検体をいい、例えば、微生物、ウイルス、遺伝子などの核酸、またはその成分であり、分析物中または分析物に由来する核酸配列を含む。サンプルは、任意の供給源(生物検体または環境供給源など)に由来し得る。生物検体には、分析物または分析物中の、もしくは分析物に由来する核酸を含み得る、生きている生物または死んでいる生物に由来する任意の組織または物質が含まれる。生物サンプルの例には、呼吸組織、滲出液(例えば、気管支肺胞洗浄液)、生検末梢血血漿血清リンパ節胃腸組織糞便、尿、または他の流動物、組織、もしくは材料が含まれる。環境サンプルの例には、水、土壌スラリーデブリバイオフィルム浮遊微小粒子、およびエアゾールが含まれる。サンプルは、濾過遠心分離沈殿、または媒体(マトリックスまたは支持体など)への接着の使用などによるサンプルの処理から得た処理済み検体または材料であり得る。サンプルの他の処理には、他の成分(酵素、緩衝液、塩、および界面活性剤など)を含み得る溶液中に核酸を含む細胞内成分を放出するために組織、細胞凝集体、または細胞を物理的または機械的に破壊する処理が含まれ得る。

0039

「本質的に〜からなる」を、本明細書中に記載のユニバーサル配列およびTS配列を使用する等温増幅方法の基本的および新規の特徴を実質的に変化させないさらなる成分、組成物、または方法工程を組成物または方法に含めることができることを意味するために使用する。かかる特徴には、TSUオリゴヌクレオチドの構造(本明細書中に記載の複数のTSUオリゴヌクレオチドの複合体が含まれる)、ならびに1つ以上のユニバーサル配列の各標的配列との会合、実質的に等温のin vitro条件下での分析物または標的核酸の代替物としての機能を果たす少なくとも1つのユニバーサル配列の増幅、およびアッセイしたサンプル中の少なくとも1つの分析物の存在を示すためのユニバーサル配列の増幅に起因する応答の検出による、サンプル中の1つ以上の分析物または標的核酸を検出するための方法の能力が含まれる。特許請求の範囲に記載の組成物および/または方法の基本的特徴に実質的効果を及ぼす任意の成分、組成物、または方法工程は、この用語から外される。

0040

開示の方法の好ましい実施形態は、一般に転写関連増幅法と呼ばれる等温増幅系の態様を使用し、この増幅法は以前に詳述されている(Kacianらに付与された米国特許第5,399,491号および同第5,554,516号;Burgらに付与された米国特許第5,437,990号;GingerasらのPCT番号WO88/01302号およびWO88/10315号;Malekらに付与された米国特許第5,130,238号;Urdeaらに付与された米国特許第4,868,105号および同第5,124,246号;RyderらのPCT番号WO95/03430号;およびBeckerらの米国特許出願公開第2006/0046265(A1)号)。例には、転写媒介増幅(TMA)および核酸配列ベースの増幅(NASBA)が含まれる。典型的には、転写関連増幅は、RNAポリメラーゼを使用して、RNAポリメラーゼ、DNAポリメラーゼ、デオキシリボヌクレオシド三リン酸リボヌクレオシド三リン酸、プロモーター配列を含むテンプレート相補増幅オリゴヌクレオチド、および任意に、プライマーとしての機能を果たし得る1つ以上の他のオリゴヌクレオチドを使用する一連の工程の使用によって核酸テンプレートから複数のRNA転写物を産生する。好ましい開示の実施形態は、TMA(米国特許第5,399,491号および同第5,554,516号)または1プライマー転写関連増幅(米国特許出願公開第2006/0046265(A1)号)に基づくが、当業者は、オリゴヌクレオチド配列のポリメラーゼ媒介伸長に基づく他の増幅方法を本明細書中に記載の組成物および/または方法工程と共に使用することができることを理解しているであろう。

0041

本明細書中に開示の方法は、ユニバーサル転写関連増幅反応において3つの基本工程を使用する。第1に、標的捕獲(TC)工程は、1つ以上のTSUプライマー(連結複合体で存在し得る)を標的核酸とハイブリッド形成すること、ならびに混合物から標的およびプライマーを含むハイブリッド形成複合体を捕獲し、他のサンプル成分から標的核酸を分離することを含む。標的捕獲混合物は、複数のTSUプライマーを含むことができ、このプライマーの各型は、サンプル混合物中に存在し得る異なる標的核酸に特異的である。TC工程中、サンプル混合物中に存在する標的核酸に特異的なTSUプライマーのみが標的に結合し、その後の増幅工程に供される。これは、サンプル中に存在しない他の標的に特異的なTSUプライマーは液相に残存し、捕獲された標的核酸を使用して増幅を開始する前に破棄されるか他のサンプル成分と共に洗い流されるからである。したがって、増幅中に供給源を妨害または競合し得る外来オリゴヌクレオチドを、増幅工程の開始前に除去する。捕獲標的−TSUプライマー複合体を、増幅の第1期および第2期として記載される等温増幅反応で使用する。第1の増幅期では、最初の工程は、酵素的in vitro核酸合成によって標的核酸鎖に結合したTSUプライマーを伸長し、このことは、TSUプライマーのユニバーサル配列領域を、テンプレートとしての機能を果たす標的鎖から作製した最初のアンプリコンに連結する。例えば、標的鎖がRNAである場合、TSUプライマーはRNAとハイブリッド形成し、TSUプライマー上に存在するU配列を含むcDNA鎖の合成のための開始部位としての機能を果たす。第2の増幅期では、反応におけるその後の合成工程は、最初の期において産物に組み込まれたU配列を含む最初のアンプリコンを使用し、そして、ユニバーサル配列とハイブリッド形成し、かつアンプリコンのテンプレートとしての使用によって酵素的に伸長されるユニバーサルプライマーの使用によって最初およびその後のアンプリコンを増幅する。いくつかの実施形態では、2つのユニバーサル配列を、等温増幅反応の最初の増幅産物に導入し、このユニバーサル配列は相補ユニバーサル配列を含むプライマーを使用するその後の増幅の標的であり、それにより、捕獲された標的配列からより多数のアンプリコンが作製される。他の実施形態では、1つのユニバーサル配列を最初の増幅産物に導入し、第2の増幅期工程で、プライマーは導入されたユニバーサル配列に特異的なユニバーサル配列を有するプライマー、および標的核酸鎖または相補鎖中に含まれる配列に特異的な別の標的特異的プライマー(TSP)を含む。いくつかの実施形態では、標的鎖およびTSUプライマーを含む捕獲されたハイブリッド形成複合体と混合する試薬中にユニバーサルプライマーを提供し、この試薬により、第2期のin vitro核酸合成で使用される1つ以上の他の成分(例えば、ヌクレオチド三リン酸、酵素、および補因子など)も得られる。

0042

ユニバーサル転写関連増幅方法の好ましい実施形態で使用するオリゴヌクレオチドを開示し、これらには、以下が含まれる:(1)標的特異的捕獲オリゴマー(捕獲プローブということができる)、(2)標的特異的ユニバーサル(TSU)プロモータープライマーまたはTSUプロモータープロバイダー、(3)標的特異的ユニバーサル(TSU)非プロモータープライマー、(4)リンカーオリゴヌクレオチド(S−オリゴヌクレオチドということができ、これは、複合体中のTSUプライマーを連結するのに役立ち、1つのTSUオリゴヌクレオチドの一部を介して標的鎖とハイブリッド形成する)、(5)ユニバーサルプロモータープライマー(UP1ということができる)、および(6)ユニバーサル非プロモータープライマー(UP2ということができる)。

0043

いくつかの実施形態では、2つのTSUプライマーを互いに複合体に連結し、次いで、標的鎖上の相補配列とのTSUプライマー中のTS配列のハイブリッド形成の使用によって標的鎖にハイブリッド形成する。かかるTSUプライマーの連結を、連結オリゴヌクレオチドとのTSUプライマーのハイブリッド形成によって媒介することができる。この連結オリゴヌクレオチドは、連結オリゴヌクレオチドが3オリゴヌクレオチド複合体中の2つのTSUプライマーと非共有結合する場合に、その蛇行形態によって、時折S−オリゴヌクレオチドと呼ばれる。S−オリゴヌクレオチドの第1の末端配列は第1のTSUプライマーの一部に相補的であり、これとハイブリッド形成し、S−オリゴヌクレオチドの第2の配列は第2のTSUプライマーの一部に相補的であり、これとハイブリッド形成する。いくつかの実施形態では、TSUプロモータープライマー配列を、S−オリゴヌクレオチドリンカーを使用することなく、TSU非プロモータープライマー配列に連結することができる。例えば、TSUプロモータープライマー配列およびTSU非プロモータープライマー配列を、介在スペーサーオリゴヌクレオチド配列または非ヌクレオシド共有結合リンカー化合物などの使用によって、両方の機能的配列が直接または間接的に共有結合された1つのオリゴヌクレオチドとして合成することができる。他の実施形態では、2つのTSUオリゴヌクレオチド配列を、個別のオリゴヌクレオチドとして合成し、その後に、例えば、ランダムリンカー配列の使用によって直接または間接的に相互にライゲーションすることによって相互に共有結合することができる。複数のTSUオリゴヌクレオチドを複合体に非共有結合する実施形態では、これらを、個別のオリゴヌクレオチドとして合成し、次いで、例えば、支持体に結合した結合対メンバーを介して1つの支持体に連結することができるか、個別のTSUオリゴヌクレオチドは、直接ハイブリッド形成して2つの機能的TSUオリゴヌクレオチドを複合体に連結する相補配列を含むことができる。例えば(以下の「実施形態a」に示す)、第1のTSUオリゴヌクレオチドを、5’→3’方向に、5’プロモーター配列(P)、中央のユニバーサル配列(U1)、および3’標的特異的配列(TS1)を含むように合成し、第2のTSUオリゴヌクレオチドを、プロモーター配列に相補的な5’配列(P’)、中央のユニバーサル配列(U2)、および3’標的特異的配列(TS2)を含むように合成する。あるいは(「実施形態b」に示す)、第2のTSUオリゴヌクレオチドは、U2配列を含まずに、プロモーター配列に相補的な5’配列(P’)および3’標的特異的配列(TS2)を含むことができる。2つのTSUオリゴヌクレオチドをハイブリッド形成条件下で混合する場合、これらは、以下に図示したTSUオリゴヌクレオチドの直接ハイブリッド形成(DH)複合体を形成する(式中、縦線(|||)は、相補的なP配列およびP’配列のハイブリッド形成を示す)。

0044

実施形態aバージョンを、図17に概略的に示す。これは、ハイブリッド形成複合体中に2つのTSUオリゴヌクレオチドを示し、このハイブリッド形成複合体は、第1のTSUプライマーのTS1配列を介して標的鎖とハイブリッド形成し、TSUプライマーが相補的なP’およびP配列を介して遮断3’末端を有するTSUプロモータープロバイダーオリゴヌクレオチドである第2のTSUオリゴヌクレオチドとハイブリッド形成する。

0045

あるいは、2つのTSUプライマーを相互に複合体に共有結合し、次いで、標的鎖上の相補配列とのTSUプライマー中のTS配列のハイブリッド形成の使用によって、標的鎖とハイブリッド形成する。図18は、かかる実施形態を示す。この実施形態は、非ヌクレオチドリンカー(−C9−C9−)を介して共有結合して複合体を形成する2つのTSUオリゴヌクレオチドを示す。この複合体は、3’→5’方向に遮断3’末端、TS2、U2、およびプロモーター(P)配列を含むTSUプロモータープロバイダーに連結した、5’→3’方向にU1およびTS1配列を含むTSUプライマーから構成される。この複合体により、複合体中でTSUプライマーのTS1配列を介して標的鎖とハイブリッド形成する1つの伸長可能な3’末端が得られる。図18はまた、標的とハイブリッド形成したブロッカーオリゴヌクレオチドおよびそのTS配列を介して標的とハイブリッド形成したTCプローブを示す。TSUプライマー複合体を作製するための共有結合プライマーを作製する多数の方法が想定される。例えば、2つの異なるオリゴ(プライマーおよびプロモータープライマーまたはプロバイダー)の合成後、アルデヒドヒドラジンカップリング対の使用によってカップリングする。他のカップリング対(例えば、カルボキシルおよびアミン)を使用し、標準的なカルボジイミド化学を使用して縮合することができる。共有結合したTSUプライマー複合体の別の作製方法は、DNA合成機による全複合体の構築を含む。例えば、TSUプライマーの標準的3’→5’合成、スペーサー(例えば、非ヌクレオチドリンカーまたはヌクレオチドリンカー(ポリTなど))の組み込み、逆極性ホスホルアミダイトの使用によるTSUプロモータープライマーまたはプロバイダーオリゴヌクレオチドの5’→3’合成、および3’ブロッカー構造の付加(例えば、3’→5’方向で付加したC)による合成の終了の使用による。他の代替法は、同一の基本的ストラテジーを使用するが、TSU T7 プロモータープライマーまたはプロバイダーオリゴヌクレオチドから開始し、非プロモーターTSUプライマーで終了する。

0046

増幅オリゴヌクレオチドの実施形態を、TSUオリゴヌクレオチドがハイブリッド形成複合体または複数の機能的配列領域の共有結合複合体を形成しない方法工程で使用することができる。すなわち、増幅オリゴヌクレオチドを、各オリゴヌクレオチドまたはオリゴヌクレオチドの混合物として液相に提供することができ、液相中で各増幅オリゴヌクレオチドは、標的核酸と無関係な複数の増幅オリゴヌクレオチドの複合体の第1の形成を行わない方法工程で機能する。

0047

いくつかの実施形態では、最初の増幅期でたった1つのTSUオリゴヌクレオチドを、ユニバーサル(U)配列を含まない標的特異的プライマー(TSP)と組み合わせて使用する。例えば、TSUプロモータープライマーまたはTSUプロモータープロバイダーオリゴヌクレオチドをTSプライマーと組み合わせて使用することができるか、別の例では、TSUプライマーを、U配列を含まないプロモータープライマーまたはプロモータープロバイダーオリゴヌクレオチドと組み合わせて使用することができる。すなわち、最初の増幅期でたった1つのTSUオリゴヌクレオチドを使用して最初の期に作製されるアンプリコンにU配列を導入し、TSプライマーを、標的鎖から作製される最初の相補鎖の酵素合成の開始点として使用するか、またはこれは、標的鎖から作製された鎖に相補的な鎖を作製するためのプライマーとしての機能を果たす。たった1つのTSUオリゴヌクレオチドを使用する1つの実施形態では、TSUオリゴヌクレオチドによって導入されたユニバーサル配列に特異的な1つのユニバーサルプライマーを、第2の増幅期で使用する。すなわち、1つのユニバーサル配列は、第2の増幅期中、標的の代替物またはタグ配列としての機能を果たす。

0048

TSUプロモータープライマーまたはプロモータープロバイダーオリゴヌクレオチド中のプロモーター配列がバクテリオファージT7RNAポリメラーゼによって認識されるプロモーター配列である一定の実施形態では、TSUプロモータープライマーまたはプロバイダーを、「TSU T7プライマー」または「TSU T7プロバイダー」オリゴヌクレオチドということができ、これらを、TSU非プロモータープライマーオリゴヌクレオチド(「TSU非T7プライマー」という)と区別することができる。T7プロモーター配列を含むユニバーサルプライマー(UP1)を「T7−UP1プライマー」ということができ、これらは、プロモーター配列を含まないユニバーサルプライマー(UP2)(「非T7−UP2プライマー」という)と区別される。

0049

表1は、本明細書中に記載および例示のユニバーサル転写関連増幅方法の一定の実施形態で使用することができるオリゴヌクレオチドの種々の組み合わせをまとめている。アンプリコンを種々の手段(例えば、挿入化合物)によって検出することができるので、標的捕獲工程および増幅工程で使用されるオリゴヌクレオチドのみを表1に列挙する。これらの手段の全てがさらなるオリゴヌクレオチド(例えば、検出プローブ)を必要とするという訳ではないが、当業者は、1つ以上の検出プローブオリゴヌクレオチドをこれらの方法によって作製されたアンプリコンを検出する完全なアッセイ(complete assay)で使用することができることを認識するであろう。簡潔にするために、表1は、最初の増幅期で1つの標的のためのプライマーとしての機能を果たす2つの増幅オリゴヌクレオチド(すなわち、それぞれ酵素的に伸長される3’末端を有する2つのオリゴヌクレオチド)を使用する転写媒介増幅方法をいうために「TMA」を使用する。それに対して、1プライマー転写媒介増幅方法をいうために「rTMA」を使用する。この方法は、最初の期で各分析物のためのプライマーとしての機能を果たす(すなわち、酵素的に伸長する3’末端を有する)たった1つの増幅オリゴヌクレオチドを使用し、反応物中に含まれる他のオリゴヌクレオチドは反応物中で酵素的に伸長されない(米国特許出願公開第2006/0046265号を参照のこと)。

0050

本明細書中に記載の増幅方法に含まれる組成物および工程の実施形態を、図によって説明する。

0051

図1に関して、本明細書中に開示の方法で使用されるオリゴヌクレオチドを、概略的に示す。上部は、ハイブリッド形成複合体を示す。この複合体は、S−オリゴヌクレオチドに非共有結合したTSUプロモータープライマー、このS−オリゴヌクレオチドに非共有結合しているTSU非プロモータープライマーから構成される。この複合体では、上に、5’プロモーター配列(P、実線)、中央のユニバーサル配列(U1(破線))、および3’標的特異的配列,(TS1(二重線))を含むようにTSUプロモータープライマーを図示する。S−オリゴヌクレオチドをS状曲線点線)で示し、これは、TSUプロモータープライマーのユニバーサル配列U1に相補的な配列U1’を含む5’領域およびTSU非プロモータープライマーのユニバーサル配列U2に相補的な配列U2’を含む3’領域を有する。TSU非プロモータープライマーを複合体の下に図示し、これは、5’ユニバーサル配列(U2(破線))および3’標的特異的配列(TS2(二重線))を含む。TSUプライマーのユニバーサル配列とS−オリゴヌクレオチドの相補配列との間のハイブリッド形成によって複合体が形成される。TSUプライマーを含む複合体の下に、5’標的特異的領域(TS3(二重線))、および特異的結合対のメンバーである3’部分(三重線)を有するように図示した標的特異的捕獲オリゴヌクレオチドを示す。いくつかの実施形態では、この3’部分は、ホモポリマー核酸配列である。次に、5’プロモーター配列領域(実線)および3’ユニバーサル配列領域(U1(破線))を有するように図示したユニバーサルプロモータープライマー(UP1)を示す。次は、ユニバーサル配列(U2(破線))として示すユニバーサル非プロモータープライマー(UP2)の図である。

0052

好ましい実施形態では、アッセイの実施に必要な付加工程数を最小にするために、最低限の試薬中に標的捕獲および増幅オリゴヌクレオチドを提供する。好ましい実施形態では、2つの試薬混合物を以下のように提供する。標的捕獲試薬(TCR)と呼ばれる第1の試薬混合物では、TSUプライマー(例えば、TSU−T7プライマーおよびTSU非T7プライマー)および所望の標的配列への特異的結合に必要な全ての補因子(例えば、標的核酸を含むサンプルと混合した場合のハイブリッド形成に適切な塩および緩衝液)が含まれる。TCRはまた、標的捕獲工程で使用される全てのオリゴヌクレオチド、例えば、所望の各標的に特異的な捕獲プローブまたは非特異的捕獲プローブ、標的核酸に結合した捕獲プローブを捕獲するための支持体、標的捕獲で使用される任意の媒介オリゴヌクレオチド(支持体上の固定プローブなど)を含む。増幅試薬(AR)と呼ばれる第2の試薬混合物により、in vitro核酸合成で使用される化合物(例えば、ヌクレオチド三リン酸(NTP、dNTP)、塩、緩衝剤酵素補因子、および酵素)に加えて、たった1組のユニバーサルプライマー、ユニバーサルプロモータープライマー、およびユニバーサル非プロモータープライマーを提供する。

0053

使用時に、TCRを意図する標的核酸を含むサンプルと混合する。標的捕獲オリゴヌクレオチドおよびTSUプライマーを含むTCRは、全ての導入されたオリゴヌクレオチドに、サンプル中の意図する各標的核酸各相補配列と同時に特異的にハイブリッド形成させることが可能である。サンプルと混合する第1の試薬中にTSUプライマーおよび標的捕獲オリゴヌクレオチドを含めることにより、標的核酸、標的核酸とハイブリッド形成したTSUプライマー、および標的核酸の別個の配列とハイブリッド形成した捕獲オリゴヌクレオチドから構成される複合体を形成する。次いで、複合体を支持体に結合し、その意図する標的核酸に結合しないプライマーを含む他のサンプル成分から分離し、それにより、増幅工程に供される核酸をその特異的TSUプライマーに既に連結した所望の標的に制限する。支持体に結合したか支持体から分離された分離複合体を合成のために必要な成分(例えば、NTP、塩、緩衝剤)およびユニバーサルプライマーを含む増幅試薬と混合する場合、標的核酸はTSUプライマーと既にハイブリッド形成しており、それにより、最初の合成が行われ、ユニバーサルプライマーに相補的なユニバーサル配列(すなわち、ユニバーサルプロモータープライマーおよびユニバーサル非プロモータープライマー)を含む産物が産生される。次いで、ユニバーサルプライマーは、最初の合成産物中に存在する相補ユニバーサル配列と直ちにハイブリッド形成し、それにより、反応混合物にプライマーのユニバーサル組を導入するさらなる工程を使用することなく増幅反応を継続することができる。ユニバーサルプライマーはまた、反応混合物への標的特異的配列の導入を排除し、この標的特異的配列は、他のプライマー配列と分子間または分子内で相互作用し、これにより、増幅反応のその後の合成工程で人工産物が生じ得る。

0054

図2に図示した実施形態は、サンプル中の標的核酸のその各TSUプライマーおよびその各標的特異的捕獲オリゴヌクレオチドへの特異的結合を含むユニバーサル等温増幅方法の標的捕獲期を示す。図2の1.は、複数の異なるTSUプライマー複合体(それぞれ、異なる標的a、b、およびcに特異的な標的特異的配列、TSa、TSb、およびTScを含む)の混合物である標的捕獲試薬(TCR)を示す。TCRはまた、ポリA配列として示す結合対の3’メンバーを有する各潜在的標的のための標的特異的捕獲オリゴヌクレオチドを含む。共に実質的に図1に示すように、TSUプライマー複合体を、S−オリゴヌクレオチドを介してTSU非プロモータープライマーに連結したTSUプロモータープライマーとして示し、捕獲オリゴマーを実線およびポリA領域で示す。標的核酸に特異的なTSUプライマー複合体および捕獲オリゴマーの各組について、標的特異的領域をTSa、TSb、またはTScと記す。TCRはまた、捕獲オリゴマーに特異的に結合する結合固定部分を有する支持体を含む(図2、3を参照のこと)。図2の2では、標的核酸(標的a)を含むサンプルをTCRと混合して、TSa捕獲プローブの標的特異的配列を標的a中のその相補配列に結合させ、TSUプライマー複合体中のプロモータープライマーの標的特異的配列を標的a中のその相補配列に結合させる。TSa捕獲プローブのポリA配列は、支持体に結合した固定プローブのその相補ポリT配列に結合して、TSa TSUプライマー複合体を有する捕獲された標的aが支持体によって混合物から回収される(図2、3を参照のこと)。支持体上の固定複合体の分離後の標的捕獲工程の不要物は、非結合TSUプライマー複合体を含み(TSUbおよびTSUcプライマー複合体、図2の4を参照のこと)、それにより、捕獲標的核酸が取り出され、これを次の増幅過程で使用する。

0055

図3は、TSUプライマー複合体(図2(3)などに示している)を詳細に示している。標的鎖は捕獲複合体中に存在し、捕獲複合体は、標的鎖、相補標的配列(TS3’)と特異的にハイブリッド形成する5’標的特異的配列(TS3)および3’ポリA配列を含む捕獲プローブから構成され、3’ポリA配列が支持体に結合した相補ポリT配列である固定プローブとハイブリッド形成することを示している。縦線(|||||)を使用して、いくつかの相補配列領域の間のハイブリッド形成を示す。標的鎖はまた、標的のTS1’配列領域とTSUプライマー複合体中のTSUプロモータープライマーの相補標的特異的配列領域(TS1)との間のハイブリッド形成によってTSUプライマー複合体に結合する。TSUプライマー複合体は、3’遮断末端



を有するS−オリゴヌクレオチドの相補U2’配列領域とそのU2配列領域でハイブリッド形成したTSU非プロモータープライマーから構成され、S−オリゴヌクレオチドの5’領域は、5’プロモーター配列領域(P)および3’TS1領域を含むTSUプロモータープライマー中の相補U1配列領域とそのU1’配列領域でハイブリッド形成している。標的鎖は、TSU非プロモータープライマーの標的特異的配列領域(TS2)と同一である標的特異的配列領域(TS2)を含む。標的鎖の全ての標的特異的領域(TS1’、TS2、およびTS3’)は、標的鎖中の独立した配列である。

0056

図4は、図3に示す実施形態に類似のTSUプライマー複合体の好ましい実施形態を示す。上の鎖は、3’TS2領域および5’ユニバーサル配列領域(U2(+))から構成されるTSU非プロモータープライマーであり、これはS−オリゴヌクレオチドの3’相補U2’配列領域とハイブリッド形成し、このS−オリゴヌクレオチドは3’−3’C結合から構成される3’遮断末端を有する。S−オリゴヌクレオチドは、脱塩基スペーサーを含む。脱塩基スペーサーは3’U2’配列領域を5’U1’配列領域に連結し、5’U1’配列領域はTSUプロモータープライマー中のU1(−)配列領域に相補的であり、これとハイブリッド形成する。TSUプロモータープライマーは、内部U1領域に隣接する5’プロモーター配列(P)および3’標的特異的配列領域(TS1)を含む。このS−オリゴヌクレオチド型の好ましい実施形態は、スペーサーとして、隣接するU1’配列およびU2’配列と共有結合する脱塩基化合物(例えば、(C9)2または(C9)3)を含む。

0057

図2は3つのみの異なるTSUプライマー複合体および捕獲プローブ(標的a、b、およびcについてそれぞれTSUa、TSUb、およびTSUcと標識)、ならびに1つのみの標的核酸(標的a)を示しているが、多数の異なるTSU複合体および捕獲オリゴヌクレオチド(それぞれ、その各標的核酸に特異的)をTCR中に含むことができると認識されるであろう。サンプルは、多数の異なる標的核酸を含むことができ、その全てを、他のサンプル成分から選択的に取り出すことができる。したがって、TCR中にさらなるTSUプライマー複合体およびプローブを含めるが、実質的に同一の図2に示す工程を使用することにより、結合したTSUプライマーおよびそれぞれその各標的に特異的に結合した捕獲オリゴヌクレオチドを有する1つ以上の異なる標的を、1つ以上の標的−プライマー複合体に選択的に結合する1つ以上の支持体の使用によって混合物から分離することができる。例えば、標的特異的捕獲プローブに選択的に結合する異なる固定プローブをそれぞれ含む異なるサイズの粒子を支持体として使用することができ、その結果、1つのサンプル中に存在する所望の各標的を、その結合した捕獲標的およびTSUプライマー複合体を有する支持体のサイズ分離によって選択的に取り出すことができる。図2は、固定ポリT配列とハイブリッド形成するためのポリA領域を含む捕獲プローブを示すが、当業者は、任意の特異的結合対のメンバーを使用して標的核酸を支持体に捕獲することができ、異なる結合対メンバーを使用して複合体サンプル混合物から異なる標的を選択的に単離することができることを認識するであろう。例えば、図2に関して、標的aに特異的なTSUaプライマー複合体を、受容体aのリガンドを含むTSa捕獲プローブの使用によって混合物から分離することができる。この受容体aは、固定プローブとして支持体に会合する。例えば、全て1つのサンプル中に含まれる標的a、b、およびcを、その各TSUプライマーと会合させ、特異的結合対パートナー(それぞれBPMa2、BPMb2、およびBPMc2)を介して固定プローブに結合する捕獲プローブ上の結合対メンバー(BPM)(それぞれ、BPMa1、BPMb1、およびBPMc1)の異なる組み合わせの使用によって他のサンプル成分から分離することができ、支持体に会合した第2の結合対パートナーによって決定された1つ以上の標的ための全ての同一の支持体またはこれらに特異的な支持体のいずれかに対して標的を個々に捕獲する。例えば、アビジンのBPMa1に会合した標的aの捕獲プローブは、第1の支持体に結合したビオチンのBPMa2を有する固定プローブの使用によってサンプルから標的aを選択的に取り出すのに対して、同一TCR中で、標的bの捕獲プローブをFabフラグメントのBPMb1と会合させ、第2の支持体に結合したFabフラグメントのリガンドのBPMa2を有する固定プローブの使用によって標的bを選択的に取り出す。この場合、第1および第2の支持体は、標準的な方法によって分離可能である。所望の標的核酸を含む結合複合体を有する支持体を、混合物中の他の成分(他のサンプル成分(細胞デブリ、オルガネラ、タンパク質、脂質、炭水化物、他の核酸など)が含まれる)ならびに非結合プライマーおよび捕獲プローブから分離することができる。任意の種々の周知の方法を使用して、例えば、遠心分離、濾過、重力分離磁性物質磁気選別(magnetic separation)、および吸引などによって結合複合体を有する支持体を混合物中の他の成分から分離することができる。したがって、非結合オリゴヌクレオチドが標的捕獲期中に標的から分離されるので、標的捕獲後、その各標的に結合したTSUプライマーのみをアッセイの増幅期に移行させる。さらなる洗浄工程を標的捕獲期に含めて、結合標的およびプライマー複合体を有する支持体を洗浄し、それにより、増幅期前に他のサンプル成分および非結合オリゴヌクレオチドから結合TSUプライマーを有する捕獲標的核酸をさらに精製することができる。

0058

次に、意図する標的核酸に特異的なTSUプライマー(すなわち、その対応するTSUプライマーとのハイブリッド形成によって連結した標的核酸鎖を含む捕獲複合体を有する増幅混合物に移行されるプライマー)の使用によって増幅を開始する。いくつかの好ましい実施形態では、増幅期に移行されたTSUプライマーは、意図する標的のためのTSUプロモータープライマー、S−オリゴヌクレオチド、およびTSU非プロモータープライマーから構成されるTSUプライマー複合体中に存在する(図1および図2を参照のこと)。サンプルに存在せず、それにより捕獲されない他の分析物に特異的な他のTSUプライマーを標的捕獲段階で破棄するので、これらは増幅反応混合物に実質的に存在しない。したがって、増幅中の最初の合成工程は、最初の増幅期中に存在する意図する標的核酸に特異的に結合したTSUプライマーに依存する。TSUプライマーはその意図する標的核酸配列に既に特異的に連結しているので、他の反応成分(例えば、酵素および補因子、合成基質)を捕獲標的およびその結合したTSUプライマーまたはプライマー複合体と混合する場合に増幅が効率的に開始される。TSUプロモータープライマーの3’末端は、図5に示すように合成的に伸長する。この図5は、最初の増幅期の第1の合成工程に起因する産物を示す。この工程において、そのTS1配列で標的鎖のTS1’配列とハイブリッド形成したTSUプロモータープライマーの3’末端を合成的に伸長して第1のcDNA鎖を作製する。簡潔にするために、TSUプライマー複合体(S−オリゴヌクレオチドおよびTSU非プロモータープライマー)の他の成分を図5に示していないが、この合成工程中に全TSUプライマー複合体をRNAテンプレート鎖に結合することができると理解されるであろう。RNAテンプレート鎖上のTSUプロモータープライマーから開始する合成は、増幅反応混合物中に供給した逆転写(RT)酵素のRNA指向DNAポリメラーゼを使用して、相補DNA(cDNA)鎖を合成する。好ましいRTは、RNA標的/テンプレート鎖を分解するためのRNアーゼH活性を含むRTであるが、RNA依存性DNAポリメラーゼ活性およびRNA分解活性を増幅反応混合物中に異なる酵素によって供給することができる。合成されたcDNA鎖は、標的/テンプレート鎖中のTS2配列に相補的な配列TS2’を含む。cDNAの合成後、RNAテンプレート鎖の分解は、反応混合物中のRNアーゼH活性から生じ、それにより、5’プロモーター配列、U1配列、およびTS1配列(全てTSUプロモータープライマーによって供給される)、ならびにRNAテンプレート鎖に相補的な配列を含む3’配列(TS1、U1、およびP配列の3’であるTS2’配列が含まれる)を含む一本鎖DNAが得られる。この得られたcDNA鎖を、図6に示す。

0059

次いで、第1のcDNA鎖は、cDNAのTS2’配列とTSU非プロモータープライマー(これは捕獲標的核酸に結合したTSUプライマー複合体の一部として増幅反応混合物に供された)の相補TS2配列との間のハイブリッド形成によってTSU非プロモータープライマーに結合する。好ましい実施形態では、等温増幅条件は、最初のcDNA合成工程中にTSUプライマー複合体中にTSU非プロモータープライマーを維持し(すなわち、S−オリゴヌクレオチドを介してTSUプロモータープライマーに連結)、次いで、複合体中のTSU非プロモータープライマーの3’TS2部分がcDNAとハイブリッド形成する。かかる実施形態は分子内ハイブリッド形成として実質的に行うハイブリッド形成の効率的な動態学を使用するので有利である。これは、cDNAに連結したTSUプライマー複合体構造の保持によってTS2配列およびTS2’配列が極めて近接しているからである。図7に関して、TS2配列およびTS2’配列のハイブリッド形成を介してcDNA鎖とハイブリッド形成したTSU非プロモータープライマーの3’末端を、テンプレート鎖としてcDNAを使用してDNAポリメラーゼによって酵素的に伸長し、第2のDNA鎖を合成する。簡潔にするために、図7は、上記のTSUプライマー複合体の他の成分を含まないTSU非プロモータープライマーを示すが、これらの成分を、第2のDNA鎖の合成中に保持することができる。第2のDNA鎖は、5’ユニバーサル配列(U2)およびTS2配列(その両方がTSU非プロモータープライマーに起因する)、TSUプライマーの3’末端から伸長されたDNA鎖(TS1’配列およびユニバーサル配列U1’(共に、それぞれcDNAおよびTSUプロモータープライマーのTS1配列およびU1配列に相補的である)を含む)、およびTSUプロモータープライマーのプロモーター配列(P)に相補的な3’配列を含む。得られた構造は実質的にdsDNAであり、その各RNAポリメラーゼ酵素の機能的プロモーター配列を含む。

0060

図8に示すように、最初の等温増幅期の継続により、プロモーター配列に特異的なRNAポリメラーゼ(RNA Pol)は、機能的プロモーターに結合して実質的dsDNAから転写を開始して、複数のRNA転写物を作製する。これらの転写物は、5’U1配列、その後にTS1配列、TS1配列とTS2’配列との間に存在するさらなる標的特異的配列、TS2’配列、および3’U2’配列を含む。RNA転写物は、第1のユニバーサル配列(U1)および第2のユニバーサル配列(U2’)(相互に異なる)に隣接した標的特異的配列を含む(1つのかかる転写物を図9に示す)。

0061

第2の増幅期では、ユニバーサルプライマー(図1のUP1およびUP2)を使用して、さらなる増幅産物またはアンプリコンの合成のためのテンプレートとしてRNA転写物を使用した継続的等温増幅サイクル中でさらなるRNA転写物を作製する。好ましい実施形態は、TMA反応またはNASBA反応に類似の等温増幅反応中でユニバーサルプライマーを使用する。第2の増幅期の第1の工程では、本質的に第1の増幅期で産生されたRNA転写物の3’U2’配列に相補的なU2配列からなるユニバーサル非プロモータープライマー(UP2)は、最初のRNA転写物とハイブリッド形成する(図9を参照のこと)。図10に示すように、UP2プライマーの3’末端を酵素等温反応で合成的に伸長させ、第1の増幅期由来のRNA転写物が左下の第2の期に入る。RT酵素が結合し、RNA指向性DNAポリメラーゼ活性およびテンプレートとしての転写物の使用によってUP2プライマーの3’末端からのcDNA合成を開始する。以下の図10中の黒矢印は、第2の増幅期中の工程を示す。cDNAを有する二重鎖中のRNAテンプレート鎖を、RNアーゼH活性によって分解し、cDNAをU1’配列でユニバーサルプロモータープライマー(UP1)の相補性U1配列とハイブリッド形成させる。RTは、UP1プライマーの3’末端に結合し、DNA指向性DNAポリメラーゼ活性およびテンプレート鎖としてのcDNA鎖の使用によって第2のDNA鎖合成を開始する。得られたdsDNAは、機能的プロモーター配列および各鎖上に標的特異的配列に隣接した2つのユニバーサル配列を含む。プロモーター配列に特異的なRNAポリメラーゼ(RNA Pol)は、機能的プロモーターに結合し、100〜1000個の転写物(RNAアンプリコン)を作製する。この転写物は、第1の増幅期で作製された最初のRNA転写物と構造的に同一である。さらなる転写物は、この過程をより多く繰り返すためのテンプレートとしての機能を果たす。第2の増幅期で作製されたRNA転写物は、これらが作製された場合に増幅過程での使用が可能になり(すなわち、変性工程が必要ない)、したがって、連続する等温過程でユニバーサル配列および標的特異的配列が効率的に増幅される。等温増幅過程の第2の期中で作製されたRNA転写物を、反応中(すなわち、リアルタイムで)または指定の反応終点で(例えば、増幅反応開始後の特定の時間、または反応中に存在する基質の枯渇によって増幅が実質的に終了したとき)検出することができる。

0062

RNAアンプリコンを、核酸濃度の増加を単に検出することができるか、選択された増幅配列を検出することができる周知の検出方法の使用によって検出することができる。例えば、検出は、1つ以上のユニバーサル配列またはそのサブシーケンス(subsequence)、標的特異的配列またはそのサブシーケンス、またはユニバーサル配列および標的特異的配列の一部を組み合わせた連続配列を特異的に検出することができる。好ましくは、アンプリコン検出のためのプローブを使用する検出工程により、均一検出(homogeneous detection)(すなわち、混合物からの非ハイブリッド形成プローブの除去を用いないハイブリッド形成プローブの検出)が可能である(例えば、Arnold Jr.らに付与された米国特許第5,639,604号および同第5,283,174号)。第2の増幅期のおよそ終了時または終了時に増幅産物を検出する好ましい実施形態では、線状プローブを使用して、増幅産物とのプローブのハイブリッド形成を示す検出可能なシグナルを得る。リアルタイムで増幅産物を検出する好ましい実施形態では、プローブは、好ましくは、シグナル産生が標的配列の存在に関連するプローブである(分子ビーコン、分子トーチ、またはハイブリッド形成スイッチプローブなど)。このプローブは、プローブが増幅産物に結合する場合に検出されるレポーター部分で標識されている。かかるプローブは、標識(例えば、プローブの一方の末端に結合したフルオロフォア)および相互作用化合物(例えば、プローブが「閉じた」高次構造にある場合に(増幅産物とハイブリッド形成しないことを示す)標識からのシグナル産生を阻害するためのプローブの別の位置に結合したクエンチャー)を含み得、プローブが「開いた」高次構造にある場合に(増幅産物とハイブリッド形成することを示す)検出可能なシグナルを産生する。種々のプローブ構造およびその使用方法は、以前に記載されている(例えば、Lizardiらに付与された米国特許第5,118,801号および同第5,312,728号,Tyagiらに付与された米国特許第5,925,517号および同第6,150,097号,Beckerらに付与された米国特許第6,849,412号、同第6,835,542号、同第6,534,274号、および同第6,361,945号,Beckerらの米国特許出願公開第11/173,915号、およびArnold Jr.の米国特許出願第60/657,523号)。

0063

本明細書中に記載の少なくとも1つのユニバーサル配列を使用する標的の捕獲および増幅方法を、種々の異なる方法で行うことができる。いくつかの好ましい実施形態では、すべての工程を実質的に液相で行う(すなわち、ほとんどまたは全ての工程を実質的に水性の媒体中に存在する反応物中で成分を使用して行う)。例えば、標的捕獲工程を、実質的に水溶液の混合物中で行うことができ、これにより、捕獲プローブを標的核酸とハイブリッド形成させ、水相中に混合または懸濁した小粒子またはビーズに結合した固定プローブの使用によって液相中で捕獲プローブを固定プローブとハイブリッド形成させることが可能である。同様に、いくつかの好ましい実施形態では、全ての増幅工程を、全反応のための液相中に全増幅成分(例えば、基質、テンプレート、酵素、および補因子)を含めることによって行う。増幅産物の存在に起因するシグナルを検出する検出工程を、実質的に水性の液相でも行うことができる(例えば、Arnold Jr.らに付与された米国特許第5,639,604号および同第5,283,174号などに記載)。他の好ましい実施形態では、固相支持体マトリックスまたは粒子など)に実質的に結合した標的捕獲工程、増幅工程、および検出工程を含むアッセイにおける1つ以上の工程を行って目的の特定の分析物の検出を区画化するか局在化することができる。サンプル中に存在する1つ以上の選択された分析物の存在に起因するシグナルの個別の検出のために、例えば、時間的または空間的に増幅産物を局在化することができるので、かかる実施形態は有利である。これは、特に、標的捕獲工程、増幅工程、および/または検出工程中で、実質的に同一の試薬混合物中で全てが処理される複数の異なる分析物をサンプルが含むことができる場合に有用であるが、各分析物の増幅産物の存在に起因するシグナルの個別の検出が望ましい。

0064

図11に関して、支持体に結合したアッセイ工程を実施することが可能な2つの好ましい実施形態を示す。両方の実施形態は、特異的結合対メンバーを介して支持体に結合するTSUプライマーの組み合わせ(TSUプロモータープライマーおよびTSU非プロモータープライマー配列)を使用する。本開示において前に記載のように、両実施形態中のTSUプライマーは、標的特異的配列(TS1およびTS2)およびユニバーサル配列(U1およびU2)を備えている。本開示において前に記載のように、両実施形態は、第2の増幅期にユニバーサルプライマー(UP1およびUP2)を使用する。S−オリゴヌクレオチド(例えば、図3に示す)を含むTSUプライマー複合体を使用する実施形態と対照的に、これら2つの実施形態のTSUプライマーを、支持体への結合によって物理的に連結する。図11の実施形態1では、TSUプロモータープライマーおよびTSU非プロモータープライマー配列を、支持体に結合した第2の結合対メンバー(BPM2)と特異的に結合する第1の結合対メンバー(BPM1)を介して支持体に連結する。合成オリゴヌクレオチドと会合したBPM1エレメントと共にTSUプロモータープライマーおよびTSU非プロモータープライマー配列の全構造エレメントを適切な順序で含む1つのオリゴヌクレオチド(例えば、3’−TS2−U2−5’−5’−P−U1−TS1−3’)の合成、または2つのオリゴヌクレオチド(TSUプロモータープライマー配列およびTSU非プロモータープライマー配列)を合成し、次いで上記プライマーに会合したBPM1部分を介して上記BPM2部分に結合することによって、これを行うことができる。図11の実施形態2では、TSUプロモータープライマーオリゴヌクレオチドおよびTSU非プロモータープライマーオリゴヌクレオチドを、支持体に結合した第2の結合対メンバー(BPM2)と特異的であるが独立して結合する各プライマーと会合した第1の結合対メンバー(BPM1)を介して同一の支持体に連結する。両方の実施形態は、TSUプライマーは、同一支持体に結合することによって極めて近接して維持される。TSUプロモータープライマーのTS1配列が標的核酸鎖中の相補配列(TS1’)と結合するので、TSUプライマーは、他のサンプル成分からTSUプライマー−標的複合体を分離するための支持体の使用によって、目的の標的核酸に選択的に結合してサンプル混合物から分離するための捕獲プローブとして機能することができる。次いで、支持体に結合させ、増幅反応成分(例えば、基質、酵素、補因子)と混合したTSUプライマー−標的複合体は、最初のTSUプライマー−標的複合体から合成したcDNAと極めて近接したTSU非プロモータープライマーの提供において支持体をS−オリゴヌクレオチドのかわりにすること以外は、実質的に本開示で前に記載の第1の増幅期でのプライマー−テンプレート複合体としての機能を果たす。次いで、実質的に本開示に記載のように、UP1およびUP2ユニバーサルプライマーの使用によって、第1の増幅期由来のRNA転写物は、第2の増幅期のテンプレートとしての機能を果たす(図10に関する)。

0065

図11に示す両実施形態中の支持体を使用して、目的の特定の分析物の増幅および検出工程を時間的または空間的またはその両方で局在化することができる。例えば、3つの異なる分析物(A1、A2、A3)がサンプル中に存在する場合、3つの異なる標的核酸(T−A1、T−A2、T−A3)を、異なる支持体または1つの支持体の異なる位置に結合した3つの異なるTSUプライマー(それぞれ標的の1つに特異的な異なるTS1配列(TS−A1、TS−A2、TS−A3)の使用によるその各分析物に特異的な各TSUプライマー)の使用によって1つの標的捕獲工程で捕獲することができる。例えば、TSUプライマー複合体を、例えばアレイ中の異なる所定の位置に結合する1つの支持体を使用する場合、空間的に分離することができる。空間的分離を実現する他の実施形態は、所定のパターンまたは無作為なパターンでTSUプライマー複合体を含む多室デバイスの異なるウェルまたは容器を含む。このパターンは、1つ以上の支持体粒子が所定の確率で懸濁される既知量の溶液の分注(例えば、平均して1つ以下の各支持体がウェルまたは室の上または中の位置に沈殿する希釈)などによって実現する。空間的分離を、それぞれの異なるTSUプライマーが結合する支持体の物理的性質の使用によって増幅工程の実施前にデバイスのそれぞれの室または区分に各支持体を選択的に分離することによって実現することもできる。例えば、異なるTS1配列(TS−A1、TS−A2、TS−A3)を有するTSUプライマーを、サイズ、密度、リガンド結合能力、および磁気特性などに基づいて分離可能な異なる特定の支持体に結合することができ、その結果、その結合したTSUプライマー−標的複合体を有する異なる支持体を、全て同一の試薬(同一のユニバーサルプライマーが含まれる)を使用する増幅工程の実施前に空間的に分離することができる。検出工程の特定の空間的位置で検出された増幅産物は、特定の分析物がサンプル中に存在したかどうかを示し、全ての位置の累積的検出結果は1つを超える分析物がサンプル中に存在したことを示すことができ、サンプル中に存在する各分析物を定量的または比例的に測定することができる。例えば、増幅工程の実施前に3つの異なるTSUプライマー−標的複合体(すなわち、TS−A1、TS−A2、TS−A3プライマー)を空間的に分離して位置あたり平均1個のTSUプライマー−標的複合体を産生し、検出工程によってTS−A1プライマーに陽性の10室、TS−A2プライマーに陽性の30室、TS−A3プライマーに陽性の50室が得られる100室のアレイを使用する場合、結果は、サンプルが3つの分析物A1、A2、およびA3の全てを、A1:A2:A3の比率が1:3:5で含むことを示す。

0066

同様に、時間的分離を使用して、異なる標的核酸から産物を増幅し、増幅産物を検出することができる。図11のいずれかの実施形態について、サンプル中に存在する3つの異なる分析物(A1、A2、A3)のモデル系を使用して、3つの異なる標的核酸(T−A1、T−A2、T−A3)を、支持体に結合した3つの異なるTSUプライマー複合体(異なるTS1配列(TS−A1、TS−A2、TS−A3)の使用によるその各分析物に特異的な各TSUプライマー複合体)の使用によって1つの標的捕獲工程で捕獲することができる。第1および第2の期における増幅を、増幅中の異なる時間(例えば、A1産物については第1の時間(T1)、A2産物については第2の時間(T2)、およびA3産物については第3の時間(T3))に各増幅産物の検出測定を行うこと以外は実質的に本明細書中で前に記載のように行い、各産物から異なる波長の蛍光などの異なる検出可能なシグナルが得られる。したがって、T1およびT3のみ検出された陽性シグナルは、サンプルが分析物A1およびA3のみを含み、A2を含まなかったことを示す。他の実施形態では、増幅反応中延長した時間の範囲にわたる連続した時間(例えば、A1についてはT1、T4、およびT7、A2についてはT2、T5、およびT8、およびA3についてはT3、T6、およびT9)で時間的検出を行うことができ、累積した結果は、サンプル中に存在する各分析物の存在および相対量の両方を示すことができる。例えば、T1、T4、およびT7で陽性シグナルが検出される場合、サンプル中にA1が存在することを示し、T8で陽性シグナルが検出される場合、サンプル中にA2が存在することを示し、T6およびT9で陽性シグナルが検出される場合、サンプル中にA3が存在することを示す。各分析物の増幅は、第2の増幅期において、同一の条件およびユニバーサルプライマーの使用によってほぼ同一の速度で進行すると予想される。したがって、増幅産物の相対量および各増幅産物の得られた最も早いシグナル検出時間は、サンプル中に存在する各分析物の比例量を示す。A1のシグナルがA3のシグナルの前に検出され、A3のシグナルはA2のシグナル前に検出される上記のモデル系の結果に基づいて、サンプル中の各分析物の相対量は、A1がA3より多く、A3がA2より多い。

0067

空間的分離および時間的分離の組み合わせをアッセイで使用して、反応物中の1つを超える分析物から増幅し、増幅産物を選択的に検出して、個別の位置および時間で分析物の増幅産物を検出することができる。例えば、空間的分離は、所定の位置で支持体に結合したTSUプライマー複合体アレイの使用を含むことができ、これを、アレイ上で実施される増幅反応に起因する増幅産物を検出するための各位置または選択された位置の群由来の異なる時点のシグナルの検出による時間的分離と組み合わせた。別の実施形態では、粒子支持体に結合したTSUプライマー複合体を、増幅反応のいくつかの部分の増幅反応混合物の液相に懸濁し、次いで、増幅反応中の他の選択された時期(時間的分離)に作製された局在化増幅産物由来のシグナルの検出のために無作為または非無作為パターン(空間的分離)において、表面に沈殿させるか誘引することができる。その結果、得られた検出可能なシグナルの一連の累積パターンから、サンプル中に存在する分析物の存在および相対量の両方に関する情報が得られる。当業者は、広範な種々の空間的分離、時間的分離、および空間的分離と時間的分離との組み合わせを使用して、複数の分析物を含む増幅反応(すなわち、多重反応)に起因する増幅産物を選択的に検出することができることを認識している。

0068

当業者はまた、他の実施形態が本明細書中に開示のアッセイの一般的原理に含まれると認識するであろう。すなわち、アッセイは、サンプルから標的核酸を分離して最初のTSUプライマーを選択された標的核酸に結合する標的捕獲工程、その後の2つの相によって特徴づけられる等温増幅反応を含む。2つの相のうちの第1の相は標的核酸から作製した産物にユニバーサル配列を導入し、第2の相は増幅産物のさらなる産生のためにユニバーサル配列を使用し、アッセイの最終段階で検出する。標的捕獲工程は、標的核酸に結合した第1のユニバーサル配列を含む最初のTSUプライマーの結合を含む。標的捕獲工程後、最初の等温増幅期を実施し、これは、最初のTSUプライマーおよび第2のユニバーサル配列を含む第2のTSUプライマーを使用して、第1のユニバーサル配列および第2のユニバーサル配列の相補配列(標的特異的配列に隣接する)を含むRNA転写物を産生する。この後、第2の等温増幅期を行う。第2の等温増幅期では、第1の期で作製されたRNA転写物を、最初のTSUプライマーおよび第2のTSUプライマーの使用によって導入されたユニバーサル配列(またはその相補物)に特異的に結合するユニバーサルプライマーの使用による、さらなるRNA転写物の継続的作製過程の使用によって増幅する。最後の検出工程は、第2の等温増幅期中に作製された増幅産物に起因するシグナルを検出する。このシグナルは、標的捕獲工程で選択された標的核酸が試験したサンプル中に存在することを示す。これらの一般的なアッセイ工程を、異なる配列の種々の異なるプライマーと共に使用することができる。このプライマーを、分子生物学分野に属する当業者によって本明細書中に記載のプライマーの一般的な構造的特徴を考慮して容易にデザインすることができる。

0069

ユニバーサル配列を使用する等温増幅方法の他の実施形態は、上記実施形態と比較してより少ないTSUプライマーおよびユニバーサルプライマーの使用でよく、標的捕獲工程中の標的核酸へのTSUプライマーの結合などの方法の特徴が保持される一方で、ユニバーサルプライマーおよび標的特異的プライマーの組み合わせの使用によって等温増幅工程を行う。例えば、実施形態は、標的捕獲工程中に標的核酸とハイブリッド形成するたった1つのTSUプロモータープライマーを使用することができ、合成的に伸長して、1つのユニバーサル配列をcDNAに導入し、その後に第1の等温増幅期中に作製されたRNA転写物に導入する。その結果、第2の増幅期は、1つ以上の標的特異的プライマーと組み合わせたたった1つのユニバーサルプライマーを使用して増幅産物を作製し、これを検出して試験サンプル中の分析物の存在を示す。図12は、(A.)第1のプライマー結合を使用する標的捕獲(TC)工程および(B.)第2の増幅期で使用したプライマーの相違を比較するための2つの実施形態(実施形態1(上)、実施形態2(下))を示す。図12に関して、TC工程中の実施形態1は、前述のようにS−オリゴヌクレオチドによって連結されたTSUプロモータープライマーおよびTSU非プロモータープライマーを含むTSUプライマー複合体に標的鎖を結合し、ここで、前述のように、TSUプロモータープライマーの標的特異的部分が標的鎖中の相補配列に結合して、第1の等温増幅期でのTSUプロモータープライマーの3’末端の伸長によって作製されるcDNAとユニバーサル配列(U1)が連結する。対照的に、前述のように、TC工程中の実施形態2は、標的鎖にTSUプロモータープライマーのみが結合し、このTSUプロモータープライマーが標的特異的部分を介して標的鎖中の相補配列とハイブリッド形成して、TSUプロモータープライマーの3’末端の伸長によって作製されるcDNAとU1が連結する。実施形態1では、図5〜8に関して前述のように、そのユニバーサル配列を有するTSU非プロモータープライマーを使用して第2のDNA鎖を作製する第1の増幅期を継続し、その結果、第1の増幅期で作製されたRNA転写物は2つのユニバーサル配列を含むであろう。実施形態2では、TSU非プロモータープライマーを使用する代わりに、標的特異的非プロモータープライマーを、cDNA中の相補配列とハイブリッド形成させ、合成的に伸長して、第2のDNA鎖を作製し、その結果、第1の増幅期で作製したRNA転写物は、たった1つのユニバーサル配列を含む。図12のBに関して、図10に関して前述のように、実施形態1の第2の等温増幅期では(上の部分)、2つのユニバーサルプライマー(ユニバーサルプロモータープライマー(UP1)およびユニバーサル非プロモータープライマー(UP2))を使用して、RNAアンプリコンを作製する。対照的に、図12のBの第2の実施形態では、第2の等温増幅期は、標的特異的プライマー(TSP)と組み合わせたたった1つのユニバーサルプロモータープライマー(UP1)を使用する。図13に関して、第2の等温増幅期では、RNAアンプリコンを作製する。上述の合成工程に類似の合成工程を使用するが、テンプレートとしてRNA転写物を使用したcDNAの合成の開始(図13の左下から開始)のためにTSP(UP2の代わり)を使用することによってRNAアンプリコンを作製する。すなわち、この実施形態では、反応中にU2ユニバーサル配列やU2’ユニバーサル配列は存在しない。

0070

1つのTSUプライマーおよび標的特異的プライマーを使用する1つの実施形態を、図11に関して上記の実施形態に類似の、支持体に結合したTSUプライマーを使用するアッセイで使用することができる。図14は、プロモーター配列(P)、ユニバーサル配列(U1)、および標的特異的配列(TS1)から構成されるTSUプロモータープライマーオリゴヌクレオチドを概略的に示す。このヌクレオチドは、支持体に結合した第2の結合対メンバー(BPM2)に特異的に結合する第1の結合対メンバー(BPM1)を介して支持体に結合する。図12(実施形態2)に関して実質的に上記のように、TSUプロモータープライマーを、第1の増幅期で使用する。第2の増幅期について、図14に示すように、ユニバーサルプロモータープライマー(UP1)および標的特異的プライマー(TSP)を含む混合物を使用し、上記および図13に図示する工程を使用して、RNA転写物を増幅する。1つの好ましい実施形態では、支持体に結合したTSUプロモータープライマー(図14などの場合)を使用して、標的核酸鎖を捕獲することができる。このTSUプロモータープライマーは、標的鎖中の配列(TS1’)に相補的なそのTS1配列の使用によってハイブリッド形成する。あるいは、前に詳述するように、支持体に結合した1つのTSUプライマーを使用する1つの実施形態を、支持体、固定プローブ、および標的特異的捕獲プローブを含む捕獲複合体(図12のAなどの場合)を使用するTC工程と組み合わせて使用することができる。他のサンプル成分から標的核酸を分離するための手段として支持体に結合したTSUプロモータープライマーを使用する1つの実施形態では、支持体および標的鎖とハイブリッド形成したTSUプロモータープライマーを含む複合体を他の増幅試薬と混合する場合、TSUプロモータープライマーは、本質的に、捕獲プローブおよびcDNA合成の開始のためのプライマーとしての機能を果たす。標的鎖とハイブリッド形成し、かつ支持体に結合した固定プローブに結合している捕獲プローブから構成される捕獲複合体を使用するTC工程を実施する1つの実施形態では、複合体が他の増幅試薬と混合する場合、標的鎖とハイブリッド形成し、別の支持体と結合したTSUプロモータープライマーは、cDNA合成開始のプライマーとして作用する。両方の実施形態では、第2の等温増幅期がユニバーサルプライマー(UP2)の代わりにTSPを使用することに依存すること以外は、図11に関して上記のように、支持体に結合したTSUプライマーを使用して、増幅産物を、空間的または時間的に分離するか、空間的分離と時間的分離との組み合わせとして分離することができる。

0071

標的特異的プライマー(TSP)と組み合わせてTSUプロモータープライマーを使用する図12(実施形態2)、13、および14に関して記載の実施形態などの実施形態は、多数の用途で有利である。例えば、異なる標的間で保存される共通の標的配列(TS1’)を共有する1つ以上の種または単離物検出アッセイでは、各標的に特異的なTSP配列の作製によって異なる各標的のためのTSPを含むことができる。例えば、属の多数のメンバー(例えば、Mycobacterium)の16Sまたは23SrRNA配列中に生じるTS1’配列を使用して、属における意図する全標的由来の標的16Sまたは23S rRNAに結合するTS1配列を含むTSUプロモータープライマーをデザインすることができる。次いで、属標的(例えば、M.tuberculosis、M.avium、M.abscessus、M.africanum、M.asiaticum、M.avium、M.bovis、M.celatum、M.chelonae、M.flavescens、M.fortuitum、M.gastri、M.gordonae、M.haemophilum、M.intracellulare、M.interjectum、M.intermedium、M.kansasii、M.malmoense、M.marinum、M.non−chromogenicum、M.paratuberculosis、M.phlei、M.scrofulaceum、M.shimodei、M.simiae、M.smegmatis、M.szulgai、M.terrae、M.triviale、M.tuberculosis、M.ulcerans、またはM.xenopi)中に含まれる意図する各標的種のために、各メンバーに特異的なTSPをデザインし、等温増幅反応で使用して、各標的種に特異的な増幅産物を作製し、増幅産物を標準的なプローブハイブリッド形成またはサイズ分離法の使用によって個別に検出することができる。別の例では、異なるヒトパピローマウイルス(HPV)型などの関連ウイルス標的を、そのTS1配列を介して検出すべき全ての所望のHPV型(例えば、HPV16型、18型、31型、33型、35型、45型、51型、56型、58型、59型、および68型)に存在する共通配列(TS1’)に結合するTSUプロモータープライマーをデザインし、1つの反応混合物中で検出することができる。したがって、E6/E7遺伝子標的配列中のHPVmRNAを使用して、サンプル中に存在する意図する各標的HPV型のためのTSUプロモータープライマーから作製される最初のcDNAを合成するであろう。次いで、目的の各HPV型の増幅および検出のために、TSPを、各標的(例えば、HPV16およびHPV18の各標的)または関連する標的の組み合わせ(例えば、HPV16およびHPV18の両方に特異的な標的)のためにデザインする(すなわち、各TSPは、その意図するHPV型の配列のみに特異的に結合する)。その標的型に特異的な各TSPを、等温増幅反応で使用して選択した標的型に特異的な増幅産物を作製し、増幅産物を標準的な方法(ハイブリッド形成、サイズ分離、配列決定)の使用によって個別に検出して、試験サンプル中に存在するHPV型を同定する。これらなどの実施形態は、1つを超える選択された標的がサンプル中に存在し、これらの標的を増幅して他の増幅産物と区別することができる検出可能な増幅産物を産生する多重反応に特に有用であり、その結果、反応混合物中に存在する各増幅産物由来のシグナルは、試験したサンプル中に存在した標的分析物を示す。

0072

複数の標的特異的プライマー(TSP)と組み合わせたTSUプライマーによって得られる1つのユニバーサル配列を使用する実施形態が有用な別の適用は、関連する遺伝子配列または産物の異なる形態の検出のための適用である。例えば、癌を、一定の遺伝子転座または転座切断点(translocation breakpoint)の存在(例えば、ヒト9番染色体と22番染色体との間の転座に関連する慢性骨髄性白血病CML)(9番染色体のabl遺伝子と22番染色体の「切断点クラスター領域(breakpoint cluster region)」またはbcr遺伝子との間))と相関させることができる。異なる転座型を検出するために、本明細書中に記載の方法の実施形態はTSUプライマーを使用し、そのTS1配列は、多数の異なる癌関連転座に共通する転座メンバーの1つ(例えば、abi遺伝子)の遺伝子配列またはmRNA中の標的配列に特異的であるので、切断点に非依存性に、多数の異なる転座由来の配列を増幅することができる。癌に関連するか特定の予後値を有する特異的転座を増幅および検出するために、種々の異なるTSPをデザインし(例えば、異なるbcr配列)(癌関連転座に関連する特定の配列の増幅に特異的な各TSP)、増幅配列を、標準的方法(例えば、プローブハイブリッド形成、配列決定、またはアンプリコンのサイズ)を使用して特異的に検出することができる。次いで、診断転座配列を有する核酸(DNAまたはRNA)を含むことが疑われるサンプルを、好ましくは1つまたはいくつかの多重反応で標的中の多数の転座を増幅するTSUプロモータープライマーおよび多数の異なるTSPを使用して増幅し、増幅産物を特異的に検出して、増幅および検出される特定の転座配列に基づいた診断情報または予後情報を得る。

0073

同様に、TSUプライマーおよび複数の標的特異的プライマー(TPS)によって得られる1つのユニバーサル配列を使用する実施形態は、遺伝子(例えば、前立腺癌に関連するPCA3遺伝子;Bussemakersらに付与される米国特許第7,008,765号を参照のこと)の異なる発現産物に生じる異なる関連遺伝子配列型の検出に有用である。かかる異なる発現産物は、RNA転写物における異なるスプライシング事象に起因し得、いくつかのスプライシングしたRNAは、疾患の診断に用いられるか、予後値(癌組織良性または悪性のいずれであるかなど)が得られる。かかる実施形態では、全てまたは多数の差分的にスプライシングされるRNA形態に含まれるTS1’配列に特異的なTS1配列を含むようにTSUプロモータープライマーをデザインし、たった1つの差分的にスプライシングされるRNA形態をそれぞれ増幅するように複数のTSPをデザインする。好ましくは1つの多重反応混合物中でTSUプロモータープライマーおよびTSPを使用した増幅後、増幅産物を、増幅産物を区別する方法で検出し、試験サンプル中に存在する特定のスプライシングRNA形態に関する情報を得る。

ページトップへ

この技術を出願した法人

この技術を発明した人物

ページトップへ

関連する挑戦したい社会課題

関連する公募課題

該当するデータがありません

ページトップへ

技術視点だけで見ていませんか?

この技術の活用可能性がある分野

分野別動向を把握したい方- 事業化視点で見る -

ページトップへ

おススメ サービス

おススメ astavisionコンテンツ

新着 最近 公開された関連が強い技術

この 技術と関連性が強い技術

関連性が強い 技術一覧

この 技術と関連性が強い人物

関連性が強い人物一覧

この 技術と関連する社会課題

関連する挑戦したい社会課題一覧

この 技術と関連する公募課題

該当するデータがありません

astavision 新着記事

サイト情報について

本サービスは、国が公開している情報(公開特許公報、特許整理標準化データ等)を元に構成されています。出典元のデータには一部間違いやノイズがあり、情報の正確さについては保証致しかねます。また一時的に、各データの収録範囲や更新周期によって、一部の情報が正しく表示されないことがございます。当サイトの情報を元にした諸問題、不利益等について当方は何ら責任を負いかねることを予めご承知おきのほど宜しくお願い申し上げます。

主たる情報の出典

特許情報…特許整理標準化データ(XML編)、公開特許公報、特許公報、審決公報、Patent Map Guidance System データ