図面 (/)

技術 撮像装置

出願人 オリンパス株式会社
発明者 安達美志
出願日 2016年5月23日 (4年6ヶ月経過) 出願番号 2016-102772
公開日 2017年11月30日 (2年11ヶ月経過) 公開番号 2017-209184
状態 特許登録済
技術分野 内視鏡 孔内観察装置
主要キーワード 周期固定 周期的タイミング 変調クロック信号 偶数成分 奇数成分 タイミングパルス信号 映像処理機 入力ジッタ
関連する未来課題
重要な関連分野

この項目の情報は公開日時点(2017年11月30日)のものです。
また、この項目は機械的に抽出しているため、正しく解析できていない場合があります

図面 (10)

課題

撮像素子に係るタイミング設計に影響を及ぼすことなく、伝送するクロックに起因するEMIを抑制可能とする。

解決手段

第1クロックを生成するVCXO63と、遅延回路を用いることなく、第1クロックにおける立ち上がりエッジ周期的タイミングを固定させたままで立ち下りエッジの周期的タイミングを変移させることによりパルス幅変調された変調クロックを生成するFPGA61と、変調クロックを伝送するケーブル23と、変調クロックの立ち上がりエッジのみに基づいて駆動される撮像素子(CMOSイメージセンサ)21と、を備え、FPGA61は、変調クロックに係るパルス幅のデューティ比を任意の値に制御可能とする。

概要

背景

検体の内部の被写体を撮像する内視鏡、及び、内視鏡により撮像された被写体の観察画像を生成する画像処理装置等を具備する内視鏡システムが、医療分野及び工業分野等において広く用いられている。

このような内視鏡システムにおける内視鏡としては、従来、所定のクロック信号により駆動される固体撮像素子(例えばCMOSイメージセンサ)を採用し、また、この固体撮像素子から出力される撮像信号伝送するケーブルを内部に配設する内視鏡が知られている。

一方で、近年、内視鏡に搭載される撮像素子高画素化が嘱望されており、これに伴いクロックについても高速化が求められるようになっている。ここで、当該クロックを伝送するケーブル等においては、クロックの高速化に伴い放射特性が悪化する虞がある。

係る放射特性悪化の対策として、すなわち、いわゆるEMI(Electro Magnetic Interference)抑制対策として、近年、高周波フィルタリング、または、スペクトラム拡散クロックSSC;Spread Spectrum Clock)を適用した例が知られている。

例えば、特開2006−095330号公報(特許文献1)には、内視鏡システムにおいて、EMI抑制を目的としたスペクトラム拡散クロック(SSC)を適用した構成例について開示されている。

このスペクトラム拡散クロック(SSC)を用いたスペクトラム拡散変調は、クロックの周波数を動的に変化させることによりパワースペクトラム拡散させ、これにより放射強度ピークを抑制、すなわちEMIを抑制するものである。

概要

撮像素子に係るタイミング設計に影響を及ぼすことなく、伝送するクロックに起因するEMIを抑制可能とする。第1クロックを生成するVCXO63と、遅延回路を用いることなく、第1クロックにおける立ち上がりエッジ周期的タイミングを固定させたままで立ち下りエッジの周期的タイミングを変移させることによりパルス幅変調された変調クロックを生成するFPGA61と、変調クロックを伝送するケーブル23と、変調クロックの立ち上がりエッジのみに基づいて駆動される撮像素子(CMOSイメージセンサ)21と、を備え、FPGA61は、変調クロックに係るパルス幅のデューティ比を任意の値に制御可能とする。

目的

例えば、特開2006−095330号公報(特許文献1)には、内視鏡システムにおいて、EMI抑制を目的とした

効果

実績

技術文献被引用数
0件
牽制数
0件

この技術が所属する分野

ライセンス契約や譲渡などの可能性がある特許掲載中! 開放特許随時追加・更新中 詳しくはこちら

請求項1

外部から入力されるクロックの一方のエッジに同期して駆動される撮像素子を備える撮像装置であって、所定の第1クロックを生成する第1クロック生成部と、遅延回路を用いることなく、前記第1クロックにおける一方のエッジの周期的タイミングを固定させたままで他方のエッジの周期的タイミングを変移させることにより、パルス幅変調された変調クロックを生成する変調クロック生成部と、前記変調クロック生成部において生成された前記変調クロックを第2クロックとして出力する変調クロック出力部と、一端部が前記出力部に接続され、前記第2クロックを伝送するケーブルと、前記ケーブルの他端部に接続され、伝送された前記第2クロックを入力する変調クロック入力部を有する共に、前記変調クロック入力部に入力された前記第2クロックに基づいて駆動される前記撮像素子と、を備え、前記撮像素子は、前記第2クロックにおける一方のエッジであって、周期的タイミングが固定された一方のエッジにのみ同期して駆動され、前記変調クロック生成部は、前記変調クロックに係るパルス幅のデューティ比を任意の値に制御可能とすることを特徴とする撮像装置。

請求項2

前記いずれのクロックにおける前記一方のエッジは立ち上がりエッジであり、他方のエッジは立ち下りエッジであることを特徴とする請求項1に記載の撮像装置。

請求項3

前記変調クロック生成部は、所定の乱数を発生する擬似乱数発生器を有し、前記変調クロックに係る前記パルス幅のデューティ比を、当該擬似乱数発生器において発生した乱数に基づいて制御することを特徴とする請求項1に記載の撮像装置。

請求項4

前記変調クロック生成部において生成された前記変調クロックを反転させて第3クロックとして出力する第2出力部をさらに備え、前記ケーブルは、その一端部が前記出力部と共に前記第2出力部に接続され、かつ、前記出力部から出力された前記第2クロック、および、前記第2出力部から出力された前記第3クロックを差動伝送することを特徴とする請求項1に記載の撮像装置。

請求項5

前記撮像素子は、前記ケーブルの他端部に接続された、前記第3クロックを入力する終端抵抗を備えることを特徴とする請求項4に記載の撮像装置。

請求項6

外部から入力されるクロックの一方のエッジに同期して駆動される、前記撮像素子とは異なる第2の撮像素子をさらに備え、前記第2の撮像素子は、前記ケーブルの他端部に接続された、前記第3クロックを入力し当該第3クロックを反転させて第4クロックとして出力する反転部を有する共に、当該第4クロックにおける一方のエッジであって、周期的タイミングが固定された一方のエッジにのみ同期して駆動されることを特徴とする請求項4に記載の撮像装置。

技術分野

0001

本発明は、撮像装置に関し、特に、所定のクロック信号により駆動される固体撮像素子を有する撮像装置に関する。

背景技術

0002

検体の内部の被写体を撮像する内視鏡、及び、内視鏡により撮像された被写体の観察画像を生成する画像処理装置等を具備する内視鏡システムが、医療分野及び工業分野等において広く用いられている。

0003

このような内視鏡システムにおける内視鏡としては、従来、所定のクロック信号により駆動される固体撮像素子(例えばCMOSイメージセンサ)を採用し、また、この固体撮像素子から出力される撮像信号伝送するケーブルを内部に配設する内視鏡が知られている。

0004

一方で、近年、内視鏡に搭載される撮像素子高画素化が嘱望されており、これに伴いクロックについても高速化が求められるようになっている。ここで、当該クロックを伝送するケーブル等においては、クロックの高速化に伴い放射特性が悪化する虞がある。

0005

係る放射特性悪化の対策として、すなわち、いわゆるEMI(Electro Magnetic Interference)抑制対策として、近年、高周波フィルタリング、または、スペクトラム拡散クロックSSC;Spread Spectrum Clock)を適用した例が知られている。

0006

例えば、特開2006−095330号公報(特許文献1)には、内視鏡システムにおいて、EMI抑制を目的としたスペクトラム拡散クロック(SSC)を適用した構成例について開示されている。

0007

このスペクトラム拡散クロック(SSC)を用いたスペクトラム拡散変調は、クロックの周波数を動的に変化させることによりパワースペクトラム拡散させ、これにより放射強度ピークを抑制、すなわちEMIを抑制するものである。

先行技術

0008

特開2006−095330号公報

発明が解決しようとする課題

0009

上述したスペクトラム拡散クロック(SSC)を適用した構成については、下記に示す課題が存在する。以下、図9に示す従来の内視鏡102を参照して、当該課題を説明する。

0010

(1)内視鏡装置等にスペクトラム拡散クロック(SSC)モジュール等を追加することとなり(例えば、図9におけるコネクタ122に配設されたSSC165)、この点において部品コストの増大、および、基板サイズの大型化が余儀なくされる。

0011

(2)上述したようにスペクトラム拡散変調は周波数を数十kHzで変化させることが多く、このため、供給対象となる撮像素子(例えば、図9に示す撮像素子121)への入力ジッタが増加し、または、不要な位相ノイズが増加する虞がある。これにより、位相ノイズ、または、ジッタ対策手段をさらに講じる必要がある。

0012

例えば、以下に示す対策を要することとなる。
従来のスペクトラム拡散変調においては、ケーブル(図9に示すケーブル123)を伝送するクロック周波数を動的に変化させるようになっている。したがって、クロックの立ち上がりエッジ(Positive edge)および立ち下りエッジ(Negative edge)の両方とも変位することとなる(図9に示すクロック信号線71参照)。

0013

そして、CMOSイメージセンサ等の固体撮像素子(図9に示す撮像素子121)において、内装するAD変換部(図9に示すADC153)はクロックの立ち上がりエッジ(Positive edge)で動作するため、ジッタによる精度劣化が生じる虞があり、この対策を講じる必要がある。

0014

(3)スペクトラム拡散変調により高周波成分を除去するため、スルーレートが低下する虞がある。

0015

(4)所定の内視鏡システムにおいては、映像規格等によりスペクトラム拡散クロックSSCを使用することができないものも存在することから、スペクトラム拡散を適用したクロックと適用しないクロックの2系統を用意する必要がある。

0016

本発明は上述した事情に鑑みてなされたものであり、撮像素子に係るタイミング設計に影響を及ぼすことなく、伝送するクロックに起因するEMIを抑制可能とする撮像装置を提供することを目的とする。

課題を解決するための手段

0017

本発明の一態様の撮像装置は、外部から入力されるクロックの一方のエッジに同期して駆動される撮像素子を備える撮像装置であって、所定の第1クロックを生成する第1クロック生成部と、遅延回路を用いることなく、前記第1クロックにおける一方のエッジの周期的タイミングを固定させたままで他方のエッジの周期的タイミングを変移させることにより、パルス幅変調された変調クロックを生成する変調クロック生成部と、前記変調クロック生成部において生成された前記変調クロックを第2クロックとして出力する変調クロック出力部と、一端部が前記変調クロック出力部に接続され、前記第2クロックを伝送するケーブルと、前記ケーブルの他端部に接続され、伝送された前記第2クロックを入力する変調クロック入力部を有する共に、前記変調クロック入力部に入力された前記第2クロックに基づいて駆動される前記撮像素子と、を備え、前記撮像素子は、前記第2クロックにおける一方のエッジであって、周期的タイミングが固定された一方のエッジにのみ同期して駆動され、前記変調クロック生成部は、前記変調クロックに係るパルス幅のデューティ比を任意の値に制御可能とする。

発明の効果

0018

本発明によれば、撮像素子に係るタイミング設計に影響を及ぼすことなく、伝送するクロックに起因するEMIを抑制可能とする撮像装置を提供することができる。

図面の簡単な説明

0019

図1は、本発明の第1の実施形態の内視鏡を含む内視鏡システムの構成を示す図である。
図2は、第1の実施形態の内視鏡の電気的な構成を示すブロック図である。
図3は、第1の実施形態の内視鏡のコネクタ回路におけるFPGAの具体的な構成を示すブロック図である。
図4は、第1の実施形態の内視鏡のコネクタ回路におけるFPGA内の所定ポイントの動作を示すタイミングチャートである。
図5は、本発明の第2の実施形態の内視鏡の電気的な構成を示すブロック図である。
図6は、第2の実施形態の内視鏡において、スペクトラム拡散変調をオフした状態におけるケーブルからの放射レベルの一例を示した図である。
図7は、第2の実施形態の内視鏡において、スペクトラム拡散変調をオンした状態におけるケーブルからの放射レベルの一例を示した図である。
図8は、本発明の第3の実施形態の内視鏡の電気的な構成を示すブロック図である。
図9は、従来の内視鏡における電気的な構成の一例を示すブロック図である。

実施例

0020

以下、図面を参照して本発明の実施形態を説明する。

0021

<第1の実施形態>
図1は、本発明の第1の実施形態の撮像装置(内視鏡)を含む内視鏡システムの構成を示す図であり、図2は、第1の実施形態の内視鏡の電気的な構成を示すブロック図である。

0022

なお、本実施形態においては、撮像装置として、固体撮像素子を有し被検体の内部の被写体を撮像する内視鏡を例に挙げて説明する。

0023

図1図2に示すように、本第1の実施形態の撮像装置(内視鏡)を有する内視鏡システム1は、被検体の観察し撮像する内視鏡2と、当該内視鏡2に接続され前記撮像信号を入力し所定の画像処理を施すビデオプロセッサ3と、被検体を照明するための照明光を供給する光源装置4と、撮像信号に応じた観察画像を表示するモニタ装置5と、を有している。

0024

内視鏡2は、被検体の体腔内等に挿入される細長の挿入部6と、挿入部6の基端側に配設され術者把持して操作を行う内視鏡操作部10と、内視鏡操作部10の側部から延出するように一方の端部が設けられたユニバーサルコード41と、を有して構成されている。

0025

挿入部6は、先端側に設けられた硬質の先端部7と、先端部7の後端に設けられた湾曲自在の湾曲部8と、湾曲部8の後端に設けられた長尺かつ可撓性を有する可撓管部9と、を有して構成されている。

0026

前記ユニバーサルコード41の基端側にはコネクタ42が設けられ、当該コネクタ42は光源装置4に接続されるようになっている。すなわち、コネクタ42の先端から突出する流体管路接続端部となる口金(図示せず)と、照明光の供給端部となるライトガイド口金(図示せず)とは光源装置4に着脱自在で接続されるようになっている。

0027

さらに、前記コネクタ42の側面に設けた電気接点部には接続ケーブル43の一端が接続されるようになっている。この接続ケーブル43には、例えば内視鏡2における撮像素子21(図2参照)からの撮像信号を伝送する信号線が内設され、また、他端のコネクタ部はビデオプロセッサ3に接続されるようになっている。

0028

なお、前記コネクタ42には、後述するFPGA61、水晶発振器VCXO)63、変調クロック信号出力部64、および、当該内視鏡2における固有の所定ID情報を記憶した記憶部等(図示せず)を有したコネクタ回路22(図2参照)が配設されている(FPGA61、水晶発振器(VCXO)63、変調クロック信号出力部64については、後に詳述する)。

0029

また、挿入部6の先端部7には、被写体像を入光するレンズを含む対物光学系(図示せず)と、当該対物光学系における結像面に配置された撮像素子21と、が配設されている。

0030

さらに内視鏡2には、撮像素子21から延出され、当該撮像素子21から挿入部6、操作部10、ユニバーサルコード41を経て、前記コネクタ42(および内設するコネクタ回路22)に至るまで延設されたケーブル23が配設されている。

0031

以下、本第1の実施形態の内視鏡2の電気的構成について、図2を参照して説明する。
上述したように、先端部7には撮像素子21が配設されるが、当該撮像素子21は、本実施形態においてはCMOSイメージセンサにより構成される固体撮像素子である。

0032

図2に示すように、撮像素子21は、入射光に応じて光を光電変換して信号電荷を生成する複数の光電変換部であるフォトダイオード(PD)を有する撮像部51(図2においては、Imaging Pixel Arrayと表記)を有する。

0033

さらに撮像素子21は、ケーブル23内のクロック信号線71に接続された変調クロック入力部56と、変調クロック入力部56の出力端に接続されたPLL(phase locked loop)57と、ケーブル23内の制御信号線72に接続されたタイミングジェネレータ58と、を有する。

0034

前記変調クロック入力部56は、コネクタ回路22において生成され、ケーブル23内のクロック信号線71を伝送された変調クロック(のちに詳述する第2クロック)を入力する入力部である。

0035

また、PLL57は、いわゆる位相同期回路であり、変調クロック入力部56において入力した変調クロックを所定数倍に逓倍し、上述した撮像部51の他、撮像素子21内の各部に供給するようになっている。

0036

タイミングジェネレータ58は、ケーブル23内の制御信号線72を介して伝送された制御信号垂直同期信号水平同期信号等の駆動信号)を受け、所定のタイミングパルス信号を生成し、撮像部51の他、撮像素子21内の各部に供給するようになっている。なお、当該制御信号は、本実施形態においては、いわゆるI2C(Inter-IntegratedCircuit)により伝送されるようになっている。

0037

一方、撮像素子21は、撮像部51の出力に接続されたAFE(アナログフロントエンド)を有する。このAFEは、図示しないCDS(Correlation Double Sampling;相関二重サンプリング)の他、アナログアンプ部(AnalogAMP)52、AD変換部(ADC)53等を含み、タイミングジェネレータ58からのタイミングパルス信号に制御され、撮像部51からのアナログ撮像信号デジタル信号に変換する。

0038

さらに撮像素子21は、AFEによってAD変換されたデジタル撮像信号に対して所定の処理を施すデジタル処理部(Digital Processing)54と、当該デジタル処理部54から出力されたパラレルの撮像信号を所定のシリアル信号に変換するP/S変換部55と、を有する。

0039

このP/S変換部55においてパラレルシリアル変換された信号をシリアル撮像信号は、ケーブル23内の撮像信号線73を介して撮像素子22におけるFPGA61に向けて伝送されるようになっている。

0040

ケーブル23は、上述したように撮像素子21とコネクタ回路22とを接続し、すなわち、像素子21から延出され、当該撮像素子21から挿入部6、操作部10、ユニバーサルコード41を経て、前記コネクタ42に内設されたコネクタ回路22に至るまで延設されている。

0041

また、ケーブル23には、コネクタ回路22における変調クロック出力部64(後に詳述する)と撮像素子21における前記変調クロック入力部56とを接続するクロック信号線71と、コネクタ回路22におけるFPGA61と撮像素子21における前記タイミングジェネレータ58とを接続する制御信号線72と、コネクタ回路22におけるS/P変換部62と撮像素子21における前記P/S変換部55とを接続する撮像信号線73と、を内設する。

0042

ケーブル23における前記クロック信号線71は、コネクタ回路22において生成されたクロック信号(本実施形態においては変調クロック;第2クロック)を伝送するが、従来、このケーブル23を伝送するクロック信号に起因するEMI(Electro Magnetic Interference)が問題となっていた。

0043

本発明は、独自の手法により、このケーブル23を伝送するクロックに起因するEMIを抑制可能とする撮像装置を提供するものである。

0044

一方内視鏡2は、上述したように、前記ユニバーサルコード41の基端側に配設したコネクタ42内にコネクタ回路22が配設される。

0045

このコネクタ回路22には、挿入部先端部7に配設された撮像素子21を駆動するためのクロック信号および同期信号等の制御信号を生成する機能を有し、FPGA61、水晶発振器(VCXO)63、変調クロック信号出力部64、および、当該内視鏡2における固有の所定ID情報を記憶した記憶部等(図示せず)を有する。

0046

前記FPGA61は、いわゆるFPGA(Field Programmable Gate Array)により構成され、ビデオプロセッサ3からの動作制御を受け、撮像素子21の駆動、および、撮像素子21からの撮像信号の処理等の機能の他、当該内視鏡2における各種回路を制御する機能を備える。

0047

すなわち、本実施形態においては、このFPGA61の一部として、撮像素子21を駆動するために変調クロック信号(第2クロック;CLK3)の生成機能、I2C伝送のマスタとして各種同期信号等の制御信号の生成機能、撮像素子21から入力したデジタル撮像信号に係る映像処理機能等が形成されるようになっている。

0048

なお、FPGA61における上述した、変調クロック信号(第2クロック;CLK3)の生成機能については、後に図3を参照して詳しく説明する。

0049

水晶発振器VCXO(Voltage-Controlled Crystal Oscillator)63(以下、VCXO63)は、電圧制御水晶発振器であり所定の第1クロックCLK1を生成し出力するようになっている。このように、VCXO63は、所定の第1クロックを生成する第1クロック生成部としての役目を果たす。

0050

変調クロック出力部64は、FPGA61において生成された変調クロック(第2クロックCLK3)を受けて、クロック信号線71を介して後段(撮像素子21)に向けて出力する変調クロック出力部としての役目を果たす。

0051

S/P変換部62は、撮像信号線73を介して入力したシリアルのデジタル撮像信号を所定のパラレル信号に変換するシリアルパラレル変換機能を有する。

0052

<変調クロック信号(第2クロック;CLK3)の生成機能>
図3は、第1の実施形態の内視鏡のコネクタ回路におけるFPGAの具体的な構成を示すブロック図であり、図4は、当該FPGA内の所定ポイントの動作を示すタイミングチャートである。

0053

図3に示すように、FPGA61は、その一部の機能として変調クロック信号(第2クロック;CLK3)の生成機能が形成され、具体的に、カウンタ部81と、擬似乱数発生部82と、変調クロック発生部83とが形成される。

0054

なお、図3においては、FPGA61の機能として、カウンタ部81、擬似乱数発生部82および変調クロック発生部83のみを示しているが、FPGA61は、上述したように、そのほかの機能として、例えば、各種同期信号等の制御信号の生成機能、入力したデジタル撮像信号に係る映像処理機能等が形成されるようになっている。

0055

カウンタ部81は、図3に示すように、PLL(phase locked loop)91、マルチプレクサ92、カウンタ93を有して構成されている。

0056

PLL91は、VCXO63において生成された第1クロックCLK1を受けて、当該第1クロックを所定数倍に逓倍したCLK2を出力する。カウンタ93およびマルチプレクサ92は、図4に示すように、このCLK2を周期的に所定数カウントし(0〜9)、その周期的なカウント値カウント信号(CNT)として出力する。

0057

擬似乱数発生部82は、擬似乱数発生器94および2つのマルチプレクサ95、96を有して構成されている。

0058

擬似乱数発生器94は、所定の乱数を発生する擬似乱数発生器であり、この擬似乱数発生器94において発生された乱数情報は、2段のマルチプレクサ95、96を経て、“0”〜“8”の値を乱数的にとる乱数信号SETD)を出力するようになっている(図4参照)。

0059

変調クロック発生部83は、マルチプレクサ97により構成され、当該マルチプレクサ97は、カウンタ部81からのカウント信号(CNT)の値と擬似乱数発生部82からの乱数信号(SETD)の値とを比較した信号を、マルチプレクサの選択制御信号として入力するようになっている。

0060

具体的に本実施形態においては、前記カウント信号(CNT)は、周期的に“0”〜“9”の値をとり、一方、乱数信号(SETD)は、“0”〜“8”の値を乱数的にとる。そして、マルチプレクサ97は、
カウント信号(CNT)<=乱数信号(SETD)
を満たす場合に、選択制御入力端子に“1”が入力され、このときマルチプレクサ97bの出力には、“H”信号出力されるようになっている。

0061

本実施形態においては、このマルチプレクサ97の出力信号を、変調クロック発生部83において発生した変調クロック(第2クロック;CLK3)として出力するものとする。

0062

ここで、変調クロック発生部83において発生するクロックCLK3は、クロックの立ち上がりエッジ(Positive edge)は周期的に毎周期固定した状態である一方で、立ち下りエッジ(Negative edge)は、擬似乱数発生部82において発生する乱数に依存して、その周期的タイミングが変移することとなる。

0063

すなわち、本実施形態においては、CLK3におけるパルス幅のデューティ比が、擬似乱数発生部82において発生した乱数に基づいて制御されることとなる。

0064

これは、FPGA61における前記カウンタ部81、擬似乱数発生部82および変調クロック発生部83において、第1クロックであるCLK1から、周期ごとにパルス幅が変調された変調クロック(第2クロック;CLK3)が生成されたことを意味するものである。

0065

換言すると、本実施形態においては、FPGA61において、原振であるVCXO63が発生したクロックの周波数を動的に変化させて出力し、この動的に変化されたクロックを内視鏡2内のケーブル23において伝送することにより、パワースペクトラムを拡散させ、これにより放射強度のピークを抑制、すなわちEMIを抑制するものである。

0066

なお、上述したようにFPGA61は、前記第1クロックにおける一方のエッジ(立ち上がりエッジ(Positive edge))の周期的タイミングを固定させたままで他方のエッジ(立ち下りエッジ(Negative edge))の周期的タイミングを変移させることにより、パルス幅が変調された変調クロックを生成する変調クロック生成部としての役目を果たす。

0067

また、本実施形態は、上述の如きパルス幅の変調を、いわゆる「遅延回路」を用いることなく実現することを特徴とする。

0068

さらに、本実施形態において採用した如きCMOSイメージセンサ等の固体撮像素子においては、例えば、上述したAD変換部53等の回路ではクロックの立ち上がりエッジ(Positive edge)で動作するため、この立ち上がりエッジが変動するとジッタによる精度劣化が生じる虞がある。

0069

しかしながら、上述したように、本実施形態においては、FPGA61における変調クロック発生部83において生成する変調クロックCLK3は、その立ち下りエッジ(Negative edge)については、擬似乱数発生部82において発生する乱数に依存してその周期的タイミングを変移するが、クロックの立ち上がりエッジ(Positive edge)について周期的に毎周期固定した状態であるため、撮像素子21におけるタイミング制御に何等影響を及ぼすことがない。

0070

以上説明したように、本第1の実施形態の内視鏡によると、撮像素子に係るタイミング設計に影響を及ぼすことなく、伝送するクロックに起因するEMIを抑制可能とする撮像装置を提供することができる。

0071

<第2の実施形態>
次に、本発明の第2の実施形態について説明する。

0072

図5は、本発明の第2の実施形態の内視鏡の電気的な構成を示すブロック図である。また、図6は、第2の実施形態の内視鏡において、スペクトラム拡散変調をオフした状態におけるケーブルからの放射レベルの一例を示した図であり、図7は、第2の実施形態の内視鏡において、スペクトラム拡散変調をオンした状態におけるケーブルからの放射レベルの一例を示した図である。

0073

本第2の実施形態の内視鏡は、その基本的な構成は第1の実施形態と同様であり、FPGA61において生成する変調クロックを伝送する際に、当該変調クロックと共に、反転させた変調クロックを差動伝送することを特徴とする。

0074

したがって、ここでは第1の実施形態との差異のみの説明にとどめ、共通する部分の説明については省略する。

0075

図5に示すように、第2の実施形態の内視鏡202においても、挿入部先端部には、被写体像を入光するレンズを含む対物光学系(図示せず)と、当該対物光学系における結像面に配置された撮像素子221と、が配設され、また、ユニバーサルコードの基端側に配設したコネクタ42内にはコネクタ回路222が配設される。

0076

さらに内視鏡202には、撮像素子221から延出され、当該撮像素子221から挿入部6、操作部10、ユニバーサルコード41を経て、前記コネクタ42(および内設するコネクタ回路222)に至るまで延設されたケーブル223が配設されている。

0077

当該撮像素子221は、第1の実施形態と同様に、本実施形態においてもCMOSイメージセンサにより構成される固体撮像素子である。

0078

図5に示すように、撮像素子221は、第1の実施形態と同様の、撮像部251、アナログアンプ部252、AD変換部253、デジタル処理部254、P/S変換部255、変調クロック入力部256、PLL257およびタイミングジェネレータ258を有する。

0079

ここで、変調クロック入力部256は、本第2の実施形態においては、第1の実施形態と同様の変調クロックである第2クロックCLK3を伝送するクロック信号線271aに接続されるようになっている。

0080

さらに、本第2の実施形態においては、撮像素子221は、上述した変調クロックである第2クロックCLK3を反転させたクロックである第3クロックを伝送するクロック信号線271bに接続された終端抵抗259を備える。

0081

第2の実施形態において、ケーブル223は、上述したように撮像素子221とコネクタ回路222とを接続し、すなわち、撮像素子221から延出され、当該撮像素子221から挿入部6、操作部10、ユニバーサルコード41を経て、前記コネクタ42に内設されたコネクタ回路222に至るまで延設されている。

0082

また、ケーブル223には、コネクタ回路222における変調クロック出力部264と撮像素子221における前記変調クロック入力部256とを接続するクロック信号線271aに加え、変調クロックである第2クロックCLK3を反転させたクロックである第3クロックを伝送するクロック信号線271bが内設される。

0083

さらに、ケーブル223には、コネクタ回路222におけるFPGA261と撮像素子221における前記タイミングジェネレータ258とを接続する制御信号線272と、コネクタ回路222におけるS/P変換部262と撮像素子221における前記P/S変換部255とを接続する撮像信号線273と、が内設される。

0084

一方本実施形態の内視鏡202は、上述したように、前記ユニバーサルコード41の基端側に配設したコネクタ42内にコネクタ回路222が配設される。

0085

このコネクタ回路222には、第1の実施形態と同様の構成をなす、FPGA261、VCXO263、S/P変換部262の他、第1の実施形態と同様の構成をなす、変調クロック出力部264aと有する。
さらに本第2の実施形態は、第2クロックCLK3を反転させたクロックである第3クロックを生成するための、インバータで構成された変調クロック出力部264bを備える。

0086

すなわち、本第2の実施形態においては、FPGA261において生成された変調クロックであるCLK3(第2クロック)と、このCLK3を反転した変調クロックである第3クロックとを、それぞれ同じケーブル23内の配設したクロック信号線271a、クロック信号線271bにより差動伝送することを特徴とする。

0087

次に、本第2の実施形態の作用効果について説明する。
図6は、第2の実施形態の内視鏡において、スペクトラム拡散変調をオフした状態におけるケーブルからの放射レベルの一例を示した図であり、図7は、第2の実施形態の内視鏡において、スペクトラム拡散変調をオンした状態におけるケーブルからの放射レベルの一例を示した図である。

0088

図6に示すように、仮にスペクトラム拡散変調をオフした状態を想定する。この場合、デューティー比は50%なので偶数倍波は小さくなるが、奇数成分は差動キャンセルするものの元電力が強いため、少しの漏れでも大きい値となることが考えられる。

0089

これに対して、図7に示すように、本第2の実施形態においてスペクトラム拡散変調をオンにした状態では、上述のごときデューティー比が非50%化されることにより、偶数倍波は図6の場合に比べて微増することになるが、奇数成分はスペクトラム拡散変調により元電力より小さくできるため、放射レベルを抑圧することができる。

0090

このように、本第2の実施形態においては、奇数成分と偶数成分との発生レベルを調整することで、総合的に放射特性のピークレベルを小さく抑えることができる。

0091

以上説明したように、本第2の実施形態の内視鏡によっても、撮像素子に係るタイミング設計に影響を及ぼすことなく、伝送するクロックに起因するEMIの抑制を実現できることに加え、さらに、放射レベルを抑圧することができる。

0092

<第3の実施形態>
次に、本発明の第3の実施形態について説明する。
図8は、本発明の第3の実施形態の内視鏡の電気的な構成を示すブロック図である。

0093

本第3の実施形態の内視鏡は、その基本的な構成は第2の実施形態と同様であるが、複数の撮像素子を有する内視鏡であって、それぞれの内視鏡に係る駆動クロック伝送におけるEMIを抑えることを特徴とするものである。

0094

この目的のために本第3の実施形態は、一方の撮像素子に対しては、上記第1、第2の実施形態と同様の変調クロックを供給し、他方の撮像素子に対しては、反転させた当該変調クロックを供給するものとし、これら変調クロックと当該変調クロックを反転させたクロックとを、同一ケーブルにより差動伝送することを特徴とする。

0095

したがって、ここでは第1、第2の実施形態との差異のみの説明にとどめ、共通する部分の説明については省略する。

0096

図8に示すように、第3の実施形態の内視鏡302においても、挿入部先端部には、被写体像を入光するレンズを含む対物光学系(図示せず)と、当該対物光学系における結像面に配置された第1撮像素子321および第2撮像素子421とが配設される。

0097

また、ユニバーサルコードの基端側に配設したコネクタ42内にはコネクタ回路322が配設される。

0098

さらに内視鏡302には、第1撮像素子321および第2撮像素子421から延出され、これら第1撮像素子321および第2撮像素子421から挿入部6、操作部10、ユニバーサルコード41を経て、前記コネクタ42(および内設するコネクタ回路322)に至るまで延設されたケーブル323が配設されている。

0099

これら第1撮像素子321および第2撮像素子421は、第1の実施形態と同様に、本実施形態においてもCMOSイメージセンサにより構成される固体撮像素子である。

0100

図8に示すように、第1撮像素子321は、第1の実施形態と同様の、撮像部351、アナログアンプ部352、AD変換部353、デジタル処理部354、P/S変換部355、変調クロック入力部356、PLL357およびタイミングジェネレータ358を有する。

0101

ここで、変調クロック入力部356は、本第3の実施形態においては、第1の実施形態と同様の変調クロックである第2クロックCLK3を伝送するクロック信号線371に接続されるようになっている。

0102

さらに、本第3の実施形態において第2撮像素子421は、第1の実施形態と同様の、撮像部451、アナログアンプ部452、AD変換部453、デジタル処理部454、P/S変換部455、変調クロック入力部456、PLL457およびタイミングジェネレータ458を有する。

0103

ここで、第2撮像素子421は、上述した変調クロックである第2クロックCLK3を反転させたクロックである第3クロックを伝送するクロック信号線471に接続されたインバータ459を備える。

0104

第3の実施形態において、ケーブル323は、上述したように第1撮像素子321および第2撮像素子421とコネクタ回路322とを接続し、すなわち、第1撮像素子321および第2撮像素子421から延出され、これら第1撮像素子321および第2撮像素子421から挿入部6、操作部10、ユニバーサルコード41を経て、前記コネクタ42に内設されたコネクタ回路322に至るまで延設されている。

0105

また、ケーブル323には、コネクタ回路322における変調クロック出力部364と撮像素子321における前記変調クロック入力部356とを接続するクロック信号線371に加え、変調クロックである第2クロックCLK3を反転させたクロックである第3クロックを伝送するクロック信号線471が内設される。

0106

さらに、ケーブル323には、コネクタ回路322におけるFPGA361と撮像素子321における前記タイミングジェネレータ358とを接続する制御信号線372と、コネクタ回路322におけるS/P変換部362と撮像素子321における前記P/S変換部355とを接続する撮像信号線373と、が内設される。

0107

加えてケーブル323には、コネクタ回路322におけるFPGA361と撮像素子421における前記タイミングジェネレータ458とを接続する制御信号線472と、コネクタ回路322におけるS/P変換部462と撮像素子421における前記P/S変換部455とを接続する撮像信号線473と、が内設される。

0108

一方本第3の実施形態の内視鏡302は、上述したように、前記ユニバーサルコード41の基端側に配設したコネクタ42内にコネクタ回路322が配設される。

0109

このコネクタ回路322には、第1の実施形態と同様の構成をなす、FPGA361、VCXO363、S/P変換部362の他、第1の実施形態と同様の構成をなす、変調クロック出力部364と有する。

0110

さらに本第3の実施形態は、S/P変換部462の他、第2クロックCLK3を反転させたクロックである第3クロックを生成するための、インバータで構成された変調クロック出力部464を備える。

0111

すなわち、本第3の実施形態においては、FPGA361において生成された変調クロックであるCLK3(第2クロック)と、このCLK3を反転した変調クロックである第3クロックとを、それぞれ同じケーブル323内の配設したクロック信号線371、クロック信号線471により差動伝送することを特徴とする。

0112

次に、本第3の実施形態の作用効果について説明する。
上述したように、本第3の実施形態の内視鏡302は、複数の(本実施形態においては、2つの)撮像素子321,421を備え、それぞれの撮像素子321、421に対しては、互いに反転した変調クロックが差動伝送を介して供給されるようになっている。

0113

また、上述したように、第2撮像素子421は、前記インバータ459を備えることで、一旦反転された変調クロックを再び反転して第4クロックとして出力するようになっている。

0114

これにより、第3の実施形態においては、内視鏡302内に複数の撮像素子を有する場合であっても、それぞれの撮像素子321、421に対して互いに反転した変調クロックを差動伝送するので、第2の実施形態と同様に、総合的に放射特性のピークレベルを小さく抑えることができると共に、それぞれの撮像素子を互いに同期をとって制御することを可能とする。

0115

以上説明したように、本第3の実施形態の内視鏡によっても、搭載する複数の撮像素子それぞれのタイミング設計に影響を及ぼすことなく、伝送するクロックに起因するEMIの抑制を実現できることに加え、放射レベルを抑圧することができ、かつ、それぞれの撮像素子を互いに同期をとって制御することが可能となる。

0116

なお、上述した実施形態において、FPGA61(261、361)は、コネクタ回路22内に配設するものとしたが、これに限らず、内視鏡に接続されるビデオプロセッサ3内に設けてもよい。

0117

また、上述した実施形態において、FPGA61(261、361)に形成したPLL91(図3参照)は、これに限らず、コネクタ回路22内のFPGA61以外の箇所、または、内視鏡に接続されるビデオプロセッサ3内に設けてもよい。

0118

さらに、上述した第3の実施形態において、インバータ459は、第2撮像素子421内に設けるものとしたが、これに限らず、ケーブル323に設けても良い。

0119

本発明は、上述した実施形態に限定されるものではなく、本発明の要旨を変えない範囲において、種々の変更、改変等が可能である。

0120

1…内視鏡システム
2…内視鏡
3…ビデオプロセッサ
4…光源
5…モニタ装置
21…撮像素子
22…コネクタ回路
23…ケーブル
51…撮像部
52…アナログアンプ部
53…AD変換部
54…デジタル処理部
56…変調クロック入力部
57…PLL
58…タイミングジェネレータ
61…FPGA
63…水晶発振器VCXO
64…変調クロック出力部
71…クロック信号線
72…制御信号線
73…撮像信号線
81…カウンタ部
82…擬似乱数発生部
83…変調クロック発生部
91…PLL
93…カウンタ
94…擬似乱数発生器

ページトップへ

この技術を出願した法人

この技術を発明した人物

ページトップへ

関連する挑戦したい社会課題

関連する公募課題

ページトップへ

おススメ サービス

おススメ astavisionコンテンツ

新着 最近 公開された関連が強い技術

この 技術と関連性が強い技術

関連性が強い 技術一覧

この 技術と関連性が強い人物

関連性が強い人物一覧

この 技術と関連する社会課題

関連する挑戦したい社会課題一覧

この 技術と関連する公募課題

関連する公募課題一覧

astavision 新着記事

サイト情報について

本サービスは、国が公開している情報(公開特許公報、特許整理標準化データ等)を元に構成されています。出典元のデータには一部間違いやノイズがあり、情報の正確さについては保証致しかねます。また一時的に、各データの収録範囲や更新周期によって、一部の情報が正しく表示されないことがございます。当サイトの情報を元にした諸問題、不利益等について当方は何ら責任を負いかねることを予めご承知おきのほど宜しくお願い申し上げます。

主たる情報の出典

特許情報…特許整理標準化データ(XML編)、公開特許公報、特許公報、審決公報、Patent Map Guidance System データ