図面 (/)

技術 水素脆性評価装置および水素脆性評価方法ならびにそれに用いられる試験片

出願人 日本製鉄株式会社
発明者 富松宏太
出願日 2016年12月16日 (4年10ヶ月経過) 出願番号 2016-243898
公開日 2017年12月21日 (3年10ヶ月経過) 公開番号 2017-223639
状態 特許登録済
技術分野 耐候試験、機械的方法による材料調査 機械的応力負荷による材料の強さの調査
主要キーワード 切欠きの形状 連結治具 金属強化 異相界面 陰極水素 変位関係 弾性応力 ランダム粒界
関連する未来課題
重要な関連分野

この項目の情報は公開日時点(2017年12月21日)のものです。
また、この項目は機械的に抽出しているため、正しく解析できていない場合があります

図面 (9)

課題

ミクロ組織界面の剥離強度および剥離寿命に及ぼす水素の影響を評価することが可能な水素脆性評価装置および水素脆性評価方法ならびにそれに用いられる試験片を提供する。

解決手段

Y方向に延びる微小片持ち梁10が形成された試験片1の水素脆化特性を評価する装置100であって、試験片1は、微小片持ち梁10の固定端10aと自由端10bとの間を通り、かつ、Y方向に略垂直なミクロ組織界面1bを少なくとも1つ有し、微小片持ち梁10は、ミクロ組織界面1bのうちの1つより自由端10b側に、1つのミクロ組織界面1b側を向く係止面10cを有し、電解液槽2と、対極3と、外部電源4と、係止面10cに対して、Y方向と略平行な方向に荷重負荷する探針5と、探針5の変位および荷重を測定する測定部6と、を備える、水素脆性評価装置。

概要

背景

高強度鋼ニッケル合金またはチタン合金等の金属材料では、環境から侵入した水素により破壊が生じることが知られている(水素脆化)。特に、実用上は、水素侵入から一定時間経過した後に生じる水素脆化(遅れ破壊)が問題となっている。このときの破壊形態は、結晶粒界での破壊となる場合がある。また、介在物などの第2相母相との境界異相界面)が破壊起点になる場合も報告されている。

したがって、耐水素脆化性を向上させるには、個々の結晶粒界または異相界面の、剥離強度および剥離が生じるまでの経過時間(剥離寿命)に及ぼす水素の影響を評価する技術が必要とされている。なお、以下の説明において、結晶粒界(双晶界面等を含む。)および異相界面等の金属組織内に現れる境界面を総称して、「ミクロ組織界面」ということがある。

例えば、特許文献1には、引張試験片張力を加えるステップと、電解質を含む水溶液の中に前記張力を加えた引張試験片を対極と共に配置して、該引張試験片に負の電位を付与するステップと、前記水溶液の電解にて発生する水素により、前記引張試験片が水素脆化するのを待つステップと、を含むことを特徴とする耐遅れ破壊性評価方法が開示されている。

また、特許文献2には、水素イオンを含む電解溶液の満たされた電解槽と、電流発生手段と、定荷重発生手段とを有する装置を用い、長手方向に平行部を有する試験片を電解槽に貫通させ、該試験片の電解槽外にはみ出した両端部を連結治具を介して定荷重発生手段に固定し、電流発生手段により電気化学的に水素チャージをしながら、定荷重発生手段により引張応力負荷して、該試験片の破断応力を測定することを特徴とする薄鋼板の耐水素脆化特性評価方法が開示されている。

さらに、特許文献3には、pHが3以上の溶液の満たされた溶液槽と、定荷重発生手段とを有する装置を用い、長手方向に平行部を有する試験片を溶液槽に貫通させ、該試験片の溶液槽外にはみ出した両端部を連結治具を介して定荷重発生手段に固定し、定荷重発生手段により引張応力を負荷して、該試験片が破断する破断応力を測定することを特徴とする薄鋼板の耐水素脆化特性評価方法が開示されている。

そして、特許文献4には、電解液を保持する電解槽と、鋼材に負荷する変形応力を発生する定荷重発生手段と、鋼材に水素チャージを行うための電流を発生する電流発生手段からなる実験装置を用いて、定荷重発生手段に設置した鋼材に変形応力を負荷しない状態で、電解液中で電流発生手段により少なくとも鋼材中水素量が一定になるまで電気化学的に水素チャージを行った後、水素チャージを続けながら定荷重発生手段により試験材引張強度未満の変形応力を負荷して一定時間保持し、破断しなかった場合は、以後、さらに変形応力を増加させて一定時間保持する工程を、破断するまで順次行うことを特徴とする水素脆化特性評価方法が開示されている。

概要

ミクロ組織界面の剥離強度および剥離寿命に及ぼす水素の影響を評価することが可能な水素脆性評価装置および水素脆性評価方法ならびにそれに用いられる試験片を提供する。Y方向に延びる微小片持ち梁10が形成された試験片1の水素脆化特性を評価する装置100であって、試験片1は、微小片持ち梁10の固定端10aと自由端10bとの間を通り、かつ、Y方向に略垂直なミクロ組織界面1bを少なくとも1つ有し、微小片持ち梁10は、ミクロ組織界面1bのうちの1つより自由端10b側に、1つのミクロ組織界面1b側を向く係止面10cを有し、電解液槽2と、対極3と、外部電源4と、係止面10cに対して、Y方向と略平行な方向に荷重を負荷する探針5と、探針5の変位および荷重を測定する測定部6と、を備える、水素脆性評価装置。

目的

本発明は、上記の問題を解決し、ミクロ組織界面の剥離強度および剥離寿命に及ぼす水素の影響を評価することが可能な水素脆性評価装置および水素脆性評価方法ならびにそれに用いられる試験片を提供する

効果

実績

技術文献被引用数
0件
牽制数
0件

この技術が所属する分野

ライセンス契約や譲渡などの可能性がある特許掲載中! 開放特許随時追加・更新中 詳しくはこちら

請求項1

固定端から自由端に向かって一方向に延びる微小片持ち梁が形成された試験片水素脆化特性を評価する装置であって、前記試験片は、前記微小片持ち梁の前記固定端と前記自由端との間を通り、かつ、前記一方向に略垂直なミクロ組織界面を少なくとも1つ有し、前記微小片持ち梁は、前記ミクロ組織界面のうちの1つより自由端側に、前記1つのミクロ組織界面側を向く係止面を有し、前記微小片持ち梁を電解液に浸漬する電解液槽と、前記電解液に浸漬される対極と、前記試験片と前記対極との間に電位差を生じさせる外部電源と、前記係止面に対して、前記一方向と略平行な方向に荷重負荷する探針と、前記探針の変位および荷重を測定する測定部と、を備える、水素脆性評価装置

請求項2

前記微小片持ち梁が有する面と前記1つのミクロ組織界面との交線の少なくとも一部に沿って切欠きが形成されている、請求項1に記載の水素脆性評価装置。

請求項3

前記微小片持ち梁が有する面と前記1つのミクロ組織界面との交線が露出するように、前記微小片持ち梁が有する面上に強化膜が形成されている、請求項1または請求項2に記載の水素脆性評価装置。

請求項4

前記試験片に前記微小片持ち梁が複数形成され、各微小片持ち梁を通る前記1つのミクロ組織界面が同一である、請求項1から請求項3までのいずれかに記載の水素脆性評価装置。

請求項5

前記電解液槽が、底部に貫通孔を有し、前記貫通孔の裏面を囲繞するシール材を介して、前記試験片の表面の上に載せられ、前記微小片持ち梁を電解液に浸漬する、請求項1から請求項4までのいずれかに記載の水素脆性評価装置。

請求項6

前記試験片の温度を調整する温度調整部をさらに備える、請求項1から請求項5までのいずれかに記載の水素脆性評価装置。

請求項7

試験片の水素脆化特性を評価する方法であって、(a)固定端から自由端に向かって一方向に延びる微小片持ち梁を、前記試験片が有するミクロ組織界面のうちの少なくとも1つが前記固定端と前記自由端との間を通り、かつ、前記少なくとも1つの前記ミクロ組織界面が前記一方向に略垂直となるように形成する工程と、(b)前記微小片持ち梁の、前記ミクロ組織界面のうちの1つより自由端側に、前記1つのミクロ組織界面側を向く係止面を形成する工程と、(c)前記微小片持ち梁を電解液に浸漬する工程と、(d)前記試験片と、前記電解液に浸漬される対極との間に電位差を生じさせて、前記微小片持ち梁に電気化学的に水素を導入する工程と、(e)探針を用いて、前記係止面に対して、前記一方向と略平行な方向に荷重を負荷する工程と、(f)前記探針の変位および荷重を測定する工程と、を備える、水素脆性評価方法

請求項8

前記(a)の工程において、前記微小片持ち梁が有する面と前記1つのミクロ組織界面との交線の少なくとも一部に沿って切欠きを形成する、請求項7に記載の水素脆性評価方法。

請求項9

前記(a)の工程において、前記微小片持ち梁が有する面と前記1つのミクロ組織界面との交線が露出するように、前記微小片持ち梁が有する面上に強化膜を形成する、請求項7または請求項8に記載の水素脆性評価方法。

請求項10

前記(a)の工程において、複数の微小片持ち梁を、各微小片持ち梁を通る前記1つのミクロ組織界面が同一となるように形成する、請求項7から請求項9までのいずれかに記載の水素脆性評価方法。

請求項11

前記複数の微小片持ち梁のうちの一の微小片持ち梁について、前記(a)〜(f)の工程を経て測定された変位および荷重と、前記複数の微小片持ち梁のうちの他の微小片持ち梁について、前記(a)、(b)、(e)および(f)の工程によって測定された変位および荷重とを比較して、試験片の水素脆化特性を評価する、請求項10に記載の水素脆性評価方法。

請求項12

前記複数の微小片持ち梁のうちの一の微小片持ち梁について、前記(a)〜(f)の工程によって測定された変位および荷重と、前記複数の微小片持ち梁のうちの他の微小片持ち梁について、前記(a)〜(c)、(e)および(f)の工程によって測定された変位および荷重とを比較して、試験片の水素脆化特性を評価する、請求項10または請求項11に記載の水素脆性評価方法。

請求項13

前記探針の前記変位を制御することによって、試験片の水素脆化特性を評価する、請求項7から請求項12までのいずれかに記載の水素脆性評価方法。

請求項14

前記探針の前記荷重を制御することによって、試験片の水素脆化特性を評価する、請求項7から請求項12までのいずれかに記載の水素脆性評価方法。

請求項15

固定端から自由端に向かって一方向に延びる微小片持ち梁が形成された試験片であって、前記微小片持ち梁の前記固定端と前記自由端との間を通り、かつ、前記一方向に略垂直なミクロ組織界面を少なくとも1つ有し、前記微小片持ち梁は、前記ミクロ組織界面のうちの1つより自由端側に、前記1つのミクロ組織界面側を向く係止面を有する、試験片。

請求項16

前記微小片持ち梁が有する面と前記1つのミクロ組織界面との交線の少なくとも一部に沿って切欠きが形成されている、請求項15に記載の試験片。

請求項17

前記微小片持ち梁が有する面と前記1つのミクロ組織界面との交線が露出するように、前記微小片持ち梁が有する面上に強化膜が形成されている、請求項15または請求項16に記載の試験片。

請求項18

前記微小片持ち梁が複数形成され、各微小片持ち梁を通る前記1つのミクロ組織界面が同一である、請求項15から請求項17までのいずれかに記載の試験片。

技術分野

0001

本発明は、水素脆性評価装置および水素脆性評価方法ならびにそれに用いられる試験片に関する。

背景技術

0002

高強度鋼ニッケル合金またはチタン合金等の金属材料では、環境から侵入した水素により破壊が生じることが知られている(水素脆化)。特に、実用上は、水素侵入から一定時間経過した後に生じる水素脆化(遅れ破壊)が問題となっている。このときの破壊形態は、結晶粒界での破壊となる場合がある。また、介在物などの第2相母相との境界異相界面)が破壊起点になる場合も報告されている。

0003

したがって、耐水素脆化性を向上させるには、個々の結晶粒界または異相界面の、剥離強度および剥離が生じるまでの経過時間(剥離寿命)に及ぼす水素の影響を評価する技術が必要とされている。なお、以下の説明において、結晶粒界(双晶界面等を含む。)および異相界面等の金属組織内に現れる境界面を総称して、「ミクロ組織界面」ということがある。

0004

例えば、特許文献1には、引張試験片張力を加えるステップと、電解質を含む水溶液の中に前記張力を加えた引張試験片を対極と共に配置して、該引張試験片に負の電位を付与するステップと、前記水溶液の電解にて発生する水素により、前記引張試験片が水素脆化するのを待つステップと、を含むことを特徴とする耐遅れ破壊性の評価方法が開示されている。

0005

また、特許文献2には、水素イオンを含む電解溶液の満たされた電解槽と、電流発生手段と、定荷重発生手段とを有する装置を用い、長手方向に平行部を有する試験片を電解槽に貫通させ、該試験片の電解槽外にはみ出した両端部を連結治具を介して定荷重発生手段に固定し、電流発生手段により電気化学的に水素チャージをしながら、定荷重発生手段により引張応力負荷して、該試験片の破断応力を測定することを特徴とする薄鋼板の耐水素脆化特性評価方法が開示されている。

0006

さらに、特許文献3には、pHが3以上の溶液の満たされた溶液槽と、定荷重発生手段とを有する装置を用い、長手方向に平行部を有する試験片を溶液槽に貫通させ、該試験片の溶液槽外にはみ出した両端部を連結治具を介して定荷重発生手段に固定し、定荷重発生手段により引張応力を負荷して、該試験片が破断する破断応力を測定することを特徴とする薄鋼板の耐水素脆化特性評価方法が開示されている。

0007

そして、特許文献4には、電解液を保持する電解槽と、鋼材に負荷する変形応力を発生する定荷重発生手段と、鋼材に水素チャージを行うための電流を発生する電流発生手段からなる実験装置を用いて、定荷重発生手段に設置した鋼材に変形応力を負荷しない状態で、電解液中で電流発生手段により少なくとも鋼材中水素量が一定になるまで電気化学的に水素チャージを行った後、水素チャージを続けながら定荷重発生手段により試験材引張強度未満の変形応力を負荷して一定時間保持し、破断しなかった場合は、以後、さらに変形応力を増加させて一定時間保持する工程を、破断するまで順次行うことを特徴とする水素脆化特性評価方法が開示されている。

先行技術

0008

特開2004−309197号公報
特開2013−124998号公報
特開2013−124999号公報
特開2016−57163号公報

発明が解決しようとする課題

0009

しかしながら、特許文献1〜4に記載の方法は、いずれもマクロスケールでの引張試験であるため、試験片全体での平均的な情報しか得られず、個々のミクロ組織界面における剥離強度および剥離寿命を評価することはできない。

0010

本発明は、上記の問題を解決し、ミクロ組織界面の剥離強度および剥離寿命に及ぼす水素の影響を評価することが可能な水素脆性評価装置および水素脆性評価方法ならびにそれに用いられる試験片を提供することを目的とする。

課題を解決するための手段

0011

本発明は、上記の問題を解決するためになされたものであり、下記の水素脆性評価装置および水素脆性評価方法ならびにそれに用いられる試験片を要旨とする。

0012

(1)固定端から自由端に向かって一方向に延びる微小片持ち梁が形成された試験片の水素脆化特性を評価する装置であって、
前記試験片は、前記微小片持ち梁の前記固定端と前記自由端との間を通り、かつ、前記一方向に略垂直なミクロ組織界面を少なくとも1つ有し、
前記微小片持ち梁は、前記ミクロ組織界面のうちの1つより自由端側に、前記1つのミクロ組織界面側を向く係止面を有し、
前記微小片持ち梁を電解液に浸漬する電解液槽と、
前記電解液に浸漬される対極と、
前記試験片と前記対極との間に電位差を生じさせる外部電源と、
前記係止面に対して、前記一方向と略平行な方向に荷重を負荷する探針と、
前記探針の変位および荷重を測定する測定部と、を備える、
水素脆性評価装置。

0013

(2)前記微小片持ち梁が有する面と前記1つのミクロ組織界面との交線の少なくとも一部に沿って切欠きが形成されている、
上記(1)に記載の水素脆性評価装置。

0014

(3)前記微小片持ち梁が有する面と前記1つのミクロ組織界面との交線が露出するように、前記微小片持ち梁が有する面上に強化膜が形成されている、
上記(1)または(2)に記載の水素脆性評価装置。

0015

(4)前記試験片に前記微小片持ち梁が複数形成され、
各微小片持ち梁を通る前記1つのミクロ組織界面が同一である、
上記(1)から(3)までのいずれかに記載の水素脆性評価装置。

0016

(5)前記電解液槽が、底部に貫通孔を有し、前記貫通孔の裏面を囲繞するシール材を介して、前記試験片の表面の上に載せられ、前記微小片持ち梁を電解液に浸漬する、
上記(1)から(4)までのいずれかに記載の水素脆性評価装置。

0017

(6)前記試験片の温度を調整する温度調整部をさらに備える、
上記(1)から(5)までのいずれかに記載の水素脆性評価装置。

0018

(7)試験片の水素脆化特性を評価する方法であって、
(a)固定端から自由端に向かって一方向に延びる微小片持ち梁を、前記試験片が有するミクロ組織界面のうちの少なくとも1つが前記固定端と前記自由端との間を通り、かつ、前記少なくとも1つの前記ミクロ組織界面が前記一方向に略垂直となるように形成する工程と、
(b)前記微小片持ち梁の、前記ミクロ組織界面のうちの1つより自由端側に、前記1つのミクロ組織界面側を向く係止面を形成する工程と、
(c)前記微小片持ち梁を電解液に浸漬する工程と、
(d)前記試験片と、前記電解液に浸漬される対極との間に電位差を生じさせて、前記微小片持ち梁に電気化学的に水素を導入する工程と、
(e)探針を用いて、前記係止面に対して、前記一方向と略平行な方向に荷重を負荷する工程と、
(f)前記探針の変位および荷重を測定する工程と、を備える、
水素脆性評価方法。

0019

(8)前記(a)の工程において、前記微小片持ち梁が有する面と前記1つのミクロ組織界面との交線の少なくとも一部に沿って切欠きを形成する、
上記(7)に記載の水素脆性評価方法。

0020

(9)前記(a)の工程において、前記微小片持ち梁が有する面と前記1つのミクロ組織界面との交線が露出するように、前記微小片持ち梁が有する面上に強化膜を形成する、
上記(7)または(8)に記載の水素脆性評価方法。

0021

(10)前記(a)の工程において、複数の微小片持ち梁を、各微小片持ち梁を通る前記1つのミクロ組織界面が同一となるように形成する、
上記(7)から(9)までのいずれかに記載の水素脆性評価方法。

0022

(11)前記複数の微小片持ち梁のうちの一の微小片持ち梁について、前記(a)〜(f)の工程を経て測定された変位および荷重と、
前記複数の微小片持ち梁のうちの他の微小片持ち梁について、前記(a)、(b)、(e)および(f)の工程によって測定された変位および荷重とを比較して、
試験片の水素脆化特性を評価する、
上記(10)に記載の水素脆性評価方法。

0023

(12)前記複数の微小片持ち梁のうちの一の微小片持ち梁について、前記(a)〜(f)の工程によって測定された変位および荷重と、
前記複数の微小片持ち梁のうちの他の微小片持ち梁について、前記(a)〜(c)、(e)および(f)の工程によって測定された変位および荷重とを比較して、
試験片の水素脆化特性を評価する、
上記(10)または(11)に記載の水素脆性評価方法。

0024

(13)前記探針の前記変位を制御することによって、試験片の水素脆化特性を評価する、上記(7)から(12)までのいずれかに記載の水素脆性評価方法。

0025

(14)前記探針の前記荷重を制御することによって、試験片の水素脆化特性を評価する、上記(7)から(12)までのいずれかに記載の水素脆性評価方法。

0026

(15)固定端から自由端に向かって一方向に延びる微小片持ち梁が形成された試験片であって、
前記微小片持ち梁の前記固定端と前記自由端との間を通り、かつ、前記一方向に略垂直なミクロ組織界面を少なくとも1つ有し、
前記微小片持ち梁は、前記ミクロ組織界面のうちの1つより自由端側に、前記1つのミクロ組織界面側を向く係止面を有する、
試験片。

0027

(16)前記微小片持ち梁が有する面と前記1つのミクロ組織界面との交線の少なくとも一部に沿って切欠きが形成されている、
上記(15)に記載の試験片。

0028

(17)前記微小片持ち梁が有する面と前記1つのミクロ組織界面との交線が露出するように、前記微小片持ち梁が有する面上に強化膜が形成されている、
上記(15)または(16)に記載の試験片。

0029

(18)前記微小片持ち梁が複数形成され、
各微小片持ち梁を通る前記1つのミクロ組織界面が同一である、
上記(15)から(17)までのいずれかに記載の試験片。

発明の効果

0030

本発明によれば、結晶粒界または異相界面等の境界面における剥離強度および剥離寿命に及ぼす水素の影響を評価することができる。

図面の簡単な説明

0031

本発明の一実施形態に係る水素脆性評価装置の一例を模式的に示した図である。
本発明の一実施形態に係る微小片持ち梁および探針を模式的に示した図である。
切欠きの形状の一例を模式的に示した図である。
探針の形状の一例を模式的に示した図である。
荷重と変位との関係を模式的に示した図である。
荷重および変位の時間変化を示す図である。
実施例において、試験片の表面に加工した微小片持ち梁の寸法を示した図である。
水素導入下で測定されたNi−Cr合金およびSUS316L鋼の荷重と剥離時間との関係を示した図である。

0032

添付した図面を参照して、本発明の一実施形態に係る水素脆性評価装置およびそれを用いた評価方法について、詳細に説明する。

0033

図1は、本発明の一実施形態に係る水素脆性評価装置100の一例を模式的に示した図である。また、図2に微小片持ち梁10の形状を模式的に示す。本発明の一実施形態に係る水素脆性評価装置100は、固定端10aから自由端10bに向かって一方向(図2中におけるY方向)に延びる微小片持ち梁10が形成された試験片1の水素脆化特性を評価する装置である。試験片1の材質については特に制限は設けず、例えば、鋼材、合金材等を用いることができる。

0034

図1に示すように、水素脆性評価装置100は、電解液槽2と対極3と外部電源4と探針5と測定部6とを備える。すなわち、本発明の一実施形態に係る評価方法では、上述の微小片持ち梁10を形成し(工程a)、微小片持ち梁10に係止面10cを形成した後(工程b)、微小片持ち梁10を電解液槽2内の電解液20に浸漬し(工程c)、外部電源4を用いて試験片1と対極3との間に電位差を生じさせて、微小片持ち梁10に電気化学的に水素を導入した状態において(工程d)、係止面10cに対して、探針5でY方向と略平行な方向に荷重を負荷し(工程e)、探針5の変位および荷重を測定部6によって測定する(工程f)ことによって、試験片の水素脆化特性を評価することが可能である。各構成要素について以下に詳しく説明する。

0035

図2に示すように、微小片持ち梁10は、試験片1が有するミクロ組織界面1bが、固定端10aと自由端10bとの間を1つ通り、かつ、ミクロ組織界面1bがY方向に略垂直となるように形成されている。試験片1が有するミクロ組織界面1bは、固定端10aと自由端10bとの間に複数通っていてもよい。

0036

ここで、本発明における「ミクロ組織界面」とは、鋼材または合金材等の金属組織内に現れる不連続面を意味し、例えば、結晶粒界(双晶界面を含む。)、異相界面等が含まれる。

0037

微小片持ち梁10を形成する方法について特に制限はないが、例えば、レーザー加工集束イオンビーム(FIB)加工を用いることができる。また、微小片持ち梁10の断面形状についても、特に制限は設けないが、上記の方法を用いて形成する場合、三角形または五角形にすると、加工時間を短縮できるため好ましい。

0038

微小片持ち梁10の寸法についても制限は設けず、試験片1の結晶粒径または介在物等の第2相の大きさに応じた寸法とすることが好ましい。

0039

そして、微小片持ち梁10は、ミクロ組織界面1bより自由端10b側に、ミクロ組織界面1b側を向く係止面10cを有する。係止面10cの形状については特に制限されず、図2に示す構成においては、微小片持ち梁10の、ミクロ組織界面1bより自由端10b側に孔が形成され、当該孔の内周面のうち、ミクロ組織界面1b側を向く面が係止面10cとなる。図2に示す構成では、微小片持ち梁10に孔が形成されているがこれに限定されず、例えば、微小片持ち梁10の自由端10b側がフック形状になっていてもよい。

0040

また、図2に示すように、引張試験の際にミクロ組織界面1bでの剥離が生じやすくなるように、微小片持ち梁10が有する2つの側面10dと1つのミクロ組織界面1bとの交線に沿って切欠き10eが形成されていてもよい。なお、図2に示す構成では、切欠き10eは、側面10dに形成されているが、微小片持ち梁10が有する面と1つのミクロ組織界面1bとの交線の少なくとも一部に沿って形成されていればよい。

0041

切欠き10eの形状について特に制限は設けないが、図3に示すような矩形(a)には角部が2つ存在しミクロ組織界面1b以外の位置に応力が集中してしまうという問題がある。そのため、ミクロ組織界面1bの位置に一点だけ応力の集中部を持つU字形状(b)またはV字形状(c)とすることが好ましい。

0042

さらに、引張試験の際にミクロ組織界面1b以外の部位で剥離が生じるのを防止するために、微小片持ち梁10が有する面と1つのミクロ組織界面1bとの交線が露出するように、微小片持ち梁10が有する面上に強化膜が形成されていてもよい。

0043

強化膜を形成する方法について特に制限はないが、例えば、以下に示すようなFIBを用いた方法を採用することができる。まず、強化膜の原料となる化合物ガスを微小片持ち梁10が有する面上に導入する。その状態で、FIBのイオンビームを面上に照射すると面上から二次電子が発生し、化合物ガスを固体成分と気体成分に分解する。その後、分解した固体成分は、イオンビームの照射領域に堆積する。

0044

なお、上記の方法を用いる場合、強化膜を金属にすると、電解液中で試験片と金属強化膜との間で腐食ガルバニック腐食)が生じるため好ましくない。そのため、強化膜を形成する場合には、絶縁体の膜を用いる必要があり、例えば、シリコン酸化物を用いることが好ましい。その場合には、化合物ガスとして、(HSiCH3O)4またはC6H24O6Si6を用いることとなる。

0045

また、蒸着によって強化膜を形成してもよい。その場合には、蒸着によって微小片持ち梁10が有する面上の全体に強化膜を形成した後、レーザー加工、FIB加工等を施すことによって、微小片持ち梁10が有する面と1つのミクロ組織界面1bとの交線を露出させることができる。

0046

電解液槽2は、微小片持ち梁10を電解液20に浸漬し、微小片持ち梁10に電気化学的に水素を導入するためのものである。電解液槽2の構造について特に制限はないが、図1に示すように、底部に貫通孔2aを有し、貫通孔2aの裏面を囲繞するシール材2bを介して、試験片1の表面1aの上に載せられ、微小片持ち梁10を電解液20に浸漬する構成とすることができる。

0047

対極3は、電解液20に浸漬されている。そして、外部電源4を用いて試験片1と対極3との間に電位差を生じさせ、試験片1を対極3に対して負電位にすることによって、微小片持ち梁10に電気化学的に水素を導入する。対極3の材質について特に制限はないが、例えば白金を用いることができる。

0048

図1に示すように、必要に応じて、参照極7を対極3とともに電解液20に浸漬させてもよい。対極3のみでは電流制御でしか微小片持ち梁10に水素を導入できないが、参照極7を用いることによって、電位制御でも水素を導入することが可能となる。

0049

試験片1、対極3および参照極7はそれぞれ導線40を介して外部電源4に接続されている。水素の導入を電位制御で行う場合には、外部電源4にポテンショスタットを用いる。一方、水素の導入を電流制御で行う場合には、外部電源4にガルバノスタットを用い、参照極7は省略する。

0050

そして、探針5を用いて微小片持ち梁10に荷重を負荷することによって、引張試験を実施する。ミクロ組織界面1bにおける剥離強度および剥離寿命を評価することを目的としているため、微小片持ち梁10の係止面10cに対して、Y方向と略平行な方向に荷重を負荷する。これにより、ミクロ組織界面1bに圧縮応力およびせん断応力が付与されるのを極力制限しつつ、引張応力が作用する微小引張試験を実施することが可能となる。そのため、探針5は図示しない駆動装置によってX方向、Y方向およびZ方向への移動が可能な構造となっている。

0051

探針5の先端形状について特に制限はないが、例えば、図4に示すように先端が円柱状の探針(a)、開き角が60°以下の円錐形状の探針(b)、稜線の1つがZ方向と略平行な三角錐形状の探針(c)、または先端が六角柱状の探針(d)を用いることができる。また、探針5の材質についても特に制限はないが、引張試験の際にたわんだり屈曲したりしないような硬い材質であることが好ましく、例えば、ダイヤモンド製またはセラミックス製の探針を用いることができる。

0052

また、探針5が微小片持ち梁10の係止面10cの位置を探し出す機能を有する構成を備えていてもよい。具体的には、Z方向の荷重を一定にしたまま、探針5で微小片持ち梁10の面上を走査し、Z方向の位置を記録することで、表面の凹凸像を取得できる。そして、取得された凹凸像より、精確に係止面10cの位置を検出することが可能になる。上記の構成を実現するためには、図4(e)に示すように、探針5の先端が錐状であることが好ましい。

0053

引張試験の際の探針5の変位および荷重は、測定部6によって測定される。そして、得られた荷重−変位曲線に基づき、ミクロ組織界面1bの剥離強度および剥離寿命に及ぼす水素の影響を評価する。

0054

図5は、測定される荷重−変位関係を模式的に示す図であり、図6は、荷重および変位の時間変化を示す図である。ミクロ組織界面1bの剥離強度を評価する場合、引張試験は変位制御を採用する。即ち、図5に示すように荷重を測定しながら所定の速度で探針を変位させる。ミクロ組織界面1bが剥離すると荷重が低下するため、破断荷重Pcまたは変位ΔLから、水素環境中のミクロ組織界面1bの剥離強度を評価することができる。

0055

一方、ミクロ組織界面1bの剥離寿命を評価する場合、引張試験は荷重制御を採用する。即ち、図6に示すように一定値の荷重を負荷した状態で圧子の変位を測定し、変位に急激または不連続な増加が生じた時点で、ミクロ組織界面で剥離が発生したと判断することができる。このように、荷重を負荷してから剥離が生じるまでの経過時間Δtから、水素環境中のミクロ組織界面1bの剥離寿命を評価することができる。

0056

なお、本発明の一実施形態に係る装置は、試験片1の温度を調整する図示しない温度調整部をさらに備えていてもよい。温度調整部を備えることによって、全ての実験において温度を同一として、実験条件を揃えたり、または、温度を変えて種々の実験を繰り返すことによって、ミクロ組織界面1bの剥離強度および剥離寿命に及ぼす温度の影響を評価したりすることが可能となる。

0057

試験片1の表面1aには、微小片持ち梁10が複数形成されていてもよい。複数の微小片持ち梁10について上記の引張試験を実施することによって、例えば、同一の実験を複数回実施した場合における結果のばらつきを調査して分析精度の検証を行ったり、または、異なる環境下での試験結果を比較することで、水素の影響をより詳細に評価したりすることが可能となる。複数の微小片持ち梁10を形成する場合には、実験条件を統一するため、各微小片持ち梁10を通るミクロ組織界面1bが同一の境界面となるようにすることが好ましい。

0058

例えば、上記のように複数の微小片持ち梁を形成した場合においては、そのうちの1つの微小片持ち梁については、電解液に浸漬し水素を導入した状態(上記の工程a〜fを経た状態)で引張試験を実施し、他の微小片持ち梁については、大気中(上記の工程a、b、eおよびfを経た状態)または電解液に浸漬するだけで水素を導入しない状態(上記の工程a〜c、eおよびfを経た状態)で引張試験を実施し、それぞれの試験で測定された変位および荷重を比較することによって試験片の水素脆化特性をより詳細に評価することが可能となる。

0059

以下、実施例によって本発明をより具体的に説明するが、本発明はこれらの実施例に限定されるものではない。

0060

表1の化学組成(質量%)と引張強度とを有するNi−Cr合金およびSUS316L鋼を試験材として、FIB加工により微小片持ち梁を作製した。そして、Ni−Cr合金はランダム粒界に、SUS316L鋼は双晶界面について、剥離強度に及ぼす水素の影響を評価した。また、微小片持ち梁は、同じミクロ組織界面(ランダム粒界、双晶界面)に複数個用意した。微小片持ち梁の寸法を図7に示す。そして、ミクロ組織界面より自由端側に、円形の孔を設けた。また、微小片持ち梁の断面形状は五角形とし、ミクロ組織界面にはU字状の切欠きを付与した。

0061

0062

探針には、稜線の1つがZ方向と略平行なダイヤモンド製の三角錐探針を用いた。そして三角錐探針で微小片持ち梁の表面を走査し、円形の穴の位置を探し出した。探針の向きは、引張試験の際にZ方向と略平行な稜線が微小片持ち梁の係止面に接触するように調整した。探針は最大5μmまで0.17μm/sの速度で水平移動させ、この間の水平方向の変位と荷重とを記録した。測定は大気中と陰極水素チャージ中とで実施し、試験温度は室温とした。

0063

試験片への水素の導入は電解液に白金の対極を浸漬することで行った。電解液にはホウ酸緩衝液(pH:8.6)を用い、触媒毒チオシアン酸アンモニウムを3g/L添加した。電流密度は5.1A/m2とし、電流制御で水素を導入した。また、試験片全体に均一に水素をチャージするため、引張試験の前に1800sの予備水素チャージを実施した。

0064

表2に測定された破断荷重を示す。SUS316L鋼の破断荷重は大気中と水素中とでほぼ変わらず、破断荷重比((水素中の破断荷重)÷(大気中の破断荷重))は0.957となった。一方、Ni−Cr合金は、水素により破断荷重が顕著に低下し、破断荷重比は0.252となった。これらの結果よりSUS316L鋼の双晶界面の剥離強度は水素により低下せず、一方、Ni−Cr合金のランダム粒界の剥離強度は水素により大きく低下することが示唆された。本発明により、水素環境下のミクロ組織界面の剥離強度を評価可能であることが確認された。

0065

0066

実施例1と同様に、表1の化学組成(質量%)と引張強度とを有するNi−Cr合金およびSUS316L鋼を試験材として、図7に示す形状を有する微小片持ち梁を作製した。また、探針についても実施例1と同一のものを用いた。そして、探針のZ方向と略平行な稜線が微小片持ち梁の係止面に接触するように調整し、微小引張試験片を引張り弾性応力を負荷し保持した。

0067

弾性応力の値は、弾性限界の30%、60%、または90%とし、保持時間は最長で7200sとした。応力を保持している間、探針の水平方向の変位を逐次記録した。測定は大気中および水素環境中において、室温で行った。水素環境中の測定では、陰極水素チャージ開始後、1800s経過した後に微小引張試験片に応力を負荷した。試験片への水素の導入は電解液に白金の対極を浸漬することで行った。電解液にはホウ酸緩衝液(pH:8.6)を用い、触媒毒のチオシアン酸アンモニウムを3g/L添加した。電流密度は5.1A/m2とし、電流制御で水素を導入した。

0068

図8に、水素環境中での剥離寿命を示す。SUS316Lの双晶界面は、いずれの弾性応力においても、応力負荷から7200s以内に剥離は認められなかった。一方、Ni−Cr合金のランダム粒界は、弾性限界の60%および90%の応力において7200s以内に剥離が認められた。

実施例

0069

また、図示してはいないが、大気中では、SUS316Lの双晶界面もNi−Cr合金のランダム粒界も、7200s以内に剥離は認められなかった。これより、SUS316Lの双晶界面は、遅れ破壊への寄与は低く、Ni−Cr合金のランダム粒界は遅れ破壊への寄与が高いことが判明した。本発明により、個々のミクロ組織界面に対し、水素環境下での剥離寿命を評価できることが確認された。

0070

本発明によれば、結晶粒界または異相界面等の境界面における剥離強度および剥離寿命に及ぼす水素の影響を評価することができる。

0071

1.試験片
1a.表面
1b.ミクロ組織界面
2.電解液槽
2a.貫通孔
2b.シール材
3.対極
4.外部電源
5.探針
6.測定部
7.参照極
10.微小片持ち梁
10a.固定端
10b.自由端
10c.係止面
10d.側面
10e.切欠き
20.電解液
40.導線
100.水素脆性評価装置

ページトップへ

この技術を出願した法人

この技術を発明した人物

ページトップへ

関連する挑戦したい社会課題

関連する公募課題

ページトップへ

おススメ サービス

おススメ astavisionコンテンツ

新着 最近 公開された関連が強い技術

この 技術と関連性が強い人物

関連性が強い人物一覧

この 技術と関連する社会課題

関連する挑戦したい社会課題一覧

この 技術と関連する公募課題

関連する公募課題一覧

astavision 新着記事

サイト情報について

本サービスは、国が公開している情報(公開特許公報、特許整理標準化データ等)を元に構成されています。出典元のデータには一部間違いやノイズがあり、情報の正確さについては保証致しかねます。また一時的に、各データの収録範囲や更新周期によって、一部の情報が正しく表示されないことがございます。当サイトの情報を元にした諸問題、不利益等について当方は何ら責任を負いかねることを予めご承知おきのほど宜しくお願い申し上げます。

主たる情報の出典

特許情報…特許整理標準化データ(XML編)、公開特許公報、特許公報、審決公報、Patent Map Guidance System データ