図面 (/)

この項目の情報は公開日時点(2017年11月9日)のものです。
また、この項目は機械的に抽出しているため、正しく解析できていない場合があります

図面 (5)

課題

膨張弁からエバポレータに向かう冷媒の一部をバイパスさせて膨張弁の感温部へ導くためのバイパス機構を備える冷凍サイクル装置において、バイパス機構の設計を容易にする。

解決手段

バイパス機構6には、圧力室P1、P2を連通させて圧力室P1、P2間の冷媒流通の抵抗となる絞り通路633aが形成され、ピストン63が、圧力室P1と圧力室P2の間で移動可能である。圧力室P1、P2が均圧しているとき、ピストン63が閉鎖位置に位置し、復通路72と圧力室P1とが連通すると共に、往通路71が圧力室P1から隔てられる。圧力室P1の冷媒圧力よりも圧力室P2の冷媒圧力が高いとき、ピストン63が開放位置に位置し、往通路側連通路75を介して往通路71と圧力室P1とが連通すると共に、復通路側連通路74を介して復通路72と圧力室P1とが連通してバイパス経路BPが開通する。

概要

背景

従来、車両用空調装置は、搭載されている車両が炎天下に放置されていた等により高温環境下起動した場合、起動直後に温度式膨張弁絞り開度が急激に増加して冷媒流量が過大となり、エバポレータなどでの冷媒通過音が大きくなることがあった。

この冷媒通過音を低減するために、起動直後の短時間だけ、膨張弁からエバポレータに向かう冷媒の一部をバイパスさせて膨張弁の感温部へ導く冷凍サイクル装置が、非特許文献1に開示知られている。非特許文献1の冷凍サイクル装置は、温度式膨張弁の感温部を速やかに冷やすことで早い段階で膨張弁のスーパーヒートコントロールを可能にし、それによって冷媒流量を抑制して冷媒通過音を低減する。

概要

膨張弁からエバポレータに向かう冷媒の一部をバイパスさせて膨張弁の感温部へ導くためのバイパス機構を備える冷凍サイクル装置において、バイパス機構の設計を容易にする。バイパス機構6には、圧力室P1、P2を連通させて圧力室P1、P2間の冷媒流通の抵抗となる絞り通路633aが形成され、ピストン63が、圧力室P1と圧力室P2の間で移動可能である。圧力室P1、P2が均圧しているとき、ピストン63が閉鎖位置に位置し、復通路72と圧力室P1とが連通すると共に、往通路71が圧力室P1から隔てられる。圧力室P1の冷媒圧力よりも圧力室P2の冷媒圧力が高いとき、ピストン63が開放位置に位置し、往通路側連通路75を介して往通路71と圧力室P1とが連通すると共に、復通路側連通路74を介して復通路72と圧力室P1とが連通してバイパス経路BPが開通する。

目的

本発明は上記点に鑑み、膨張弁からエバポレータに向かう冷媒の一部をバイパスさせて膨張弁の感温部へ導くためのバイパス機構を備える冷凍サイクル装置において、バイパス機構の設計を容易にすることを目的とする

効果

実績

技術文献被引用数
0件
牽制数
0件

この技術が所属する分野

(分野番号表示ON)※整理標準化データをもとに当社作成

ライセンス契約や譲渡などの可能性がある特許掲載中! 開放特許随時追加・更新中 詳しくはこちら

請求項1

冷媒吸入および圧縮して吐出するコンプレッサ(2)と、前記コンプレッサから吐出された冷媒を凝縮させるコンデンサ(3)と、前記コンデンサから流出した冷媒が通る減圧流路(411)の絞り開度を調節する膨張弁(4)と、前記膨張弁から流出した冷媒を蒸発させるエバポレータ(5)と、前記エバポレータをバイパスして冷媒を流すバイパス機構(6)と、を備え、前記膨張弁は、前記エバポレータの冷媒流れ下流側かつ前記コンプレッサの冷媒流れ上流側の温度検知流路(412)における冷媒の温度に応じて温度が変化する感温部(43、44)と、前記感温部の温度に応じて移動する弁体(42)と、を備え、前記弁体は、前記感温部の温度が高いほど前記絞り開度が大きくなるよう移動すると共に、前記弁体の冷媒流れ下流側かつ前記コンプレッサの冷媒流れ上流側における冷媒の圧力が低いほど前記絞り開度が大きくなるよう前記弁体を移動させ、前記バイパス機構は、第1圧力室(P1)と第2圧力室(P2)との間で前記第1圧力室(P1)の圧力と前記第2圧力室(P2)の圧力を受けて移動可能なピストン(63)と、前記ピストンを前記第2圧力室の側に付勢する付勢部材(62)と、前記第1圧力室と前記第2圧力室とを連通させると共に前記第1圧力室と前記第2圧力室との間の冷媒の流通抵抗となる絞り部(66)と、を有し、前記第1圧力室の冷媒圧力と前記第2圧力室の冷媒圧力が均圧しているときに前記ピストンが閉鎖位置に位置し、前記ピストンが前記閉鎖位置に位置している場合、前記復通路と前記第1圧力室とが連通すると共に、前記ピストンによって前記往通路が前記第1圧力室から隔てられ、前記第1圧力室の冷媒圧力よりも前記第2圧力室の冷媒圧力が高いときに前記ピストンが開放位置に位置し、前記ピストンが前記開放位置に位置する場合、前記往通路と前記第1圧力室とが連通すると共に前記復通路と前記第1圧力室とが連通することで、前記往通路から前記エバポレータをバイパスして前記第1圧力室を通って前記復通路に流れるバイパス経路(BP)が開通することを特徴とする冷凍サイクル装置

請求項2

前記往通路は前記膨張弁の冷媒流れ下流側かつ前記エバポレータの冷媒流れ上流側にあることを特徴とする請求項1に記載の冷凍サイクル装置。

請求項3

前記絞り部は、前記ピストンに固定されることを特徴とする請求項1または2に記載の冷凍サイクル装置。

請求項4

前記往通路側連通路と前記復通路側連通路とは、前記ピストンの移動方向にずれていることを特徴とする請求項1ないし3のいずれか1つに記載の冷凍サイクル装置。

技術分野

0001

本発明は、冷凍サイクル装置に関するものである。

背景技術

0002

従来、車両用空調装置は、搭載されている車両が炎天下に放置されていた等により高温環境下起動した場合、起動直後に温度式膨張弁絞り開度が急激に増加して冷媒流量が過大となり、エバポレータなどでの冷媒通過音が大きくなることがあった。

0003

この冷媒通過音を低減するために、起動直後の短時間だけ、膨張弁からエバポレータに向かう冷媒の一部をバイパスさせて膨張弁の感温部へ導く冷凍サイクル装置が、非特許文献1に開示知られている。非特許文献1の冷凍サイクル装置は、温度式膨張弁の感温部を速やかに冷やすことで早い段階で膨張弁のスーパーヒートコントロールを可能にし、それによって冷媒流量を抑制して冷媒通過音を低減する。

先行技術

0004

発明推進協会公開技報公技番号2014−503284号

発明が解決しようとする課題

0005

しかし、非特許文献1の冷凍サイクル装置は、バイパス経路開閉する弁体を駆動するために形状記憶合金バネを用いているので、その形状記憶合金のバネの設計が容易でなかった。

0006

本発明は上記点に鑑み、膨張弁からエバポレータに向かう冷媒の一部をバイパスさせて膨張弁の感温部へ導くためのバイパス機構を備える冷凍サイクル装置において、バイパス機構の設計を容易にすることを目的とする。

課題を解決するための手段

0007

上記目的を達成するための請求項1に記載の発明は、
冷媒を吸入および圧縮して吐出するコンプレッサ(2)と、
前記コンプレッサから吐出された冷媒を凝縮させるコンデンサ(3)と、
前記コンデンサから流出した冷媒が通る減圧流路(411)の絞り開度を調節する膨張弁(4)と、
前記膨張弁から流出した冷媒を蒸発させるエバポレータ(5)と、
前記エバポレータをバイパスして冷媒を流すバイパス機構(6)と、を備え、
前記膨張弁は、前記エバポレータの冷媒流れ下流側かつ前記コンプレッサの冷媒流れ上流側の温度検知流路(412)における冷媒の温度に応じて温度が変化する感温部(43、44)と、前記感温部の温度に応じて移動する弁体(42)と、を備え、
前記弁体は、前記感温部の温度が高いほど前記絞り開度が大きくなるよう移動すると共に、前記弁体の冷媒流れ下流側かつ前記コンプレッサの冷媒流れ上流側における冷媒の圧力が低いほど前記絞り開度が大きくなるよう前記弁体を移動させ、
前記バイパス機構は、第1圧力室(P1)と第2圧力室(P2)との間で前記第1圧力室(P1)の圧力と前記第2圧力室(P2)の圧力を受けて移動可能なピストン(63)と、前記ピストンを前記第2圧力室の側に付勢する付勢部材(62)と、前記第1圧力室と前記第2圧力室とを連通させると共に前記第1圧力室と前記第2圧力室との間の冷媒の流通抵抗となる絞り部(66)と、を有し、
前記第1圧力室の冷媒圧力と前記第2圧力室の冷媒圧力が均圧しているときに前記ピストンが閉鎖位置に位置し、
前記ピストンが前記閉鎖位置に位置している場合、前記復通路と前記第1圧力室とが連通すると共に、前記ピストンによって前記往通路が前記第1圧力室から隔てられ、
前記第1圧力室の冷媒圧力よりも前記第2圧力室の冷媒圧力が高いときに前記ピストンが開放位置に位置し、
前記ピストンが前記開放位置に位置する場合、前記往通路と前記第1圧力室とが連通すると共に前記復通路と前記第1圧力室とが連通することで、前記往通路から前記エバポレータをバイパスして前記第1圧力室を通って前記復通路に流れるバイパス経路(BP)が開通することを特徴とする冷凍サイクル装置である。

0008

このような冷凍サイクルが、高温環境下で、かつ、ピストンが閉鎖位置にあるときに、起動されたとする。すると、コンプレッサが冷媒を吸入し始める。これにより、弁体の冷媒流れ下流側かつコンプレッサの冷媒流れ上流側における冷媒の圧力が急激に低下する。しかし、高温環境下なので、感温部の温度はすぐには低下しない。したがって、弁体が移動して膨張弁の絞り開度が急激に増大する。

0009

すると、流量が多い冷媒が膨張弁の冷媒流れ下流に流れる。このように、冷凍サイクル装置の起動直後に膨張弁が増大し、エバポレータを過大な量の冷媒が通過することにより、エバポレータまたはその前後の配管で冷媒通過音の音量が増大する。

0010

また、エバポレータの冷媒流れ下流側の冷媒圧力が低下するのと同時に、復通路と連通している第1圧力室でも冷媒圧力が低下し始める。しかし、第1圧力室と第2圧力室との間には絞り部が存在するので、第2圧力室の冷媒圧力の低下は第1圧力室の冷媒圧力の低下に遅れる。つまり、第2圧力室の冷媒圧力が第1圧力室の冷媒圧力よりも高くなる。

0011

そのため、ピストンの位置が開放位置に移動させられる。ピストンが開放位置に至ると、第1圧力室と往通路とが連通する。これにより、バイパス経路が開通する。すると、往通路を流れる冷媒の一部が、バイパス経路を通る。

0012

なお、往通路からエバポレータを通って復通路に至る冷媒は、エバポレータの温度が十分低下するまでの間、エバポレータから熱を受け取る。したがってその間、往通路からバイパス経路を通って復通路に至る冷媒の温度は、往通路からエバポレータを通って復通路に至る冷媒の温度よりも低い。そして、バイパス経路から温度検知流路を流れる比較的低温の冷媒により、感温部の温度が低下し始める。

0013

したがって、冷媒がエバポレータを流れた後に温度検知流路に流入する場合に比べ、冷凍サイクル装置が起動してからより早期に、感温部の温度が下がる。感温部の温度が低下することに伴い、膨張弁の絞り開度が小さくなる。これにより、エバポレータを流れる冷媒流量も早期に低下する。このように、冷凍サイクル装置が起動してからより早期に、膨張弁の絞り開度が低下することで、冷媒通過音の増加が抑えられる。

0014

その後、絞り通路を通じて繋がっている第1圧力室と第2圧力室の冷媒圧力が徐々に均圧に向かう。その結果、第1圧力室と第2圧力室との圧力差由来する力に比べ、付勢部材の付勢力の方が、徐々に優勢になっていき、ピストンが開放位置から閉鎖位置に向けて徐々に移動する。そして、ピストンの位置が閉鎖位置に到達することにより、バイパス経路が閉じられる。

0015

このように、絞り部が設けられることで、冷凍サイクル装置の起動時の所定期間において第1圧力室と第2圧力室の間に圧力差が生じる。このような構成では、絞り部の開度を調整することで、上記所定期間の長さを容易に調整できる。したがって、バイパス機構の設計を容易にすることができる。

0016

なお、上記および特許請求の範囲における括弧内の符号は、特許請求の範囲に記載された用語と後述の実施形態に記載される当該用語を例示する具体物等との対応関係を示すものである。

図面の簡単な説明

0017

冷凍サイクル装置の構成を示すブロック図である。
バイパス機構のピストンが閉鎖位置にあるときの断面模式図である。
バイパス機構のピストンが閉鎖位置にあるときの断面模式図である。
冷凍サイクル装置が高温環境下で起動したときの各種量の変化を示すグラフである。

実施例

0018

以下、本発明の一実施形態について説明する。図1に示すように、実施形態の冷凍サイクル装置1は、コンプレッサ2、コンデンサ3、温度式膨張弁4、エバポレータ5、およびバイパス機構6を含む。なお、コンデンサと温度式膨張弁4との間にレシーバ(図示せず)が配されることがある。

0019

コンプレッサ2は、冷媒流れ上流側から気相冷媒を吸入および圧縮して冷媒流れ下流側に吐出する。以下では、冷媒流れ上流側を単に上流側と言い、冷媒流れ下流側を単に下流側と言う。

0020

コンデンサ3は、コンプレッサ2から吐出された気相冷媒と外部の流体(例えば空気)とを熱交換させることで気相冷媒から熱を奪い気相冷媒を凝縮させる。

0021

温度式膨張弁4は、コンデンサ3の下流側かつエバポレータ5の上流側に配置されて絞り開度が可変な外部均圧型の膨張弁である。温度式膨張弁4は、冷凍サイクル装置1の定常運転時に、コンデンサ3の冷媒流れ下流側かつエバポレータ5の冷媒流れ上流側の冷媒流路の一部を狭める絞り部である。温度式膨張弁4のこの作用により、コンデンサ3の下流側かつエバポレータ5の上流側において、温度式膨張弁4の上流側よりも下流側の方が冷媒圧力が低くなる。つまり、温度式膨張弁4は、コンデンサ3から流出した冷媒を減圧膨張させる。温度式膨張弁4は、本体部41、弁体42、ダイヤフラム作動部43、感温棒44、作動棒45、ばね46を有する。

0022

本体部41は、冷媒が通る減圧流路411および温度検知流路412を形成する部材であり、弁座413を有する。減圧流路411は、コンデンサ3から流出して冷媒流路7を通った冷媒を、冷媒流路15に導く。冷媒流路15は、上流側端部で減圧流路411に接続すると共に下流側端部でバイパス機構6に接続する。温度検知流路412は、バイパス機構6から流出して冷媒流路16を通った冷媒を、冷媒流路8に導く。冷媒流路8は、上流側端部で温度検知流路412に接続すると共に下流側端部でコンプレッサ2に接続する。弁座413は、減圧流路411に面すると共に弁体42に対向する内壁である。

0023

弁体42は、減圧流路411内に配置され、減圧流路411を開閉する、移動可能な部材である。この弁体42は、弁座413との相対距離に応じて減圧流路411の絞り開度を調節する。絞り開度は、減圧流路411のうち弁体42と弁座413の間の流路断面積最小値である。

0024

この絞り開度が小さいほど、減圧流路411の流路断面積の最小値が小さくなり、減圧流路411を通過する冷媒流れが強く絞られる。この絞り開度が小さいほど、減圧流路411の上流側の圧力から下流側の冷媒の圧力を減算した値(すなわち、圧力差)が高くなる。

0025

ダイヤフラム作動部43は、本体部41の上端部にネジ止め等によって固定されている。ダイヤフラム作動部43は、ケーシング431とダイヤフラム432を有する。ケーシング431はダイヤフラム作動部43の外殻であり、本体部41の上端部に固定される。

0026

ダイヤフラム432は、可撓性を有する膜状の部材であり、例えば薄金属板である。ダイヤフラム432は、ケーシング431によって囲まれる内部空間に配置される。ダイヤフラム432の外縁の全周が、ケーシング431のうち上記内部空間に面する内壁に密着固定される。ダイヤフラム432とケーシング431の内壁の上部によって囲まれるダイヤフラム室433には、作動ガス封入される。

0027

ダイヤフラム432とケーシング431の内壁の下部によって囲まれる空間は、温度検知流路412の一部であり、冷媒が流れる。したがって、ダイヤフラム432は、温度検知流路412とダイヤフラム室433を隔絶する仕切り部材である。

0028

ダイヤフラム室433内の作動ガスとダイヤフラム432との間では温度差が生じれば直ちに熱が伝達されるようになっている。そして、ダイヤフラム432はダイヤフラム室433内の作動ガスの圧力変化に応じて変位する。例えば、作動ガスの温度が上昇すれば、作動ガスがダイヤフラム室433を膨張させると共にダイヤフラム432を下方(すなわちダイヤフラム432から弁体42への方向)へ変位させるように作用する。

0029

感温棒44は、例えば熱伝導率が高いアルミニウム製であり、円筒形状を成す感温筒となっている。感温棒44は、感温棒44の軸方向が温度検知流路412における冷媒流れ方向に交差するように、温度検知流路412に配置されている。すなわち、感温棒44は、温度検知流路412の一部を上下方向に横切るように配置されている。そして、感温棒44の上端はダイヤフラム432に当接している。このような配置により、感温棒44は、温度検知流路412内の冷媒とダイヤフラム432との間の熱移動を媒介する。

0030

作動棒45は、弁体42を作動させる部材である。作動棒45は、上下方向において感温棒44に対し直列に且つ感温棒44の下側に配置されている。作動棒45は、上端において感温棒44の下端に当接しており、感温棒44を介してダイヤフラム432に連結されている。また、弁体42は、作動棒45と一体的に上下方向に変位するように作動棒45の下端へ連結されている。従って、作動棒45は、ダイヤフラム室433が縮小する側(すなわち上側)へダイヤフラム432が変位するほど、温度式膨張弁4の絞り開度を小さくする側へ弁体42を作動させる。

0031

ばね46は、弁体42が弁座413に近付く方向(すなわち絞り開度が低減する方向)に弁体42を付勢する弾性部材である。

0032

このように、上記の弁体42、ダイヤフラム作動部43、感温棒44、作動棒45およびばね46は全体として、温度式膨張弁4の絞り開度を調節する。これらにより、温度検知流路412内の冷媒の温度変化機械的動作によって温度式膨張弁4の絞り開度の変化を引き起こす。

0033

具体的には、温度検知流路412内の冷媒の加熱度が増大すると、温度検知流路412を通る冷媒の圧力はほぼ一定のまま温度が上昇する。そして、ダイヤフラム室433の作動ガスの温度は当該冷媒の温度と同等の温度にまで上昇すると共に、ダイヤフラム室433内の飽和圧力も上昇する。したがって、温度検知流路412内の冷媒の加熱度が増大すると、ダイヤフラム室433内の圧力から温度検知流路412内の圧力を差し引いた圧力差が、増大する。その結果、温度式膨張弁4の絞り開度が大きくなってエバポレータ5に流入する冷媒の流量が増大する。

0034

また、温度検知流路412内の冷媒の加熱度が減少すると、温度検知流路412を通る冷媒の圧力はほぼ一定のまま温度が減少する。そして、ダイヤフラム室433の作動ガスの温度は当該冷媒の温度と同等の温度にまで減少すると共に、ダイヤフラム室433内の飽和圧力も減少する。したがって、温度検知流路412内の冷媒の加熱度が減少すると、ダイヤフラム室433内の圧力から温度検知流路412内の圧力を差し引いた圧力差が、減少する。その結果、温度式膨張弁4の絞り開度が小さくなってエバポレータ5に流入する冷媒の流量が減少する。

0035

このように、温度式膨張弁4の絞り開度は、ダイヤフラム室433内の圧力から温度検知流路412内の圧力を差し引いた圧力差によって決まる。そして、ダイヤフラム室433内の圧力は、温度検知流路412を流れる冷媒の温度に応じて決まる。なお、温度検知流路412を流れる冷媒の温度および圧力は、エバポレータ5の出口における冷媒の温度および圧力と同じである。

0036

エバポレータ5は、冷媒と空調風とを熱交換させることで、空調風を冷却すると共に冷媒を蒸発させる熱交換器である。このエバポレータ5には、温度式膨張弁4を流出して冷媒流路15およびバイパス機構6を通った冷媒が流入する。そして、エバポレータ5を通った冷媒は、バイパス機構6および冷媒流路16を通って温度式膨張弁4の温度検知流路412に流入する。エバポレータ5で冷やされた空調風は、車室内等の車両の空調対象空間に吹き出されることで、空調対象空間を冷却する。

0037

なお、ダイヤフラム作動部43、および感温棒44が、温度式膨張弁4の感温部に相当する。

0038

バイパス機構6は、冷凍サイクル装置1の定常運転時は、温度式膨張弁4から流出して冷媒流路15を通った冷媒を、冷媒流路17を介してエバポレータ5に流すと共に、エバポレータ5から流出して冷媒流路18を通った冷媒を、冷媒流路16を介して温度式膨張弁4の温度検知流路412に流す。

0039

バイパス機構6の具体的な構成は図2図3に示す通りである。バイパス機構6は、ボディ61、圧縮コイルバネ62、ピストン63、Oリング64a、64b、64c、凹プラグ65、および絞り部66を有している。

0040

ボディ61は、内部に往通路71、復通路72、1つの有底穴73、往通路側連通路74、復通路側連通路75が形成された一体の部材である。往通路71は、上流側の端部が冷媒流路15に連通し、下流側の端部が冷媒流路17に連通する。復通路72は、上流側の端部が冷媒流路18に連通し、下流側の端部が冷媒流路16に連通する。有底穴73は、往通路71と復通路72の間に配置され、ピストン63の移動方向の一端側端図2図3中右側端)が閉塞され、ピストン63の移動方向の他端側がボディ61の外部に開いている。有底穴73内には、圧縮コイルバネ62、ピストン63、ピストン63、Oリング64a、64b、64c、および凹プラグ65が収容される。

0041

ボディ61は、往通路側外殻部611、復通路側外殻部612、往通路側隔壁部613、復通路側隔壁部614、底部615等を有している。往通路側外殻部611は、往通路71とバイパス機構6の外部とを隔てる壁である。復通路側外殻部612は、復通路72とバイパス機構6の外部とを隔てる壁である。往通路側隔壁部613は、往通路71と有底穴73とを隔てる壁である。復通路側隔壁部614は、復通路72と有底穴73とを隔てる壁である。底部615は、有底穴73の底を塞ぐ壁である。

0042

往通路側連通路74は、往通路側隔壁部613に空けられた連通路であり、一方側の端部で往通路71に連通し、他方側の端部で有底穴73に連通する。復通路側連通路75は、復通路側隔壁部614に空けられた連通路であり、一方側の端部で復通路72に連通し、他方側の端部で有底穴73に連通する。このように、往通路71と有底穴73は往通路側連通路74を介して連通し、復通路72と有底穴73は復通路側連通路75を介して連通する。

0043

往通路側連通路74と復通路側連通路75は、ピストン63の移動方向における位置が、ずれている。具体的には、往通路側連通路74のピストン63の移動方向における位置は、復通路側連通路75のピストン63の移動方向における位置よりも、凹プラグ65側にずれている。

0044

圧縮コイルバネ62は、有底穴73に収容され、一端が底部615に接触し、他端がピストン63の圧縮コイルバネ62側端に固定される。圧縮コイルバネ62は形状記憶合金から成るのではないので、圧縮コイルバネ62のバネ定数は、圧縮コイルバネ62の温度に殆ど依存しない。実際、−50℃から150℃までの範囲で、圧縮コイルバネ62のバネ定数の最小値は最大値の90%以上である。圧縮コイルバネ62は、ピストン63の位置によらず、常にピストン63と底部615によって自然長よりも圧縮された状態にある。

0045

ピストン63は、有底穴73内に収容され、圧縮コイルバネ62と凹プラグ65の間に配置される。ピストン63は、有底穴73内を図2図3中左右方向に移動可能である。ピストン63は、概ね無底筒形状の部材であり、外周側はボディ61のうち有底穴73を囲む内壁(すなわち、往通路側隔壁部613、復通路側隔壁部614等)に近接して対向し、内部側に連通孔633を形成している。この連通孔633は、有底穴73の一部であり、一端が有底穴73のうち圧縮コイルバネ62が配置された側に連通し、他端が有底穴73のうち凹プラグ65が配置された側に連通する。したがって、有底穴73のうち圧縮コイルバネ62が配置された側と凹プラグ65が配置された側は、連通孔633を介して連通する。

0046

また、ピストン63のうち圧縮コイルバネ62側の端部は、連通孔633を拡径するために段差形状となっている。この段差形状の部分が、圧縮コイルバネ62が固定されるばね座となっている。

0047

また、ピストン63のうち、連通孔633と往通路側隔壁部613の間に介在する側壁63yには、ピストン63の外周空間と連通孔633とを連通させる往通路側接続孔63aが形成されている。また、ピストン63のうち、連通孔633と復通路側隔壁部614の間に介在する側壁63zには、ピストン63の外周空間と連通孔633とを連通させる復通路側スリット63bが形成されている。復通路側スリット63bは、側壁63zのうち圧縮コイルバネ62側の端部に形成されている。

0048

往通路側接続孔63aと復通路側スリット63bは、ピストン63の移動方向における位置が、ずれている。具体的には、往通路側接続孔63aのピストン63の移動方向における位置は、復通路側スリット63bのピストン63の移動方向における位置よりも、凹プラグ65側にずれている。ピストン63の移動方向における往通路側接続孔63aと復通路側スリット63bの位置ずれ量は、ピストン63の移動方向における往通路側連通路74と復通路側連通路75の位置ずれ量とほぼ同じである。

0049

絞り部66は、ピストン63の連通孔633側の壁面から突出する部材である。ピストン63と絞り部66は一体に形成される。したがって、ピストン63は絞り部66に固定されている。ピストン63の移動方向における絞り部66の位置は、ピストン63の移動方向における往通路側接続孔63a、復通路側スリット63bの位置よりも、凹プラグ65側にずれている。この絞り部66によって囲まれた絞り通路633aにおいて、連通孔633の流路断面積が最小となる。したがって、絞り通路633aは、第1圧力室P1と第2圧力室P2とを連通させると共に第1圧力室P1と第2圧力室P2との間の冷媒の流通の抵抗となる。

0050

なお、絞り部66の開口面積(すなわち絞り通路633aの流路断面積)は、往通路側連通路74の最小流路断面積よりも十分小さく、復通路側連通路75の最小流路断面積よりも十分小さく、往通路側接続孔63aの最小流路断面積よりも十分小さい。

0051

なお、ピストン63は、ボディ61に対して周方向への回転が禁止されるように形成されている。例えば、ピストン63の外周およびボディ61の内周非円筒形状(例えば楕円筒形状)になっていれば、そのような構成が実現される。

0052

このように、有底穴73の内部において絞り部66を基準として凹プラグ65の反対側にある空隙が、第1圧力室P1となる。第1圧力室P1は、連通孔633のうち絞り部66よりも圧縮コイルバネ62側、往通路側接続孔63a、復通路側スリット63b、および、有底穴73のうち絞り部66よりも圧縮コイルバネ62側にある空隙によって、形成される。

0053

Oリング64a、64b、64cは、ピストン63の外周に固定されたシール部材である。Oリング64a、64b、64cは、ボディ61のうち有底穴73を囲む内壁とピストン63の外周の間に介在することで、ボディ61のうち有底穴73を囲む内壁とピストン63の外周の間を液密シールする。したがって、ピストン63が有底穴73内を図2図3中左右方向に移動すると、Oリング64a、64b、64cは、ボディ61のうち有底穴73を囲む内壁に対して摺動しながら、ピストン63と共にピストン63と一体的に移動する。

0054

凹プラグ65は、有底穴73内に収容され、ピストン63を基準として圧縮コイルバネ62の反対側に固定されている。凹プラグ65は、有底穴73の開放側の端部を閉塞すると共に、有底穴73内においてピストン63側に開いた窪み形状を有している。

0055

ボディ61と凹プラグ65は、1つの枠体を構成し、この枠体がバイパス機構6の内部空間を囲む。この内部空間は、有底穴73のうち凹プラグ65が配置された部分以外の部分である。有底穴73内において、ボディ61の内壁と、凹プラグ65の窪み面651と、ピストン63の凹プラグ65側面と、絞り部66の凹プラグ65側面とが、第2圧力室P2を囲む。

0056

上記内部空間が、ピストン63によって第1圧力室P1と第2圧力室P2に仕切られる。そして、ピストン63は、第1圧力室P1内の圧力を受けて第2圧力室P2側に付勢され、第2圧力室P2内の圧力を受けて第1圧力室P1側に付勢される。そして、ピストン63は、圧縮コイルバネ62によって常に第2圧力室P2の側に付勢される。圧縮コイルバネ62は、付勢部材に対応する。

0057

第1圧力室P1と第2圧力室P2は、絞り部66によって形成された開口を通じて連通する。ピストン63が往復移動可能であるため、第1圧力室P1と第2圧力室P2の容積はピストン63の位置に応じて変化する。

0058

図3に示すように、ピストン63の右方向への移動は、ピストン63の端部が底部615に当接するまで可能である。この図3の状態では、第1圧力室P1の容積は最小となる。

0059

このとき、復通路側スリット63bと復通路側連通路75のピストン63移動方向の位置が重複するので、第1圧力室P1は復通路側連通路75を介して復通路72と連通する。またこのとき、往通路側接続孔63aと往通路側連通路74のピストン63移動方向の位置が重複するので、第1圧力室P1は往通路側連通路74を介して往通路71と連通する。

0060

このように復通路側スリット63bと復通路側連通路75とが連通し、かつ往通路側接続孔63aと往通路側連通路74とが連通する位置が、ピストン63の開放位置である。そして、ピストン63が開放位置になれば、往通路71、往通路側接続孔63a、連通孔633、復通路側スリット63b、復通路側連通路75、復通路72がこの順に連通し、往通路71からエバポレータ5をバイパスして復通路72に至るバイパス経路BPが形成される。

0061

一方、凹プラグ65の窪み面651の径はピストン63の外径よりも小さい。このためピストン63は図2図3における左方向への移動を凹プラグ65との当接にて制限される。ピストン63と凹プラグ65とが当接したときのピストン63の位置が、閉鎖位置に該当する。閉鎖位置において、ピストン63の側壁63yは、往通路71と往通路側連通路74を第1圧力室P1から隔てる。これにより、往通路側連通路74と第1圧力室P1とが連通しなくなり、バイパス経路BPが閉塞される。ピストン63がこの閉鎖位置になったときに第2圧力室P2の容積は凹プラグ65のくぼみ分となる。

0062

また、ピストン63が開放位置から閉鎖位置までの間のいずれの位置にあっても復通路72と第1圧力室P1とが連通する。従って、復通路72から第2圧力室P2までが常時連通することになる。

0063

また、図2に示すように、ピストン63が閉鎖位置にある場合、往通路側接続孔63aと往通路側連通路74とがピストン63の移動方向に互いに離れて配置される。またこの場合、ピストン63の移動方向において、Oリング64bが往通路側連通路74よりも凹プラグ65側にあり、かつ、Oリング64cが往通路側連通路74よりも圧縮コイルバネ62側にある。したがって、バイパス経路BPの閉塞がより確実になる。

0064

また、図3に示すようにピストン63が開放位置にあってバイパス経路BPが形成された際には、ピストン63の移動方向において、Oリング64aが往通路側連通路74よりも凹プラグ65側にある。したがって、往通路側連通路74と往通路側接続孔63aの境目から第2圧力室P2への冷媒漏れが抑制される。

0065

このように、バイパス機構6におけるピストン63の位置は、圧縮コイルバネ62がピストン63に及ぼす力、および、第1圧力室P1と第2圧力室P2の圧力差による力のバランスによって決まる。

0066

ここで、バイパス機構6の製造方法について説明する。まず、第1工程において、ボディ61、圧縮コイルバネ62、ピストン63、Oリング64a、64b、64c、および凹プラグ65を製造して用意する。続いて、第2工程において、ピストン63の外周にOリング64a、64b、64cを固定する。続いて、第3工程において、圧縮コイルバネ62をピストン63のばね座に固定する。続いて、第4工程において、圧縮コイルバネ62、ピストン63、Oリング64a、64b、64cを、有底穴73の開口部から有底穴73内に挿入する。これにより、圧縮コイルバネ62が底部615に接触する。続いて、第5工程において、凹プラグ65を、有底穴73の開口部から有底穴73内に挿入し、凹プラグ65をボディ61に固定する。これにより、バイパス機構6が完成する。凹プラグ65がボディ61と別部材となっているので、上記のように、圧縮コイルバネ62、ピストン63、Oリング64a、64b、64cを有底穴73内に配置する作業が容易になる。

0067

次に、冷凍サイクル装置1の作動について説明する。冷凍サイクル装置1の定常運転時には、コンプレッサ2が作動して冷媒流路8から冷媒を吸入し、吸入した冷媒を圧縮して吐出する。吐出された高温の冷媒は、コンデンサ3で外気と熱交換されることで熱が奪われ、凝縮する。凝縮された冷媒は、コンデンサ3から流出して冷媒流路7を通って温度式膨張弁4の減圧流路411に流入する。冷媒は減圧流路411において温度式膨張弁4の絞り開度に応じて減圧膨張して冷媒流路15に流出する。温度式膨張弁4の絞り開度は、既に説明した通り、温度検知流路412を通る冷媒の加熱度が高いほど大きく、温度検知流路412を通る冷媒の加熱度が低いほど小さくなる。このようなフィードバック制御(より具体的にはスーパーヒートコントロール)により、エバポレータ5を通過した冷媒の加熱度が概ね一定に保たれる。

0068

冷媒は、冷媒流路15からバイパス機構6の往通路71に流入する。冷凍サイクル装置1の定常運転時は、ピストン63が閉鎖位置にあるので、バイパス経路BPが閉鎖されている。したがって、往通路71に流入した流体は、すべて冷媒流路17に流入する。冷媒は冷媒流路17からエバポレータ5に流入し、空調風と熱交換して空調風を冷却することで、蒸発する。冷却された空調風は車室内等の車両の空調対象空間に吹き出されることで、空調対象空間を冷却する。蒸発した冷媒はエバポレータ5から冷媒流路18に流入し、冷媒流路18からバイパス機構6の復通路72に流入する。冷凍サイクル装置1の定常運転時は、バイパス経路BPが閉鎖されているので、復通路72に流入した流体は、すべて冷媒流路16に流入する。冷媒流路16を通った冷媒は温度式膨張弁4の温度検知流路412を通過して冷媒流路8に流入し、更にコンプレッサ2に吸入される。このように冷媒が循環することで、車両の空調対象空間が冷却され続ける。

0069

ここで、冷凍サイクル装置1の定常運転時においてバイパス経路BPが閉鎖されている理由について説明する。冷凍サイクル装置1の定常運転時においてピストン63が閉鎖位置にあっても、復通路72が第1圧力室P1を介して第2圧力室P2に連通する。

0070

このため、冷凍サイクル装置1の定常運転時には、第1圧力室P1の圧力と第2圧力室P2の圧力が等しくなる。すなわち、第1圧力室P1と第2圧力室P2とが均圧する。ピストン63は常に圧縮状態の圧縮コイルバネ62によって凹プラグ65側に付勢されているので、第1圧力室P1と第2圧力室P2とが均圧していると、ピストン63は図2に示すような閉鎖位置に配置される。この状態は冷凍サイクル装置1が定常運転を停止した後も変わらない。

0071

ここで、冷凍サイクル装置1が定常運転を停止した後、図4に示す時点T1まで、車両が炎天下で長時間放置され、時点T1において、冷凍サイクル装置1が起動されたとする。

0072

時点T1の直前においては、図4に示すように、温度式膨張弁4の絞り開度111がゼロとなる。すなわち、温度式膨張弁4が全閉状態となる。これは、高温環境下において、ダイヤフラム室433の冷媒圧力と減圧流路411の冷媒圧力がほぼ等しくなり、かつ、弁体42がばね46によって弁座413の方向に付勢されているからである。また、時点T1の直前において、冷媒流量112はゼロである。

0073

また、時点T1の直前において、上述の通りピストン63の位置113は閉鎖位置にある。したがって、図2に示すように、バイパス経路BPは閉鎖されている。すなわち、往通路71と第1圧力室P1とは往通路側連通路74を介して連通しない。しかし、復通路72と第1圧力室P1とは、復通路側連通路75を介して連通している。

0074

また、時点T1の直前において、冷媒が高温状態なので、エバポレータ5の入口直前の冷媒圧力115および出口直後の冷媒圧力116が非常に高くなっている。また、時点T1の直前において、第1圧力室P1の冷媒圧力117と第2圧力室P2の冷媒圧力118も同じ高い圧力となっている。

0075

なお、図4中の実線111〜119は、本実施形態の冷凍サイクル装置1における各量の経時変化を示す。そして、破線101〜109は、冷凍サイクル装置1からバイパス機構6を除き、更に冷媒流路15、17を互いに直接繋ぎ、更に冷媒流路16、18を互いに直接繋いだ比較例における各量の経時変化を示す。

0076

時点T1において、コンプレッサ2が作動し始めることで冷凍サイクル装置1が稼働を開始する。すると、時点T1において、コンプレッサ2が冷媒を吸入し始める。これにより、エバポレータ5およびその前後の流路15、71、17、18、72、16の冷媒圧力115、116および温度検知流路412の冷媒圧力が急激に低下する。しかし、高温環境下なのでダイヤフラム室433の温度119はすぐには低下しない。したがって、ダイヤフラム室433内の作動ガスの圧力から温度検知流路412の冷媒圧力を差し引いた圧力差が、急激に増大し、その結果、膨張弁の絞り開度111が急激に増大して大きく開いた状態(具体的には全開状態)になる。

0077

すると、コンデンサ3で熱が奪われて温度式膨張弁4の減圧流路411で減圧された低温かつ冷媒流量112が多い気液混合冷媒がエバポレータ5、冷媒流路18、復通路72、冷媒流路16、および温度検知流路412を流れる。なお、温度式膨張弁4の絞り開度が全開であっても、減圧流路411において冷媒は減圧される。

0078

このように、冷凍サイクル装置1の起動直後に膨張弁が全開状態になり、エバポレータ5、冷媒流路16、18を過大な量の冷媒が通過することにより、エバポレータ5および冷媒流路16、18で、冷媒通過音の音量114が増大する。

0079

また、復通路72および温度検知流路412の冷媒圧力が低下するのと同時に、復通路側連通路75を経由して復通路72と連通している第1圧力室P1でも冷媒圧力117が低下し始める。しかし、第1圧力室P1と第2圧力室P2との間には絞り通路633aが存在するので、図4に示すように、第2圧力室P2の冷媒圧力118の低下は第1圧力室P1の冷媒圧力117の低下に遅れる。つまり、第2圧力室P2の冷媒圧力が第1圧力室P1の冷媒圧力よりも高くなる。

0080

そのため、第1圧力室P1と第2圧力室P2との圧力差に由来する力が圧縮コイルバネ62の付勢力に勝り、ピストン63の位置113が開放位置に移動させられる。ピストン63が開放位置に至ると、図3に示すように、往通路側接続孔63aと往通路側連通路74とが連通する。

0081

これにより、往通路71、往通路側接続孔63a、連通孔633、復通路側スリット63b、復通路側連通路75、復通路72がこの順に連通する。これにより、往通路71からエバポレータ5をバイパスして第1圧力室P1を通って復通路72に流れるバイパス経路BPが開通する。

0082

すると、往通路71を流れる低温の冷媒の一部が、バイパス経路BPを通ることで、冷媒流路17、エバポレータ5、冷媒流路18をバイパスして、復通路72、冷媒流路16、温度検知流路412へと流れる。

0083

なお、往通路71からエバポレータ5を通って復通路72に至る冷媒は、エバポレータ5の温度が十分低下するまでエバポレータ5から熱を受け取るので、温度の低下が遅い。それに対し、往通路71からバイパス経路BPを通って復通路72に至る冷媒は、エバポレータ5を通らないが故に早期に温度が低下する。したがってその間、往通路71からバイパス経路BPを通って復通路72に至る冷媒の温度は、往通路71からエバポレータ5を通って復通路72に至る冷媒の温度よりも低い。

0084

そして、ダイヤフラム室433内の作動ガスが、温度検知流路412を流れる低温の冷媒により、感温棒44、ダイヤフラム432を介して冷やされる。すると、ダイヤフラム室433内の作動ガスの温度が低下し始める。

0085

したがって、冷媒が冷媒流路17、エバポレータ5、冷媒流路18を流れた後に温度検知流路412に流入する場合に比べ、冷凍サイクル装置1が起動してからより早期に、ダイヤフラム室433内の作動ガスの温度が下がる。作動ガスの温度が低下することに伴い、作動ガスの圧力が低下し、弁体42が弁座413に近付き、温度式膨張弁4の絞り開度が小さくなる。これにより、エバポレータ5を流れる冷媒流量112も早期に低下する。このように、冷凍サイクル装置1が起動してからより早期に、温度式膨張弁4の絞り開度が低下することで、冷媒通過音の音量114の増加が抑えられる。

0086

バイパス機構6が廃された上記比較例においては、バイパス経路BPが無い分、冷凍サイクル装置1が起動してから低温の冷媒が温度検知流路412に流入するまでの期間が、本実施形態よりも長い。このため、図4に示すように、ダイヤフラム室433の作動ガスの温度109の低下、膨張弁の絞り開度101の低下、本実施形態よりも遅れる。その結果、比較例においては、エバポレータ5を通過する冷媒流量102が過大な時間が本実施形態よりも長いため、冷媒通過音の音量104が本実施形態よりも大きくなってしまう。

0087

また、時点T1の後、絞り通路633aを通じて繋がっている第1圧力室P1と第2圧力室P2の冷媒圧力117、118が徐々に均圧に向かう。その結果、第1圧力室P1と第2圧力室P2との圧力差に由来する力に比べ、圧縮コイルバネ62の付勢力の方が、徐々に優勢になっていき、ピストン63が開放位置から閉鎖位置に向けて徐々に移動する。そして、時点T1から所定期間後の時点T2において、ピストン63の位置113が閉鎖位置に到達する。これにより、バイパス経路BPが閉じられ、そこを通っていた冷媒の流れも断たれる。本実施形態では、時点T2よりも前の時点T3において作動ガスの温度119も温度式膨張弁4の絞り開度111も十分低下しているので、比較例と比べてより早期にスーパーヒートコントロールが可能になる。

0088

なお、時点T1から時点T2までの期間の長さは、時点T1における冷媒の温度、絞り部66の開口面積、ピストン63が閉鎖位置にある場合の第2圧力室P2の容積等、種々の条件によって変化する。例えば、時点T1から時点T2までの期間の長さは、10秒程度である。

0089

このように、本実施形態の冷凍サイクル装置1によれば、起動直後にはバイパス経路BPが開通して、これが閉じられるまでの時間は、温度式膨張弁4で減圧された冷媒の一部が、バイパス経路BPを通って冷媒流路16へと流れ、温度式膨張弁4の感温部に流れこんで冷却する。そして感温部(具体的にはダイヤフラム室433の作動ガス)が速やかに冷やされるので、起動後の早い段階で温度式膨張弁4のスーパーヒートコントロール可能にし、それによって冷媒流量を抑制して冷媒通過音を低減することができる。

0090

この作用効果を得るためのバイパス機構6は、ボディ61、圧縮コイルバネ62、ピストン63、Oリング64a、64b、64c、および凹プラグ65という比較的単純な構成である。設計上で考慮が必要なのは、第1圧力室P1と第2圧力室P2との圧力差に由来する力と圧縮コイルバネ62の付勢力とのバランスである。圧縮コイルバネ62の付勢力は第1圧力室P1の冷媒圧力と第2圧力室P2の冷媒圧力が同じ状態でピストン63が閉鎖位置にあればよいので、圧縮コイルバネ62の選定も容易である。よって、バイパス機構6の設計が容易な冷凍サイクル装置1が実現できる。

0091

なお、本実施形態では、絞り通路633aは、ピストン63に形成される。このようになっていることで、ピストン63が移動すると共に絞り通路633aも移動するので、ピストン63の移動によって絞り通路633aが塞がれてしまう可能性が低減される。

0092

また、往通路側連通路74と復通路側連通路75とは、ピストン63の移動方向に互いに対してずれている。このずれは、部分的な重複を許すずれである。このようになっていることで、ピストン63が閉鎖位置に位置しているときに、復通路側連通路75が第1圧力室P1に連通して往通路側連通路74が第1圧力室P1から隔てられるようにすることが容易になる。もし往通路側連通路74と復通路側連通路75とがピストン63の移動方向にずれていなければ、復通路側連通路75と往通路側連通路74のうち一方が第1圧力室P1に連通した場合は必ず他方も第1圧力室P1に連通してしまう可能性が高くなってしまう。

0093

このように、絞り部66が設けられることで、冷凍サイクル装置1の起動時の所定期間において第1圧力室P1と第2圧力室P2の間に圧力差が生じる。このような構成では、絞り部66の開度を調整することで、上記所定期間の長さを容易に調整できる。したがって、バイパス機構6の設計を容易にすることができる。

0094

(他の実施形態)
なお、本発明は上記した実施形態に限定されるものではなく、特許請求の範囲に記載した範囲内において適宜変更が可能である。また、また、上記実施形態において、実施形態を構成する要素は、特に必須であると明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではない。また、上記実施形態において、実施形態の構成要素の個数数値、量、範囲等の数値が言及されている場合、特に必須であると明示した場合および原理的に明らかに特定の数に限定される場合等を除き、その特定の数に限定されるものではない。特に、ある量について複数個の値が例示されている場合、特に別記した場合および原理的に明らかに不可能な場合を除き、それら複数個の値の間の値を採用することも可能である。また、上記実施形態において、構成要素等の形状、位置関係等に言及するときは、特に明示した場合および原理的に特定の形状、位置関係等に限定される場合等を除き、その形状、位置関係等に限定されるものではない。また、本発明は、上記実施形態に対する以下のような変形例も許容される。なお、以下の変形例は、それぞれ独立に、上記実施形態に適用および不適用を選択できる。すなわち、以下の変形例のうち明らかに矛盾する組み合わせを除く任意の組み合わせを、上記実施形態に適用することができる。

0095

(変形例1)
例えば、バイパス機構6の往通路71を、冷媒流路7と減圧流路411の間に介装することもできる。この場合、バイパス経路BPは、エバポレータのみならず減圧流路411もバイパスする流路となる。この場合、冷媒流路7とバイパス機構6との間にオリフィス等の絞り機構が配置され、往通路71へは減圧された冷媒が供給されてもよい。その場合は、バイパス経路BPを通過する冷媒がより低温になる。

0096

(変形例2)
また、上記実施形態では、ピストン63を第2圧力室P2側に付勢する付勢部材として圧縮コイルバネ62を用いている。しかし付勢部材は圧縮コイルバネに限らず、他の形態のバネであってもよいし、バネ以外の弾性体であってもよい。付勢部材としては、ピストン63を第2圧力室P2側に付勢する部材なら、どのようなものでもよい。

0097

(変形例3)
また、上記実施形態では、絞り通路633aは、ピストン63ではなく、ピストン63以外の部分、例えば、ボディ61に形成されていてもよい。

0098

(変形例4)
上記実施形態では、復通路側連通路75と第1圧力室P1はピストン63の開放位置から閉鎖位置までのあらゆる位置で連通している。しかし、必ずしもこのようになっておらずともよい。例えば、復通路側連通路75と第1圧力室P1は、ピストン63が開放位置にある場合と閉鎖位置にある場合にのみ、連通していてもよい。

0099

(変形例5)
上記実施形態では、外部均圧式の温度式膨張弁4が例示されているが、これを内部均圧式の膨張弁に置き換えてもよい。この場合、弁体42の冷媒流れ下流側からエバポレータ5までにおける冷媒の圧力が低いほど絞り開度が大きくなるよう弁体42が変位する。

0100

つまり、本実施形態の温度式膨張弁4は、弁体42の冷媒流れ下流側かつコンプレッサ2の冷媒流れ上流側における冷媒の圧力が低いほど絞り開度が大きくなるよう弁体42を移動させればよい。

0101

(変形例6)
上記実施形態では、冷凍サイクル装置1は車両内の空調対象空間を冷却するために用いられているが、空調対象空間は、車両内の空間に限らず、屋内冷凍庫内等であってもよい。

0102

(変形例7)
上記実施形態では、圧縮コイルバネ62は、ピストン63の第1圧力室P1側に配置されてピストン63を第2圧力室P2側に押圧している。しかし、圧縮コイルバネ62は、ピストン63の第2圧力室P2側に配置されていてもよい。ただしその場合、圧縮コイルバネ62は、第1圧力室P1側に配置されてピストン63を第2圧力室P2側に引っ張るようになっている。

0103

(まとめ)
上記各実施形態の一部または全部で示された第1の観点によれば、バイパス機構には、第1、第2圧力室を連通させて第1、第2圧力室間の冷媒流通の抵抗となる絞り通路が形成され、ピストンが、第1圧力室と第2圧力室の間で移動可能である。第1、第2圧力室が均圧しているとき、ピストンが閉鎖位置に位置し、復通路側連通路を介して復通路と第1圧力室とが連通すると共に、往通路側連通路が第1圧力室から隔てられる。第1圧力室の冷媒圧力よりも第2圧力室の冷媒圧力が高いとき、ピストンが開放位置に位置し、往通路側連通路を介して往通路と第1圧力室とが連通すると共に、復通路側連通路を介して復通路と第1圧力室とが連通してバイパス経路BPが開通する。

0104

また、第2の観点によれば、前記往通路は前記膨張弁の冷媒流れ下流側かつ前記エバポレータの冷媒流れ上流側にある。このようになっていることで、温度式膨張弁で減圧されて更に低温になった冷媒がバイパス経路を通って早期に温度検知流路を流れるので、より迅速に感温部の温度が下がる。

0105

また、第3の観点によれば、前記絞り通路は、前記ピストンに形成されることを特徴とする。このようになっていることで、ピストンが移動すると共に絞り通路も移動するので、ピストンの移動によって絞り通路が塞がれてしまう可能性が低減される。

0106

また、第4の観点によれば、前記往通路側連通路と前記復通路側連通路とは、前記ピストンの移動方向にずれている。このようになっていることで、ピストンが閉鎖位置に位置しているときに、復通路側連通路が第1圧力室に連通して往通路側連通路が第1圧力室から隔てられるようにすることが容易になる。もし往通路側連通路と復通路側連通路とがピストンの移動方向にずれていなければ、復通路側連通路と往通路側連通路のうち一方が第1圧力室に連通した場合は必ず他方も第1圧力室に連通してしまう可能性が高くなってしまう。

0107

4温度式膨張弁
6バイパス機構
411減圧流路
412温度検知流路
43ダイヤフラム作動部(感温部)
44感温棒(感温部)
63ピストン
66絞り部
P1 第1圧力室
P2 第2圧力室

ページトップへ

この技術を出願した法人

この技術を発明した人物

ページトップへ

関連する挑戦したい社会課題

関連する公募課題

該当するデータがありません

ページトップへ

技術視点だけで見ていませんか?

この技術の活用可能性がある分野

分野別動向を把握したい方- 事業化視点で見る -

(分野番号表示ON)※整理標準化データをもとに当社作成

ページトップへ

おススメ サービス

おススメ astavisionコンテンツ

新着 最近 公開された関連が強い技術

  • 株式会社ヤマトの「 冷却システム」が 公開されました。( 2020/02/13)

    【課題】CO2冷媒を用いブラインを冷却する蓄熱装置及び、この蓄熱装置を用いた冷却システムを提供する。【解決手段】この蓄熱装置80、冷却システム100は温暖化係数の小さいCO2冷媒を用いてブラインの冷却... 詳細

  • 株式会社創設の「 圧力検知形逆止弁」が 公開されました。( 2020/02/13)

    【課題】圧力検知機能、流路の遮断/開放機能、逆止弁の機能等を備えた高機能の弁を提供する。【解決手段】入口3と、出口4と、入口側流路5と、入口側流路5と連通するとともに出口4につながる流路空間室6と、第... 詳細

  • 富士電機株式会社の「 ヒートポンプ装置」が 公開されました。( 2020/02/13)

    【課題】排温水の温度が一定でない場合にも、高段圧縮機に問題が生じる事態を防止すること。【解決手段】気相冷媒吐出口7dを通じて気液分離器7から吐出された冷媒を高段圧縮機4の吸入ポート4aに供給する中間配... 詳細

この 技術と関連性が強い人物

関連性が強い人物一覧

この 技術と関連する社会課題

関連する挑戦したい社会課題一覧

この 技術と関連する公募課題

該当するデータがありません

astavision 新着記事

サイト情報について

本サービスは、国が公開している情報(公開特許公報、特許整理標準化データ等)を元に構成されています。出典元のデータには一部間違いやノイズがあり、情報の正確さについては保証致しかねます。また一時的に、各データの収録範囲や更新周期によって、一部の情報が正しく表示されないことがございます。当サイトの情報を元にした諸問題、不利益等について当方は何ら責任を負いかねることを予めご承知おきのほど宜しくお願い申し上げます。

主たる情報の出典

特許情報…特許整理標準化データ(XML編)、公開特許公報、特許公報、審決公報、Patent Map Guidance System データ