図面 (/)

この項目の情報は公開日時点(2017年12月21日)のものです。
また、この項目は機械的に抽出しているため、正しく解析できていない場合があります

図面 (20)

課題

抗腫瘍効果と安全性面に優れる、優れた治療効果を有する抗腫瘍薬の提供。

解決手段

次式で示される抗腫瘍性化合物抗ヒト上皮増殖因子受容体3抗体とを、ぺプチド構造を有するリンカーを介して結合させた抗体−薬物コンジュゲート

概要

背景

癌細胞表面に発現し、かつ細胞内在化できる抗原に結合する抗体(該抗原に結合した該抗体も細胞に内在化できる)に、細胞毒性を有する薬物を結合させた抗体−薬物コンジュゲート(Antibody-Drug Conjugate;ADC)は、癌細胞に選択的に薬物を送達できることによって、癌細胞内に薬物を蓄積させ、癌細胞を死滅させることが期待できる(非特許文献1〜3参照)。ADCとして例えば、抗CD33抗体にカリチアマイシンを結合させたMylotarg(登録商標ゲムツズマブオゾガマイシン)が急性骨髄性白血病治療薬として認可さ
れている。また、抗CD30抗体オーリスタチンEを結合させたAdcetris(登録商標;ブレツキシマブベドティン)がホジキンリンパ腫未分化大細胞リンパ腫の治療薬として最近認可された(非特許文献4参照)。これまでに認可されたADCに含有される薬物は、DNA又はチューブリンを標的としている。

抗腫瘍性低分子化合物としてトポイソメラーゼIを阻害して抗腫瘍作用を発現する化合物であるカンプトテシン誘導体が知られている。その中で下式

で示される抗腫瘍性化合物(エキサテカン化学名:(1S,9S)-1-アミノ-9-エチル-5-フルオロ-2,3-ジヒドロ-9-ヒドロキシ-4-メチル-1H,12H-ベンゾ[de]ピラノ[3',4':6,7]インドリジノ[1,2-b]キノリン-10,13(9H,15H)-ジオン)は、水溶性のカンプトテシン誘導体である(特許文献1、2)。この化合物は、現在臨床で用いられているイリノテカンとは異なり、抗腫瘍効果の発現には酵素による活性化を必要としない。また、イリノテカンの薬効本体であるSN-38や、同じく臨床で用いられているトポテカンよりもトポイソメラーゼI
阻害活性が強く、in vitroで種々の癌細胞に対して、より強い殺細胞活性を有している。特にP-glycoproteinの発現によってSN-38等に耐性を示す癌細胞に対しても効果を示した
。また、マウスヒト腫瘍皮下移植モデルでも強い抗腫瘍効果を示し、臨床試験が行われたものの、上市には至っていない(非特許文献5〜10参照)。エキサテカンがADCとし
て有効に作用するかについては明らかではなかった。

DE-310は、生分解性カルボキシメチルデキストランポリアルコールポリマーにエキサテカンを、GGFGペプチドスペーサーを介して結合させた複合体である(特許文献3)。エキサテカンを高分子プロドラッグ化することによって、高い血中滞留性を保持させ、さら
腫瘍新生血管透過性亢進腫瘍組織滞留性を利用して、受動的腫瘍部位への指向性を高めたものである。DE-310は、酵素によるペプチドスペーサーの切断によって、活性本体であるエキサテカン、及びグリシンがアミノ基に結合しているエキサテカンが持続的に遊離され、その結果薬物動態が改善される。非臨床試験における種々の腫瘍評価モデルにおいて、DE-310は、ここに含まれるエキサテカンの総量がエキサテカン単剤投与時よりも減少しているのにも拘らず、単剤の投与時よりもより高い有効性を示した。DE-310に関しては臨床試験が実施され、有効例も確認され、活性本体が正常組織よりも腫瘍に集積することが確認されたとの報告がある一方、腫瘍へのDE-310及び活性本体の集積は正常組織への集積と大差なく、ヒトでは受動的なターゲティングは見られなかったとの報告もある(非特許文献11〜14参照)。結果としてDE-310も上市には至らず、エキサテカンがこの様なターゲティングを指向した薬物として有効に機能するかについては明らかではなかった。

DE-310の関連化合物として、-NH-(CH2)4-C(=O)-で示される構造部分を-GGFG-スペーサ
ーとエキサテカンの間に挿入し、-GGFG-NH-(CH2)4-C(=O)-をスペーサー構造とする複合体も知られているが(特許文献4)、同複合体の抗腫瘍効果については全く知られていない。

ヒト上皮増殖因子受容体3(HER3,ErbB3としても知られる)は、受容体蛋白質チロシンキナーゼであり、HER1(EGFR、上皮増殖因子受容体としても知られる)、HER2及びHER4(非特許文献15〜17参照)とともに受容体蛋白質チロシンキナーゼのEGFRサブファミリーに属する。典型的な上皮増殖因子受容体と同様に、膜貫通受容体HER3は、細胞外リガンド結合ドメイン(ECD)、ECD内の二量体化ドメイン膜貫通ドメイン、及びカルボキシル末端リン酸化ドメインからなる。これらのドメインに加えてHER1、HER2、HER4は細胞内蛋白質チロシンキナーゼドメイン(TKD)を保持するが、HER3はこのドメインを欠損しており自己リン酸化能を持たない。
リガンドであるヘレグリン(Heregulin,HRG)は、HER3の細胞外ドメインに結合し、他のヒト上皮増殖因子受容体(HER)ファミリーメンバーとの二量体化と細胞内ドメインのリン酸転移を促進することにより、受容体を介したシグナル経路を活性化する。HERファミリメンバーとの二量体形成は、HER3のシグナルポテンシャルを増大させ、シグナルの多様化のみならずシグナルの増幅のための手段となる。例えば、HER2/HER3ヘテロダイマーは、HERファミリーのうちで最も重要な増殖シグナルの一つを誘導する。HER3は乳癌胃腸癌及び膵臓癌等、いくつかの種類の癌において過剰発現している。興味深いことに、HER2/HER3の発現と非浸潤性段階から浸潤性段階への進行との間に相関が示されている(非特許文献18〜20参照)。したがって、HER3を介したシグナルを阻害する物質が望まれている。抗HER3抗体及びその免疫コンジュゲートが、特許文献5〜10等でそれぞれ報告されている。

概要

抗腫瘍効果と安全性面に優れる、優れた治療効果を有する抗腫瘍薬の提供。次式で示される抗腫瘍性化合物と抗ヒト上皮増殖因子受容体3抗体とを、ぺプチド構造を有するリンカーを介して結合させた抗体−薬物コンジュゲート。なし

目的

本発明は、抗腫瘍効果と安全性面に優れる、優れた治療効果を有する抗腫瘍薬を獲得して提供する

効果

実績

技術文献被引用数
0件
牽制数
0件

この技術が所属する分野

(分野番号表示ON)※整理標準化データをもとに当社作成

ライセンス契約や譲渡などの可能性がある特許掲載中! 開放特許随時追加・更新中 詳しくはこちら

請求項1

次式のいずれかで示されるリンカー及び薬物と、抗HER3抗体と、が結合した抗体−薬物コンジュゲート。-(Succinimid-3-yl-N)-CH2CH2CH2CH2CH2-C(=O)-GGFG-NH-CH2CH2CH2-C(=O)-(NH-DX)、-(Succinimid-3-yl-N)-CH2CH2CH2CH2CH2-C(=O)-DGGFG-NH-CH2CH2CH2-C(=O)-(NH-DX)、-(Succinimid-3-yl-N)-CH2CH2-C(=O)-NH-CH2CH2O-CH2CH2O-CH2CH2-C(=O)-GGFG-NH-CH2CH2CH2-C(=O)-(NH-DX)、及び-(Succinimid-3-yl-N)-CH2CH2CH2CH2CH2-C(=O)-DGGFG-(NH-DX)。(式中、-(Succinimid-3-yl-N)-は次式:で示される構造であり、このものの3位で抗HER3抗体とチオエーテル結合によって結合し、1位の窒素原子上でこれを含むリンカー構造内のメチレン基と結合し、-(NH-DX)は次式:で示される、1位のアミノ基の窒素原子が結合部位となっている基を示す。)

請求項2

U1−49、U1−53、U1−59、U1−7又はU1−9のCDRH1乃至H3及びCDRL1乃至L3を重鎖及び軽鎖にそれぞれが含有する、請求項1に記載の抗体−薬物コンジュゲート。

請求項3

U1−49、U1−53、U1−59、U1−7又はU1−9の重鎖可変領域及び軽鎖可変領域を重鎖及び軽鎖にそれぞれ含有する、請求項1に記載の抗体−薬物コンジュゲート。

請求項4

列番号42及び44、54及び56、70及び72、92及び94、若しくは、96及び98で示されるアミノ酸配列を重鎖及び軽鎖にそれぞれ含有する、請求項1に記載の抗体−薬物コンジュゲート。

請求項5

配列番号583及び584で示されるアミノ酸配列を重鎖及び軽鎖にそれぞれ含有する、請求項1に記載の抗体−薬物コンジュゲート。

請求項6

薬物−リンカー構造の1抗体あたりの平均結合数が2から8個の範囲である請求項1〜5のいずれか一項に記載の抗体−薬物コンジュゲート。

請求項7

薬物−リンカー構造の1抗体あたりの平均結合数が3から8個の範囲である請求項1〜5のいずれか一項に記載の抗体−薬物コンジュゲート。

請求項8

請求項1〜7のいずれか一項に記載の抗体−薬物コンジュゲート、その塩、又はそれらの水和物を含有する医薬

請求項9

請求項1〜7のいずれか一項に記載の抗体−薬物コンジュゲート、その塩、又はそれらの水和物を含有する抗腫瘍薬及び/又は抗癌薬

請求項10

請求項11

請求項1〜7のいずれか一項に記載の抗体−薬物コンジュゲート、その塩、又はそれらの水和物を活性成分とし、薬学的に許容される製剤成分とを含有する医薬組成物

請求項12

肺癌、腎癌、尿路上皮癌、大腸癌、前立腺癌、多形神経膠芽腫、卵巣癌、膵癌、乳癌、メラノーマ、肝癌、膀胱癌、胃癌、胃腸間質腫瘍、子宮頸癌、頭頸部癌、食道癌、扁平上皮癌、腹膜癌、多形グリア芽細胞腫、肝臓癌、肝細胞癌、結腸癌、直腸癌、結腸直腸癌、子宮内膜癌、子宮癌、唾液腺癌、腎臓癌、外陰部癌、甲状腺癌、肝癌腫、肛門癌腫、又は陰茎癌に適用するための請求項11記載の医薬組成物。

技術分野

0001

本発明は、抗HER3抗体と抗腫瘍性薬物とをリンカー構造部分を介して結合させた、抗腫瘍薬として有用な抗体−薬物コンジュゲートに関する。

背景技術

0002

癌細胞表面に発現し、かつ細胞内在化できる抗原に結合する抗体(該抗原に結合した該抗体も細胞に内在化できる)に、細胞毒性を有する薬物を結合させた抗体−薬物コンジュゲート(Antibody-Drug Conjugate;ADC)は、癌細胞に選択的に薬物を送達できることによって、癌細胞内に薬物を蓄積させ、癌細胞を死滅させることが期待できる(非特許文献1〜3参照)。ADCとして例えば、抗CD33抗体にカリチアマイシンを結合させたMylotarg(登録商標ゲムツズマブオゾガマイシン)が急性骨髄性白血病治療薬として認可さ
れている。また、抗CD30抗体オーリスタチンEを結合させたAdcetris(登録商標;ブレツキシマブベドティン)がホジキンリンパ腫未分化大細胞リンパ腫の治療薬として最近認可された(非特許文献4参照)。これまでに認可されたADCに含有される薬物は、DNA又はチューブリンを標的としている。

0003

抗腫瘍性の低分子化合物としてトポイソメラーゼIを阻害して抗腫瘍作用を発現する化合物であるカンプトテシン誘導体が知られている。その中で下式

0004

0005

で示される抗腫瘍性化合物(エキサテカン化学名:(1S,9S)-1-アミノ-9-エチル-5-フルオロ-2,3-ジヒドロ-9-ヒドロキシ-4-メチル-1H,12H-ベンゾ[de]ピラノ[3',4':6,7]インドリジノ[1,2-b]キノリン-10,13(9H,15H)-ジオン)は、水溶性のカンプトテシン誘導体である(特許文献1、2)。この化合物は、現在臨床で用いられているイリノテカンとは異なり、抗腫瘍効果の発現には酵素による活性化を必要としない。また、イリノテカンの薬効本体であるSN-38や、同じく臨床で用いられているトポテカンよりもトポイソメラーゼI
阻害活性が強く、in vitroで種々の癌細胞に対して、より強い殺細胞活性を有している。特にP-glycoproteinの発現によってSN-38等に耐性を示す癌細胞に対しても効果を示した
。また、マウスヒト腫瘍皮下移植モデルでも強い抗腫瘍効果を示し、臨床試験が行われたものの、上市には至っていない(非特許文献5〜10参照)。エキサテカンがADCとし
て有効に作用するかについては明らかではなかった。

0006

DE-310は、生分解性カルボキシメチルデキストランポリアルコールポリマーにエキサテカンを、GGFGペプチドスペーサーを介して結合させた複合体である(特許文献3)。エキサテカンを高分子プロドラッグ化することによって、高い血中滞留性を保持させ、さら
腫瘍新生血管透過性亢進腫瘍組織滞留性を利用して、受動的腫瘍部位への指向性を高めたものである。DE-310は、酵素によるペプチドスペーサーの切断によって、活性本体であるエキサテカン、及びグリシンがアミノ基に結合しているエキサテカンが持続的に遊離され、その結果薬物動態が改善される。非臨床試験における種々の腫瘍評価モデルにおいて、DE-310は、ここに含まれるエキサテカンの総量がエキサテカン単剤投与時よりも減少しているのにも拘らず、単剤の投与時よりもより高い有効性を示した。DE-310に関しては臨床試験が実施され、有効例も確認され、活性本体が正常組織よりも腫瘍に集積することが確認されたとの報告がある一方、腫瘍へのDE-310及び活性本体の集積は正常組織への集積と大差なく、ヒトでは受動的なターゲティングは見られなかったとの報告もある(非特許文献11〜14参照)。結果としてDE-310も上市には至らず、エキサテカンがこの様なターゲティングを指向した薬物として有効に機能するかについては明らかではなかった。

0007

DE-310の関連化合物として、-NH-(CH2)4-C(=O)-で示される構造部分を-GGFG-スペーサ
ーとエキサテカンの間に挿入し、-GGFG-NH-(CH2)4-C(=O)-をスペーサー構造とする複合体も知られているが(特許文献4)、同複合体の抗腫瘍効果については全く知られていない。

0008

ヒト上皮増殖因子受容体3(HER3,ErbB3としても知られる)は、受容体蛋白質チロシンキナーゼであり、HER1(EGFR、上皮増殖因子受容体としても知られる)、HER2及びHER4(非特許文献15〜17参照)とともに受容体蛋白質チロシンキナーゼのEGFRサブファミリーに属する。典型的な上皮増殖因子受容体と同様に、膜貫通受容体HER3は、細胞外リガンド結合ドメイン(ECD)、ECD内の二量体化ドメイン膜貫通ドメイン、及びカルボキシル末端リン酸化ドメインからなる。これらのドメインに加えてHER1、HER2、HER4は細胞内蛋白質チロシンキナーゼドメイン(TKD)を保持するが、HER3はこのドメインを欠損しており自己リン酸化能を持たない。
リガンドであるヘレグリン(Heregulin,HRG)は、HER3の細胞外ドメインに結合し、他のヒト上皮増殖因子受容体(HER)ファミリーメンバーとの二量体化と細胞内ドメインのリン酸転移を促進することにより、受容体を介したシグナル経路を活性化する。HERファミリメンバーとの二量体形成は、HER3のシグナルポテンシャルを増大させ、シグナルの多様化のみならずシグナルの増幅のための手段となる。例えば、HER2/HER3ヘテロダイマーは、HERファミリーのうちで最も重要な増殖シグナルの一つを誘導する。HER3は乳癌胃腸癌及び膵臓癌等、いくつかの種類の癌において過剰発現している。興味深いことに、HER2/HER3の発現と非浸潤性段階から浸潤性段階への進行との間に相関が示されている(非特許文献18〜20参照)。したがって、HER3を介したシグナルを阻害する物質が望まれている。抗HER3抗体及びその免疫コンジュゲートが、特許文献5〜10等でそれぞれ報告されている。

0009

特開平5−59061号公報
特開平8−337584号公報
国際公開第1997/46260号
国際公開第2000/25825号
米国特許第5968511号公報
米国特許第5480968号公報
国際公開第2003/013602号
国際公開第2007/077028号
国際公開第2008/100624号
国際公開第2012/019024号

先行技術

0010

Ducry, L., et al., Bioconjugate Chem. (2010) 21, 5-13.
Alley, S. C., et al., Current Opinion in Chemical Biology (2010) 14, 529-537.
Damle N.K. Expert Opin. Biol. Ther. (2004) 4, 1445-1452.
Senter P. D., et al., Nature Biotechnology (2012) 30, 631-637.
Kumazawa, E., Tohgo, A., Exp. Opin. Invest. Drugs (1998) 7, 625-632.
Mitsui, I., et al., Jpn J. Cancer Res. (1995) 86, 776-786.
Takiguchi, S., et al., Jpn J. Cancer Res. (1997) 88, 760-769.
Joto, N. et al.. Int J Cancer (1997) 72, 680-686.
Kumazawa, E. et al., Cancer Chemother. Pharmacol. (1998) 42, 210-220.
De Jager, R., et al., Ann N Y Acad Sci (2000) 922, 260-273.
Inoue, K. et al. Polymer Drugs in the Clinical Stage, Edited by Maeda et al., (2003) 145-153.
Kumazawa, E. et al., Cancer Sci (2004) 95, 168-175.
Soepenberg, O. et al., Clinical Cancer Research, (2005) 11, 703-711.
Wente M. N. et al., Investigational New Drugs (2005) 23, 339-347.
Plowman, et al., Proc. Natl. Acad. Sci. U.S.A. (1990) 87, 4905-4909.
Kraus et al., Proc. Natl. Acad. Sci. U.S.A. (1989) 86, 9193-9197.
Kraus et al., Proc. Natl. Acad. Sci. U.S.A. (1993) 90, 2900-2904.
Alimandi et al., Oncogene (1995) 10, 1813-1821.
deFazio et al., Int. J. Cancer (2000) 87, 487-498.
Naidu et al., Br. J. Cancer (1998) 78, 1385-1390.

発明が解決しようとする課題

0011

抗体による腫瘍の治療においては、抗体が抗原を認識して腫瘍細胞に結合しても抗腫瘍効果が十分でない場合が観察されることもあり、より効果の高い抗腫瘍抗体が必要とされる場合がある。また、抗腫瘍性の低分子化合物においては、抗腫瘍効果に優れていても副作用や毒性面等、安全性上の問題を有するものが多く、安全性をより高めてより優れた治療効果を獲得することが課題となっている。すなわち、本発明は、抗腫瘍効果と安全性面に優れる、優れた治療効果を有する抗腫瘍薬を獲得して提供することが課題である。

課題を解決するための手段

0012

本発明者らは、抗HER3抗体が腫瘍細胞を標的にできる抗体であること、すなわち、腫瘍細胞を認識できる特性、腫瘍細胞に結合できる特性、腫瘍細胞に内在化できる特性、或は腫瘍細胞に対する殺細胞活性等を備えた抗体であることから、抗腫瘍性化合物であるエキサテカンを、リンカー構造部分を介して同抗体に結合させた抗体−薬物コンジュゲー
トに変換することによって、抗腫瘍性化合物を腫瘍細胞により確実に移動させて当該化合物の抗腫瘍効果を腫瘍細胞で特異的に発揮させることができること、したがって抗腫瘍効果の確実な発揮とともに抗HER3抗体の殺細胞効果の増強が期待できること、さらには抗腫瘍性化合物の投与量を当該化合物の単体投与時よりも減少させることができること、すなわちこれらによって通常細胞への抗腫瘍性化合物の影響を緩和させることができるのでより高い安全性を達成できること、が可能と考えた。
このために本発明者らは特定の構造のリンカーを創出し、このリンカーを介して抗HER3抗体とエキサテカンとを結合させた抗体−薬物コンジュゲートを獲得することに成功し、同コンジュゲートが優れた抗腫瘍効果を発揮することを見出して本発明を完成させたのである。

0013

すなわち本願発明は、
[1]次式



で示される抗腫瘍性化合物と抗HER3抗体とを次式:
-L1-L2-LP-NH-(CH2)n1-La-(CH2)n2-C(=O)-又は-L1-L2-LP-
で示される構造のリンカーを介して、抗HER3抗体のヒンジ部に存在するジスルフィド結合部分において形成させたチオエーテル結合によって結合させたことを特徴とする抗体−薬物コンジュゲートに関するものである。

0014

ここで、抗HER3抗体はL1の末端において結合し、抗腫瘍性化合物は、1位のアミノ基の窒素原子結合部位として、-(CH2)n2-C(=O)-部分のカルボニル基又はLPのC末端
結合する。
式中、n1は、0から6の整数を示し、
n2は、0から5の整数を示し、
L1は、-(Succinimid-3-yl-N)-(CH2)n3-C(=O)-を示し、
ここで、n3は、2から8の整数を示し、
L2は、-NH-(CH2CH2-O)n4-CH2CH2-C(=O)-又は単結合を示し、
ここで、n4は、1から6の整数を示し、
LPは、2から7個のアミノ酸で構成されるペプチド残基を示し、
Laは、-O-又は単結合を示し、
-(Succinimid-3-yl-N)-は次式:



で示される構造であり、このものの3位で抗HER3抗体と結合し、1位の窒素原子上でこれを含むリンカー構造内のメチレン基と結合する。

0015

さらに本願発明は以下の各々に関するものでもある。
[2]LPのペプチド残基が、フェニルアラニン、グリシン、バリンリシンシトルリンセリングルタミン酸アスパラギン酸から選ばれるアミノ酸からなるペプチド残基である[1]に記載の抗体−薬物コンジュゲート。
[3]LPが、以下の群から選ばれるペプチド残基である[1]又は[2]に記載の抗体−薬物コンジュゲート:
-GGF-、
-DGGF-、
-(D-)D-GGF-、
-EGGF-、
-GGFG-、
-SGGF-、
-KGGF-、
-DGGFG-、
-GGFGG-、
-DDGGFG-、
-KDGGFG-、及び
-GGFGGGF-;
ここで『(D-)D』はD-アスパラギン酸を示す。
[4]LPが、4又は5個のアミノ酸で構成されるペプチド残基である[1]又は[2]に記載の抗体−薬物コンジュゲート。
[5]LPが、-GGFG-又は-DGGFG-である[1]から[4]のいずれかに記載の抗体−薬物
コンジュゲート。
[6]LPが、-GGFG-である[1]から[4]のいずれかに記載の抗体−薬物コンジュゲート。

0016

[7]n3が2から5の整数であって、L2が単結合である[1]から[6]のいずれかに記載の抗体−薬物コンジュゲート。
[8]リンカーが、-L1-L2-LP-NH-(CH2)n1-La-(CH2)n2-C(=O)-である[1]から[7]のいずれかに記載の抗体−薬物コンジュゲート。
[9]n3が2から5の整数であって、L2が-NH-(CH2CH2-O)n4-CH2CH2-C(=O)-であり、n4が2又は4である[8]に記載の抗体−薬物コンジュゲート。
[10]-NH-(CH2)n1-La-(CH2)n2-C(=O)-が、4から7原子鎖長を有する部分構造であ
る[8]又は[9]に記載の抗体−薬物コンジュゲート。
[11]-NH-(CH2)n1-La-(CH2)n2-C(=O)-が、5又は6原子の鎖長を有する部分構造であ
る[8]又は[9]に記載の抗体−薬物コンジュゲート。
[12]-NH-(CH2)n1-La-(CH2)n2-C(=O)-が、
-NH-CH2CH2-C(=O)-、
-NH-CH2CH2CH2-C(=O)-、
-NH-CH2CH2CH2CH2-C(=O)-、
-NH-CH2CH2CH2CH2CH2-C(=O)-、
-NH-CH2-O-CH2-C(=O)-、又は
-NH-CH2CH2-O-CH2-C(=O)-である[10]又は[11]に記載の抗体−薬物コンジュゲー
ト。
[13]-NH-(CH2)n1-La-(CH2)n2-C(=O)-が、
-NH-CH2CH2CH2-C(=O)-、
-NH-CH2-O-CH2-C(=O)-、又は
-NH-CH2CH2-O-CH2-C(=O)-
である[12]に記載の抗体−薬物コンジュゲート。
[14]リンカーが、-L1-L2-LP-である[1]から[5]のいずれかに記載の抗体−薬物コンジュゲート。
[15]LPが、-DGGFG-である[14]に記載の抗体−薬物コンジュゲート。
[16]n3が2から5の整数であって、L2が単結合である[15]に記載の抗体−薬物コンジュゲート。

0017

[17]-L1-L2-LP-NH-(CH2)n1-La-(CH2)n2-C(=O)-又は-L1-L2-LP-に薬物を結合させた薬物−リンカー構造部分が、次の群から選ばれる1種の薬物−リンカー構造である[1]に記載の抗体−薬物コンジュゲート:
-(Succinimid-3-yl-N)-CH2CH2-C(=O)-GGFG-NH-CH2CH2-C(=O)-(NH-DX)、
-(Succinimid-3-yl-N)-CH2CH2-C(=O)-GGFG-NH-CH2CH2CH2-C(=O)-(NH-DX)、
-(Succinimid-3-yl-N)-CH2CH2CH2CH2CH2-C(=O)-GGFG-NH-CH2CH2-C(=O)-(NH-DX)、
-(Succinimid-3-yl-N)-CH2CH2CH2CH2CH2-C(=O)-GGFG-NH-CH2CH2CH2-C(=O)-(NH-DX)、
-(Succinimid-3-yl-N)-CH2CH2CH2CH2CH2-C(=O)-GGFG-NH-CH2CH2CH2CH2CH2-C(=O)-(NH-DX)、
-(Succinimid-3-yl-N)-CH2CH2CH2CH2CH2-C(=O)-GGFG-NH-CH2-O-CH2-C(=O)-(NH-DX)、
-(Succinimid-3-yl-N)-CH2CH2CH2CH2CH2-C(=O)-GGFG-NH-CH2CH2-O-CH2-C(=O)-(NH-DX)、
-(Succinimid-3-yl-N)-CH2CH2CH2CH2CH2-C(=O)-DGGFG-NH-CH2CH2-C(=O)-(NH-DX)、
-(Succinimid-3-yl-N)-CH2CH2CH2CH2CH2-C(=O)-DGGFG-NH-CH2CH2CH2-C(=O)-(NH-DX)、
-(Succinimid-3-yl-N)-CH2CH2CH2CH2CH2-C(=O)-DGGFG-NH-CH2CH2CH2CH2CH2-C(=O)-(NH-DX)、
-(Succinimid-3-yl-N)-CH2CH2-C(=O)-NH-CH2CH2-O-CH2CH2-O-CH2CH2-C(=O)-GGFG-NH-CH2CH2-C(=O)-(NH-DX)、
-(Succinimid-3-yl-N)-CH2CH2-C(=O)-NH-CH2CH2-O-CH2CH2-O-CH2CH2-C(=O)-GGFG-NH-CH2CH2CH2-C(=O)-(NH-DX)、
-(Succinimid-3-yl-N)-CH2CH2-C(=O)-NH-CH2CH2-O-CH2CH2-O-CH2CH2-O-CH2CH2-O-CH2CH2-C(=O)-GGFG-NH-CH2CH2-C(=O)-(NH-DX)、
-(Succinimid-3-yl-N)-CH2CH2-C(=O)-NH-CH2CH2-O-CH2CH2-O-CH2CH2-O-CH2CH2-O-CH2CH2-C(=O)-GGFG-NH-CH2CH2CH2-C(=O)-(NH-DX)、
-(Succinimid-3-yl-N)-CH2CH2-C(=O)-GGFG-(NH-DX)、
-(Succinimid-3-yl-N)-CH2CH2-C(=O)-DGGFG-(NH-DX)、
-(Succinimid-3-yl-N)-CH2CH2CH2CH2CH2-C(=O)-GGFG-(NH-DX)、
-(Succinimid-3-yl-N)-CH2CH2CH2CH2CH2-C(=O)-DGGFG-(NH-DX)。

0018

ここで、-(Succinimid-3-yl-N)-は次式:



で示される構造であり、このものの3位で抗HER3抗体と結合し、1位の窒素原子上でこれを含むリンカー構造内のメチレン基と結合する。
-(NH-DX)は次式:



で示される、1位のアミノ基の窒素原子が結合部位となっている基を示す。
-GGFG-は、-Gly-Gly-Phe-Gly-のテトラペプチド残基、-DGGFG-は、-Asp-Gly-Gly-Phe-Gly-のペンタペプチド残基を示す。

0019

[18]-L1-L2-LP-NH-(CH2)n1-La-(CH2)n2-C(=O)-に薬物を結合させた薬物−リンカー構造部分が、次の群から選ばれる1種の薬物−リンカー構造である[1]に記載の抗体−薬物コンジュゲート:
-(Succinimid-3-yl-N)-CH2CH2CH2CH2CH2-C(=O)-GGFG-NH-CH2CH2CH2-C(=O)-(NH-DX)、
-(Succinimid-3-yl-N)-CH2CH2CH2CH2CH2-C(=O)-DGGFG-NH-CH2CH2CH2-C(=O)-(NH-DX)、
-(Succinimid-3-yl-N)-CH2CH2CH2CH2CH2-C(=O)-GGFG-NH-CH2-O-CH2-C(=O)-(NH-DX)、
-(Succinimid-3-yl-N)-CH2CH2-C(=O)-NH-CH2CH2-O-CH2CH2-O-CH2CH2-C(=O)-GGFG-NH-CH2CH2CH2-C(=O)-(NH-DX)、
-(Succinimid-3-yl-N)-CH2CH2CH2CH2CH2-C(=O)-DGGFG-(NH-DX)。

0020

ここで、-(Succinimid-3-yl-N)-、-(NH-DX)、-GGFG-、及び-DGGFG-は、上記の通りである。

0021

[19]次式:



で示される抗腫瘍性化合物と抗HER3抗体とを次式:
-L1-L2-LP-NH-(CH2)n1-La-(CH2)n2-C(=O)-
で示される構造のリンカーを介して、抗HER3抗体のヒンジ部に存在するジスルフィド結合部分において形成させたチオエーテル結合を介して結合させたことを特徴とする抗体−薬物コンジュゲート。
ここで、抗HER3抗体はL1の末端において結合し、抗腫瘍性化合物は-(CH2)n2-C(=O)-部分のカルボニル基に結合する。
式中、n1は、0から6の整数を示し、
n2は、0から5の整数を示し、
L1は、-(Succinimid-3-yl-N)-(CH2)n3-C(=O)-を示し、
ここで、n3は、2から8の整数を示し、
L2は、-NH-(CH2CH2-O)n4-CH2CH2-C(=O)-又は単結合を示し、
ここで、n4は、1から6の整数を示し、
LPは、-GGFG-のテトラペプチド残基を示し、
Laは、-O-又は単結合を示し、
-(Succinimid-3-yl-N)-は次式:



で示される構造であり、このものの3位で抗HER3抗体と結合し、1位の窒素原子上でこれを含むリンカー構造内のメチレン基と結合する。

0022

[20]n1が3であり、n2が0であり、n3が2であり、L2が-NH-(CH2CH2-O)n4-CH2CH2-C(=O)-であって、n4が2であり、Laが単結合であるか、
n1が1であり、n2が1であり、n3が5であり、L2が単結合であり、Laが-O-であるか、又

n1が2であり、n2が1であり、n3が5であり、L2が単結合であり、Laが-O-である[19
]に記載の抗体−薬物コンジュゲート。
[21]n3が2又は5であって、L2が単結合である[19]又は[20]に記載の抗体−薬物コンジュゲート。
[22]n3が2又は5であって、L2が-NH-(CH2CH2-O)n4-CH2CH2-C(=O)-であり、n4が2又は4である[19]又は[20]に記載の抗体−薬物コンジュゲート。
[23]-NH-(CH2)n1-La-(CH2)n2-C(=O)-が、
-NH-CH2CH2CH2-C(=O)-、
-NH-CH2-O-CH2-C(=O)-、又は
-NH-CH2CH2-O-CH2-C(=O)-
である[19]から[22]のいずれか一項に記載の抗体−薬物コンジュゲート。

0023

[24]-L1-L2-LP-NH-(CH2)n1-La-(CH2)n2-C(=O)-に薬物を結合させた薬物−リンカー構造部分が、次の群から選ばれる1種の薬物−リンカー構造である[19]から[23]のいずれかに記載の抗体−薬物コンジュゲート:
-(Succinimid-3-yl-N)-CH2CH2-C(=O)-GGFG-NH-CH2CH2-C(=O)-(NH-DX)、
-(Succinimid-3-yl-N)-CH2CH2-C(=O)-GGFG-NH-CH2CH2CH2-C(=O)-(NH-DX)、
-(Succinimid-3-yl-N)-CH2CH2CH2CH2CH2-C(=O)-GGFG-NH-CH2CH2-C(=O)-(NH-DX)、
-(Succinimid-3-yl-N)-CH2CH2CH2CH2CH2-C(=O)-GGFG-NH-CH2CH2CH2-C(=O)-(NH-DX)、
-(Succinimid-3-yl-N)-CH2CH2CH2CH2CH2-C(=O)-GGFG-NH-CH2CH2CH2CH2CH2-C(=O)-(NH-DX)、
-(Succinimid-3-yl-N)-CH2CH2CH2CH2CH2-C(=O)-GGFG-NH-CH2-O-CH2-C(=O)-(NH-DX)、
-(Succinimid-3-yl-N)-CH2CH2CH2CH2CH2-C(=O)-GGFG-NH-CH2CH2-O-CH2-C(=O)-(NH-DX)、
-(Succinimid-3-yl-N)-CH2CH2-C(=O)-NH-CH2CH2-O-CH2CH2-O-CH2CH2-C(=O)-GGFG-NH-CH2CH2-C(=O)-(NH-DX)、
-(Succinimid-3-yl-N)-CH2CH2-C(=O)-NH-CH2CH2-O-CH2CH2-O-CH2CH2-C(=O)-GGFG-NH-CH2CH2CH2-C(=O)-(NH-DX)、
-(Succinimid-3-yl-N)-CH2CH2-C(=O)-NH-CH2CH2-O-CH2CH2-O-CH2CH2-O-CH2CH2-O-CH2CH2-C(=O)-GGFG-NH-CH2CH2CH2-C(=O)-(NH-DX)、
-(Succinimid-3-yl-N)-CH2CH2-C(=O)-NH-CH2CH2-O-CH2CH2-O-CH2CH2-O-CH2CH2-O-CH2CH2-C(=O)-GGFG-NH-CH2CH2-C(=O)-(NH-DX);

0024

ここで、-(Succinimid-3-yl-N)-は次式:



で示される構造であり、このものの3位で抗HER3抗体と結合し、1位の窒素原子上でこれを含むリンカー構造内のメチレン基と結合する。
-(NH-DX)は次式:



で示される、1位のアミノ基の窒素原子が結合部位となっている基を示す。
-GGFG-は、-Gly-Gly-Phe-Gly-のテトラペプチド残基を示す。

0025

[25]-L1-L2-LP-NH-(CH2)n1-La-(CH2)n2-C(=O)-に薬物を結合させた薬物−リンカー構造部分が、次の群から選ばれる1種の薬物−リンカー構造である[19]から[23]のいずれかに記載の抗体−薬物コンジュゲート:
-(Succinimid-3-yl-N)-CH2CH2CH2CH2CH2-C(=O)-GGFG-NH-CH2-O-CH2-C(=O)-(NH-DX)、
-(Succinimid-3-yl-N)-CH2CH2CH2CH2CH2-C(=O)-GGFG-NH-CH2CH2-O-CH2-C(=O)-(NH-DX)、
-(Succinimid-3-yl-N)-CH2CH2-C(=O)-NH-CH2CH2-O-CH2CH2-O-CH2CH2-C(=O)-GGFG-NH-CH2CH2CH2-C(=O)-(NH-DX)。
ここで、-(Succinimid-3-yl-N)-、-(NH-DX)、及び-GGFG-は、上記の通りである。

0026

[26]選択された1種の薬物−リンカー構造の1抗体あたりの平均結合数が1から10個の範囲である[1]から[25]のいずれかに記載の抗体−薬物コンジュゲート。
[27]選択された1種の薬物−リンカー構造の1抗体あたりの平均結合数が2から8個の範囲である[1]から[25]のいずれかに記載の抗体−薬物コンジュゲート。
[28]選択された1種の薬物−リンカー構造の1抗体あたりの平均結合数が3から8個の範囲である[1]から[25]のいずれかに記載の抗体−薬物コンジュゲート。

0027

[29][1]から[28]のいずれかに記載の抗体−薬物コンジュゲート、その塩、又はそれらの水和物を含有する医薬
[30][1]から[28]のいずれかに記載の抗体−薬物コンジュゲート、その塩、又はそれらの水和物を含有する抗腫瘍薬及び/又は抗癌薬
[31]肺癌腎癌尿路上皮癌大腸癌前立腺癌多形神経膠芽腫卵巣癌膵癌、乳癌、メラノーマ肝癌膀胱癌胃癌、胃腸間質腫瘍、子宮頸癌頭頸部癌食道癌扁平上皮癌腹膜癌、多形グリア芽細胞腫肝臓癌肝細胞癌結腸癌直腸癌結腸直腸癌子宮内膜癌子宮癌唾液腺癌、腎臓癌外陰部癌、甲状腺癌、肝癌腫、肛門癌腫、又は陰茎癌に適用するための[30]に記載の抗腫瘍薬及び/又は抗癌薬。
[32][1]から[28]のいずれかに記載の抗体−薬物コンジュゲート、その塩、又はそれらの水和物を活性成分とし、薬学的に許容される製剤成分とを含有する医薬組成物
[33]肺癌、腎癌、尿路上皮癌、大腸癌、前立腺癌、多形神経膠芽腫、卵巣癌、膵癌、乳癌、メラノーマ、肝癌、膀胱癌、胃癌、胃腸間質腫瘍、子宮頸癌、頭頸部癌、食道癌、扁平上皮癌、腹膜癌、多形グリア芽細胞腫、肝臓癌、肝細胞癌、結腸癌、直腸癌、結腸直腸癌、子宮内膜癌、子宮癌、唾液腺癌、腎臓癌、外陰部癌、甲状腺癌、肝癌腫、肛門癌腫、又は陰茎癌に適用するための[32]に記載の医薬組成物。
[34][1]から[28]のいずれかに記載の抗体−薬物コンジュゲート、その塩、又はそれらの水和物を投与することを特徴とする腫瘍及び/又は癌の治療方法
[35]他の薬剤と組み合せて投与される、[29]記載の医薬、[30]もしくは[31]記載の抗腫瘍薬及び/若しくは抗癌薬、[32]もしくは[33]記載の医薬組成物
、又は[34]記載の治療方法。
[36]他の薬剤をも活性成分として含有する、[32]又は[33]記載の医薬組成物。

0028

[35]次式で示される化合物:
(maleimid-N-yl)-(CH2)n3-C(=O)-L2-LP-NH-(CH2)n1-La-(CH2)n2-C(=O)-(NH-DX)又は(maleimid-N-yl)-(CH2)n3-C(=O)-L2-LP-(NH-DX)
を抗HER3抗体又はその反応性誘導体と反応させ、該抗体のヒンジ部に存在するジスルフィド結合部分においてチオエーテル結合を形成させる方法によって薬物−リンカー部分を該抗体に結合させることを特徴とする抗体−薬物コンジュゲートの製造方法。

0029

式中、n3は、整数の2から8を示し、
L2は、-NH-(CH2CH2-O)n4-CH2CH2-C(=O)-又は単結合を示し、
ここで、n4は、1から6の整数を示し、
LPは、フェニルアラニン、グリシン、バリン、リシン、シトルリン、セリン、グルタミン酸、アスパラギン酸から選ばれる2から7個のアミノ酸で構成されるペプチド残基を示し、
n1は、0から6の整数を示し、
n2は、0から5の整数を示し、
Laは、-O-又は単結合を示し、
(maleimid-N-yl)-は、次式:



で示される、窒素原子が結合部位である基である。
-(NH-DX)は、次式



で示される、1位のアミノ基の窒素原子が結合部位となっている基である。

0030

[36]薬物−リンカー部分を抗HER3抗体に結合させる方法が、該抗体を還元処理して反応性誘導体に変換する方法である[35]に記載の製造方法。

0031

[37]選択された1種の薬物−リンカー構造の1抗体あたりの平均結合数が1から10個の範囲である[35]又は[36]に記載の製造方法。
[38]選択された1種の薬物−リンカー構造の1抗体あたりの平均結合数が2から8個の範囲である[35]又は[36]に記載の製造方法。
[39]選択された1種の薬物−リンカー構造の1抗体あたりの平均結合数が3から8個の範囲である[35]又は[36]に記載の製造方法。
[40][35]から[39]のいずれかの製造方法によって得られる抗体−薬物コンジュゲート。

0032

[41]抗HER3抗体を還元条件で処理した後に以下の化合物群から選ばれる化合物を反応させることを特徴とする、該抗体のヒンジ部のジスルフィド結合部分においてチオ
テル結合を形成させて得られる抗体−薬物コンジュゲート:
(maleimid-N-yl)-CH2CH2-C(=O)-GGFG-NH-CH2CH2-C(=O)-(NH-DX)、
(maleimid-N-yl)-CH2CH2CH2-C(=O)-GGFG-NH-CH2CH2-C(=O)-(NH-DX)、
(maleimid-N-yl)-CH2CH2CH2CH2-C(=O)-GGFG-NH-CH2CH2-C(=O)-(NH-DX)、
(maleimid-N-yl)-CH2CH2CH2CH2CH2-C(=O)-GGFG-NH-CH2CH2-C(=O)-(NH-DX)、
(maleimid-N-yl)-CH2CH2-C(=O)-GGFG-NH-CH2CH2CH2-C(=O)-(NH-DX)、
(maleimid-N-yl)-CH2CH2CH2-C(=O)-GGFG-NH-CH2CH2CH2-C(=O)-(NH-DX)、
(maleimid-N-yl)-CH2CH2CH2CH2-C(=O)-GGFG-NH-CH2CH2CH2-C(=O)-(NH-DX)、
(maleimid-N-yl)-CH2CH2CH2CH2CH2-C(=O)-GGFG-NH-CH2CH2CH2-C(=O)-(NH-DX)、
(maleimid-N-yl)-CH2CH2-C(=O)-GGFG-NH-CH2CH2CH2CH2CH2-C(=O)-(NH-DX)、
(maleimid-N-yl)-CH2CH2CH2-C(=O)-GGFG-NH-CH2CH2CH2CH2CH2-C(=O)-(NH-DX)、
(maleimid-N-yl)-CH2CH2CH2CH2-C(=O)-GGFG-NH-CH2CH2CH2CH2CH2-C(=O)-(NH-DX)、
(maleimid-N-yl)-CH2CH2CH2CH2CH2-C(=O)-GGFG-NH-CH2CH2CH2CH2CH2-C(=O)-(NH-DX)、
(maleimid-N-yl)-CH2CH2CH2CH2CH2-C(=O)-DGGFG-NH-CH2CH2-C(=O)-(NH-DX)、
(maleimid-N-yl)-CH2CH2CH2CH2CH2-C(=O)-DGGFG-NH-CH2CH2CH2-C(=O)-(NH-DX)、
(maleimid-N-yl)-CH2CH2CH2CH2CH2-C(=O)-DGGFG-NH-CH2CH2CH2CH2CH2-C(=O)-(NH-DX)、
(maleimid-N-yl)-CH2CH2-C(=O)-GGFG-NH-CH2-O-CH2-C(=O)-(NH-DX)、
(maleimid-N-yl)-CH2CH2CH2-C(=O)-GGFG-NH-CH2-O-CH2-C(=O)-(NH-DX)、
(maleimid-N-yl)-CH2CH2CH2CH2-C(=O)-GGFG-NH-CH2-O-CH2-C(=O)-(NH-DX)、
(maleimid-N-yl)-CH2CH2CH2CH2CH2-C(=O)-GGFG-NH-CH2-O-CH2-C(=O)-(NH-DX)、
(maleimid-N-yl)-CH2CH2-C(=O)-GGFG-NH-CH2CH2-O-CH2-C(=O)-(NH-DX)、
(maleimid-N-yl)-CH2CH2CH2-C(=O)-GGFG-NH-CH2CH2-O-CH2-C(=O)-(NH-DX)、
(maleimid-N-yl)-CH2CH2CH2CH2-C(=O)-GGFG-NH-CH2CH2-O-CH2-C(=O)-(NH-DX)、
(maleimid-N-yl)-CH2CH2CH2CH2CH2-C(=O)-GGFG-NH-CH2CH2-O-CH2-C(=O)-(NH-DX)、
(maleimid-N-yl)-CH2CH2-C(=O)-NH-CH2CH2-O-CH2CH2-O-CH2CH2-C(=O)-GGFG-NH-CH2CH2-C(=O)-(NH-DX)、
(maleimid-N-yl)-CH2CH2-C(=O)-NH-CH2CH2-O-CH2CH2-O-CH2CH2O-CH2CH2-C(=O)-GGFG-NH-CH2CH2-C(=O)-(NH-DX)、
(maleimid-N-yl)-CH2CH2-C(=O)-NH-CH2CH2-O-CH2CH2-O-CH2CH2-O-CH2CH2-O-CH2CH2-C(=O)-GGFG-NH-CH2CH2-C(=O)-(NH-DX)、
(maleimid-N-yl)-CH2CH2-C(=O)-NH-CH2CH2-O-CH2CH2-O-CH2CH2-C(=O)-GGFG-NH-CH2CH2CH2-C(=O)-(NH-DX)、
(maleimid-N-yl)-CH2CH2-C(=O)-NH-CH2CH2-O-CH2CH2-O-CH2CH2-O-CH2CH2-C(=O)-GGFG-NH-CH2CH2CH2-C(=O)-(NH-DX)、
(maleimid-N-yl)-CH2CH2-C(=O)-NH-CH2CH2-O-CH2CH2-O-CH2CH2-O-CH2CH2-O-CH2CH2-C(=O)-GGFG-NH-CH2CH2CH2-C(=O)-(NH-DX)、
(maleimid-N-yl)-CH2CH2-C(=O)-NH-CH2CH2-O-CH2CH2-O-CH2CH2-C(=O)-GGFG-NH-CH2-O-CH2-C(=O)-(NH-DX)、
(maleimid-N-yl)-CH2CH2-C(=O)-NH-CH2CH2-O-CH2CH2-O-CH2CH2-O-CH2CH2-C(=O)-GGFG-NH-CH2-O-CH2-C(=O)-(NH-DX)、
(maleimid-N-yl)-CH2CH2-C(=O)-NH-CH2CH2-O-CH2CH2-O-CH2CH2-O-CH2CH2-O-CH2CH2-C(=O)-GGFG-NH-CH2-O-CH2-C(=O)-(NH-DX)、
(maleimid-N-yl)-CH2CH2-C(=O)-NH-CH2CH2-O-CH2CH2-O-CH2CH2-C(=O)-GGFG-NH-CH2CH2-O-CH2-C(=O)-(NH-DX)、
(maleimid-N-yl)-CH2CH2-C(=O)-NH-CH2CH2-O-CH2CH2-O-CH2CH2-O-CH2CH2-C(=O)-GGFG-NH-CH2CH2-O-CH2-C(=O)-(NH-DX)、
(maleimid-N-yl)-CH2CH2-C(=O)-NH-CH2CH2O-CH2CH2O-CH2CH2O-CH2CH2O-CH2CH2-C(=O)-GGFG-NH-CH2CH2-O-CH2-C(=O)-(NH-DX)、
(maleimid-N-yl)-CH2CH2-C(=O)-GGFG-(NH-DX)、
(maleimid-N-yl)-CH2CH2CH2-C(=O)-GGFG-(NH-DX)、
(maleimid-N-yl)-CH2CH2CH2CH2-C(=O)-GGFG-(NH-DX)、
(maleimid-N-yl)-CH2CH2CH2CH2CH2-C(=O)-GGFG-(NH-DX)、
(maleimid-N-yl)-CH2CH2-C(=O)-DGGFG-(NH-DX)、
(maleimid-N-yl)-CH2CH2CH2-C(=O)-DGGFG-(NH-DX)、
(maleimid-N-yl)-CH2CH2CH2CH2-C(=O)-DGGFG-(NH-DX)、又は
(maleimid-N-yl)-CH2CH2CH2CH2CH2-C(=O)-DGGFG-(NH-DX)。

0033

ここで、(maleimid-N-yl)-は、次式:



で示される、窒素原子が結合部位である基である。
-(NH-DX)は、次式



で示される、1位のアミノ基の窒素原子が結合部位となっている基である。
-GGFG-は、-Gly-Gly-Phe-Gly-のテトラペプチド残基、-DGGFG-は、-Asp-Gly-Gly-Phe-Gly-のペンタペプチド残基を示す。

0034

[42]抗HER3抗体を還元条件で処理した後に以下の化合物群から選ばれる化合物を反応させることを特徴とする、該抗体のヒンジ部のジスルフィド結合部分においてチオエーテル結合を形成させて得られる抗体−薬物コンジュゲート:
(maleimid-N-yl)-CH2CH2-C(=O)-NH-CH2CH2-O-CH2CH2-O-CH2CH2-C(=O)-GGFG-NH-CH2CH2CH2-C(=O)-(NH-DX)、
(maleimid-N-yl)-CH2CH2CH2CH2CH2-C(=O)-GGFG-NH-CH2-O-CH2-C(=O)-(NH-DX)、又は
(maleimid-N-yl)-CH2CH2CH2CH2CH2-C(=O)-GGFG-NH-CH2CH2-O-CH2-C(=O)-(NH-DX)。
ここで、(maleimid-N-yl)-、-(NH-DX)、及び-GGFG-は、上記の通りである。

0035

[43]選択された1種の薬物−リンカー構造の1抗体あたりの平均結合数が1から10個の範囲である[41]又は[42]に記載の抗体−薬物コンジュゲート。
[44]選択された1種の薬物−リンカー構造の1抗体あたりの平均結合数が2から8個の範囲である[41]又は[42]に記載の抗体−薬物コンジュゲート。
[45]選択された1種の薬物−リンカー構造の1抗体あたりの平均結合数が3から8個の範囲である[41]又は[42]に記載の抗体−薬物コンジュゲート。
[46][40]から[45]のいずれかに記載の抗体−薬物コンジュゲート、その塩、又はそれらの水和物を含有する医薬。
[47][40]から[45]のいずれかに記載の抗体−薬物コンジュゲート、その塩、又はそれらの水和物を含有する抗腫瘍薬及び/又は抗癌薬。
[48]肺癌、腎癌、尿路上皮癌、大腸癌、前立腺癌、多形神経膠芽腫、卵巣癌、膵癌、乳癌、メラノーマ、肝癌、膀胱癌、胃癌、胃腸間質腫瘍、子宮頸癌、頭頸部癌、食道癌、扁平上皮癌、腹膜癌、多形グリア芽細胞腫、肝臓癌、肝細胞癌、結腸癌、直腸癌、結腸直腸癌、子宮内膜癌、子宮癌、唾液腺癌、腎臓癌、外陰部癌、甲状腺癌、肝癌腫、肛門癌腫、又は陰茎癌に適用するための[47]に記載の抗腫瘍薬及び/又は抗癌薬。
[49][40]から[45]のいずれかに記載の抗体−薬物コンジュゲート、その塩、又はそれらの水和物を活性成分とし、薬学的に許容される製剤成分とを含有する医薬組成物。
[50]肺癌、腎癌、尿路上皮癌、大腸癌、前立腺癌、多形神経膠芽腫、卵巣癌、膵癌、乳癌、メラノーマ、肝癌、膀胱癌、胃癌、胃腸間質腫瘍、子宮頸癌、頭頸部癌、食道癌、扁平上皮癌、腹膜癌、多形グリア芽細胞腫、肝臓癌、肝細胞癌、結腸癌、直腸癌、結腸直腸癌、子宮内膜癌、子宮癌、唾液腺癌、腎臓癌、外陰部癌、甲状腺癌、肝癌腫、肛門癌腫、又は陰茎癌に適用するための[49]に記載の医薬組成物。
[51][40]から[45]のいずれかに記載の抗体−薬物コンジュゲート、その塩、又はそれらの水和物を投与することを特徴とする腫瘍及び/又は癌の治療方法。
[52]他の薬剤と組み合せて投与される、[46]記載の医薬、[47]もしくは[48]記載の抗腫瘍薬及び/若しくは抗癌薬、[49]もしくは[50]記載の医薬組成物
、又は[51]記載の治療方法。
[53]他の薬剤をも活性成分として含有する、[49]又は[50]記載の医薬組成物。

発明の効果

0036

特定の構造のリンカーを介して抗腫瘍性化合物エキサテカンを結合させた抗HER3抗体−薬物コンジュゲートによって、優れた抗腫瘍効果及び安全性を達成することができる。

図面の簡単な説明

0037

抗HER3ヒト抗体U1−59重鎖全長アミノ酸配列(配列番号583)を示す。
抗HER3ヒト抗体U1−59軽鎖の全長アミノ酸配列(配列番号584)を示す。
U1−59又は抗体−薬物コンジュゲートの連続希釈液で処理したHCC1569の平均蛍光強度を示す。GraphPad Prism Softwareにより、KDとBmax値を算出した。
A549細胞を2日間、U1−59又は種々の抗体−薬物コンジュゲートと共に培養した。HER3又はリン酸化HER3をウェスタンブロッティングにより評価した。泳動コントロールとして、pan−Actinを検出した。
U1−59又は抗体−薬物コンジュゲート処理(37℃,1時間)によるHCC1569細胞表面のHER3発現低下の平均値を示す。
ヒト乳癌株(HCC 1569)における、HER3抗体−薬物コンジュゲートによる増殖・生存シグナルの抑制試験の結果を示す。A:10% FBS存在下での抗体−薬物コンジュゲート由来細胞増殖・生存を示す。データはトリプリケートの平均±標準誤差を示す。縦軸は各サンプルのATP活性となる発光値を示し、横軸は各抗体−薬物コンジュゲートの濃度を示す。B:無処理群を100%とした場合の抗体−薬物コンジュゲート処理による発光低下率を示す。
ヒト乳癌株(MDA−MB 453)における、HER3抗体−薬物コンジュゲートによる増殖・生存シグナルの抑制試験の結果を示す。A:10% FBS存在下での抗体−薬物コンジュゲート由来の細胞増殖・生存を示す。縦軸は各サンプルのATP活性となる発光値を示し、横軸は各抗体−薬物コンジュゲートの濃度を示す。データはトリプリケートの平均±標準誤差を示す。B:無処理群を100%とした場合の抗体−薬物コンジュゲート処理による発光低下率を示す。
ヒトメラノーマ株(A375)における、HER3抗体−薬物コンジュゲートによる増殖・生存シグナルの抑制試験の結果を示す。A:10% FBS存在下での抗体−薬物コンジュゲート由来の細胞増殖・生存を示す。縦軸は各サンプルのATP活性となる発光値を示し、横軸は各抗体−薬物コンジュゲートの濃度を示す。データはトリプリケートの平均±標準誤差を示す。B:無処理群を100%とした場合の抗体−薬物コンジュゲート処理による発光低下率を示す。
ヒト大腸癌株(HT29)における、HER3抗体−薬物コンジュゲートによる増殖・生存シグナルの抑制試験の結果を示す。A:10% FBS存在下での抗体−薬物コンジュゲート由来の細胞増殖・生存を示す。縦軸は各サンプルのATP活性となる発光値を示し、横軸は各抗体−薬物コンジュゲートの濃度を示す。データはトリプリケートの平均±標準誤差を示す。B:無処理群を100%とした場合の抗体−薬物コンジュゲート処理による発光低下率を示す。
ヒト肺癌株(A 549)における、HER3抗体−薬物コンジュゲートによる増殖・生存シグナルの抑制試験の結果を示す。A:10% FBS存在下での抗体−薬物コンジュゲート由来の細胞増殖・生存を示す。縦軸は各サンプルのATP活性となる発光値を示し、横軸は各抗体−薬物コンジュゲートの濃度を示す。データはトリプリケートの平均±標準誤差を示す。B:無処理群を100%とした場合の抗体−薬物コンジュゲート処理による発光低下率を示す。
抗体−薬物コンジュゲート(3)と抗体−薬物コンジュゲート(4)の細胞増殖・生存阻害率の比較結果を示す。左図は、10% FBS存在下での抗体−薬物コンジュゲート由来の細胞増殖・生存阻害率を示す。縦軸は各サンプルのATP活性を示す発光を示し、横軸は各抗体−薬物コンジュゲートの濃度を示す。データはトリプリケートの平均±標準誤差を示す。右図は、無処理群を100%とした場合の抗体−薬物コンジュゲート処理による発光低下率を高ドラッグローディングHDL)と中ドラッグローディング(MDL)で比較した。
抗体−薬物コンジュゲート(10)と抗体−薬物コンジュゲート(11)の細胞増殖・生存阻害率の比較結果を示す。左図は、10% FBS存在下での抗体−薬物コンジュゲート由来の細胞増殖・生存阻害率を示す。縦軸は各サンプルのATP活性を示す発光を示し、横軸は各抗体−薬物コンジュゲートの濃度を示す。データはトリプリケートの平均±標準誤差を示す。右図は、無処理群を100%とした場合の抗体−薬物コンジュゲート処理による発光低下率を高ドラッグローディング(HDL)と中ドラッグローディング(MDL)で比較した。
抗体−薬物コンジュゲート(13)と抗体−薬物コンジュゲート(14)の細胞増殖・生存阻害率の比較結果を示す。左図は、10% FBS存在下での抗体−薬物コンジュゲート由来の細胞増殖・生存阻害率を示す。縦軸は各サンプルのATP活性を示す発光を示し、横軸は各抗体−薬物コンジュゲートの濃度を示す。データはトリプリケートの平均±標準誤差を示す。右図は、無処理群を100%とした場合の抗体−薬物コンジュゲート処理による発光低下率を高ドラッグローディング(HDL)と中ドラッグローディング(MDL)で比較した。
抗体−薬物コンジュゲート(3)、(10)、又は(13)を用いたヒト乳癌(HCC1569)抗腫瘍試験の結果を示す。縦軸は平均腫瘍体積を、横軸は細胞移植からの日数を示す。全ての値は平均±標準誤差で示される。初期腫瘍体積及び初期マウス重量は記述的データ(平均及び標準誤差)を用いて、Microsoft Excel 2009を用いて解析された。
抗体−薬物コンジュゲート(3)、(10)、又は(13)を用いたヒトメラノーマ(HT−144)抗腫瘍試験の結果を示す。縦軸は平均腫瘍体積を、横軸は細胞移植からの日数を示す。全ての値は平均±標準誤差で示される。初期腫瘍体積及び初期マウス重量は記述的データ(平均及び標準誤差)を用いて、Microsoft Excel 2009を用いて解析された。
抗体−薬物コンジュゲート(3)、(10)、又は(13)を用いたヒト乳癌(MDA−MB−453)抗腫瘍試験の結果を示す。縦軸は平均腫瘍体積を、横軸は投与からの日数を示す。全ての値は平均±標準誤差で示される。初期腫瘍体積及び初期マウス重量は記述的データ(平均及び標準誤差)を用いて、Microsoft Excel 2009を用いて解析された。
抗体−薬物コンジュゲート(3)、(10)、又は(13)を用いたヒト大腸癌株(HT−29)抗腫瘍試験の結果を示す。縦軸は平均腫瘍体積を、横軸は投与からの日数を示す。全ての値は平均±標準誤差で示される。初期腫瘍体積及び初期マウス重量は記述的データ(平均及び標準誤差)を用いて、Microsoft Excel 2009を用いて解析された。
抗体−薬物コンジュゲート(3)、(10)、又は(13)を用いたヒト肺癌株(A549)抗腫瘍試験の結果を示す。縦軸は平均腫瘍体積を、横軸は細胞移植からの日数を示す。全ての値は平均±標準誤差で示される。初期腫瘍体積及び初期マウス重量は記述的データ(平均及び標準誤差)を用いて、Microsoft Excel 2009を用いて解析された。
抗体−薬物コンジュゲート(13)を用いたヒトトリプルネガティブ乳癌株(MDA−MB−468)抗腫瘍試験の結果を示す。縦軸は平均腫瘍体積を、横軸は細胞移植からの日数を示す。全ての値は平均±標準誤差で示される。初期腫瘍体積及び初期マウス重量は記述的データ(平均及び標準誤差)を用いて、Microsoft Excel 2009を用いて解析された。
抗体−薬物コンジュゲート(16a)を用いたヒトルナール乳癌株(MCF−7)抗腫瘍試験の結果を示す。縦軸は平均腫瘍体積を、横軸は細胞移植からの日数を示す。全ての値は平均±標準誤差で示される。初期腫瘍体積および初期マウス重量は記述的データ(平均および標準誤差)を用いて、Microsoft Excel 2009を用いて解析された。
抗体−薬物コンジュゲート(16a)を用いたヒトメラノーマ株(WM−266−4)抗腫瘍試験の結果を示す。縦軸は平均腫瘍体積を、横軸は細胞移植からの日数を示す。全ての値は平均±標準誤差で示される。初期腫瘍体積および初期マウス重量は記述的データ(平均および標準誤差)を用いて、Microsoft Excel 2009を用いて解析された。
抗体−薬物コンジュゲート(16a)を用いたヒト卵巣癌株(OVCAR−8)抗腫瘍試験の結果を示す。縦軸は平均腫瘍体積を、横軸は細胞移植からの日数を示す。全ての値は平均±標準誤差で示される。初期腫瘍体積および初期マウス重量は記述的データ(平均および標準誤差)を用いて、Microsoft Excel 2009を用いて解析された。
抗体−薬物コンジュゲート(16a)を用いたヒト膀胱癌株(SW−780)抗腫瘍試験の結果を示す。縦軸は平均腫瘍体積を、横軸は細胞移植からの日数を示す。全ての値は平均±標準誤差で示される。初期腫瘍体積および初期マウス重量は記述的データ(平均および標準誤差)を用いて、Microsoft Excel 2009を用いて解析された。
抗体−薬物コンジュゲート(16a)を用いたヒト乳癌株(MDA−MB−453)抗腫瘍試験の結果を示す。縦軸は平均腫瘍体積を、横軸は細胞移植からの日数を示す。全ての値は平均±標準誤差で示される。初期腫瘍体積および初期マウス重量は記述的データ(平均および標準誤差)を用いて、Microsoft Excel 2009を用いて解析された。
抗体−薬物コンジュゲート(16a)を用いたヒト乳癌株(MDA−MB−453)抗腫瘍試験の結果を示す。縦軸は平均腫瘍体積を、横軸は細胞移植からの日数を示す。全ての値は平均±標準誤差で示される。初期腫瘍体積および初期マウス重量は記述的データ(平均および標準誤差)を用いて、Microsoft Excel 2009を用いて解析された。
抗体−薬物コンジュゲート(15)を用いたヒトヒト乳癌株(JIMT−1)抗腫瘍試験の結果を示す。縦軸は平均腫瘍体積を、横軸は細胞移植からの日数を示す。全ての値は平均±標準誤差で示される。初期腫瘍体積および初期マウス重量は記述的データ(平均および標準誤差)を用いて、Microsoft Excel 2009を用いて解析された。
抗体−薬物コンジュゲート(16a)を用いたヒト肺癌株(PC9)抗腫瘍試験の結果を示す。縦軸は平均腫瘍体積を、横軸は細胞移植からの日数を示す。全ての値は平均±標準誤差で示される。初期腫瘍体積および初期マウス重量は記述的データ(平均および標準誤差)を用いて、Microsoft Excel 2009を用いて解析された。
抗体−薬物コンジュゲート(16a)を用いたヒトトリプルネガティブ乳癌株(MDA−MB−468)抗腫瘍試験の結果を示す。縦軸は平均腫瘍体積を、横軸は細胞移植からの日数を示す。全ての値は平均±標準誤差で示される。初期腫瘍体積および初期マウス重量は記述的データ(平均および標準誤差)を用いて、Microsoft Excel 2009を用いて解析された。
抗体−薬物コンジュゲート(16a)を用いたヒト頭頸部癌株(Fadu)抗腫瘍試験の結果を示す。縦軸は平均腫瘍体積を、横軸は細胞移植からの日数を示す。全ての値は平均±標準誤差で示される。初期腫瘍体積および初期マウス重量は記述的データ(平均および標準誤差)を用いて、Microsoft Excel 2009を用いて解析された。
抗体−薬物コンジュゲート(16a)を用いたヒト胃癌患者由来腫瘍片(NIBIO−G016)を用いた抗腫瘍試験の結果を示す。縦軸は平均腫瘍体積を、横軸は細胞移植からの日数を示す。全ての値は平均±標準誤差で示される。初期腫瘍体積および初期マウス重量は記述的データ(平均および標準誤差)を用いて、Microsoft Excel 2009を用いて解析された。

0038

以下、本発明を実施するための好適な形態について図面を参照しながら説明する。なお、以下に説明する実施形態は、本発明の代表的な実施形態の一例を示したものであり、これによって本発明の範囲が狭く解釈されることはない。

0039

本発明はHER3結合蛋白質−薬物コンジュゲートを提供する。本発明のHER3結合タンパク質は、好適には、抗体様結合活性を有する足場タンパク質又は抗体、すなわち、抗HER3抗体である。

0040

本発明の抗HER3抗体−薬物コンジュゲートは、抗HER3抗体に、リンカー構造部分を介して抗腫瘍性化合物を結合させた抗腫瘍性薬物であり、以下に詳細に説明する。
本発明の文脈内で、本明細書において使用される「足場タンパク質」という用語は、アミノ酸の挿入、置換又は欠失が高度に許容される露出された表面を有するポリペプチド又はタンパク質を意味する。本発明に従って使用することができる足場タンパク質の例は、スタフィロコッカスオーレウス(Staphylococcus aureus)から
得られるプロテインAピエリスブラッシッカエ(Pieris brassicae
)から得られるビリン結合タンパク質又はその他のリポカリンアンキリン反復タンパク質及びヒトフィブロネクチンである(Binz and Pluckthun, Curr Opin Biotechnol.16, 459−69中に概説されている。)。足場タンパク質の操作は、安定に折り畳まれたタンパク質の構造的フレームワーク上に又は構造
的フレームワーク中に親和性機能を移植し、又は組み込むこととみなすことができる。親和性機能とは、本発明に従うタンパク質結合親和性を意味する。足場は、結合特異性を付与するアミノ酸配列から構造的に分離可能である。一般に、この様な人工親和性試薬の開発に適していると思われるタンパク質は、推論によって、又は最も一般的にはHER3(精製されたタンパク質又は細胞表面上にディスプレイされたタンパク質の何れか)に対するパニング等の、インビトロでディスプレイされた人工的足場ライブラリー結合剤に対するコンビナトリアルタンパク質工学技術(これらの技術は、本分野において公知である(Skerra, J.Mol.Recog., 2000;Binz and Pluckthun, 2005))によって取得され得る。さらに、抗体様結合活性を有する足
場タンパク質は、足場ドメインを含有するアクセプターポリペプチドに由来することができ、アクセプターポリペプチドを含有する足場ドメイン上にドナーポリペプチドの結合特異性を付与するために、アクセプターポリペプチドには、ドナーポリペプチドの結合ドメインを移植することができる。前記挿入された結合ドメインは、例えば、抗体、特に、抗HER3抗体の相補性決定領域(CDR)であり得る。挿入は、例えば、当業者に周知の組み換え法の様々な形態による、ポリペプチド合成、コードするアミノ酸の核酸合成等、当業者に公知の様々な方法によって達成することが可能である。

0041

[抗体]
さらに、本明細書において使用される「抗体」又は「抗HER3抗体」という用語は、モノクローナル抗体ポリクローナル抗体組換え抗体ヒト化抗体(Jones et al., Nature 321(1986),522−525;Riechmann e
t al., Nature 332(1988),323−329;and Presta,Curr.Op.Struct.Biol.2(1992),593−596)、キメラ抗体(Morrison et al.,Proc.Natl.Acad.Sci.U.S.A.81(1984),6851−6855)、ヒト抗体と完全ヒト抗体、(Tomizuka,K.et al.,Nature Genetics(1997)16,p.133−143,;Kuroiwa,Y.et.al.,Nucl.AcidsRes.(1998)26,p.3447−3448;Yoshida,H.et.al.,Animal Cell Technology:Basic and Applied
Aspects vol.10,p.69−73(Kitagawa,Y.,Matsuda,T.and Iijima,S.eds.),Kluwer Academic
Publishers,1999.;Tomizuka,K.et.al.,Proc.Natl.Acad.Sci.USA(2000)97,p.722−727、国際公開第2007/077028号等)、少なくとも2つの抗体から形成された多重特異的抗体(例えば、二重特異的抗体)又はこれらの抗体断片を意味する。「抗体断片」という用語は、上記抗体のあらゆる一部、好ましくはそれらの抗原結合領域又は可変領域を含む。抗体断片の例には、Fab断片Fab'断片、F(ab')2断片、Fv断片、ダイア
ディ(Hollinger et al., Proc.Natl.Acad.Sci.U
.S.A.90(1993),6444−6448)、一本鎖抗体分子(Pluckthun in:The Pharmacology of Monoclonal Antib
odies 113, Rosenburg and Moore, EDS, Springer Verlag,N.Y.(1994),269−315)及びHER3への所望の
結合能を示す限り他の断片が含まれる。

0042

さらに、本明細書において使用される「抗体」又は「抗HER3抗体」という用語は、抗体の加工されたサブドメインを含有する抗体様分子又は天然に存在する抗体変種を含み得る。これらの抗体様分子は、ラクダ科動物(camelid)等の天然の取得源から得られた(Muyldermans et al.,Reviews in Molecular Biotechnology 74,277−302)、又は、ヒト、ラクダ科の動物若しくはその他の種から得たライブラリーのインビトロディスプレーを通じて得られた
(Holt et al.,TrendsBiotechnol.,21,484−90
)VHのみ又はVLのみのドメイン等の単一ドメイン抗体であり得る。

0043

本発明において、「Fv断片」は、完全な抗原認識及び結合部位を含有する最低の抗体断片である。これらの領域は、緊密に非共有会合した1つの重鎖可変ドメインと1つの軽鎖可変ドメイン二量体からなる。各可変ドメインの3つのCDRが、VH−VL二量体の表面上の抗原結合部位を規定するために相互作用するのは、この立体配置中である。一括して、6つのCDRが抗体への抗原結合特異性を付与する。しかしながら、単一の可変ドメイン(又は抗原に対して特異的な3つのCDRのみを含むFvの半分)でさえ、一般に、完全な結合部位より低い親和性であるが、抗原を認識及び結合する能力を有する。
「Fab断片」は、軽鎖の定常ドメイン及び重鎖の第一の定常ドメイン(CH1)も含有する。「Fab断片」は、重鎖CH1ドメインのカルボキシ末端に、抗体ヒンジ領域由来の1つ又はそれ以上のシステイン等、数個の残基が付加されている点で、「Fab'断
片」と異なる。「F(ab')2断片」は、当初、ヒンジシステインをその間に有する「Fab'断片」の対として作製される。パパイン又はペプシン消化等、この様な抗体断片を
調製する方法は、当業者に公知である。

0044

本発明の別の好ましい実施形態において、本発明の抗HER3抗体は、HER3の細胞外ドメイン(ECD)に対して誘導された抗HER3抗体である。

0045

本発明の抗HER3抗体−薬物コンジュゲートに使用される抗HER3抗体は、いずれの種に由来してもよいが、好ましくは、ヒト、ラット、マウス、及びウサギを例示できる。ヒト以外の種に由来する場合は、周知の技術を用いて、キメラ化又はヒト化することが好ましい。本発明の抗体は、ポリクローナル抗体であっても、モノクローナル抗体であってもよいが、モノクローナル抗体が好ましい。
抗HER3抗体は腫瘍細胞を標的にできる抗体であり、すなわち腫瘍細胞を認識できる特性、腫瘍細胞に結合できる特性、腫瘍細胞内に取り込まれて内在化する特性、そして腫瘍細胞に対する殺細胞活性等を備えており、抗腫瘍活性を有する化合物を、リンカーを介して結合させて抗体−薬物コンジュゲートとすることができる。
抗体の腫瘍細胞への結合性は、フローサイトメトリーを用いて確認できる。腫瘍細胞内への抗体の取り込みは、(1)治療抗体に結合する二次抗体蛍光標識)を用いて細胞内に取り込まれた抗体を蛍光顕微鏡可視化するアッセイ(Cell Death and Differentiation (2008) 15, 751-761)、(2)治療抗体に結合する二次抗体(蛍光標識)を用いて細
胞内に取り込まれた蛍光量を測定するアッセイ(Molecular Biology of the Cell Vol. 15, 5268-5282, December 2004)、又は(3)治療抗体に結合するイムノトキシンを用い
て、細胞内に取り込まれると毒素が放出されて細胞増殖が抑制されるというMab−ZAPアッセイ(Bio Techniques 28:162−165, January
2000)を用いて確認できる。イムノトキシンとしては、ジフテテリア毒素の触媒領域プロテインGとのリコンビナント複合蛋白質使用可能である。
抗体の抗腫瘍活性は、in vitroでは、細胞の増殖の抑制活性で測定することで確認できる。例えば、抗体の標的蛋白質を過剰発現している癌細胞株を培養し、培養系に種々の濃度で抗体を添加し、フォーカス形成、コロニー形成及びスフェロイド増殖に対する抑制活性を測定することができる。In vivoでは、例えば、標的蛋白質を高発現している腫瘍細
胞株を移植したヌードマウスに抗体を投与し、当該癌(腫瘍)細胞の変化を測定することによって、抗腫瘍活性を確認できる。
抗体−薬物コンジュゲートは抗腫瘍効果を発揮する化合物を結合させてあるので、抗体自体が抗腫瘍効果を有することは、好ましいが、必須ではない。抗腫瘍性化合物の細胞障害性を腫瘍細胞において特異的・選択的に発揮させる目的からは、抗体が内在化して腫瘍細胞内に移行する性質のあることが重要であり、好ましい。

0046

抗HER3抗体は、この分野で通常実施される方法を用いて、抗原となるポリペプチドを動物に免疫し、生体内に産生される抗体を採取、精製することによって得ることができる。抗原の由来はヒトに限定されず、マウス、ラット等のヒト以外の動物に由来する抗原を動物に免疫することもできる。この場合には、取得された異種抗原に結合する抗体とヒト抗原との交差性を試験することによって、ヒトの疾患に適用可能な抗体を選別できる。
また、公知の方法(例えば、Kohler and Milstein, Nature(1975)256, p.495-497、Kennet, R.ed., Monoclonal Antibodies, p.365-367, Plenum Press, N.Y.(1980))に従って、抗原に対する抗体を産生する抗体産生細胞ミエローマ細胞とを融合させることによってハイブリドーマ樹立し、モノクローナル抗体を得ることもできる。
なお、抗原は抗原蛋白質をコードする遺伝子を遺伝子操作によって宿主細胞に産生させることによって得ることができる。具体的には、抗原遺伝子を発現可能なベクターを作製し、これを宿主細胞に導入して該遺伝子を発現させ、発現した抗原を精製すればよい。上記の遺伝子操作による抗原発現細胞、或は抗原を発現している細胞株、を動物に免疫する方法を用いることによっても抗体を取得できる。
抗HER3抗体は、公知の手段によって取得することができる。

0047

本発明で使用できる抗HER3抗体は、特に制限はないが、例えば、以下の特性を有するものが望ましい。
(1)以下の特性を有することを特徴とする抗HER3抗体;
(a)HER3に特異的に結合する。
(b)HER3と結合することによってHER3発現細胞に内在化する活性を有する。(2)HER3の細胞外ドメインに結合する上記(1)に記載の抗体。
(3)モノクローナル抗体である上記(1)又は(2)に記載の抗体。
(4)抗体依存性細胞傷害ADCC)活性及び/又は補体依存性細胞傷害(CDC)活性を有する上記(1)乃至(3)のいずれかに記載の抗体。
(5)マウスモノクローナル抗体キメラモノクローナル抗体、ヒト化モノクローナル抗体又はヒト若しくは完全ヒト(モノクローナル)抗体である上記(1)乃至(4)のいずれかに記載の抗体。
(6)配列番号1に記載のアミノ酸配列からなる重鎖及び配列番号2に記載のアミノ酸配列からなる軽鎖を含んでなるヒト化モノクローナル抗体である上記(1)乃至(5)のいずれかに記載の抗体。
(7)重鎖カルボキシル末端のリシン残基が欠失している上記(1)乃至(6)のいずれかに記載の抗体。
(8)配列番号70に記載のアミノ酸配列で示される重鎖可変領域及び配列番号72に記載のアミノ酸配列で示される軽鎖可変領域を含んでなる上記(7)に記載の抗体。
(9)上記(1)乃至(8)のいずれかに記載の抗体をコードするポリヌクレオチドを含有する発現ベクターによって形質転換された宿主細胞を培養する工程及び当該工程で得られた培養物から目的の抗体を採取する工程を含む当該抗体の製造方法によって得られる抗体。

0048

以下に、本発明において使用される抗HER3抗体について説明する。
本明細書において、「癌」と「腫瘍」は同じ意味に用いている。
本明細書において、「遺伝子」という語には、DNAのみならずそのmRNAcDNA及びそのcRNAも含まれる。
本明細書において、「ポリヌクレオチド」という語は核酸と同じ意味で用いており、DNA、RNA、プローブオリゴヌクレオチド、及びプライマーも含まれる。
本明細においては、「ポリペプチド」と「蛋白質」は区別せずに用いている。
本明細書において、「細胞」には、動物個体内の細胞、培養細胞も含んでいる。
本明細書において、「HER3」は、HER3蛋白質と同じ意味で用いている。
本明細書における「CDR」とは、相補性決定領域(CDR:Complementa
rity determining region)を意味する。抗体分子の重鎖及び軽鎖にはそれぞれ3箇所のCDRがあることが知られている。CDRは、超可変領域(hypervariable domain)とも呼ばれ、抗体の重鎖及び軽鎖の可変領域内にあって、一次構造変異性が特に高い部位であり、重鎖及び軽鎖のポリペプチド鎖の一次構造上において、それぞれ3ヶ所に分離している。本明細書においては、抗体のCDRについて、重鎖のCDRを重鎖アミノ酸配列アミノ末端側からCDRH1、CDRH2、CDRH3と表記し、軽鎖のCDRを軽鎖アミノ酸配列のアミノ末端側からCDRL1、CDRL2、CDRL3と表記する。これらの部位は立体構造の上で相互に近接し、結合する抗原に対する特異性を決定している。
本発明において、「ストリンジェントな条件下でハイブリダイズする」とは、市販のハイブリダイゼーション溶液ExpressHyb Hybridization Solution(クロンテック社製)中、68℃でハイブリダイズすること、又はDNAを固定したフィルターを用いて0.7−1.0MのNaCl存在下、68℃でハイブリダイゼーションを行った後、0.1−2倍濃度のSS溶液(1倍濃度SSCとは150mM NaCl、15mMクエン酸ナトリウムからなる)を用い、68℃で洗浄することによって同定することができる条件又はそれと同等の条件でハイブリダイズすることをいう。

0049

1.HER3
HER3はヒト上皮増殖因子受容体3で、HER3、ErbB3とも呼ばれ、受容体蛋白質チロシンキナーゼであり、HER1,HER2及びHER4とともに受容体蛋白質チロシンキナーゼの上皮増殖因子受容体サブファミリーに属する。HER3は膜貫通受容体であり、細胞外リガンド結合ドメイン(ECD)、ECD内の二量体化ドメイン、膜貫通ドメイン、細胞内蛋白質チロシンキナーゼドメイン(TKD)及びカルボキシル末端リン酸化ドメインを含む。HER3は乳癌、胃腸癌及び膵臓癌等、いくつかの種類の癌において過剰発現している。HER2−HER3の発現と非浸潤性段階から浸潤性段階への進行との間に相関が見られる。
本発明で用いるHER3蛋白質は、ヒト、非ヒト哺乳動物(ラット、マウス等)のHER3発現細胞から直接精製して使用するか、或は当該細胞の細胞膜画分を調製して使用することができ、また、HER3をin vitroにて合成する、或は遺伝子操作によって宿主細胞に産生させることによって得ることができる。遺伝子操作では、具体的には、HER3
cDNAを発現可能なベクターに組み込んだ後、転写翻訳に必要な酵素、基質及びエネルギー物質を含む溶液中で合成する、或は他の原核生物、又は真核生物の宿主細胞を形質転換させることによってHER3を発現させることによって、該蛋白質を得ることができる。また、前記の遺伝子操作によるHER3発現細胞、或はHER3を発現している細胞株をHER3蛋白質として使用することも可能である。
HER3のRNA配列cDNA配列及びアミノ酸配列は公的データベース上に公開されており、例えばAAA35979(アミノ末端19アミノ酸残基からなるシグナル配列を含む前駆体)、M34309(NCBI)等のアクセッション番号により参照可能である。
また、上記HER3のアミノ酸配列において、1又は数個のアミノ酸が置換、欠失、付加及び/又は挿入されたアミノ酸配列からなり、当該蛋白質と同等の生物活性を有する蛋白質もHER3に含まれる。

0050

2.抗HER3抗体の製造
本発明のHER3に対する抗体は、この分野で通常実施される方法に従って、HER3又はHER3のアミノ酸配列から選択される任意のポリペプチドを動物に免疫し、生体内に産生される抗体を採取、精製することによって得ることができる。抗原となるHER3の生物種はヒトに限定されず、マウス、ラット等のヒト以外の動物に由来するHER3を動物に免疫することもできる。この場合には、取得された異種HER3に結合する抗体とヒトHER3との交差性を試験することによって、ヒトの疾患に適用可能な抗体を選別で
きる。
また、公知の方法(例えば、Kohler and Milstein,Nature(1975)256,p.495−497、Kennet,R.ed.,Monoclonal Antibodies,p.365−367,Plenum Press,N.Y.(1980))に従って、HER3に対する抗体を産生する抗体産生細胞とミエローマ細胞とを融合させることによってハイブリドーマを樹立し、モノクローナル抗体を得ることもできる。
なお、抗原となるHER3はHER3遺伝子を遺伝子操作によって宿主細胞に発現させることによって得ることができる。
具体的には、HER3遺伝子を発現可能なベクターを作製し、これを宿主細胞に導入して該遺伝子を発現させ、発現したHER3を精製すればよい。
また、上記の遺伝子操作によるHER3発現細胞、或はHER3を発現している細胞株をHER3蛋白質として使用することも可能である。以下、具体的にHER3に対する抗体の取得方法を説明する。

0051

(1)抗原の調製
抗HER3抗体を作製するための抗原としてはHER3又はその少なくとも6個の連続した部分アミノ酸配列からなるポリペプチド、或はこれらに任意のアミノ酸配列や担体が付加された誘導体を挙げることができる。
HER3は、ヒトの腫瘍組織或は腫瘍細胞から直接精製して使用することができ、また、HER3をin vitroにて合成する、或は遺伝子操作によって宿主細胞に産生させることによって得ることができる。
遺伝子操作では、具体的には、HER3のcDNAを発現可能なベクターに組み込んだ後、転写と翻訳に必要な酵素、基質及びエネルギー物質を含む溶液中で合成する、或は他の原核生物又は真核生物の宿主細胞を形質転換してHER3を発現させることによって、抗原を得ることができる。
また、膜蛋白質であるHER3の細胞外領域と抗体の定常領域とを連結した融合蛋白質を適切な宿主ベクター系において発現させることによって、分泌蛋白質として抗原を得ることも可能である。
HER3のcDNAは例えば、HER3のcDNAを発現しているcDNAライブラリーを鋳型として、HER3 cDNAを特異的に増幅するプライマーを用いてポリメラーゼ連鎖反応(以下「PCR」という;Saiki,R. K.,et al.,Science(1988)239,p.487−489 参照)を行う、いわゆるPCR法によって取得することができる。
ポリペプチドのインビトロ(in vitro)合成としては、例えばロシュダイアグスティックス社製のラピッドトランスレーションステムRTS)を挙げることができるが、これに限定されない。
原核細胞の宿主としては、例えば、大腸菌(Escherichia coli)や枯草菌(Bacillus subtilis)等を挙げることができる。目的の遺伝子をこれらの宿主細胞内で形質転換させるには、宿主と適合し得る種由来のレプリコンすなわち複製起点と、調節配列を含んでいるプラスミドベクターで宿主細胞を形質転換させる。また、ベクターとしては、形質転換細胞表現形質表現型)の選択性を付与することができる配列を有するものが好ましい。
真核細胞の宿主細胞には、脊椎動物昆虫酵母等の細胞が含まれ、脊椎動物細胞としては、例えば、サルの細胞であるCOS細胞(Gluzman,Y.Cell(1981)23,p.175−182、ATCCCRL−1650;ATCC:American Type Culture Collection)、マウス線維芽細胞NIH3T3(ATCC No.CRL−1658)やチャニーズハムスター卵巣細胞CHO細胞、ATCC CCL−61)のジヒドロ葉酸還元酵素欠損株(Urlaub,G. and Chasin,L.A.Proc.Natl.Acad.Sci.USA(19
80)77,p.4126−4220)等がよく用いられているが、これらに限定されない。
上記の様にして得られる形質転換体は、この分野で通常実施される方法に従い培養することができ、該培養によって細胞内又は細胞外に目的のポリペプチドが産生される。
該培養に用いられる培地としては、採用した宿主細胞に応じて慣用される各種のものを適宜選択でき、大腸菌であれば、例えば、LB培地に必要に応じて、アンピシリン等の抗生物質IPMGを添加して用いることができる。
上記培養によって、形質転換体の細胞内又は細胞外に産生される組換え蛋白質は、該蛋白質の物理的性質や化学的性質等を利用した各種の公知の分離操作法によって分離・精製することができる。
該方法としては、具体的には例えば、通常の蛋白質沈殿剤による処理、限外濾過分子ふるいクロマトグラフィーゲル濾過)、吸着クロマトグラフィーイオン交換クロマトグラフィーアフィニティークロマトグラフィー等の各種液体クロマトグラフィー透析法、これらの組合せ等を例示できる。
また、発現させる組換え蛋白質に6残基からなるヒスチジンタグを繋げることによって、ニッケルアフィニティーカラムで効率的に精製することができる。或は、発現させる組換え蛋白質にIgGFc領域を繋げることによって、プロテインAカラムで効率的に精製することができる。
上記方法を組合せることによって容易に高収率高純度で目的とするポリペプチドを大量に製造できる。
上記に述べた形質転換体自体を抗原として使用することも可能である。また、HER3を発現する細胞株を抗原として使用することも可能である。

0052

(2) 抗HER3モノクローナル抗体の製造
HER3と特異的に結合する抗体の例としてHER3と特異的に結合するモノクローナル抗体を挙げることができるが、その取得方法は、以下に記載する通りである。
モノクローナル抗体の製造にあたっては、一般に下記の様な作業工程が必要である。
すなわち、
(a)抗原として使用する生体高分子の精製、又は抗原発現細胞の調製、
(b)抗原を動物に注射することによって免疫した後、血液を採取してその抗体価検定して脾臓摘出の時期を決定してから、抗体産生細胞を調製する工程、
(c)骨髄腫細胞(以下「ミエローマ」という)の調製、
(d)抗体産生細胞とミエローマとの細胞融合
(e)目的とする抗体を産生するハイブリドーマ群の選別、
(f)単一細胞クローンへの分割(クローニング)、
(g)場合によっては、モノクローナル抗体を大量に製造するためのハイブリドーマの培養、又はハイブリドーマを移植した動物の飼育
(h)この様にして製造されたモノクローナル抗体の生理活性、及びその結合特異性の検討、或は標識試薬としての特性の検定
等である。
以下、モノクローナル抗体の作製法を上記工程に沿って詳述するが、該抗体の作製法はこれに制限されず、例えば脾細胞以外の抗体産生細胞及びミエローマを使用することもできる。

0053

(a)抗原の精製
抗原としては、前記した様な方法で調製したHER3又はその一部を使用することができる。
また、HER3発現組換え体細胞よって調製した膜画分、又はHER3発現組換え体細胞自身、さらに、当業者に周知の方法を用いて、化学合成した本発明の蛋白質の部分ペプチドを抗原として使用することもできる。
さらに、HER3発現細胞株を抗原として使用することもできる。

0054

(b)抗体産生細胞の調製
工程(a)で得られた抗原と、フロインドの完全又は不完全アジュバント、或はカリミョウバンの様な助剤とを混合し、免疫原として実験動物に免疫する。この他に、抗原発現細胞を免疫原として実験動物に免疫する方法もある。実験動物は公知のハイブリドーマ作製法で用いられる動物を支障なく使用することができる。具体的には、例えばマウス、ラット、ヤギヒツジウシウマ等を使用することができる。ただし、摘出した抗体産生細胞と融合させるミエローマ細胞の入手容易性等の観点から、マウス又はラットを被免疫動物とするのが好ましい。
また、実際に使用するマウス及びラットの系統には特に制限はなく、マウスの場合には、例えば各系統A、AKR、BALB/c、BDP、BA、CE、C3H、57BL、C57BL、C57L、DBA、FL、HTH、HT1、LP、NZB、NZW、RF、R
III、SJL、SWR、WB、129等が、またラットの場合には、例えば、Wistar、Low、Lewis、Sprague、Dawley、ACI、BN、Fischer等を用いることができる。
これらのマウス及びラットは例えば日本クレア株式会社、日本チャ−ルス・リバー株式会社等の実験動物飼育販売業者より入手することができる。
被免疫動物としては、後述のミエローマ細胞との融合適合性案すれば、マウスではBALB/c系統が、ラットではWistar及びLow系統が特に好ましい。
また、抗原のヒトとマウスでの相同性を考慮し、自己抗体を除去する生体機構を低下させたマウス、すなわち自己免疫疾患マウスを用いることも好ましい。
なお、これらのマウス又はラットの免疫時の週齢は、好ましくは5〜12週齢、さらに好ましくは6〜8週齢である。
HER3又はこの組換え体によって動物を免疫するには、例えば、Weir,D.M.,Handbook of Experimental Immunology Vol.I.II.III.,Blackwell Scientific Publications,Oxford(1987);Kabat,E.A.and Mayer,M.M.,Experimental Immunochemistry,Charles C
Thomas Publisher Springfield,Illinois(1964)等に詳しく記載されている公知の方法を用いることができる。
これらの免疫法のうち、本発明において好適な方法を具体的に示せば、例えば以下の通りである。
すなわち、まず、抗原である膜蛋白質画分、又は抗原を発現させた細胞を動物の皮内又は腹腔内に投与する。ただし、免疫効率を高めるためには両者の併用が好ましく、前半は皮内投与を行い、後半又は最終回のみ腹腔内投与を行うと、特に免疫効率を高めることができる。
抗原の投与スケジュールは、被免疫動物の種類、個体差等によって異なるが、一般には、抗原投与回数3〜6回、投与間隔2〜6週間が好ましく、投与回数3〜4回、投与間隔2〜4週間がさらに好ましい。
また、抗原の投与量は、動物の種類、個体差等によって異なるが、一般には0.05〜5mg、好ましくは0.1〜0.5mg程度とする。
追加免疫は、以上の通りの抗原投与の1〜6週間後、好ましくは1〜4週間後、さらに好ましくは1〜3週間後に行う。免疫原が細胞の場合には、1×106乃至1×107個の細胞を使用する。
なお、追加免疫を行う際の抗原投与量は、動物の種類、大きさ等によって異なるが、一般に、例えばマウスの場合には0.05〜5mg、好ましくは0.1〜0.5mg、さらに好ましくは0.1〜0.2mg程度とする。免疫原が細胞の場合には、1×106乃至
1×107個の細胞を使用する。
上記追加免疫から1〜10日後、好ましくは2〜5日後、さらに好ましくは2〜3日後
に被免疫動物から抗体産生細胞を含む脾臓細胞又はリンパ球無菌的に取り出す。その際に抗体価を測定し、抗体価が十分高くなった動物を抗体産生細胞の供給源として用いれば、以後の操作の効率を高めることができる。
ここで用いられる抗体価の測定法としては、例えば、RIA法又はELISA法を挙げることができるがこれらの方法に制限されない。本発明における抗体価の測定は、例えばELISA法によれば、以下に記載する様な手順によって行うことができる。
まず、精製又は部分精製した抗原をELISA96穴プレート等の固相表面に吸着させ、さらに抗原が吸着していない固相表面を抗原と無関係な蛋白質、例えばウシ血清アルブミン(以下「BSA」という)によって覆い、該表面を洗浄後、第一抗体として段階希釈した試料(例えばマウス血清)に接触させ、上記抗原に試料中の抗体を結合させる。
さらに第二抗体として酵素標識されたマウス抗体に対する抗体を加えてマウス抗体に結合させ、洗浄後該酵素の基質を加え、基質分解に基づく発色による吸光度の変化等を測定することによって、抗体価を算出する。
被免疫動物の脾臓細胞又はリンパ球からの抗体産生細胞の分離は、公知の方法(例えば、Kohler et al.,Nature(1975)256,p.495;Kohler et al.,Eur.J.Immunol.(1977)6,p.511;Milstein et al.,Nature(1977),266,p.550;Walsh,Nature,(1977)266,p.495)に従って行うことができる。例えば、脾臓細胞の場合には、脾臓細切して細胞をステンレスメッシュ濾過した後、イーグル最小必須培地MEM)に浮遊させて抗体産生細胞を分離する一般的方法を採用することができる。

0055

(c)骨髄腫細胞(以下、「ミエローマ」という)の調製
細胞融合に用いるミエローマ細胞には特段の制限はなく、公知の細胞株から適宜選択して用いることができる。ただし、融合細胞からハイブリドーマを選択する際の利便性を考慮して、その選択手続確立しているHGPRT(Hypoxanthine−guanine phosphoribosyl transferase)欠損株を用いるのが好ましい。
すなわち、マウス由来のX63−Ag8(X63)、NS1−ANS/1(NS1)、P3X63−Ag8.U1(P3U1)、X63−Ag8.653(X63.653)、SP2/0−Ag14(SP2/0)、MPC11−45.6TG1.7(45.6TG)、FO、S149/5XXO、BU.1等、ラット由来の210.RSY3.Ag.1.2.3(Y3)等、ヒト由来のU266AR(SKO−007)、GM1500・GTG−A12(GM1500)、UC729−6、LICR−LOW−HMy2(HMy2)、8226AR/NIP4−1(NP41)等である。これらのHGPRT欠損株は例えば、ATCC等から入手することができる。
これらの細胞株は、適当な培地、例えば8−アザグアニン培地(RPMI−1640培地にグルタミン2−メルカプトエタノールゲンタマイシン、及びウシ胎児血清(以下「FBS」という)を加えた培地に8−アザグアニンを加えた培地)、イスコフ改変ダルベッコ培地(Iscove’s Modified Dulbecco’s Medium;IMDM)、又はダルベッコ改変イーグル培地(Dulbecco’s Modified Eagle Medium;以下「DMEM」という)で継代培養するが、細胞融合の3乃至4日前に正常培地(例えば、10%FCSを含むASF104培地(味の素株式会社製))で継代培養し、融合当日に2×107以上の細胞数を確保しておく。

0056

(d)細胞融合
抗体産生細胞とミエローマ細胞との融合は、公知の方法(Weir,D.M.,Handbookof Experimental Immunology Vol.I.II.III.,Blackwell Scientific Publications,Oxford(1987);Kabat,E.A.and Mayer,M.M.,Ex
perimental Immunochemistry,Charles C Thomas Publisher Springfield,Illinois(1964)等)に従い、細胞の生存率極度に低下させない程度の条件下で適宜実施することができる。
その様な方法は、例えば、ポリエチレングリコール等の高濃度ポリマー溶液中で抗体産生細胞とミエローマ細胞とを混合する化学的方法電気的刺激を利用する物理的方法等を用いることができる。このうち、上記化学的方法の具体例を示せば以下の通りである。
すなわち、高濃度ポリマー溶液としてポリエチレングリコールを用いる場合には、分子量1500〜6000、好ましくは2000〜4000のポリエチレングリコール溶液中で、30〜40℃、好ましくは35〜38℃の温度で抗体産生細胞とミエローマ細胞とを1〜10分間、好ましくは5〜8分間混合する。

0057

(e)ハイブリドーマ群の選択
上記細胞融合によって得られるハイブリドーマの選択方法は特に制限はないが、通常HAT(ヒポキサンチンアミノプテリンチミジン選択法(Kohler et al.,Nature(1975)256,p.495;Milstein et al.,Nature(1977)266,p.550)が用いられる。
この方法は、アミノプテリンで生存し得ないHGPRT欠損株のミエローマ細胞を用いてハイブリドーマを得る場合に有効である。すなわち、未融合細胞及びハイブリドーマをHAT培地で培養することによって、アミノプテリンに対する耐性を持ち合わせたハイブリドーマのみを選択的に残存させ、かつ増殖させることができる。

0058

(f)単一細胞クローンへの分割(クローニング)
ハイブリドーマのクローニング法としては、例えばメチルセルロース法、軟アガロース法、限界希釈法等の公知の方法を用いることができる(例えばBarbara, B.M.and Stanley,M.S.:Selected Methodsin Cellular Immunology,W.H.Freeman and Company,San Francisco(1980)参照)。これらの方法のうち、特にメチルセルロース法等の三次元培養法が好適である。例えば、細胞融合によって形成されたハイブリドーマ群をClonaCell−HY Selection Medium D(StemCell Technologies社製 #03804)等のメチルセルロース培地に懸濁して培養し、形成されたハイブリドーマコロニー回収することでモノクローンハイブリドーマの取得が可能である。回収された各ハイブリドーマコロニーを培養し、得られたハイブリドーマ培養上清中に安定して抗体価の認められたものを抗HER3モノクローナル抗体産生ハイブリドーマ株として選択する。

0059

(g)ハイブリドーマの培養によるモノクローナル抗体の調製
この様にして選択されたハイブリドーマは、これを培養することによって、モノクローナル抗体を効率よく得ることができるが、培養に先立ち、目的とするモノクローナル抗体を産生するハイブリドーマをスクリーニングすることが望ましい。
このスクリーニングにはそれ自体既知の方法が採用できる。
本発明における抗体価の測定は、例えば上記(b)の項目で説明したELISA法によって行うことができる。
以上の方法によって得たハイブリドーマは、液体窒素中又は−80℃以下の冷凍庫中に凍結状態で保存することができる。
クローニングを完了したハイブリドーマは、培地をHT培地から正常培地に換えて培養される。
大量培養は、大型培養瓶を用いた回転培養、或はスピナー培養で行われる。この大量培養における上清から、ゲル濾過等、当業者に周知の方法を用いて精製することによって、本発明の蛋白質に特異的に結合するモノクローナル抗体を得ることができる。
また、同系統のマウス(例えば、上記のBALB/c)、或はNu/Nuマウスの腹腔内にハイブリドーマを注射し、該ハイブリド−マを増殖させることによって、本発明のモノクローナル抗体を大量に含む腹水を得ることができる。
腹腔内に投与する場合には、事前(3〜7日前)に2,6,10,14−テトラメチルペンタデカン(2,6,10,14−tetramethylpentadecane;プリスタン)等の鉱物油を投与すると、より多量の腹水が得られる。
例えば、ハイブリドーマと同系統のマウスの腹腔内に予め免疫抑制剤を注射し、T細胞を不活性化した後、20日後に106〜107個のハイブリドーマ・クローン細胞を、血清を含まない培地中に浮遊(0.5mL)させて腹腔内に投与し、通常腹部膨満し、腹水がたまったところでマウスより腹水を採取する。この方法によって、培養液中に比べて約100倍以上の濃度のモノクローナル抗体が得られる。
上記方法によって得たモノクローナル抗体は、例えばWeir,D.M.:Handbook of Experimental Immunology,Vol.I,II,III,Blackwell Scientific Publications,Oxford(1978)に記載されている方法で精製することができる。
かくして得られるモノクローナル抗体は、HER3に対して高い抗原特異性を有する。

0060

(h)モノクローナル抗体の検定
かくして得られたモノクローナル抗体のアイソタイプ及びサブクラスの決定は以下の様に行うことができる。
まず、同定法としてはオクテルロニー(Ouchterlony)法、ELISA法、又はRIA法を挙げることができる。
オクテルロニー法は簡便ではあるが、モノクローナル抗体の濃度が低い場合には濃縮操作が必要である。
一方、ELISA法又はRIA法を用いた場合は、培養上清をそのまま抗原吸着固相と反応させ、さらに第二次抗体として各種イムノグロブリンアイソタイプ、サブクラスに対応する抗体を用いることによって、モノクローナル抗体のアイソタイプ、サブクラスを同定することが可能である。
また、さらに簡便な方法として、市販の同定用のキット(例えば、マウスタイパーキット;バイオラッド社製)等を利用することもできる。
さらに、蛋白質の定量は、フォーリンロウリー法、及び280nmにおける吸光度(1.4(OD280)=イムノグロブリン1mg/mL)より算出する方法によって行うことができる。
さらに、(2)の(a)乃至(h)の工程を再度実施して別途に独立してモノクローナル抗体を取得した場合においても、抗HER3抗体と同等の細胞傷害活性を有する抗体を取得することが可能である。この様な抗体の一例として、抗HER3抗体と同一のエピトープに結合する抗体を挙げることができる。新たに作製されたモノクローナル抗体が、抗HER3抗体の結合する部分ペプチド又は部分立体構造に結合すれば、該モノクローナル抗体が抗HER3抗体と同一のエピトープに結合すると判定することができる。また、抗HER3抗体のHER3に対する結合に対して該モノクローナル抗体が競合する(即ち、該モノクローナル抗体が、抗HER3抗体とHER3の結合を妨げる)ことを確認することによって、具体的なエピトープの配列又は構造が決定されていなくても、該モノクローナル抗体が抗HER3抗体と同一のエピトープに結合すると判定することができる。エピトープが同一であることが確認された場合、該モノクローナル抗体が抗HER3抗体と同等の抗原結合能又は生物活性を有していることが強く期待される。

0061

(3) その他の抗体
本発明の抗体には、上記HER3に対するモノクローナル抗体に加え、ヒトに対する異種抗原性を低下させること等を目的として人為的に改変した遺伝子組換え型抗体、例えば、キメラ(Chimeric)抗体、ヒト化(Humanized)抗体、ヒト抗体等も
含まれる。これらの抗体は、既知の方法を用いて製造することができる。
キメラ抗体としては、抗体の可変領域と定常領域が互いに異種である抗体、例えばマウス又はラット由来抗体の可変領域をヒト由来の定常領域に接合したキメラ抗体を挙げることができる(Proc.Natl.Acad.Sci.U.S.A.,81,6851−6855,(1984)参照)。
ヒト化抗体としては、相補性決定領域(CDR;complementarity determining region)のみをヒト由来の抗体に組み込んだ抗体(Nature(1986)321,p.522−525参照)、CDR移植法によって、CDRの配列に加え一部のフレームワークのアミノ酸残基もヒト抗体に移植した抗体(国際公開第90/07861号)を挙げることができる。
なお、本明細書中における「数個」とは、1乃至10個、1乃至9個、1乃至8個、1乃至7個、1乃至6個、1乃至5個、1乃至4個、1乃至3個、又は1若しくは2個を意味する。

0062

本発明において、本発明の結合タンパク質のアミノ酸配列は、20の一般的なアミノ酸に限定されないことを理解すべきである(Immunology−A Synthesi
s(2nd Edition, E.S.Golub and D.R.Gren, Eds.
, Sinauer Associates, Sunderland, Mass.(1991)(参照により、本明細書に組み込まれる。)を参照されたい。)。例えば、アミノ酸には、20の一般的なアミノ酸の立体異性体(例えば、Dアミノ酸)、α,α−二置換されたアミノ酸、N−アルキルアミノ酸、乳酸及び他の非慣用アミノ酸等の非天然アミノ酸が含まれ得る。本発明の結合タンパク質に対する適切な成分でもあり得る非慣用アミノ酸の例には、4−ヒドロキシプロリン、γ−カルボキシグルタミン酸、ε−N,N,N−トリメチルリシン、ε−N−アセチルリシン、O−ホスホセリン、N−アセチルセリンN−ホルミルメチオニン、3−メチルヒスチジン、5−ヒドロキシリシン、σ−N−メチルアルギニン並びに他の類似のアミノ酸及びイミノ酸(例えば、4−ヒドロキシプロリン)が含まれる。

0063

また、本明細書におけるアミノ酸の置換としては保存的アミノ酸置換が好ましい。保存的アミノ酸置換とは、アミノ酸側鎖に関連のあるアミノ酸グループ内で生じる置換である。好適なアミノ酸グループは、以下の通りである:酸性グループ=アスパラギン酸、グルタミン酸;塩基性グループ=リシン、アルギニン、ヒスチジン;非極性グループ=アラニン、バリン、ロイシンイソロイシンプロリン、フェニルアラニン、メチオニントリプトファン;及び非帯電極性ファミリー=グリシン、アスパラギン、グルタミン、システイン、セリン、スレオニンチロシン。他の好適なアミノ酸グループは次の通りである:脂肪族ヒドロキシグループ=セリン及びスレオニン;アミド含有グループ=アスパラギン及びグルタミン;脂肪族グループ=アラニン、バリン、ロイシン及びイソロイシン;並びに芳香族グループ=フェニルアラニン、トリプトファン及びチロシン。かかるアミノ酸置換は元のアミノ酸配列を有する物質の特性を低下させない範囲で行うのが好ましい。本発明の抗体の重鎖及び軽鎖においては、N末端のアミノ酸がグルタミン酸である場合、それは環化していること(ピログルタミンになっていること)がある。その様なピログルタミンも、本発明においては、アミノ酸配列上、通常のグルタミンと区別されない。また、本発明の抗体の重鎖及び軽鎖においては、システインがシステイニル(cysteinyl)化して
いることがある。その様なシステイニル(cysteinyl)化したものも、本発明においては
、アミノ酸配列上、通常のシステインと区別されない。

0064

本発明の抗体としては、さらに、HER3に結合する、ヒト抗体を挙げることができる。抗HER3ヒト抗体とは、ヒト染色体由来の抗体の遺伝子配列のみを有するヒト抗体を意味する。抗HER3ヒト抗体は、ヒト抗体の重鎖と軽鎖の遺伝子を含むヒト染色体断片を有するヒト抗体産生マウスを用いた方法(Tomizuka,K.et al.,Na
ture Genetics(1997)16,p.133−143;Kuroiwa,Y.et.al.,Nucl.AcidsRes.(1998)26,p.3447−3448;Yoshida,H.et.al.,Animal Cell Technology:Basic and Applied Aspects vol.10,p.69−73(Kitagawa,Y.,Matsuda,T.and Iijima,S.eds.),Kluwer Academic Publishers,1999;Tomizuka,K.et.al.,Proc.Natl.Acad.Sci.USA(2000)97,p.722−727等を参照。)によって取得することができる。

0065

この様なヒト抗体産生マウスは、具体的には、内在性免疫グロブリン重鎖及び軽鎖の遺伝子座破壊され、代わりに酵母人工染色体(Yeast artificial chromosome,YAC)ベクター等を介してヒト免疫グロブリン重鎖及び軽鎖の遺伝子座が導入された遺伝子組み換え動物として、ノックアウト動物及びトランスジェニック動物の作製及びこれらの動物同士を掛け合わせることによって作り出すことができる。
また、遺伝子組換え技術によって、その様なヒト抗体の重鎖及び軽鎖の各々をコードするcDNA、好ましくは該cDNAを含むベクターによって真核細胞を形質転換し、遺伝子組換えヒトモノクローナル抗体を産生する形質転換細胞を培養することによって、この抗体を培養上清中から得ることもできる。
ここで、宿主としては例えば真核細胞、好ましくはCHO細胞、リンパ球やミエローマ等の哺乳動物細胞を用いることができる。
ヒト抗体作製については国際公開第2007/077028号に詳細に記載されている。国際公開第2007/077028号の内容は、本発明の開示の一部を構成する。

0066

また、ヒト抗体ライブラリーより選別したファージディスプレイ由来のヒト抗体を取得する方法(Wormstone,I.M.et.al,Investigative Ophthalmology & Visual Science.(2002)43(7),p.2301−2308;Carmen,S.et.al.,Briefings in Functional Genomics and Proteomics(2002),1(2),p.189−203;Siriwardena,D.et.al.,Ophthalmology(2002)109(3),p.427−431等参照。)も知られている。
例えば、ヒト抗体の可変領域を一本鎖抗体(scFv)としてファージ表面に発現させて、抗原に結合するファージを選択するファージディスプレイ法(Nature Biotechnology(2005),23,(9),p.1105−1116)を用いることができる。
抗原に結合することで選択されたファージの遺伝子を解析することによって、抗原に結合するヒト抗体の可変領域をコードするDNA配列を決定することができる。
抗原に結合するscFvのDNA配列が明らかになれば、当該配列を有する発現ベクターを作製し、適当な宿主に導入して発現させることによってヒト抗体を取得することができる(国際公開第92/01047号、同92/20791号、同93/06213号、同93/11236号、同93/19172号、同95/01438号、同95/15388号;Annu.Rev.Immunol(1994)12,p.433−455;Nature Biotechnology(2005)23(9),p.1105−1116)。

0067

本発明の一つの側面はHER3に結合する蛋白質に関する。本発明のある態様において、本発明の単離されたHER3結合タンパク質は、(a)配列番号2、6、10、14、18、22、26、30、34、36、40、42、46、50、54、60、62、66、70、74、78、80、84、88、92、96、100、104、108、112、116、120、122、126、130、134、138、142、146、15
0、154、158、162、166、170、174、178、182、186、190、194、198、202、206、210、214、218、222、226又は230に示されるアミノ酸配列に含まれるCDHR1;(b)配列番号2、6、10、14、18、22、26、30、34、36、40、42、46、50、54、60、62、66、70、74、78、80、84、88、92、96、100、104、108、112、116、120、122、126、130、134、138、142、146、150、154、158、162、166、170、174、178、182、186、190、194、198、202、206、210、214、218、222、226又は230に示されるアミノ酸配列に含まれるCDRH2;及び(c)配列番号2、6、10、14、18、22、26、30、34、36、40、42、46、50、54、60、62、66、70、74、78、80、84、88、92、96、100、104、108、112、116、120、122、126、130、134、138、142、146、150、154、158、162、166、170、174、178、182、186、190、194、198、202、206、210、214、218、222、226又は230に示されるアミノ酸配列に含まれるCDRH3を含む重鎖アミノ酸配列、並びに(d)配列番号4、8、12、16、20、24、28、32、38、44、48、52、56、58、64、68、72、76、82、86、90、94、98、102、106、110、114、118、124、128、132、136、140、144、148、152、156、160、164、168、172、176、180、184、188、192、196、200、204、208、212、216、220、224、228又は232に示されるアミノ酸配列に含まれるCDRL1;(e)配列番号4、8、12、16、20、24、28、32、38、44、48、52、56、58、64、68、72、76、82、86、90、94、98、102、106、110、114、118、124、128、132、136、140、144、148、152、156、160、164、168、172、176、180、184、188、192、196、200、204、208、212、216、220、224、228又は232に示されるアミノ酸配列に含まれるCDRL2;及び(f)配列番号4、8、12、16、20、24、28、32、38、44、48、52、56、58、64、68、72、76、82、86、90、94、98、102、106、110、114、118、124、128、132、136、140、144、148、152、156、160、164、168、172、176、180、184、188、192、196、200、204、208、212、216、220、224、228又は232に示されるアミノ酸配列に含まれるCDRL3を含む軽鎖アミノ酸配列を含む。

0068

本発明の単離されたHER3結合蛋白質は、好適には(a)配列番号236、251、252及び256からなる群から選択される一つで示されるアミノ酸配列を含むCDRH1;(b)配列番号258、278、280及び282からなる群から選択される一つで示されるアミノ酸配列を含むCDRH2;及び(c)配列番号283、285、309、313及び315からなる群から選択される一つで示されるアミノ酸配列を含むCDRH3を含む重鎖アミノ酸配列、並びに(d)配列番号320、334、337及び340からなる群から選択される一つで示されるアミノ酸配列を含むCDRL1;(e)配列番号343、356、351及び344からなる群から選択される一つで示されるアミノ酸配列を含むCDRL2;及び(f)配列番号360、381、385及び387からなる群から選択される一つで示されるアミノ酸配列を含むCDRL3を含む軽鎖アミノ酸配列を含む。

0069

本発明の別の形態において、本発明の単離されたHER3結合タンパク質は、配列番号2、6、10、14、18、22、26、30、34、36、40、42、46、50、54、60、62、66、70、74、78、80、84、88、92、96、100、104、108、112、116、120、122、126、130、134、138、
142、146、150、154、158、162、166、170、174、178、182、186、190、194、198、202、206、210、214、218、222、226及び230からなる群から選択される重鎖可変領域アミノ酸配列、及び/又は配列番号4、8、12、16、20、24、28、32、38、44、48、52、56、58、64、68、72、76、82、86、90、94、98、102、106、110、114、118、124、128、132、136、140、144、148、152、156、160、164、168、172、176、180、184、188、192、196、200、204、208、212、216、220、224、228及び232からなる群から選択される軽鎖可変領域アミノ酸配列を含む。

0070

本発明のさらに別の形態において、本発明の単離されたHER3結合タンパク質は、好適には、配列番号2及び4、6及び8、10及び12、14及び16、18及び20、22及び24、26及び28、30及び32、36及び38、42及び44、46及び48、50及び52、54及び56、60及び58、62及び64、66及び68、70及び72、74及び76、78及び82、80及び82、84及び86、88及び90、92及び94、96及び98、100及び102、104及び106、108及び110、112及び114、116及び118、122及び124、126及び128、130及び132、134及び136、138及び140、142及び144、146及び148、150及び152、154及び156、158及び160、162及び164、166及び168、170及び172、174及び176、178及び180、182及び184、186及び188、190及び192、194及び196、198及び200、202及び204、206及び208、210及び212、214及び216、218及び220、222及び224、226及び228、若しくは230及び232に示されている重鎖可変領域アミノ酸配列及び軽鎖可変領域アミノ酸配列、又は、配列番号34、40、60、62若しくは120に示されている重鎖可変領域アミノ酸配列及び配列番号58若しくは64に示されている軽鎖可変領域アミノ酸配列を含む。
本発明の単離されたHER3結合タンパク質は、より好適には、配列番号42、54、70、92又は96で示される重鎖可変領域アミノ酸配列、及び、配列番号44、56、72、94又は98で示される軽鎖可変領域アミノ酸配列を含む。

0071

配列番号2及び4に示される重鎖可変領域アミノ酸配列及び軽鎖可変領域アミノ酸配列を含む抗体を「U1−39」、配列番号6及び8に示される重鎖可変領域アミノ酸配列及び軽鎖可変領域アミノ酸配列を含む抗体を「U1−40」、配列番号10及び12に示される重鎖可変領域アミノ酸配列及び軽鎖可変領域アミノ酸配列を含む抗体を「U1−38」、配列番号14及び16に示される重鎖可変領域アミノ酸配列及び軽鎖可変領域アミノ酸配列を含む抗体を「U1−41」、配列番号18及び20に示される重鎖可変領域アミノ酸配列及び軽鎖可変領域アミノ酸配列を含む抗体を「U1−42」、配列番号22及び24に示される重鎖可変領域アミノ酸配列及び軽鎖可変領域アミノ酸配列を含む抗体を「U1−43」、配列番号26及び28に示される重鎖可変領域アミノ酸配列及び軽鎖可変領域アミノ酸配列を含む抗体を「U1−44」、配列番号30及び32に示される重鎖可変領域アミノ酸配列及び軽鎖可変領域アミノ酸配列を含む抗体を「U1−45」、配列番号36及び38に示される重鎖可変領域アミノ酸配列及び軽鎖可変領域アミノ酸配列を含む抗体を「U1−47」、配列番号42及び44に示される重鎖可変領域アミノ酸配列及び軽鎖可変領域アミノ酸配列を含む抗体を「U1−49」、配列番号46及び48に示される重鎖可変領域アミノ酸配列及び軽鎖可変領域アミノ酸配列を含む抗体を「U1−50」、配列番号50及び52に示される重鎖可変領域アミノ酸配列及び軽鎖可変領域アミノ酸配列を含む抗体を「U1−51」、配列番号54及び56に示される重鎖可変領域アミノ酸配列及び軽鎖可変領域アミノ酸配列を含む抗体を「U1−53」、配列番号60及び58に示される重鎖可変領域アミノ酸配列及び軽鎖可変領域アミノ酸配列を含む抗体を「U1−55」、配列番号62及び64に示される重鎖可変領域アミノ酸配列及び軽鎖可変
領域アミノ酸配列を含む抗体を「U1−57」、配列番号66及び68に示される重鎖可変領域アミノ酸配列及び軽鎖可変領域アミノ酸配列を含む抗体を「U1−58」、配列番号70及び72に示される重鎖可変領域アミノ酸配列及び軽鎖可変領域アミノ酸配列を含む抗体を「U1−59」、配列番号74及び76に示される重鎖可変領域アミノ酸配列及び軽鎖可変領域アミノ酸配列を含む抗体を「U1−52」、配列番号78及び82に示される重鎖可変領域アミノ酸配列及び軽鎖可変領域アミノ酸配列を含む抗体を「U1−61」、配列番号80及び82に示される重鎖可変領域アミノ酸配列及び軽鎖可変領域アミノ酸配列を含む抗体を「U1−61.1」、配列番号84及び86に示される重鎖可変領域アミノ酸配列及び軽鎖可変領域アミノ酸配列を含む抗体を「U1−62」、配列番号88及び90に示される重鎖可変領域アミノ酸配列及び軽鎖可変領域アミノ酸配列を含む抗体を「U1−2」、配列番号92及び94に示される重鎖可変領域アミノ酸配列及び軽鎖可変領域アミノ酸配列を含む抗体を「U1−7」、配列番号96及び98に示される重鎖可変領域アミノ酸配列及び軽鎖可変領域アミノ酸配列を含む抗体を「U1−9」、配列番号100及び102に示される重鎖可変領域アミノ酸配列及び軽鎖可変領域アミノ酸配列を含む抗体を「U1−10」、配列番号104及び106に示される重鎖可変領域アミノ酸配列及び軽鎖可変領域アミノ酸配列を含む抗体を「U1−12」、配列番号108及び110に示される重鎖可変領域アミノ酸配列及び軽鎖可変領域アミノ酸配列を含む抗体を「U1−13」、配列番号112及び114に示される重鎖可変領域アミノ酸配列及び軽鎖可変領域アミノ酸配列を含む抗体を「U1−14」、配列番号116及び118に示される重鎖可変領域アミノ酸配列及び軽鎖可変領域アミノ酸配列を含む抗体を「U1−15」、配列番号122及び124に示される重鎖可変領域アミノ酸配列及び軽鎖可変領域アミノ酸配列を含む抗体を「U1−20」、配列番号126及び128に示される重鎖可変領域アミノ酸配列及び軽鎖可変領域アミノ酸配列を含む抗体を「U1−21」、配列番号130及び132に示される重鎖可変領域アミノ酸配列及び軽鎖可変領域アミノ酸配列を含む抗体を「U1−22」、配列番号134及び136に示される重鎖可変領域アミノ酸配列及び軽鎖可変領域アミノ酸配列を含む抗体を「U1−23」、配列番号138及び140に示される重鎖可変領域アミノ酸配列及び軽鎖可変領域アミノ酸配列を含む抗体を「U1−24」、配列番号142及び144に示される重鎖可変領域アミノ酸配列及び軽鎖可変領域アミノ酸配列を含む抗体を「U1−25」、配列番号146及び148に示される重鎖可変領域アミノ酸配列及び軽鎖可変領域アミノ酸配列を含む抗体を「U1−26」、配列番号150及び152に示される重鎖可変領域アミノ酸配列及び軽鎖可変領域アミノ酸配列を含む抗体を「U1−27」、配列番号154及び156に示される重鎖可変領域アミノ酸配列及び軽鎖可変領域アミノ酸配列を含む抗体を「U1−28」、配列番号158及び160に示される重鎖可変領域アミノ酸配列及び軽鎖可変領域アミノ酸配列を含む抗体を「U1−31」、配列番号162及び164に示される重鎖可変領域アミノ酸配列及び軽鎖可変領域アミノ酸配列を含む抗体を「U1−32」、配列番号166及び168に示される重鎖可変領域アミノ酸配列及び軽鎖可変領域アミノ酸配列を含む抗体を「U1−35」、配列番号170及び172に示される重鎖可変領域アミノ酸配列及び軽鎖可変領域アミノ酸配列を含む抗体を「U1−36」、配列番号174及び176に示される重鎖可変領域アミノ酸配列及び軽鎖可変領域アミノ酸配列を含む抗体を「U1−37」、配列番号178及び180に示される重鎖可変領域アミノ酸配列及び軽鎖可変領域アミノ酸配列を含む抗体を「U1−34」、配列番号182及び184に示される重鎖可変領域アミノ酸配列及び軽鎖可変領域アミノ酸配列を含む抗体を「U1−1」、配列番号186及び188に示される重鎖可変領域アミノ酸配列及び軽鎖可変領域アミノ酸配列を含む抗体を「U1−3」、配列番号190及び192に示される重鎖可変領域アミノ酸配列及び軽鎖可変領域アミノ酸配列を含む抗体を「U1−4」、配列番号194及び196に示される重鎖可変領域アミノ酸配列及び軽鎖可変領域アミノ酸配列を含む抗体を「U1−5」、配列番号198及び200に示される重鎖可変領域アミノ酸配列及び軽鎖可変領域アミノ酸配列を含む抗体を「U1−6」、配列番号202及び204に示される重鎖可変領域アミノ酸配列及び軽鎖可変領域アミノ酸配列を含む抗体を「U1−8」、配列番号206及
び208に示される重鎖可変領域アミノ酸配列及び軽鎖可変領域アミノ酸配列を含む抗体を「U1−11」、配列番号210及び212に示される重鎖可変領域アミノ酸配列及び軽鎖可変領域アミノ酸配列を含む抗体を「U1−16」、配列番号214及び216に示される重鎖可変領域アミノ酸配列及び軽鎖可変領域アミノ酸配列を含む抗体を「U1−17」、配列番号218及び220に示される重鎖可変領域アミノ酸配列及び軽鎖可変領域アミノ酸配列を含む抗体を「U1−18」、配列番号222及び224に示される重鎖可変領域アミノ酸配列及び軽鎖可変領域アミノ酸配列を含む抗体を「U1−33」、配列番号226及び228に示される重鎖可変領域アミノ酸配列及び軽鎖可変領域アミノ酸配列を含む抗体を「U1−29」、配列番号230及び232に示される重鎖可変領域アミノ酸配列及び軽鎖可変領域アミノ酸配列を含む抗体を「U1−30」、配列番号34に示される重鎖可変領域アミノ酸配列を含む抗体を「U1−46」、配列番号40に示される重鎖可変領域アミノ酸配列を含む抗体を「U1−48」、配列番号60及び58に示される重鎖可変領域アミノ酸配列及び軽鎖可変領域アミノ酸配列を含む抗体を「U1−55.1」、配列番号120に示されている重鎖可変領域アミノ酸配列を含む抗体を「U1−19」、配列番号62及び64に示される重鎖可変領域アミノ酸配列及び軽鎖可変領域アミノ酸配列を含む抗体を「U1−57.1」と呼ぶ。これらの抗体については実施例に詳しく記載されている。
本発明の単離されたHER3結合タンパク質は、より一層好適には、配列番号42及び44に示される重鎖可変領域アミノ酸配列及び軽鎖可変領域アミノ酸配列、配列番号54及び56に示される重鎖可変領域アミノ酸配列及び軽鎖可変領域アミノ酸配列、配列番号70及び72に示される重鎖可変領域アミノ酸配列及び軽鎖可変領域アミノ酸配列、配列番号92及び94に示される重鎖可変領域アミノ酸配列及び軽鎖可変領域アミノ酸配列、又は、配列番号96及び98に示される重鎖可変領域アミノ酸配列及び軽鎖可変領域アミノ酸配列を含み、さらにより一層好適には、かかるHER3結合タンパク質は抗HER3抗体であるU1−49、U1−53、U1−59、U1−7又はU1−9である。

0072

0073

0074

新たに作製されたモノクローナル抗体が、U1−49、U1−53、U1−59、U1−7又はU1−9抗体の結合する部分ペプチド又は部分立体構造に結合すれば、該抗体がU1−49、U1−53、U1−59、U1−7又はU1−9抗体と同一のエピトープに結合すると判定することができる。また、U1−49、U1−53、U1−59、U1−7又はU1−9抗体のHER3に対する結合に対して該抗体が競合する(すなわち、該抗体がU1−49、U1−53、U1−59、U1−7又はU1−9抗体とHER3の結合を妨げる)ことを確認することによって、具体的なエピトープの配列又は構造が決定されていなくても、該抗体がU1−49、U1−53、U1−59、U1−7又はU1−9抗体と同一のエピトープに結合すると判定することができる。エピトープが同一であることが確認された場合、該抗体がU1−49、U1−53、U1−59、U1−7又はU1−9抗体と同等の生物活性を有していることが強く期待される。

0075

本発明によれば、本発明のHER3結合タンパク質は、HER3の細胞外部分中の少なくとも1つのエピトープと相互作用する。エピトープは、好ましくは、アミノ末端ドメインであるドメインL1(アミノ酸19から184)、システインに富む2つのドメインであるドメインS1(アミノ酸185から327)及びS2(アミノ酸500から632)、システインに富む2つのドメインに隣接しているドメインL2(328から499)又はHER3ドメインの組み合わせの中に位置する。エピトープは、L1及びS1の一部によって構成されるエピトープ等(但し、これに限定されない。)のドメインの組み合わせ中にも位置し得る。さらに、本発明の結合タンパク質は、HER3へのその結合がHER3によって媒介されるシグナル伝達を低下させることをさらに特徴とする。本発明に従っ
て、HER3によって媒介されるシグナル伝達の低下は、例えば、細胞表面からHER3分子を少なくとも部分的に消失させるHER3の下方制御によって、又は実質的に不活性な形態(すなわち、安定化されていない形態に比べて、より低いシグナル伝達を示す形態)の、細胞表面上のHER3の安定化によって引き起こされ得る。或は、HER3によって媒介されるシグナル伝達の低下は、HER3への、リガンド又はHERファミリーの別のメンバーの結合、HER−2へのGRB2の結合若しくはSHCへのGRB2の結合に影響を与える(例えば、減少又は阻害する)ことによって、受容体チロシンリン酸化、AKTリン酸化、PYK2チロシンリン酸化若しくはERK2リン酸化を阻害することによって、又は腫瘍の浸潤性を減少させることによっても引き起こされ得る。或は、HER3によって媒介されるシグナル伝達の低下は、他のHERファミリーのメンバーとのHER3含有二量体の形成に影響を与える(例えば、減少又は阻害する)ことによっても引き起こされ得る。とりわけ、1つの例は、HER3−EGFRタンパク質複合体の形成を減少又は阻害することであり得る。

0076

さらに、本発明において、配列番号1乃至232のいずれか一つに示されているアミノ酸配列中の僅かな変動は、本発明によって包含されるものと想定されるが、但し、アミノ酸配列中の変動は、配列番号1乃至232のいずれか一つに示されている配列の少なくとも75%、より好ましくは少なくとも80%、90%、95%、96%、97%、98%及び最も好ましくは99%を維持する。変動は、フレームワーク領域内(すなわち、CDR外)、CDR内、又はフレームワーク領域及びCDR内に生じ得る。配列番号1から232に示されているアミノ酸配列中の好ましい変動、すなわち、1乃至数個のアミノ酸の欠失、挿入及び/又は置換は、機能的ドメイン境界付近に生じる。構造的及び機能的ドメインは、ヌクレオチド及び/又はアミノ酸配列データを、公共の配列データベース又は独自の配列データベースと比較することによって同定することが可能である。公知の構造及び/又は機能の他の結合タンパク質中に生じる配列モチーフ又は予測されるタンパク質立体構造ドメインを同定するために、コンピュータ化された比較法を使用することが可能である。公知の三次元構造に折り畳まれるタンパク質配列を同定するための方法は公知である。例えばBowie et al., Science 253, 164(1991)
;Proteins, Structures and Molecular Principles(Creighton, Ed., W.H.Freeman and Company, New York(1984));Introduction to Protein Structure(C.Branden and J.Tooze, eds., G
arland Publishing, New York, N.Y.(1991 ));
及びThornton et al., Nature 354:105(1991)を参照されたい(これらは全て、参照により本明細書中に組み込まれる。)。したがって、当業者であれば、本発明に従って構造及び機能的ドメインを定義するために使用され得る配列モチーフ及び構造的立体構造を認めることができる。その様なアミノ酸配列中の変動を有する重鎖及び軽鎖を組み合わせて得られる抗体の中から、元の抗体(親抗体)と同等の又は親抗体より優れた抗体を選択することが可能である。本発明のHER3結合蛋白質、抗HER3抗体等は、前述の様にアミノ酸配列中に変動が生じても、HER3結合活性を保持する。
本発明において「相同性」は「同一性」と同義である。二種類のアミノ酸配列間の相同性は、Blast algorithm version 2.2.2(Altschul, Stephen F.,Thomas L.Madden,Alejandro A.Schaeffer, Jinghui Zhang, Zheng Zhang,
Webb Miller, and David J.Lipman(1997),「GappedBLASTand PSI−BLAST:a new generation of protein database search programs」,Nucleic Acids Res.25:3389−3402)のデフォルトパラメーターを使用することによって決定することができる。Blast algorith
mは、例えば、インターネットでwww.ncbi.nlm.nih.gov/blastにアクセスすることによっても使用することができる。

0077

以上の方法によって得られたキメラ抗体、ヒト化抗体、又はヒト抗体は、公知の方法等によって抗原に対する結合性を評価し、好適な抗体を選抜することができる。
本発明の抗HER3抗体には、MEHD−7945A(又はdoligotuzumab)、RG−7116、MM−111、MM−121(又はseribantumab)、MM−141、LJM−716、huHER3−8、tri−specific anti−EGFR/ErbB3 zybody、GSK−2849330、REGN−1400、KTN−3379、AV−203、monospecific surrobody (ErbB3)、lumretuzumab、MP−EV−20、ZW−9、DimerceptTM、anti−Erb3 surrobody(SL−175又はSL−176)、SYM−013、それらの改変体活性断片修飾体等も含まれる。

0078

抗体の性質を比較する際の別の指標の一例としては、抗体の安定性を挙げることができる。示差走査カロリメトリー(DSC)は、蛋白の相対的構造安定性のよい指標となる熱変性中点(Tm)を素早く、また正確に測定することができる装置である。DSCを用いてTm値を測定し、その値を比較することによって、熱安定性の違いを比較することができる。抗体の保存安定性は、抗体の熱安定性とある程度の相関を示すことが知られており(Lori Burton,et.al.,Pharmaceutical Development and Technology(2007)12,p.265−273)、熱安定性を指標に、好適な抗体を選抜することができる。抗体を選抜するための他の指標としては、適切な宿主細胞における収量が高いこと、及び水溶液中での凝集性が低いことを挙げることができる。例えば収量の最も高い抗体が最も高い熱安定性を示すとは限らないので、以上に述べた指標に基づいて総合的に判断して、ヒトへの投与に最も適した抗体を選抜する必要がある。

0079

本発明の抗体には抗体の修飾体も含まれる。当該修飾体とは、本発明の抗体に化学的又は生物学的な修飾が施されてなるものを意味する。化学的な修飾体には、アミノ酸骨格への化学部分の結合、N−結合又はO−結合炭水化物鎖化学修飾体等が含まれる。生物学的な修飾体には、翻訳後修飾(例えば、N−結合又はO−結合への糖鎖付加N末又はC末プロセッシング脱アミド化、アスパラギン酸の異性化、メチオニンの酸化)されたもの、原核生物宿主細胞を用いて発現させることによってN末にメチオニン残基が付加したもの等が含まれる。また、本発明の抗体又は抗原の検出又は単離を可能にするために標識されたもの、例えば、酵素標識体蛍光標識体アフィニティ標識体もかかる修飾物の意味に含まれる。この様な本発明の抗体の修飾物は、抗体の安定性及び血中滞留性の改善、抗原性の低減、抗体又は抗原の検出又は単離等に有用である。

0080

また、本発明の抗体に結合している糖鎖修飾を調節すること(グリコシル化、脱フコース化等)によって、抗体依存性細胞傷害活性を増強することが可能である。抗体の糖鎖修飾の調節技術としては、国際公開第1999/54342号、同2000/61739号、同2002/31140号等が知られているが、これらに限定されるものではない。本発明の抗体には当該糖鎖修飾が調節された抗体も含まれる。
抗体遺伝子を一旦単離した後、適当な宿主に導入して抗体を作製する場合には、適当な宿主と発現ベクターの組み合わせを使用することができる。抗体遺伝子の具体例としては、本明細書に記載された抗体の重鎖配列をコードする遺伝子、及び軽鎖配列をコードする遺伝子を組み合わせたものを挙げることができる。宿主細胞を形質転換する際には、重鎖配列遺伝子と軽鎖配列遺伝子は、同一の発現ベクターに挿入されていることが可能であり、また別々の発現ベクターに挿入されていることも可能である。
真核細胞を宿主として使用する場合、動物細胞植物細胞真核微生物を用いることが
できる。特に動物細胞としては、哺乳類細胞、例えば、サルの細胞であるCOS細胞(Gluzman,Y.Cell(1981)23,p.175−182、ATCCCRL−1650)、マウス線維芽細胞NIH3T3(ATCC No.CRL−1658)やチャイニーズ・ハムスター卵巣細胞(CHO細胞、ATCC CCL−61)のジヒドロ葉酸還元酵素欠損株(Urlaub,G.and Chasin,L.A.Proc.Natl.Acad.Sci.U.S.A.(1980)77,p.4126−4220)を挙げることができる。
原核細胞を使用する場合は、例えば、大腸菌、枯草菌を挙げることができる。
これらの細胞に目的とする抗体遺伝子を形質転換によって導入し、形質転換された細胞をin vitroで培養することによって抗体が得られる。当該培養においては抗体の配列によって収量が異なる場合があり、同等な結合活性を持つ抗体の中から収量を指標に医薬としての生産が容易なものを選別することが可能である。よって、本発明の抗体には、上記形質転換された宿主細胞を培養する工程、及び当該工程で得られた培養物から目的の抗体又は当該抗体の機能性断片を採取する工程を含むことを特徴とする当該抗体の製造方法によって得られる抗体も含まれる。

0081

なお、哺乳類培養細胞で生産される抗体の重鎖のカルボキシル末端のリシン残基が欠失することが知られており(Journal of Chromatography A,705:129−134(1995))、また、同じく重鎖カルボキシル末端のグリシン、リシンの2アミノ酸残基が欠失し、新たにカルボキシル末端に位置するプロリン残基アミド化されることが知られている(Analytical Biochemistry,360:75−83(2007))。しかし、これらの重鎖配列の欠失及び修飾は、抗体の抗原結合能及びエフェクター機能(補体の活性化や抗体依存性細胞障害作用等)には影響を及ぼさない。したがって、本発明に係る抗体には、当該修飾を受けた抗体及び当該抗体の機能性断片も含まれ、重鎖カルボキシル末端において1又は2のアミノ酸が欠失した欠失体、及びアミド化された当該欠失体(例えば、カルボキシル末端部位のプロリン残基がアミド化された重鎖)等も包含される。但し、抗原結合能及びエフェクター機能が保たれている限り、本発明に係る抗体の重鎖のカルボキシル末端の欠失体は上記の種類に限定されない。本発明に係る抗体を構成する2本の重鎖は、完全長及び上記の欠失体からなる群から選択される重鎖のいずれか一種であってもよいし、いずれか2種を組み合わせたものであってもよい。各欠失体の量比は本発明に係る抗体を産生する哺乳類培養細胞の種類及び培養条件に影響を受け得るが、本発明に係る抗体の主成分としては2本の重鎖の双方でカルボキシル末端の1つのアミノ酸残基が欠失している場合を挙げることができる。本発明の全長抗体(本発明においては、単に「抗体」とも記載される)の範囲には、それらの欠失体、1種又は2種以上のそれらの欠失体を含む混合物等も含まれる。また、本発明の「抗体」には、N末端がグルタミンの場合にそれが環化してピログルタミンになっている重鎖又は軽鎖、及び/又は、システインの一部がシステイニル(cysteinyl)化して
いる重鎖又は軽鎖を含むものも含まれる。

0082

本発明の抗HER3抗体のアイソタイプとしては、例えば、IgAIgDIgE、IgG又はIgM型、好ましくは、IgG1、IgG2、IgG3、IgG4、IgM1及びIgM2型等を挙げることができるがそれらに限定されるものではなく、より好適にはIgG又はIgM型のものであり、最適にはIgG1、IgG2又はIgG4である。

0083

抗体の生物活性としては、一般的には抗原結合活性、抗原と結合することによって該抗原を発現する細胞に内在化する活性、抗原の活性を中和する活性、抗原の活性を増強する活性、抗体依存性細胞傷害(ADCC)活性、補体依存性細胞傷害(CDC)活性及び抗体依存性細胞媒介食作用(ADCP)を挙げることができるが、本発明に係る抗体が有する機能は、HER3に対する結合活性であり、好ましくはHER3と結合することによってHER3発現細胞に内在化する活性である。さらに、本発明の抗体は、細胞内在化活性
に加えて、ADCC活性CDC活性及び/又はADCP活性を併せ持っていてもよい。

0084

ある観点において、例えば、治療候補物としてHER3に対する抗体を作製することに関して、本発明の抗HER3抗体は、補体を固定し、補体依存性細胞傷害(CDC)に関与できることが望ましい場合があり得る。マウスIgM、マウスIgG2a、マウスIgG2b、マウスIgG3、ヒトIgM、ヒトIgG1、ヒトIgG3及びヒトIgA等(但し、これらに限定されない。)、補体の固定及び補体依存性細胞傷害(CDC)への関与が可能な抗体のイソタイプが多数存在する。作製される抗体は、この様なイソタイプを最初から有する必要はなく、むしろ、作製された抗体は、あらゆるイソタイプを有することができること、並びに、本分野において周知である慣用の分子生物学的技術を用いて、適切な発現ベクター中に分子クローニングされた定常領域遺伝子又はcDNAへ、分子クローニングされたV領域遺伝子又はcDNAを付加し、次いで、本分野で公知の技術を用いて宿主細胞中で抗体を発現させることによって抗体をイソタイプ交換できることが理解される。イソタイプ交換された抗体は、天然に存在する変種に比べて優れたCDCを有する様に分子的に加工され(Idusogie et al., J Immunol.,166,2571−2575)、本分野で公知の技術を用いて、宿主細胞中で組換え的に発現されたFc領域も有し得る。この様な技術には、とりわけ、直接的な組換え技術(例えば、米国特許第4,816,397号を参照。)、細胞−細胞融合技術(例えば、米国特許第5,916,771号及び米国特許第6,207,418号)の使用が含まれる。細胞−細胞融合技術では、何れかの所望のイソタイプを有する重鎖を保有する骨髄腫又は他の細胞株(CHO等)が調製され、さらに軽鎖を保有する別の骨髄腫又は他の細胞株(CHO等)が調製される。その後、この様な細胞を融合し、完全な状態の抗体を発現する細胞株を単離することができる。例として、(抗体の特異性及び抗体の親和性の幾つかを規定する)同じ可変領域を有しながら、ヒトIgM、ヒトIgG1又はヒトIgG3イソタイプを作製するために、HER3抗原への所望の結合を有するヒト抗HER3IgG4抗体を容易にイソタイプ交換させ得る。その後、この様な分子は、補体を固定し、CDCへ関与することが可能であり得る。

0085

さらに、本発明の抗HER3抗体は、単球及びナチュラルキラー(NK)細胞等のエフェクター細胞上のFc受容体へ結合することができ、抗体依存性細胞傷害(ADCC)に関与することも望ましい場合があり得る。マウスIgG2a、マウスIgG2b、マウスIgG3、ヒトIgG1及びヒトIgG3等(但し、これらに限定されない。)、上記のことが可能な抗体のイソタイプが多数存在する。作製される抗体は、この様なイソタイプを最初から有する必要はなく、むしろ、作製された抗体は、あらゆるイソタイプを有することができること、並びに、本分野において周知である慣用の分子生物学的技術を用いて、適切な発現ベクター中に分子クローニングされた定常領域遺伝子又はcDNAへ、分子クローニングされたV領域遺伝子又はcDNAを付加した後、本分野で公知の技術を用いて抗体を宿主細胞中で発現させることによって、抗体のイソタイプ交換を実施できることが理解される。イソタイプ交換された抗体は、天然に存在する変種に比べて優れたADCCを有する様に分子的に加工され(Shieldset al.J Biol Chem.,276,6591−6604)、本分野で公知の技術を用いて、宿主細胞中で組換え的に発現されたFc領域も有し得る。この様な技術には、とりわけ、直接的な組換え技術(例えば、米国特許第4,816,397号を参照。)、細胞−細胞融合技術(例えば、米国特許第5,916,771号及び米国特許第6,207,418号を参照。)の使用が含まれる。細胞−細胞融合技術では、何れかの所望のイソタイプを有する重鎖を保有する骨髄腫又は他の細胞株(CHO等)が調製され、及び軽鎖を保有する別の骨髄腫又は他の細胞株(CHO等)が調製される。その後、この様な細胞を融合し、完全な状態の抗体を発現する細胞株を単離することができる。例として、(抗体の特異性及び抗体の親和性の幾つかを規定する)同じ可変領域を有しながら、ヒトIgG1又はヒトIgG3イソタイプを作製するために、HER3抗原への所望の結合を有するヒト抗HER3IgG4抗体
を容易にイソタイプ交換させ得る。次いで、この様な分子は、エフェクター細胞上のFcγRへ結合し、ADCCに関与することが可能であり得る。

0086

得られた抗体は、均一にまで精製することができる。抗体の分離、精製は通常の蛋白質で使用されている分離、精製方法を使用すればよい。例えばカラムクロマトグラフィーフィルター濾過、限外濾過、塩析透析調製用ポリアクリルアミドゲル電気泳動等電点電気泳動等を適宜選択、組み合わせれば、抗体を分離、精製することができる(Strategies for Protein Purification and Characterization:A Laboratory Course Manual,Daniel R.Marshak et al.eds.,Cold Spring
Harbor Laboratory Press(1996);Antibodies:A Laboratory Manual.Ed Harlow and David Lane,Cold Spring Harbor Laboratory(1988))が、これらに限定されるものではない。
クロマトグラフィーとしては、アフィニティークロマトグラフィー、イオン交換クロマトグラフィー、疎水性クロマトグラフィーゲル濾過クロマトグラフィー逆相クロマトグラフィー、吸着クロマトグラフィー等を挙げることができる。
これらのクロマトグラフィーは、HPLCFPLC等の液体クロマトグラフィーを用いて行うことができる。
アフィニティークロマトグラフィーに用いるカラムとしては、プロテインAカラム、プロテインGカラムを挙げることができる。例えばプロテインAカラムを用いたカラムとして、Hyper D,POROS,Sepharose F.F.(ファルマシア社)等を挙げることができる。
また抗原を固定化した担体を用いて、抗原への結合性を利用して抗体を精製することも可能である。

0087

[抗腫瘍性化合物]
本発明の抗HER3抗体−薬物コンジュゲートに結合される抗腫瘍性化合物について述べる。本発明で使用される抗腫瘍性化合物としては、抗腫瘍効果を有する化合物であって、リンカー構造に結合できる置換基、部分構造を有するものであれば特に制限はない。抗腫瘍性化合物は、リンカーの一部又は全部が腫瘍細胞内で切断されて抗腫瘍性化合物部分が遊離して抗腫瘍効果が発現される。リンカーが薬物との結合部分で切断されれば抗腫瘍性化合物が未修飾の構造で遊離され、その本来の抗腫瘍効果が発揮される。
本発明で使用される抗腫瘍性化合物として、カンプトテシン誘導体であるエキサテカン((1S,9S)-1-アミノ-9-エチル-5-フルオロ-2,3-ジヒドロ-9-ヒドロキシ-4-メチル-1H,12H-ベンゾ[de]ピラノ[3',4':6,7]インドリジノ[1,2-b]キノリン-10,13(9H,15H)-ジオン;次式:)

0088

0089

を好適に使用することができる。このエキサテカンは、優れた抗腫瘍活性を有しているものの、抗腫瘍薬として市販されるには至っていない。同化合物は、公知の方法で容易に取得でき、1位のアミノ基をリンカー構造への結合部位として好適に使用することができる。また、エキサテカンはリンカーの一部が結合した状態で腫瘍細胞内で遊離される場合もあるが、この様な構造であっても優れた抗腫瘍効果が発揮される優れた化合物である。
エキサテカンはカンプトテシン構造を有するので、酸性水性媒体中(例えばpH3程度)
ではラクトン環が形成された構造(閉環体)に平衡偏り、一方、塩基性水性媒体中(例えばpH10程度)ではラクトン環が開環した構造(開環体)に平衡が偏ることが知られている。この様な閉環構造及び開環構造に対応するエキサテカン残基を導入した薬物コンジュゲートであっても同等の抗腫瘍効果が期待され、いずれの状態のものも本発明の範囲に包含されることはいうまでもない。

0090

他の抗腫瘍性化合物として例えば、ドキソルビシンダウノルビシンマイトマイシンCブレオマイシンシクロシチジンビンクリスチンビンブラスチンメトトレキセート白金抗腫瘍剤シスプラチン若しくはその誘導体)、タキソール若しくはその誘導体、その他のカンプトテシン若しくはその誘導体(特開平6-87746号公報に記載された
抗腫瘍剤)等を挙げることができる。

0091

抗体−薬物コンジュゲートにおいて、抗体1分子への薬物の結合数は、その有効性、安全性に影響する重要因子である。抗体−薬物コンジュゲートの製造は、薬物の結合数が一定の数となるよう、反応させる原料試薬の使用量等の反応条件を規定して実施されるが、低分子化合物の化学反応とは異なり、異なる数の薬物が結合した混合物として得られるのが通常である。抗体1分子への薬物の結合数は平均値、すなわち、平均薬物結合数として特定され、表記される。本発明でも原則として断りのない限り、すなわち、異なる薬物結合数をもつ抗体−薬物コンジュゲート混合物に含まれる特定の薬物結合数をもつ抗体−薬物コンジュゲートを示す場合を除き、薬物の結合数は平均値を意味する。
抗体分子へのエキサテカンの結合数はコントロール可能であり、1抗体あたりの薬物平均結合数として、1から10個程度のエキサテカンを結合させることができるが、好ましくは2から8個であり、より好ましくは3から8個である。なお、当業者であれば本願の実施例の記載から抗体に必要な数の薬物を結合させる反応を設計することができ、エキサテカンの結合数をコントロールした抗体−薬物コンジュゲートを取得することができる。
本発明の抗体−薬物コンジュゲートは抗体1分子への薬物の結合数が多くなった場合でも、凝集不溶性フラグメンテーション等は生じ難い。

0092

[リンカー構造]
本発明の抗HER3抗体−薬物コンジュゲートにおいて、抗腫瘍性化合物を抗HER3抗体に結合させるリンカー構造について述べる。当該リンカーは、次式:
-L1-L2-LP-NH-(CH2)n1-La-(CH2)n2-C(=O)-又は-L1-L2-LP-
の構造を有しており、抗体はL1の末端(L2が結合するのとは反対側の末端)で結合し、抗腫瘍性化合物は-La-(CH2)n2-C(=O)-部分のカルボニル基又はLPのC末端で結合する。
n1は、0から6の整数を示すが、好ましくは1から5の整数であり、より好ましくは1から3である。

0093

1.L1
L1は、
-(Succinimid-3-yl-N)-(CH2)n3-C(=O)-
の構造で示される。
ここで、n3は、2から8の整数であり、『-(Succinimid-3-yl-N)-』は、次式:

0094

0095

で示される構造を有する。この部分構造における3位が抗HER3抗体への結合部位である。この3位での該抗体との結合は、チオエーテルを形成して結合することが特徴である。この構造部分の1位の窒素原子は、この構造が含まれるリンカー内に存在するメチレン炭素原子と結合する。すなわち、-(Succinimid-3-yl-N)-(CH2)n3-C(=O)-L2-は次式で示される構造である(ここで、「抗体−S−」は抗体由来である。)。

0096

0097

式中、n3は、2から8の整数であるが、好ましくは2から5である。

0098

L1の具体例としては、
-(Succinimid-3-yl-N)-CH2CH2-C(=O)-、
-(Succinimid-3-yl-N)-CH2CH2CH2-C(=O)-、
-(Succinimid-3-yl-N)-CH2CH2CH2CH2-C(=O)-、
-(Succinimid-3-yl-N)-CH2CH2CH2CH2CH2-C(=O)-
等を挙げることができる。

0099

2.L2
L2は、
-NH-(CH2CH2-O)n4-CH2CH2-C(=O)-
で示される構造であるが、L2は存在しなくともよく、この場合L2は単結合となる。特に本発明の薬物−リンカー構造においてはLPが薬物に直接結合する場合があるが、その場合にはこのL2は、単結合であることが特に好ましい。n4は、1から6の整数であり、好ましくは2から4である。L2は末端のアミノ基でL1に結合し、反対の末端のカルボニル基でLPと結合する。

0100

L2の具体例としては、
-NH-CH2CH2-O-CH2CH2-C(=O)-、
-NH-CH2CH2-O-CH2CH2-O-CH2CH2-C(=O)-、
-NH-CH2CH2-O-CH2CH2-O-CH2CH2-O-CH2CH2-C(=O)-、
-NH-CH2CH2-O-CH2CH2-O-CH2CH2-O-CH2CH2-O-CH2CH2-C(=O)-、
-NH-CH2CH2-O-CH2CH2-O-CH2CH2-O-CH2CH2-O-CH2CH2-O-CH2CH2-C(=O)-、
-NH-CH2CH2-O-CH2CH2-O-CH2CH2-O-CH2CH2-O-CH2CH2-O-CH2CH2-O-CH2CH2-C(=O)-
等を挙げることができる。

0101

3.LP
LPは、2から7個のアミノ酸で構成されるペプチド残基である。すなわち、2から7個のアミノ酸がペプチド結合したオリゴペプチドの残基によって構成される。LPは、N末端においてL2に結合し、C末端においてリンカーの-NH-(CH2)n1-La-(CH2)n2-C(=O)-部分の
アミノ基に結合する。

0102

LPを構成するアミノ酸は特に限定されることはないが、例えば、L-又はD-アミノ酸であり、好ましくはL-アミノ酸である。また、α−アミノ酸の他、β−アラニン、ε−アミノカプロン酸γ−アミノ酪酸等の構造のアミノ酸であってもよく、さらには例えばN−メチル化されたアミノ酸等の非天然型のアミノ酸であってもよい。
LPのアミノ酸配列は、特に限定されないが、構成するアミノ酸として、フェニルアラニン(Phe;F)、チロシン(Tyr;Y)、ロイシン(Leu;L)、グリシン(Gly;G)、アラニン(Ala;A)、バリン(Val;V)、リシン(Lys;K)、シトルリン(Cit)、セリン(Ser;S)、グルタミン酸(Glu;E)、アスパラギン酸(Asp;D)等を挙げることができる。
これらのうちで好ましくは、フェニルアラニン、グリシン、バリン、リシン、シトルリン、セリン、グルタミン酸、アスパラギン酸を挙げることができる。アミノ酸の種類によって、薬物遊離のパターンをコントロールすることができる。アミノ酸の数は、2から7個でよい。

0103

LPの具体例として、
-GGF-、
-DGGF-、
-(D-)D-GGF-、
-EGGF-、
-GGFG-、
-SGGF-、
-KGGF-、
-DGGFG-、
-GGFGG-、
-DDGGFG-、
-KDGGFG-、
-GGFGGGF-
を挙げることができる。上記の『(D-)D』はD-アスパラギン酸を意味する。本発明の抗体
−薬物コンジュゲートの特に好ましいLPとして、-GGFG-及び-DGGFG-ペプチド残基を挙げ
ることができる。さらに、本発明の薬物−リンカー構造においてLPが薬物に直接結合する場合があるが、その場合に好ましいLPとして、-DGGFG-のペンタペプチド残基を挙げるこ
とができる。

0104

4.La-(CH2)n2-C(=O)-
La-(CH2)n2-C(=O)-におけるLaは、-O-の構造であるか、又は単結合である。n2は、0から5の整数であるが、好ましくは0から3であり、より好ましくは0又は1である。
La-(CH2)n2-C(=O)-としては以下の構造のものを挙げることができる。
-O-CH2-C(=O)-、
-O-CH2CH2-C(=O)-、
-O-CH2CH2CH2-C(=O)-、
-O-CH2CH2CH2CH2-C(=O)-、
-O-CH2CH2CH2CH2CH2-C(=O)-、
-CH2-C(=O)-、
-CH2CH2-C(=O)-、
-CH2CH2CH2-C(=O)-、
-CH2CH2CH2CH2-C(=O)-、
-CH2CH2CH2CH2CH2-C(=O)-。
これらのうちでは、
-O-CH2-C(=O)-、
-O-CH2CH2-C(=O)-
である場合か、Laが単結合でn2が0である場合が好ましい。

0105

リンカーの-NH-(CH2)n1-La-(CH2)n2-C(=O)-で示される構造の具体例として、
-NH-CH2-C(=O)-、
-NH-CH2CH2-C(=O)-、
-NH-CH2-O-CH2-C(=O)-、
-NH-CH2CH2-O-C(=O)-、
-NH-CH2CH2-O-CH2-C(=O)-、
-NH-CH2CH2CH2-C(=O)-、
-NH-CH2CH2CH2CH2-C(=O)-、
-NH-CH2CH2CH2CH2CH2-C(=O)-、
等を挙げることができる。

0106

これらのうちでより好ましくは、
-NH-CH2CH2CH2-C(=O)-、
-NH-CH2-O-CH2-C(=O)-、
-NH-CH2CH2-O-C(=O)-
である。

0107

リンカーの-NH-(CH2)n1-La-(CH2)n2-C(=O)-は、鎖長として4から7原子の鎖長である
ものが好ましいが、さらに好ましくは5又は6原子の鎖長を有するものである。

0108

本発明の抗HER3抗体−薬物コンジュゲートは、腫瘍細胞内に移動した後にはリンカー部分が切断され、NH2-(CH2)n1-La-(CH2)n2-C(=O)-(NH-DX)で示される構造の薬物誘導体が遊離して抗腫瘍作用を発現すると考えられる。本発明の抗体−薬物コンジュゲートから遊離されて抗腫瘍効果を発現する抗腫瘍性誘導体としては、先に挙げたリンカーの-NH-(CH2)n1-La-(CH2)n2-C(=O)-で示される構造の末端がアミノ基となった構造部分を有する抗
腫瘍性誘導体を挙げることができるが、特に好ましいものは次のものである。
NH2-CH2CH2-C(=O)-(NH-DX)、
NH2-CH2CH2CH2-C(=O)-(NH-DX)、
NH2-CH2-O-CH2-C(=O)-(NH-DX)、
NH2-CH2CH2-O-CH2-C(=O)-(NH-DX)。
なお、NH2-CH2-O-CH2-C(=O)-(NH-DX)の場合は同分子内にあるアミナール構造が不安定
であるため、さらに自己分解して
HO-CH2-C(=O)-(NH-DX)
が遊離されることが確認された。これらの化合物は本発明の抗体−薬物コンジュゲートの製造中間体としても好適に用いることができる。
また、本発明の薬物−リンカー構造においてLPが薬物に直接結合する場合がある。この場合において、LPのC末端がグリシンであるときには、遊離される抗腫瘍性薬物はエキサテカン自体であるか又はエキサテカンのアミノ基にグリシンが結合した化合物である。

0109

薬物をエキサテカンとする本発明の抗体−薬物コンジュゲートにおいては、下記の構造の薬物−リンカー構造部分
-L1-L2-LP-NH-(CH2)n1-La-(CH2)n2-C(=O)-(NH-DX)、又は
-L1-L2-LP-(NH-DX)
を抗体に結合させたものが好ましい。これらの薬物−リンカー構造部分は、1抗体あたりの平均結合数として、1から10を結合させればよいが、好ましくは2から8であり、より好ましくは3から8である。
-(Succinimid-3-yl-N)-CH2CH2-C(=O)-GGFG-NH-CH2CH2-C(=O)-(NH-DX)、
-(Succinimid-3-yl-N)-CH2CH2-C(=O)-GGFG-NH-CH2CH2CH2-C(=O)-(NH-DX)、
-(Succinimid-3-yl-N)-CH2CH2CH2CH2CH2-C(=O)-GGFG-NH-CH2CH2-C(=O)-(NH-DX)、
-(Succinimid-3-yl-N)-CH2CH2CH2CH2CH2-C(=O)-GGFG-NH-CH2CH2CH2-C(=O)-(NH-DX)、
-(Succinimid-3-yl-N)-CH2CH2CH2CH2CH2-C(=O)-GGFG-NH-CH2CH2CH2CH2CH2-C(=O)-(NH-DX)、
-(Succinimid-3-yl-N)-CH2CH2CH2CH2CH2-C(=O)-DGGFG-NH-CH2CH2-C(=O)-(NH-DX)、
-(Succinimid-3-yl-N)-CH2CH2CH2CH2CH2-C(=O)-DGGFG-NH-CH2CH2CH2-C(=O)-(NH-DX)、
-(Succinimid-3-yl-N)-CH2CH2CH2CH2CH2-C(=O)-DGGFG-NH-CH2CH2CH2CH2CH2-C(=O)-(NH-DX)、
-(Succinimid-3-yl-N)-CH2CH2CH2CH2CH2-C(=O)-GGFG-NH-CH2-O-CH2-C(=O)-(NH-DX)、
-(Succinimid-3-yl-N)-CH2CH2CH2CH2CH2-C(=O)-GGFG-NH-CH2CH2-O-CH2-C(=O)-(NH-DX)、
-(Succinimid-3-yl-N)-CH2CH2-C(=O)-NH-CH2CH2-O-CH2CH2-O-CH2CH2-C(=O)-GGFG-NH-CH2CH2-C(=O)-(NH-DX)、
-(Succinimid-3-yl-N)-CH2CH2-C(=O)-NH-CH2CH2-O-CH2CH2-O-CH2CH2-C(=O)-GGFG-NH-CH2CH2CH2-C(=O)-(NH-DX)、
-(Succinimid-3-yl-N)-CH2CH2-C(=O)-NH-CH2CH2-O-CH2CH2-O-CH2CH2-O-CH2CH2-O-CH2CH2-C(=O)-GGFG-NH-CH2CH2-C(=O)-(NH-DX)、
-(Succinimid-3-yl-N)-CH2CH2-C(=O)-NH-CH2CH2-O-CH2CH2-O-CH2CH2O-CH2CH2-O-CH2CH2-C(=O)-GGFG-NH-CH2CH2CH2-C(=O)-(NH-DX)、
-(Succinimid-3-yl-N)-CH2CH2-C(=O)-GGFG-(NH-DX)、
-(Succinimid-3-yl-N)-CH2CH2-C(=O)-DGGFG-(NH-DX)、
-(Succinimid-3-yl-N)-CH2CH2CH2CH2CH2-C(=O)-GGFG-(NH-DX)、
-(Succinimid-3-yl-N)-CH2CH2CH2CH2CH2-C(=O)-DGGFG-(NH-DX)。
これらのうちでより好ましくは、次のものである。
-(Succinimid-3-yl-N)-CH2CH2-C(=O)-GGFG-NH-CH2CH2CH2-C(=O)-(NH-DX)、
-(Succinimid-3-yl-N)-CH2CH2CH2CH2CH2-C(=O)-GGFG-NH-CH2CH2CH2-C(=O)-(NH-DX)、
-(Succinimid-3-yl-N)-CH2CH2CH2CH2CH2-C(=O)-DGGFG-NH-CH2CH2CH2-C(=O)-(NH-DX)、
-(Succinimid-3-yl-N)-CH2CH2CH2CH2CH2-C(=O)-GGFG-NH-CH2-O-CH2-C(=O)-(NH-DX)、
-(Succinimid-3-yl-N)-CH2CH2CH2CH2CH2-C(=O)-GGFG-NH-CH2CH2-O-CH2-C(=O)-(NH-DX)、
-(Succinimid-3-yl-N)-CH2CH2-C(=O)-NH-CH2CH2-O-CH2CH2-O-CH2CH2-C(=O)-GGFG-NH-CH2CH2CH2-C(=O)-(NH-DX)、
-(Succinimid-3-yl-N)-CH2CH2-C(=O)-NH-CH2CH2-O-CH2CH2-O-CH2CH2-O-CH2CH2-O-CH2CH2-C(=O)-GGFG-NH-CH2CH2CH2-C(=O)-(NH-DX)、
-(Succinimid-3-yl-N)-CH2CH2-C(=O)-DGGFG-(NH-DX)、
-(Succinimid-3-yl-N)-CH2CH2CH2CH2CH2-C(=O)-DGGFG-(NH-DX)。
さらに、好ましくは、次のものである。
-(Succinimid-3-yl-N)-CH2CH2CH2CH2CH2-C(=O)-GGFG-NH-CH2-O-CH2-C(=O)-(NH-DX)、
-(Succinimid-3-yl-N)-CH2CH2CH2CH2CH2-C(=O)-GGFG-NH-CH2CH2-O-CH2-C(=O)-(NH-DX)、
-(Succinimid-3-yl-N)-CH2CH2-C(=O)-NH-CH2CH2-O-CH2CH2-O-CH2CH2-C(=O)-GGFG-NH-CH2CH2CH2-C(=O)-(NH-DX)、
-(Succinimid-3-yl-N)-CH2CH2CH2CH2CH2-C(=O)-DGGFG-(NH-DX)。
特に、好ましくは、次のものである。
-(Succinimid-3-yl-N)-CH2CH2CH2CH2CH2-C(=O)-GGFG-NH-CH2-O-CH2-C(=O)-(NH-DX)、
-(Succinimid-3-yl-N)-CH2CH2CH2CH2CH2-C(=O)-GGFG-NH-CH2CH2-O-CH2-C(=O)-(NH-DX)、
-(Succinimid-3-yl-N)-CH2CH2-C(=O)-NH-CH2CH2-O-CH2CH2-O-CH2CH2-C(=O)-GGFG-NH-CH2C
H2CH2-C(=O)-(NH-DX)。

0110

本願の抗体−薬物コンジュゲートにおいて、抗HER3抗体と薬物とを結合するリンカー構造は、これまで述べたリンカー各部において示した好ましい構造のものを結合することで好ましいリンカーを構築することができる。この様なリンカー構造として以下の構造のものを好適に使用することができる。なお構造の左端が抗体との結合部位であり、右端が薬物との結合部位である。
-(Succinimid-3-yl-N)-CH2CH2-C(=O)-GGFG-NH-CH2CH2-C(=O)-、
-(Succinimid-3-yl-N)-CH2CH2-C(=O)-GGFG-NH-CH2CH2CH2-C(=O)-、
-(Succinimid-3-yl-N)-CH2CH2CH2CH2CH2-C(=O)-GGFG-NH-CH2CH2-C(=O)-、
-(Succinimid-3-yl-N)-CH2CH2CH2CH2CH2-C(=O)-GGFG-NH-CH2CH2CH2-C(=O)-、
-(Succinimid-3-yl-N)-CH2CH2CH2CH2CH2-C(=O)-GGFG-NH-CH2CH2CH2CH2CH2-C(=O)-、
-(Succinimid-3-yl-N)-CH2CH2CH2CH2CH2-C(=O)-DGGFG-NH-CH2CH2-C(=O)-、
-(Succinimid-3-yl-N)-CH2CH2CH2CH2CH2-C(=O)-DGGFG-NH-CH2CH2CH2-C(=O)-、
-(Succinimid-3-yl-N)-CH2CH2CH2CH2CH2-C(=O)-DGGFG-NH-CH2CH2CH2CH2CH2-C(=O)-、
-(Succinimid-3-yl-N)-CH2CH2CH2CH2CH2-C(=O)-GGFG-NH-CH2-O-CH2-C(=O)-、
-(Succinimid-3-yl-N)-CH2CH2CH2CH2CH2-C(=O)-GGFG-NH-CH2CH2-O-CH2-C(=O)-、
-(Succinimid-3-yl-N)-CH2CH2-C(=O)-NH-CH2CH2-O-CH2CH2-O-CH2CH2-C(=O)-GGFG-NH-CH2CH2-C(=O)-、
-(Succinimid-3-yl-N)-CH2CH2-C(=O)-NH-CH2CH2-O-CH2CH2-O-CH2CH2-C(=O)-GGFG-NH-CH2CH2CH2-C(=O)-、
-(Succinimid-3-yl-N)-CH2CH2-C(=O)-NH-CH2CH2-O-CH2CH2-O-CH2CH2-O-CH2CH2-O-CH2CH2-C(=O)-GGFG-NH-CH2CH2-C(=O)-、
-(Succinimid-3-yl-N)-CH2CH2-C(=O)-NH-CH2CH2-O-CH2CH2-O-CH2CH2-O-CH2CH2-O-CH2CH2-C(=O)-GGFG-NH-CH2CH2CH2-C(=O)-、
-(Succinimid-3-yl-N)-CH2CH2-C(=O)-GGFG-、
-(Succinimid-3-yl-N)-CH2CH2-C(=O)-DGGFG-、
-(Succinimid-3-yl-N)-CH2CH2CH2CH2CH2-C(=O)-GGFG-、
-(Succinimid-3-yl-N)-CH2CH2CH2CH2CH2-C(=O)-DGGFG-。
これらのうちでより好ましくは、次のものである。
-(Succinimid-3-yl-N)-CH2CH2-C(=O)-GGFG-NH-CH2CH2CH2-C(=O)-、
-(Succinimid-3-yl-N)-CH2CH2CH2CH2CH2-C(=O)-GGFG-NH-CH2CH2CH2-C(=O)-、
-(Succinimid-3-yl-N)-CH2CH2CH2CH2CH2-C(=O)-DGGFG-NH-CH2CH2CH2-C(=O)-、
-(Succinimid-3-yl-N)-CH2CH2CH2CH2CH2-C(=O)-GGFG-NH-CH2-O-CH2-C(=O)-、
-(Succinimid-3-yl-N)-CH2CH2CH2CH2CH2-C(=O)-GGFG-NH-CH2CH2-O-CH2-C(=O)-、
-(Succinimid-3-yl-N)-CH2CH2-C(=O)-NH-CH2CH2-O-CH2CH2-O-CH2CH2-C(=O)-GGFG-NH-CH2CH2CH2-C(=O)-、
-(Succinimid-3-yl-N)-CH2CH2-C(=O)-NH-CH2CH2-O-CH2CH2-O-CH2CH2-O-CH2CH2-O-CH2CH2-C(=O)-GGFG-NH-CH2CH2CH2-C(=O)-、
-(Succinimid-3-yl-N)-CH2CH2-C(=O)-DGGFG-、
-(Succinimid-3-yl-N)-CH2CH2CH2CH2CH2-C(=O)-DGGFG-。
さらに、好ましくは、次のものを挙げることができる。
-(Succinimid-3-yl-N)-CH2CH2CH2CH2CH2-C(=O)-GGFG-NH-CH2-O-CH2-C(=O)-、
-(Succinimid-3-yl-N)-CH2CH2CH2CH2CH2-C(=O)-GGFG-NH-CH2CH2-O-CH2-C(=O)-、
-(Succinimid-3-yl-N)-CH2CH2-C(=O)-NH-CH2CH2-O-CH2CH2-O-CH2CH2-C(=O)-GGFG-NH-CH2CH2CH2-C(=O)-、
-(Succinimid-3-yl-N)-CH2CH2CH2CH2CH2-C(=O)-DGGFG-。
特に、好ましくは、次のものを挙げることができる。
-(Succinimid-3-yl-N)-CH2CH2CH2CH2CH2-C(=O)-GGFG-NH-CH2-O-CH2-C(=O)-、
-(Succinimid-3-yl-N)-CH2CH2CH2CH2CH2-C(=O)-GGFG-NH-CH2CH2-O-CH2-C(=O)-、
-(Succinimid-3-yl-N)-CH2CH2-C(=O)-NH-CH2CH2-O-CH2CH2-O-CH2CH2-C(=O)-GGFG-NH-CH2CH2CH2-C(=O)-。

0111

[製造方法]
次に、本願発明の抗体−薬物コンジュゲート或はその製造中間体の代表的な製造方法について説明する。なお、以下において、化合物を、各反応式中に示される番号で示す。すなわち、『式(1)の化合物』、『化合物(1)』等と称する。またこれ以外の番号の化合物についても同様に記載する。

0112

1.製造方法1
式(1)で示される、チオエーテルを介して抗体と薬物−リンカー構造が結合している抗体−薬物コンジュゲートは、例えば下記の方法によって製造することができる。

0113

0114

[式中、ABは、スルフヒドリル基を有する抗体を示し、L1'は、L1で示されるリンカー構造において、リンカー末端がマレイミジル基(次式):

0115

0116

に変換された構造である(ここで、窒素原子が結合部位である。)。具体的には、-(Succinimid-3-yl-N)-(CH2)n2-C(=O)-で示されるL1の構造において、当該-(Succinimid-3-yl-N)-部分がマレイミジル基となった構造のリンカーを示す。また、-(NH-DX)は次式:

0117

0118

で示される構造であり、エキサテカンの1位のアミノ基の水素原子1個が除かれて生成する基を示す。]

0119

なお、上記の反応式において、式(1)の化合物では、薬物からリンカー末端までの構造部分1個が1個の抗体に対して結合した構造として解釈され得る。しかしながら、これは説明のための便宜的な記載であって、実際には当該構造部分が抗体分子1個に対して複数個が結合している場合が多い。この状況は以下の製造方法の説明においても同様である。

0120

すなわち、後述する方法によって入手しうる化合物(2)と、スルフヒドリル基を有する抗体(3a)を反応させることによって、抗体−薬物コンジュゲート(1)を製造することができる。
スルフヒドリル基を有する抗体(3a)は、当業者周知の方法で得ることができる(Hermanson, G.T, Bioconjugate Techniques, pp.56-136, pp.456-493, Academic Press(1996))。例えば、Traut’s試薬を抗体のアミノ基に作用させる;N−サクシンイミジル S−アセチルチオアルカノエート類を抗体のアミノ基に作用させた後、ヒドロキシルアミンを作用させる;N−サクシンイミジル 3−(ピリジルジチオプロピオネートを作用させた後、還元剤を作用させる;ジチオトレイトール、2−メルカプトエタノール、トリス(2−カルボキシエチルホスフィン塩酸塩(TCEP)等の還元剤を抗体に作用
させて抗体内ヒンジ部のジスルフィド結合を還元してスルフヒドリル基を生成させる;等の方法を挙げることができるがこれらに限定されることはない。
具体的には、還元剤としてTCEPを、抗体内ヒンジ部ジスルフィド個当たりに対して0.3乃至3モル当量用い、キレート剤を含む緩衝液中で、抗体と反応させることで、抗体内ヒンジ部ジスルフィドが部分的若しくは完全に還元された抗体を得ることができる。キレート剤としては、例えばエチレンジアミン四酢酸EDTA)やジエチレントリアミン酢酸(DTPA)等を挙げることができる。これ等を1mM乃至20mMの濃度で用いればよい。緩衝液としては、リン酸ナトリウムホウ酸ナトリウム酢酸ナトリウム溶液等を用いることができる。具体的には、抗体は4℃乃至37℃で1乃至4時間TCEPと反応させることで部分的若しくは完全に還元されたスルフヒドリル基を有する抗体(3a)を得ることができる。
ここでスルフヒドリル基を薬物−リンカー部分に付加させる反応を実施することでチオエーテル結合によって薬物−リンカー部分を結合させることができる。
スルフヒドリル基を有する抗体(3a)1個あたり、2乃至20モル当量の化合物(2)を使用して、抗体1個当たり2個乃至8個の薬物が結合した抗体−薬物コンジュゲート(1)を製造することができる。具体的には、スルフヒドリル基を有する抗体(3a)を含む緩衝液に、化合物(2)を溶解させた溶液を加えて反応させればよい。ここで、緩衝液としては、酢酸ナトリウム溶液、リン酸ナトリウムやホウ酸ナトリウム等を用いればよい。反応時のpHは5乃至9であり、より好適にはpH7付近で反応させればよい。化合物(2)を溶解させる溶媒としては、ジメチルスルホキシド(DMSO)、ジメチルホルムアミドDMF)、ジメチルアセトアミドDMA)、N−メチル−2−ピロリドン(NMP)等の有機溶媒を用いることができる。
化合物(2)を溶解させた有機溶媒溶液を、スルフヒドリル基を有する抗体(3a)を含む緩衝液に1乃至20%v/vを加えて反応させればよい。反応温度は、0乃至37℃、より好適には10乃至25℃であり、反応時間は、0.5乃至2時間である。反応は、未反応の化合物(2)の反応性チオール含有試薬によって失活させることによって終了できる。チオール含有試薬は例えば、システイン又はN−アセチル−L−システイン(NAC)である。より具体的には、NACを、用いた化合物(2)に対して、1乃至2モル当量加え、室温で10乃至30分インキュベートすることにより反応を終了できる。
製造した抗体−薬物コンジュゲート(1)は、以下の共通操作によって濃縮バッファ
ー交換、精製、抗体濃度、及び抗体一分子あたりの薬物平均結合数の測定を行い、抗体−薬物コンジュゲート(1)の同定を行うことができる。

0121

共通操作A:抗体又は抗体−薬物コンジュゲート水溶液の濃縮
Amicon Ultra(50,000 MWCO,Millipore Corporation)の容器内に抗体又は抗体−薬物コンジュゲート溶液を入れ、遠心機(Allegra X−15R,Beckman Coulter,Inc.)を用いた遠心操作(2000G乃至3800Gで5乃至20分間遠心)にて、抗体又は抗体−薬物コンジュゲート溶液を濃縮した。

0122

共通操作B:抗体の濃度測定
UV測定器(Nanodrop 1000,Thermo Fisher Scientific Inc.)を用いて、メーカー規定の方法に従い、抗体濃度の測定を行った。ここで、280nm吸光係数は、抗体のアミノ酸配列から、既知の計算方法(Protein Science, 1995, vol.4, 2411-2423)によって推定することができ、抗体ごとに異なる2
80nm吸光係数(1.3mLmg-1cm-1乃至1.8mLmg-1cm-1)を用いた。U1−59の場合、そのアミノ酸配列に従って、1.768mLmg-1cm-1の280nm吸光係数を推定値として用いた。

0123

共通操作C:抗体のバッファー交換
Sephadex G−25担体を使用したNAP−25カラム(Cat.No.17−0852−02,GE Healthcare Japan Corporation)を、メーカー規定の方法に従い、塩化ナトリウム(137mM)及びエチレンジアミン四酢酸(EDTA,5mM)を含むリン酸緩衝液(10mM,pH6.0;本明細書でPBS6.0/EDTAと称する。)にて平衡化させた。このNAP−25カラム一本につき、抗体水溶液2.5mLをのせた後、PBS6.0/EDTA3.5mLで溶出させた画分(3.5mL)を分取した。この画分を共通操作Aによって濃縮し、共通操作Bを用いて抗体濃度の測定を行った後に、PBS6.0/EDTAを用いて10mg/mLに抗体濃度を調整した。

0124

共通操作D:抗体−薬物コンジュゲートの精製
Sorbitol(5%)を含む酢酸緩衝液(10mM,pH5.5;本明細書でABSと称する。)にてNAP−25カラムを平衡化させた。このNAP−25カラムに、抗体−薬物コンジュゲート反応水溶液(約2.5mL)をのせ、メーカー規定の量の緩衝液で溶出させることで、抗体画分を分取した。この分取画分を再びNAP−25カラムにのせ、緩衝液で溶出させるゲルろ過精製操作を計2乃至3回繰り返すことで、未結合の薬物リンカーや低分子化合物(トリス(2−カルボキシエチル)ホスフィン塩酸塩(TCEP)、N−アセチル−L−システイン(NAC)、ジメチルスルホキシド)を除いた抗体−薬物コンジュゲートを得た。

0125

共通操作E:抗体−薬物コンジュゲートにおける抗体濃度及び抗体一分子あたりの薬物平均結合数の測定(1)
抗体−薬物コンジュゲートにおける結合薬物濃度は、抗体−薬物コンジュゲート水溶液の280nm及び370nmの二波長におけるUV吸光度を測定した後に下記の計算を行うことで、算出することができる。
ある波長における全吸光度は系内に存在する全ての吸収化学種の吸光度の和に等しい[吸光度の加成性]ことから、抗体と薬物のコンジュゲーション前後において、抗体及び薬物のモル吸光係数に変化がないと仮定すると、抗体−薬物コンジュゲートにおける抗体濃度及び薬物濃度は、下記の関係式で示される。

A280=AD,280+AA,280=εD,280CD+εA,280CA 式(1)
A370=AD,370+AA,370=εD,370CD+εA,370CA 式(2)

ここで、A280は280nmにおける抗体−薬物コンジュゲート水溶液の吸光度を示し
、A370は370nmにおける抗体−薬物コンジュゲート水溶液の吸光度を示し、AA,280は280nmにおける抗体の吸光度を示し、AA,370は370nmにおける抗体の吸光度
を示し、AD,280は280nmにおけるコンジュゲート前駆体の吸光度を示し、AD,370は370nmにおけるコンジュゲート前駆体の吸光度を示し、εA,280は280nmにおけ
る抗体のモル吸光係数を示し、εA,370は370nmにおける抗体のモル吸光係数を示し
、εD,280は280nmにおけるコンジュゲート前駆体のモル吸光係数を示し、εD,370は370nmにおけるコンジュゲート前駆体のモル吸光係数を示し、CAは抗体−薬物コン
ジュゲートにおける抗体濃度を示し、CDは抗体−薬物コンジュゲートにおける薬物濃度
を示す。
ここで、εA,280、εA,370、εD,280、εD,370は、事前に用意した値(計算推定値又は化合物のUV測定から得られた実測値)が用いられる。例えば、εA,280は、抗体のアミ
ノ酸配列から、既知の計算方法(Protein Science, 1995, vol.4, 2411-2423)によって
推定することができる。εA,370は、通常、ゼロである。U1−59の場合、そのアミノ
酸配列に従って、εA,280は推定値として259400を用いた。εD,280及びεD,370は
、用いるコンジュゲート前駆体をあるモル濃度に溶解させた溶液の吸光度を測定することで、ランベルトベールの法則(吸光度= モル濃度×モル吸光係数×セル光路長)によ
って、得ることができる。抗体−薬物コンジュゲート水溶液のA280及びA370を測定し、これらの値を式(1)及び(2)に代入して連立方程式解くことによって、CA及びCDを求めることができる。さらにCDをCAで除することで1抗体あたりの薬物平均結合数が求めることができる。
本発明においては、以上に説明した、1抗体あたりの薬物平均結合数の求め方を「UV法」と呼ぶ。

0126

共通操作F:抗体−薬物コンジュゲートにおける抗体一分子あたりの薬物平均結合数の測定(2)
抗体−薬物コンジュゲートにおける抗体一分子あたりの薬物平均結合数は、前述の共通操作Eに加え、以下の方法を用いる高速液体クロマトグラフィー(HPLC)分析によっても求めることができる。
[F−1.HPLC分析用サンプルの調製(抗体−薬物コンジュゲートの還元)]
抗体−薬物コンジュゲート溶液(約1mg/mL、60μL)をジチオトレイトール(DTT)水溶液(100mM、15μL)と混合する。混合物を37℃で30分インキュベートすることで、抗体−薬物コンジュゲートのL鎖及びH鎖間のジスルフィド結合を切断したサンプルを、HPLC分析に用いる。
[F−2.HPLC分析]
HPLC分析を、下記の測定条件にて行う。
HPLCシステム:Agilent 1290 HPLCシステム(Agilent T
echnologies)
検出器紫外吸光度計(測定波長:280nm)
カラム:PLRP−S(2.1×50mm、8μm、1000Å;Agilent T
echnologies、P/N PL1912−1802)
カラム温度:80℃
移動相A:0.04%トリフルオロ酢酸(TFA)水溶液
移動相B:0.04%TFAを含むアセトニトリル溶液
グラジエントプログラム:29%−36%(0分−12.5分)、36%−42%(12.5−15分)、42%−29%(15分—15.1分)、29%−29%(15.1分—25分)
サンプル注入量:15μL
[F−3.データ解析
〔F−3−1〕 薬物の結合していない抗体のL鎖(L0)及びH鎖(H0)に対して、薬物の結合したL鎖(薬物が一つ結合したL鎖:L1)及びH鎖(薬物が1個結合したH鎖
:H1、薬物が2個結合したH鎖:H2、薬物が3個結合したH鎖:H3)は、結合した薬
物の数に比例して疎水性増して保持時間が大きくなることから、L0、L1、H0、H1、H2、H3の順に溶出される。L0及びH0との保持時間比較により検出ピークをL0、L1、H0、H1、H2、H3のいずれかに割り当てることができる。
〔F−3−2〕 薬物リンカーにUV吸収があるため、薬物リンカーの結合数に応じて、L鎖、H鎖及び薬物リンカーのモル吸光係数を用いて下式に従ってピーク面積値補正を行う。

0127

0128

0129

ここで、各抗体におけるL鎖及びH鎖のモル吸光係数(280nm)は、既知の計算方法(Protein Science, 1995, vol.4, 2411-2423)によって、各抗体のL鎖及びH鎖のア
ミノ酸配列から推定される値を用いることができる。U1−59の場合、そのアミノ酸配列に従って、L鎖のモル吸光係数として34690を、H鎖のモル吸光係数として95000を推定値として用いた。また、薬物リンカーのモル吸光係数(280nm)は、各薬物リンカーをメルカプトエタノール又はN−アセチルシステインで反応させ、マレイミド基をサクシニイミドチオエーテルに変換した化合物の実測のモル吸光係数(280nm)を用いた。
〔F−3−3〕ピーク面積補正値合計に対する各鎖ピーク面積比(%)を下式に従って計算する。

0130

0131

〔F−3−4〕 抗体−薬物コンジュゲートにおける抗体一分子あたりの薬物平均結合数を、下式に従って計算する。
薬物平均結合数=(L0ピーク面積比x0+L0ピーク面積比x1+H0ピーク面積比x
0+H1ピーク面積比x1+H2ピーク面積比x2+H3ピーク面積比x3)/100x2

0132

以下に製造方法1において使用される製造中間体化合物について述べる。製造方法1に
おける式(2)で示される化合物は次式:

0133

(maleimid-N-yl)-(CH2)n3-C(=O)-L2-LP-NH-(CH2)n1-La-(CH2)n2-C(=O)-(NH-DX)又は
(maleimid-N-yl)-(CH2)n3-C(=O)-L2-LP-(NH-DX)
で示される化合物である。
式中、
n3は、整数の2から8を示し、
L2は、-NH-(CH2CH2-O)n4-CH2CH2-C(=O)-又は単結合を示し、
ここで、n4は、1から6の整数を示し、
LPは、フェニルアラニン、グリシン、バリン、リシン、シトルリン、セリン、グルタミン酸、アスパラギン酸から選ばれる2から7個のアミノ酸で構成されるペプチド残基を示し、
n1は、0から6の整数を示し、
n2は、0から5の整数を示し、
Laは、-O-又は単結合を示し、
(maleimid-N-yl)-は、次式:

0134

で示される、マレイミジル基(2,5-dioxo-2,5-dihydro-1H-pyrrol-1-yl基)で、窒素原子が結合部位となっている基であり、
-(NH-DX)は、次式:

0135

で示される、1位のアミノ基の窒素原子が結合部位となっている基である。

0136

LPのペプチド残基としては、フェニルアラニン、グリシン、バリン、リシン、シトルリン、セリン、グルタミン酸、アスパラギン酸から選ばれるアミノ酸からなるアミノ酸残基であるものが製造中間体として好ましい。この様なペプチド残基LPのうち、4又は5個のアミノ酸で構成されるペプチド残基であるものが製造中間体として好ましい。より具体的には、LPが-GGFG-のテトラペプチド残基又は-DGGFG-のペンタペプチドであるものが製造
中間体として好ましいが、さらに好ましくは-GGFG-である。

0137

また、-NH-(CH2)n1-La-(CH2)n2-としては、-NH-CH2CH2-、-NH-CH2CH2CH2-、-NH-CH2CH2CH2CH2-、-NH-CH2CH2CH2CH2CH2-、-NH-CH2-O-CH2-、又は-NH-CH2CH2-O-CH2-であるものが製造中間体として好ましく、-NH-CH2CH2CH2-、-NH-CH2-O-CH2-、又は-NH-CH2CH2-O-CH2であるものがより好ましい。
n3としては、整数の2から8であるものが製造中間体として好ましい。
L2は、単結合であるか、-NH-(CH2CH2-O)n4-CH2CH2-C(=O)-であってn4が整数の2から4のものが製造中間体として好ましい。

0138

さらに、n3が、整数の2から5であり、L2が単結合であり、-NH-(CH2)n1-La-(CH2)n2-
が、-NH-CH2CH2-、-NH-CH2CH2CH2-、-NH-CH2CH2CH2CH2-、-NH-CH2CH2CH2CH2CH2-、-NH-CH2-O-CH2-、又は-NH-CH2CH2-O-CH2-であるものが製造中間体として好ましい。そして、こ
れらのうちでより好ましくは、-NH-(CH2)n1-La-(CH2)n2-が、-NH-CH2CH2-、-NH-CH2CH2CH2-、-NH-CH2-O-CH2-、又は-NH-CH2CH2-O-CH2-である化合物である。さらに、n3が、整数
の2又は5であるものが好ましい。

ページトップへ

この技術を出願した法人

この技術を発明した人物

ページトップへ

関連する挑戦したい社会課題

関連する公募課題

該当するデータがありません

ページトップへ

技術視点だけで見ていませんか?

この技術の活用可能性がある分野

分野別動向を把握したい方- 事業化視点で見る -

(分野番号表示ON)※整理標準化データをもとに当社作成

ページトップへ

おススメ サービス

おススメ astavisionコンテンツ

新着 最近 公開された関連が強い技術

この 技術と関連性が強い技術

関連性が強い 技術一覧

この 技術と関連性が強い人物

関連性が強い人物一覧

この 技術と関連する社会課題

関連する挑戦したい社会課題一覧

この 技術と関連する公募課題

該当するデータがありません

astavision 新着記事

サイト情報について

本サービスは、国が公開している情報(公開特許公報、特許整理標準化データ等)を元に構成されています。出典元のデータには一部間違いやノイズがあり、情報の正確さについては保証致しかねます。また一時的に、各データの収録範囲や更新周期によって、一部の情報が正しく表示されないことがございます。当サイトの情報を元にした諸問題、不利益等について当方は何ら責任を負いかねることを予めご承知おきのほど宜しくお願い申し上げます。

主たる情報の出典

特許情報…特許整理標準化データ(XML編)、公開特許公報、特許公報、審決公報、Patent Map Guidance System データ