図面 (/)

この項目の情報は公開日時点(2017年11月24日)のものです。
また、この項目は機械的に抽出しているため、正しく解析できていない場合があります

図面 (10)

課題

簡易な構成でモードスクランブル効果を効率的に利用し、光ファイバの損傷を抑制しつつ標本面での照明光照射の均一化およびスペックルノイズの除去を実現して、標本を精度よく観察する。

解決手段

光源装置3から発せられたレーザ光伝播する光ファイバ5と、光ファイバ5により伝播されてきたレーザ光を標本Sに照射して、標本Sの画像を取得する顕微鏡7と、光ファイバ5内に弾性波を伝播させて、光ファイバ5内に弾性波の干渉縞を形成させるモードスクランブル装置11と、モードスクランブル装置11の駆動を制御する制御装置13とを備える顕微鏡システム1を提供する。

概要

背景

従来、光ファイバにより光源顕微鏡本体とを接続するファイバ照明型の顕微鏡が知られている(例えば、特許文献1参照。)。特許文献1に記載の顕微鏡のように光ファイバを用いた照明では、標本面での照明強度が均一にならなかったり、マルチモードファイバにおける異なる伝播モード間の光の干渉によるスペックルにより画像に斑点状のノイズが現れたりすることがある。

そこで、光ファイバにモードスクランブラを適用することにより、光ファイバ内の屈折率変化によるモードスクランブル効果を利用して、標本面での照明光照射を均一にしている(例えば、特許文献2,3参照。)。

モードスクランブラとしては、例えば、光ファイバを屈曲したり巻回したりするもの(例えば、特許文献4参照。)、光ファイバに外部から加圧して応力を与えるもの(例えば、特許文献5参照。)、光ファイバに振動を与えるもの(例えば、特許文献6,7,8参照。)などが知られている。また、光路上に拡散板等を配置して拡散板等を動かすことにより、モードスクランブラと同等の効果が得られるものも知られている(例えば、非特許文献1参照。)。

概要

簡易な構成でモードスクランブル効果を効率的に利用し、光ファイバの損傷を抑制しつつ標本面での照明光の照射の均一化およびスペックルノイズの除去を実現して、標本を精度よく観察する。光源装置3から発せられたレーザ光伝播する光ファイバ5と、光ファイバ5により伝播されてきたレーザ光を標本Sに照射して、標本Sの画像を取得する顕微鏡7と、光ファイバ5内に弾性波を伝播させて、光ファイバ5内に弾性波の干渉縞を形成させるモードスクランブル装置11と、モードスクランブル装置11の駆動を制御する制御装置13とを備える顕微鏡システム1を提供する。

目的

本発明は上述した事情に鑑みてなされたものであって、簡易な構成でモードスクランブル効果を効率的に利用し、光ファイバの損傷を抑制しつつ標本面での照明光の照射の均一化およびスペックルノイズの除去を実現して、標本を精度よく観察することができる顕微鏡システムを提供する

効果

実績

技術文献被引用数
0件
牽制数
0件

この技術が所属する分野

ライセンス契約や譲渡などの可能性がある特許掲載中! 開放特許随時追加・更新中 詳しくはこちら

請求項1

光源から発せられた照明光伝播する光ファイバと、該光ファイバにより伝播されてきた前記照明光を標本照射して、該標本の画像を取得する顕微鏡と、前記光ファイバ内に弾性波を伝播させて、該光ファイバ内に前記弾性波の干渉縞を形成させる干渉縞形成部と、該干渉縞形成部の駆動を制御する制御部とを備える顕微鏡システム

請求項2

前記干渉縞形成部が、20kHz以上の周波数の前記弾性波を発生する請求項1に記載の顕微鏡システム。

請求項3

前記制御部が、前記干渉縞形成部から発せられる前記弾性波の周波数、強度および位相の少なくとも1つを周期的に変化させる請求項1または請求項2に記載の顕微鏡システム。

請求項4

前記顕微鏡が、前記照明光が照射された前記標本からの観察光撮影して前記画像を生成する撮像部を備え、前記制御部が、前記撮像部の露光時間に応じて、前記弾性波の周波数、強度および位相の少なくとも1つを変化させる時間周期を制御する請求項3に記載の顕微鏡システム。

請求項5

前記干渉縞形成部が、電気信号を超音波に変換可能な電気機械変換素子である請求項1から請求項4のいずれかに記載の顕微鏡システム。

請求項6

前記制御部が、前記干渉縞形成部から前記弾性波を発生させるタイミングを制御する請求項1から請求項5のいずれかに記載の顕微鏡システム。

技術分野

0001

本発明は、顕微鏡システムに関するものである。

背景技術

0002

従来、光ファイバにより光源顕微鏡本体とを接続するファイバ照明型の顕微鏡が知られている(例えば、特許文献1参照。)。特許文献1に記載の顕微鏡のように光ファイバを用いた照明では、標本面での照明強度が均一にならなかったり、マルチモードファイバにおける異なる伝播モード間の光の干渉によるスペックルにより画像に斑点状のノイズが現れたりすることがある。

0003

そこで、光ファイバにモードスクランブラを適用することにより、光ファイバ内の屈折率変化によるモードスクランブル効果を利用して、標本面での照明光照射を均一にしている(例えば、特許文献2,3参照。)。

0004

モードスクランブラとしては、例えば、光ファイバを屈曲したり巻回したりするもの(例えば、特許文献4参照。)、光ファイバに外部から加圧して応力を与えるもの(例えば、特許文献5参照。)、光ファイバに振動を与えるもの(例えば、特許文献6,7,8参照。)などが知られている。また、光路上に拡散板等を配置して拡散板等を動かすことにより、モードスクランブラと同等の効果が得られるものも知られている(例えば、非特許文献1参照。)。

0005

特開2006−301067号公報
特開2009−092878号公報
特表2009−532031号公報
特開平02−042407号公報
実開昭61−013803号公報
特開2003−156698号公報
特表2013−525847号公報
特開2008−112783号公報

先行技術

0006

R.Hard, R.Zeh, and R.D.Allen, “Phase−Randomized Laser Illumination For Microscopy”, J.Cell Sci.23, 335 (1977)

発明が解決しようとする課題

0007

しかしながら、特許文献4に記載のモードスクランブラは、観察条件に合わせたモードスクランブル効果の調整を行うことができず、使用可能な光源の波長や強度が限定されるとともに、光源の波長や強度、光ファイバ径など光ファイバの使用によっては光ファイバが非常に長くなったり、光ファイバに常に負荷がかかるために損傷したりするなどの不都合がある。また、特許文献5に記載のモードスクランブラも、圧力を固定するとモードスクランブル効果を調整することができず、また、光ファイバが機械的な変形を伴うために損傷するなどの不都合がある。

0008

また、特許文献6,7,8に記載のモードスクランブラは、音が発生したり振動が生じたりして、観察に影響を及ぼすことがあるとともに、光ファイバが機械的な変形を伴うために損傷するなどの不都合がある。また、弦の共振を利用した場合は、カメラ露光時間に見合う実用的な周波数で振動させるために大きな張力を加える必要があり、構成が複雑になるという不都合がある。さらに、非特許文献1に記載の方法は、音や振動が生じるとともに、拡散板等をカメラの露光時間以下の周期で動かさなければならず、この場合も構成が複雑になるという不都合がある。

0009

本発明は上述した事情に鑑みてなされたものであって、簡易な構成でモードスクランブル効果を効率的に利用し、光ファイバの損傷を抑制しつつ標本面での照明光の照射の均一化およびスペックルノイズの除去を実現して、標本を精度よく観察することができる顕微鏡システムを提供することを目的としている。

課題を解決するための手段

0010

上記目的を達成するために、本発明は以下の手段を提供する。
本発明は、光源から発せられた照明光を伝播する光ファイバと、該光ファイバにより伝播されてきた前記照明光を標本に照射して、該標本の画像を取得する顕微鏡と、前記光ファイバ内に弾性波を伝播させて、該光ファイバ内に前記弾性波の干渉縞を形成させる干渉縞形成部と、該干渉縞形成部の駆動を制御する制御部とを備える顕微鏡システムを提供する。

0011

本発明によれば、光源から発せられた照明光が光ファイバにより顕微鏡に伝播され、顕微鏡により標本に照明光が照射されて画像が取得される。この場合において、制御部により干渉縞形成部が駆動され、光ファイバ内において弾性波が伝播されてその干渉縞が形成されることで、光ファイバ内の屈折率を変化させて、いわゆるモードスクランブル効果により光ファイバから射出される照明光を均一にすることができる。

0012

ここで、光ファイバを機械的に変形したり光ファイバに振動を与えたりしないので、観察に影響を及ぼすような音や振動の発生を抑制するとともに、光ファイバの損傷を抑えることができる。また、制御部による干渉縞形成部の駆動の制御により、モードスクランブル効果の調整を可能にすることができる。これにより、簡易な構成でモードスクランブル効果を効率的に利用し、光ファイバの損傷を抑制しつつ標本面での照明光の照射の均一化およびスペックルノイズの除去を実現して、標本を精度よく観察することができる。

0013

上記発明においては、前記干渉縞形成部が、20kHz以上の周波数の前記弾性波を発生することとしてもよい。
このように構成することで、仮に干渉縞形成部から弾性波が漏れ出たとしても、可聴音の発生を抑制して、ユーザに不快感を与えることを防ぐことができる。

0014

上記発明においては、前記制御部が、前記干渉縞形成部から発せられる前記弾性波の周波数、強度および位相の少なくとも1つを周期的に変化させることとしてもよい。
このように構成することで、光ファイバ内の屈折率変化をより複雑にして、モードスクランブル効果を向上することができる。また、光源による照明光の波長や顕微鏡による露光時間やフレームレートなどの観察条件に合わせて、モードスクランブル効果を調整して利用することができる。

0015

上記発明においては、前記顕微鏡が、前記照明光が照射された前記標本からの観察光撮影して前記画像を生成する撮像部を備え、前記制御部が、前記撮像部の露光時間に応じて、前記弾性波の周波数、強度および位相の少なくとも1つを変化させる時間周期を制御することとしてもよい。
このように構成することで、干渉縞形成部により、撮像部の露光時間に合わせた周波数帯の弾性波を光ファイバ内に伝播させ、十分なモードスクランブル効果を得て観察を行うことができる。

0016

上記発明においては、前記干渉縞形成部が、電気信号を超音波に変換可能な電気機械変換素子であることとしてもよい。

0017

上記発明においては、前記制御部が、前記干渉縞形成部から前記弾性波を発生させるタイミングを制御することとしてもよい。
このように構成することで、制御部により、例えば、撮影時や観察時のみ干渉縞形成部から弾性波を発生させて、光ファイバに与える負荷をより低減し、光ファイバの損傷を抑制することができる。

発明の効果

0018

本発明によれば、簡易な構成でモードスクランブル効果を効率的に利用し、光ファイバの損傷を抑制しつつ標本面での照明光の照射の均一化およびスペックルノイズの除去を実現して、標本を精度よく観察することができるという効果を奏する。

図面の簡単な説明

0019

本発明の第1実施形態に係る顕微鏡システムの概略構成図である。
図1モードスクランブル装置の概略構成図である。
図2の2つのトランスデューサと光ファイバとの固定部分の一例を示す斜視図である。
本発明の第1実施形態の変形例としてのトランスデューサと光ファイバとの固定部分の他の一例を示す斜視図である。
(a)−(f)は2つのトランスデューサに入力する駆動信号の周波数を互いに異ならせた場合におけるトランスデューサの駆動周期波形を1/10の時間ごとに半周期分プロットしたデータの一例である。
(a)−(f)は一方のトランスデューサに入力する駆動信号に振幅変調を施した場合におけるトランスデューサの駆動周期の1/4周期ごとの波形をプロットしたデータの一例である。
本発明の第1実施形態および第2実施形態の第1変形例に係るモードスクランブル装置の概略構成図である。
図7の2つのトランスデューサと光ファイバとの固定部分の他の一例を示す斜視図である。
本発明の第1実施形態および第2実施形態の第2変形例に係るモードスクランブル装置の概略構成図である。

実施例

0020

〔第1実施形態〕
本発明の第1実施形態に係る顕微鏡システムについて図面を参照して以下に説明する。
本実施形態に係る顕微鏡システム1は、図1に示すように、レーザ光(照明光)を発する光源装置3と、光源装置3から発せられたレーザ光を伝播する光ファイバ5と、光ファイバ5により伝播されてきたレーザ光を標本Sに照射して、標本Sの画像を取得する顕微鏡7と、顕微鏡7により取得された画像等を表示するモニタ9と、光ファイバ5内に弾性波の干渉縞を形成するモードスクランブル装置(干渉縞形成部)11と、モードスクランブル装置11の駆動を制御する制御装置(制御部)13とを備えている。

0021

光源装置3は、レーザ光を発生するレーザ光源(図示略)と、レーザ光源において発生したレーザ光を光ファイバ5に入射する光学系(図示略)とを備えている。

0022

顕微鏡7は、光ファイバ5により導光されてきたレーザ光を集光する投影レンズ15と、投影レンズ15により集光されたレーザ光を標本Sに照射する一方、レーザ光が照射されることにより標本Sから戻る観察光を集光する対物レンズ17と、対物レンズ17により集光された観察光を結像させる撮像レンズ19と、撮像レンズ19により結像された観察光を撮影するカメラ(撮像部)21とを備えている。

0023

また、顕微鏡7には、投影レンズ15により集光されたレーザ光を対物レンズ17に向けて反射する一方、対物レンズ17により集光されてレーザ光の光路を戻る観察光を撮像レンズ19に向けて透過させるハーフミラー23が備えられている。

0024

モードスクランブル装置11は、光ファイバ5が内部を貫通している。このモードスクランブル装置11は、図2に示すように、内部において光ファイバ5を保持する保持部25と、光ファイバ5内に超音波などの弾性波を励起する電気機械変換素子である2つのトランスデューサ27A,27Bとを備えている。

0025

2つのトランスデューサ27A,27Bは、光ファイバ5の長手方向に互いに距離Lを空けて配置されている。また、これらトランスデューサ27A,27Bは、例えば、図3に示すように、円柱状に形成されており、接着剤Cにより中心軸方向の一端面に光ファイバ5が固定されている。

0026

トランスデューサ27A,27Bと光ファイバ5との間に隙間が生じる場合は、超音波カプラント等でその隙間を埋めることによりトランスデューサ27A,27Bと光ファイバ5とを密着させることが望ましい。このようにすることで、トランスデューサ27A,27Bから光ファイバ5に弾性波を効率よく伝播させることができる。なお、接着剤Cに代えて、例えば、押圧用の板状部材などで光ファイバ5をトランスデューサ27A,27Bの一端面に押し付けて固定することとしてもよい。

0027

また、トランスデューサ27A,27Bは、制御装置13の制御により、それぞれ20kHz以上の周波数の弾性波を発生するようになっている。そして、トランスデューサ27A,27Bは、光ファイバ5内に弾性波を伝播させて、光ファイバ5内に弾性波の干渉縞を形成するようになっている。

0028

トランスデューサ27A,27Bの駆動周波数を20kHz以上とすることで、仮にモードスクランブル装置11から弾性波が漏れ出たとしても、可聴音の発生を抑制して、ユーザに不快感を与えることを防ぐことができる。なお、カメラにより撮影する場合は、一般にモードスクランブルを行う周期を露光時間よりも短くする必要があるところ、例えば露光時間が約0.1msec程度など極めて短い場合であっても、弾性波の周波数が20kHz以上であれば、本願の条件で十分なモードスクランブル効果を得ることができる。

0029

光ファイバ5は、FCコネクタなどの光コネクタ29Aにより一端が光源装置3に接続され、同じくFCコネクタなどの光コネクタ29Bにより他端が顕微鏡7に接続されている。この光ファイバ5は、2つのトランスデューサ27A,27Bと接触する部分、または、モードスクランブル装置11の内部を貫通する部分の全域に亘り、被覆を剥いだ状態にしてもよい。このようにすることで、トランスデューサ27A,27Bから光ファイバ5に弾性波を伝播し易くすることができる。また、光ファイバ5は、モードスクランブル装置11の入出力部分にFCコネクタなどの光ファイバ用コネクタを設けて、モードスクランブル装置11に対して着脱可能にしてもよい。

0030

制御装置13は、各トランスデューサ27A,27Bを駆動する駆動プログラム等が記憶されたメモリ(図示略)と、メモリに記憶されているプログラムを読み込んで、プログラムを実行する機能を有する演算処理部(図示略)とを備えている。演算処理部は、メモリに記憶されている駆動プログラムを実行することにより、各トランスデューサ27A,27Bに対してそれぞれ周波数f1,f2の駆動信号を入力するようになっている。

0031

周波数f1,f2とトランスデューサ27A,27B間の距離Lは、光ファイバ5内での弾性波の速さをvとした場合に、2f1L>v、2f2L>vの関係を満たすように設定するものとする。この関係を満たすことは、トランスデューサ27A,27B間の距離Lが、光ファイバ5内に伝播される弾性波の半波長よりも長いことを意味する。トランスデューサ27A,27B間の距離Lを弾性波の半波長よりも長くすることで、単一のトランスデューサを使用する場合と比較して、モードスクランブル効果を向上することができる。

0032

本実施形態においては、制御装置13は、駆動信号により各トランスデューサ27A,27Bから同じ周波数f(f1=f2)の弾性波を発生させて光ファイバ5内に伝播させるようになっている。ここで、図2において、光ファイバ5の長手方向をX軸とし、一方のトランスデューサ27Aの位置を原点とすると、他方のトランスデューサ27Bの位置XはLとなる。

0033

駆動信号の周波数が同一の値fでかつ同位相の場合、2つのトランスデューサ27A,27Bから伝播される弾性波は、以下の条件式を満たす位置で互いに強め合う干渉縞を形成することとなる。nは0以上の整数である。
|X−(L−x)|=n×(v/f)
この弾性波は、2つのトランスデューサ27A,27Bに挟まれた空間では、位置が変化しない定在波でもある。

0034

また、制御装置13の演算処理部は、駆動プログラムの実行により、モードスクランブル装置11から弾性波を発生させるタイミングも制御するようになっている。例えば、演算処理部は、カメラ21による撮影時やユーザによる目視での観察時のみ駆動信号を出力して各トランスデューサ27A,27Bから弾性波を発生させるようになっている。これにより、光ファイバ5内で定在波を伝播させることによって光ファイバ5に与える負荷を低減し、光ファイバ5の損傷を抑制することができる。

0035

このように構成された顕微鏡システム1の作用について説明する。
本実施形態に係る顕微鏡システム1により標本Sを観察する場合、まず、光源装置3からレーザ光を発生させて、光ファイバ5により顕微鏡7にレーザ光を導光する。

0036

顕微鏡7に導光されたレーザ光は、投影レンズ15により集光されてハーフミラー23により反射され、対物レンズ17により標本Sに照射される。レーザ光が照射されることにより標本Sから戻る観察光は、対物レンズ17により集光されてハーフミラー23を透過し、撮像レンズ19により結像されてカメラ21により撮影される。カメラ21により取得された標本Sの画像はモニタ9に表示される。したがって、ユーザはモニタ9に表示される画像により標本Sを観察することができる。

0037

この場合において、制御装置13によりモードスクランブル装置11が駆動され、2つのトランスデューサ27A,27Bから同一の周波数fの弾性波が光ファイバ5内に伝播されて、光ファイバ5内において弾性波の干渉縞が形成される。これにより、光ファイバ5内の屈折率を変化させて、いわゆるモードスクランブル効果により光ファイバ5から射出されるレーザ光を均一にし、標本Sの高精細な画像を得ることができる。

0038

ここで、モードスクランブル装置11によれば、光ファイバ5を機械的に変形したり光ファイバ5に振動を与えたりしないので、観察に影響を及ぼすような音や振動の発生を抑制するとともに、光ファイバ5に与える物理的な負荷を小さくして、光ファイバ5の損傷を抑えることができる。また、制御装置13によるモードスクランブル装置11の駆動の制御により、モードスクランブル効果の調整を可能にすることができる。

0039

したがって、本実施形態に係る顕微鏡システム1によれば、モードスクランブル装置11により光ファイバ5内に弾性波を伝播させて干渉縞を形成するだけの簡易な構成で、モードスクランブル効果を効率的に利用し、光ファイバ5の損傷を抑制しつつ標本面でのレーザ光の照射の均一化およびスペックルノイズの除去を実現して、標本Sを精度よく観察することができる。

0040

なお、光ファイバ5の材質として石英を用いた場合、弾性波の速さは横波が3700〜3800m/sec、縦波が5900〜6000m/sec程度である。周波数が同じなら波長が1番短い条件3700m/secで考えると、周波数20kHzは波長18.5cmに相当する。弾性波の減衰を考慮すると2つのトランスデューサ27A,27Bの間隔はもっと狭い方が好ましく、また、弾性波の周波数も高い方が好ましい。具体的には、周波数はf=100kHz以上、トランスデューサ27A,27B間の距離Lは数cm以下がより望ましい。

0041

本実施形態においては、2つのトランスデューサ27A,27Bを用いることとしたが、3つ以上のトランスデューサを使用することとしてもよい。この場合、隣接するトランスデューサ以外のトランスデューサから発せられる弾性波との干渉どうしを考慮し、各トランスデューサ間の距離Lがv/fの整数倍になるように、距離Lと周波数fを決めることとすればよい。

0042

また、本実施形態においては、単にトランスデューサ27A,27Bの平坦な端面上に光ファイバ5を固定することとしたが、これに代えて、例えば、図4に示すように、光ファイバ5を挿入可能な細長い溝31aを一表面31bに有する保持板31を採用することとしてもよい。

0043

この場合、保持板31の溝31aに沿って光ファイバ5を嵌め込み、トランスデューサ27A,27Bの一端面により光ファイバ5を溝31aの深さ方向に押し込むように、保持板31の一表面31b上にトランスデューサ27A,27Bを配置することとすればよい。

0044

また、図示しない押圧用の部材によりトランスデューサ27A,27Bを保持板31に押し付けて固定したり、接着剤によりトランスデューサ27A,27Bを保持板31に固定したりすることとすればよい。また、トランスデューサ27A,27Bと光ファイバ5との隙間を超音波カプラント等で埋めて、トランスデューサ27A,27Bと光ファイバ5とを密着させることとすればよい。

0045

〔第2実施形態〕
次に、本発明の第2実施形態に係る顕微鏡システムについて説明する。
本実施形態に係る顕微鏡システム1は、制御装置13が、モードスクランブル装置11から発せられる弾性波の周波数、強度および位相の少なくとも1つを周期的に変化させる時間周期を制御する点で第1実施形態と異なる。
以下、第1実施形態に係る顕微鏡システム1と構成を共通する箇所には、同一符号を付して説明を省略する。

0046

制御装置13は、演算処理部が、メモリに記憶されている駆動プログラムを実行することにより、各トランスデューサ27A,27Bに対して互いに異なる値の周波数の駆動信号を入力したり、少なくとも一方の駆動信号に振幅変調、周波数変調および位相変調の少なくとも1つを施したりするようになっている。

0047

まず、制御装置13が、互いに異なる値の周波数の駆動信号をトランスデューサ27A,27Bに入力する場合について説明する。
2つのトランスデューサ27A,27Bの駆動信号の周波数をf1,f2(f1≠f2)とし、トランスデューサ27A,27B間の距離LをL=10v/f1とする。また、トランスデューサ27Bに入力する駆動信号の周波数f2がf2=1.1f1の関係を有することとする。この条件で、各トランスデューサ27A,27Bを駆動したときに伝播される弾性波の模式図を図5(a)−図5(f)に示す。図5(a)から図5(f)の順に、トランスデューサ27Aの駆動周期の波形を1/10の時間ごとに半周期分プロットしたものである。

0048

図5(a)−図5(f)は、紙面の上から順に、1段目がトランスデューサ27Aから伝播される弾性波、2段目がトランスデューサ27Bから伝播される弾性波、3段目がこれらの弾性波の合成波を示しており、3段目の合成波が、光ファイバ5内に実際に伝播される弾性波となる。また、図5(a)−図5(f)において、1段目および2段目の波形上の黒丸振動源であるトランスデューサを示しており、トランスデューサ27Aから発せられる弾性波は紙面の右方向に進み、トランスデューサ27Bから発せられる弾性波は紙面の左方向に進むことを示している。

0049

このように構成された顕微鏡システム1によれば、図5(a)−図5(f)に示されるように、トランスデューサ27A,27Bから発せられる周波数が異なる2つの弾性波によって形成される干渉縞はうなりとなっており、振幅の大きい位置が時間とともに移動する。このようなうなりを発生させることにより、弾性波の振幅の大きい位置を時間的に変化させることができ、光ファイバ5内に定在波を伝播させる場合と比較して、光ファイバ5内の屈折率変化をより複雑にして、モードスクランブル効果を向上することができる。

0050

うなりの周波数は|f1−f2|である。カメラ21による撮影において、うなりの周期が露光時間よりも短くなるように、駆動信号の周波数f1,f2を設定することが望ましい。すなわち、1/|f1−f2|<露光時間となる関係を満たすことが望ましい。また、うなりが可聴音として聞こえる場合は、|f1−f2|>20kHzとなる条件を満たすように、駆動信号の周波数f1,f2を設定すればよい。

0051

次に、制御装置13が、少なくとも一方の駆動信号に振幅変調を施す場合について説明する。
2つのトランスデューサ27A,27Bの駆動信号の周波数を互いに同一のfとし、トランスデューサ27A,27B間の距離LをL=10v/fとする。この条件で、一方のトランスデューサ27Bの駆動信号を周波数f/10で振幅変調した場合に伝播される弾性波の模式図を図6(a)−図6(f)に示す。図6(a)から図6(f)の順に、トランスデューサ27A,27Bの駆動信号の1/4周期ごとの波形をプロットしたものである。

0052

図6(a)−図6(f)に示されるように、トランスデューサ27Bからの弾性波の伝播とともに、干渉縞も時間とともに紙面の左側に移動する。トランスデューサ27A,27Bの駆動信号の周波数が互いに同一なので、駆動信号の周波数を異ならせてうなりを発生させる場合と比較して、より複雑な干渉縞が形成される。

0053

また、図6(b),図6(d),図6(f)に示すように、トランスデューサ27A,27Bからの弾性波の位相が反転した条件では、トランスデューサ27Bからの弾性波の振幅が大きいところでは干渉縞の大きさは小さくなり、トランスデューサ27Bからの弾性波の振幅が小さいところでは、トランスデューサ27Aからの弾性波が支配的なため、2つの弾性波の位相に関係なく干渉縞(合成波)の振幅の変化が小さくなる。

0054

すなわち、変調した弾性波の振幅が大きい位置では振幅が大きく変化し、変調した弾性波の振幅が小さい位置では振幅があまり変化しない弾性波が伝播される。そして、振幅の変化が大きい位置と小さい位置とが時間とともに紙面の左側に移動する。

0055

したがって、このように構成された顕微鏡システム1によれば、弾性波の振幅の変化が大きい位置を時間的に変化させることで、複雑なモードスクランブル効果を得ることができる。また、光源装置3によるレーザ光の波長や顕微鏡7による露光時間やフレームレートなどの観察条件に合わせて、モードスクランブル効果を調整して利用することができる。

0056

なお、トランスデューサ27A,27Bの駆動信号の周波数とカメラ21による撮影の露光時間との関係については、トランスデューサ27Bの変調周期がカメラ21の露光時間よりも短くなるようにするのが好ましい。また、トランスデューサ27Bの変調周波数を20kHz以上とすることが好ましい。このようにすることで、変調による可聴音の発生を防止することができる。

0057

本実施形態においては、トランスデューサ27Bの駆動信号の振幅を変調することとしたが、トランスデューサ27Aの駆動信号の振幅だけを変調したり、トランスデューサ27A,27Bの両方の駆動信号の振幅を変調したりすることとしてもよい。また、トランスデューサ27A,27Bの少なくとも一方の駆動信号の周波数や位相を変調することとしてもよい。駆動信号の周波数や位相を変調する場合も、駆動信号の振幅を変調する本実施形態と同様の効果を得ることができる。

0058

上記各実施形態は以下のように変形することができる。
上記各実施形態においては、2つのトランスデューサ27A,27Bを光ファイバ5の長手方向に沿って配置することとしたが、第1変形例としては、図7に示すように、2つのトランスデューサ27A,27Bを光ファイバ5を径方向に挟むように配置することとしてもよい。そして、各トランスデューサ27A,27Bにより光ファイバ5に対して径方向に弾性波を伝播させて、光ファイバ5の径方向に弾性波の干渉縞を形成することとしてもよい。

0059

この場合、接着剤または押圧用の部材により、光ファイバ5に対して各トランスデューサ27A,27Bの中心軸方向の一端面を直接固定することとしてもよい。また、第1実施形態のように、各トランスデューサ27A,27Bの駆動信号の周波数を同一にしてもよいし、第2実施形態のように、トランスデューサ27A,27Bの駆動信号を異なる周波数にしたり、少なくとも一方の駆動信号の振幅、周波数および位相の少なくとも1つを変調したりすることとしてもよい。このようにした場合も、上記各実施形態と同様の効果を得ることができる。

0060

本変形例においては、例えば、図8に示すように、光ファイバ5を挿入可能な長手方向に貫通する貫通孔33aを有する略角筒状保持部材33を採用することとしてもよい。そして、保持部材33の貫通孔33aに光ファイバ5を挿入した状態で、保持部材33の互いに対向する側面にトランスデューサ27A,27Bを固定することとしてもよい。

0061

図8の例の場合、押圧用の部材によりトランスデューサ27A,27Bを保持部材33に押し付けて固定したり、接着剤によりトランスデューサ27A,27Bを保持部材33に固定したりすることとすればよい。また、保持部材33の貫通孔33aと光ファイバ5との隙間およびトランスデューサ27A,27Bと保持部材33との隙間を超音波カプラント等で埋めて、それぞれを密着させることとしてもよい。

0062

本変形例においては、光ファイバ5を径方向に挟んで配置する2つのトランスデューサ27A,27Bの組を光ファイバ5の長手方向に所定の間隔を空けて複数組配置することとしてもよい。このようにすることで、モードスクランブル効果を向上することができる。この場合、トランスデューサ27A,27Bの組ごとに、光ファイバ5の中心軸に対して各トランスデューサ27A,27Bを配置する周方向の位置をそれぞれ異ならせることが望ましい。

0063

第2変形例としては、例えば、図9に示すように、単一のトランスデューサ27のみを採用し、このトランスデューサ27により光ファイバ5に対して径方向に弾性波を伝播させることしてもよい。そして、トランスデューサ27から発せられた弾性波と、この弾性波が光ファイバ5の径方向の反対側の内面において反射されて戻る反射波との干渉によって、光ファイバ5の径方向に干渉縞(定在波)を形成することとしてもよい。

0064

この場合も、トランスデューサ27の駆動信号に振幅変調、周波数変調および位相変調の少なくとも1つを施すこととしてもよい。このようにすることで、より複雑なモードスクランブルを行うことができる。また、光ファイバ5の長手方向の異なる位置にさらにトランスデューサ27を追加することとしてもよい。このようにすることで、モードスクランブル効果を向上することができる。この場合も、光ファイバ5の中心軸に対して各トランスデューサ27を配置する周方向の位置をそれぞれ異ならせることが望ましい。

0065

なお、弾性波(超音波)を媒質境界で効率よく反射させるためには、反射面での媒質間の音響インピーダンスの差を大きくする必要がある。この目的で、弾性波を反射させる部材を光ファイバ5を挟んでトランスデューサ27の反対側に設けることとしてもよい。空気の音響インピーダンスは固体の音響インピーダンスと比較して極めて小さいので、空気と固体との境界での弾性波の反射率は一般に高い。したがって、光ファイバ5が接着剤や被覆で覆われている場合には、反射率を高めたい位置においてこれら接着剤や被覆を使用せず、光ファイバ5の表面が空気と接するようにしたり、弾性波を反射させる部材を設けたりすることで、弾性波を効率よく反射させて光ファイバ5内で弾性波の干渉縞を形成することができる。

0066

以上、本発明の実施形態について図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、本発明の要旨を逸脱しない範囲の設計変更等も含まれる。例えば、本発明を上記各実施形態および変形例に適用したものに限定されることなく、これらの実施形態および変形例を適宜組み合わせた実施形態に適用してもよく、特に限定されるものではない。

0067

1顕微鏡システム
3光源装置(光源)
5光ファイバ
7顕微鏡
11モードスクランブル装置(干渉縞形成部)
13制御装置(制御部)
21カメラ(撮像部)
S 標本

ページトップへ

この技術を出願した法人

この技術を発明した人物

ページトップへ

関連する挑戦したい社会課題

関連する公募課題

該当するデータがありません

ページトップへ

おススメ サービス

おススメ astavisionコンテンツ

新着 最近 公開された関連が強い技術

この 技術と関連性が強い人物

関連性が強い人物一覧

この 技術と関連する社会課題

関連する挑戦したい社会課題一覧

この 技術と関連する公募課題

該当するデータがありません

astavision 新着記事

サイト情報について

本サービスは、国が公開している情報(公開特許公報、特許整理標準化データ等)を元に構成されています。出典元のデータには一部間違いやノイズがあり、情報の正確さについては保証致しかねます。また一時的に、各データの収録範囲や更新周期によって、一部の情報が正しく表示されないことがございます。当サイトの情報を元にした諸問題、不利益等について当方は何ら責任を負いかねることを予めご承知おきのほど宜しくお願い申し上げます。

主たる情報の出典

特許情報…特許整理標準化データ(XML編)、公開特許公報、特許公報、審決公報、Patent Map Guidance System データ