図面 (/)

技術 アリル型不飽和アルコールの脱水による共役ジエン化合物の製造方法

出願人 昭和電工株式会社
発明者 林慎也木村季弘吉村真幸奥村吉邦
出願日 2016年4月26日 (4年7ヶ月経過) 出願番号 2016-088589
公開日 2017年11月2日 (3年0ヶ月経過) 公開番号 2017-197458
状態 特許登録済
技術分野 触媒 有機低分子化合物及びその製造 触媒を使用する低分子有機合成反応
主要キーワード 混合具 窒素ガス導入量 原料残量 磁製皿 XRF分析 測定重量 測定体積 外標準
関連する未来課題
重要な関連分野

この項目の情報は公開日時点(2017年11月2日)のものです。
また、この項目は機械的に抽出しているため、正しく解析できていない場合があります

図面 (2)

課題

選択率が高く、触媒寿命の長い、アリル型不飽和アルコール原料から対応する共役ジエン化合物を効率よく製造する方法の提供。

解決手段

脱水触媒の存在下、アリル型不飽和アルコール原料とし、脱水反応によって式(3)で示される共役ジエン化合物を製造する方法であって、脱水触媒がアルミニウム酸化物及びケイ素の酸化物を含み、NH3−TPD法により測定された酸量(mol/g)をアルミニウム含有量(mol/g)で割った値で定義されるアルミニウム分散度が0.10〜0.30である脱水触媒を使用する、共役ジエン化合物の製造方法。(R1〜R6は夫々独立にH、C1〜5のアルキル基又はC6〜12のアリール基

概要

背景

1,3−ブタジエンイソプレン等の共役ジエンモノマーは、合成ゴムプラスチックなどの樹脂原料としての工業的価値が高く、その効率的な製造法が求められている。

従来、ジエンモノマーナフサ熱分解炉クラッカー)の熱分解物蒸留分離し、その一留分として得られている。しかしながら、この留分精製による方法では、ジエンモノマーを選択的に得たい場合であっても他のモノマー留分(エチレンプロピレンなど)を含めた採算性を考慮せねばならず、工業的な製造の自由度が低かった。

そこで、入手の容易なエチレン等の低分子量の化合物原料としたジエンモノマーの製造方法が検討されている。例えば低級オレフィン二量化を行った後にMo−Bi−X系触媒の存在下で酸化脱水素処理を行うことによる製造法が特許文献1及び特許文献2に開示されている。しかしこの方法では、酸素を用いることによる爆発の危険性があるほか、未反応ブテンの分離等を行うなど付帯設備が必要となり、設備全体が大型化するという問題がある。特にブテンの副生量が多い場合、1,3−ブタジエン中からブテンを除去する工程が必要となるが、ブテンは蒸留操作では除去することが困難であるため、溶媒抽出法等の多大なコスト又は設備投資が必要な精製操作が必要となる。

別の方法として、不飽和アルコール脱水反応による製造法があげられる。このような不飽和アルコールは、例えば特許文献3及び特許文献4に示すようなジオールの1分子脱水反応により得ることができる。しかし、ジエン生成物である1,3−ブタジエンの選択率が不十分であり、特にブテンの副生成量が多く、ブテンの分離のためには上述のような設備上の問題点を有している。

別の方法として、特許文献5に記載されるようなアリル型不飽和アルコールの脱水反応による製造法があげられる。特許文献5では特定のケイバン比シリカアルミナ触媒を用いてα,β−脂肪族不飽和アルコール脱水して、共役ジエンを生成させている。実施例ではクロチアルコールの脱水反応により1,3−ブタジエンを製造しているが、その選択率は94〜96%にとどまっている。副生物のブテンについての記述はないほか、複数種のα,β−不飽和アルコールを同時に脱水して共役ジエン化合物を得る可能性の記載もない。また、明細書中ブレンステッド酸点ルイス酸点比率弱酸強酸の比率についても記述があるが、酸量及び酸量をアルミニウム量で割った値であるアルミニウム分散度についての記載はない。

本反応の原料であるアリル型不飽和アルコール及び生成物である共役ジエンモノマーは重合性化合物である。また、副生物であるブテン等も重合性を示すほか、クロトンアルデヒドメチルビニルケトンに代表される脱水素副生物は特に高い重合性を有する。そのため、本脱水反応は本質的にコークの生成が起こりやすい反応であり、触媒にコークが付着することが触媒失活主要因となる。多量のコークの付着に起因して触媒寿命(連続使用時間)が短いこと、及び共役ジエンモノマーの消費による選択率低下が起こることが本脱水反応の大きな問題点として挙げられる。

このようなコークの付着により失活した触媒は、例えば空気を含むガス流通下に触媒を高温で処理するなど、適切な再生処理を行うことにより、その性能を回復させることができるが、その為には余分な設備、工程、費用などが必要となる。したがって、共役ジエン選択率が高く、ブテンなどの副生物が少なく、触媒寿命の長い触媒が強く望まれている。

概要

選択率が高く、触媒寿命の長い、アリル型不飽和アルコール原料から対応する共役ジエン化合物を効率よく製造する方法の提供。脱水触媒の存在下、アリル型不飽和アルコールを原料とし、脱水反応によって式(3)で示される共役ジエン化合物を製造する方法であって、脱水触媒がアルミニウム酸化物及びケイ素の酸化物を含み、NH3−TPD法により測定された酸量(mol/g)をアルミニウム含有量(mol/g)で割った値で定義されるアルミニウム分散度が0.10〜0.30である脱水触媒を使用する、共役ジエン化合物の製造方法。(R1〜R6は夫々独立にH、C1〜5のアルキル基又はC6〜12のアリール基)なし

目的

本発明の課題は、選択率が高く、触媒寿命の長い、アリル型不飽和アルコール原料から対応する共役ジエン化合物を効率よく製造する方法を提供する

効果

実績

技術文献被引用数
0件
牽制数
0件

この技術が所属する分野

(分野番号表示ON)※整理標準化データをもとに当社作成

ライセンス契約や譲渡などの可能性がある特許掲載中! 開放特許随時追加・更新中 詳しくはこちら

請求項1

脱水触媒の存在下、一般式(1)又は一般式(2)で示されるアリル型不飽和アルコールの少なくとも一種原料とし、脱水反応によって一般式(3)で示される共役ジエン化合物を製造する方法であって、前記脱水触媒がケイ素酸化物アルミニウムの酸化物とが原子レベル又は微粒子レベルで混ざり合った複合型触媒であり、NH3−TPD法により測定された酸量(mol/g)をアルミニウムの含有量(mol/g)で割った値で定義されるアルミニウム分散度が0.10〜0.30であることを特徴とする共役ジエン化合物の製造方法。(式中、R1〜R6はそれぞれ独立に水素原子炭素数1〜5のアルキル基、又は炭素数6〜12のアリール基を示す。)(式中、R1〜R6は一般式(1)と同一のものを示す。)(式中、R1〜R6は一般式(1)と同一のものを示す。)

請求項2

脱水触媒の存在下、一般式(1)又は一般式(2)で示されるアリル型不飽和アルコールの少なくとも一種を原料とし、脱水反応によって一般式(3)で示される共役ジエン化合物を製造する方法であって、前記脱水触媒が二酸化ケイ素担体上にアルミニウムの酸化物が担持された担持型触媒であり、NH3−TPD法により測定された酸量(mol/g)をアルミニウムの含有量(mol/g)で割った値で定義されるアルミニウム分散度が0.20〜0.45であることを特徴とする共役ジエン化合物の製造方法。(式中、R1〜R6はそれぞれ独立に水素原子、炭素数1〜5のアルキル基、又は炭素数6〜12のアリール基を示す。)(式中、R1〜R6は一般式(1)と同一のものを示す。)(式中、R1〜R6は一般式(1)と同一のものを示す。)

請求項3

前記脱水触媒のアルミニウムとケイ素の原子比(Al/Si)が0.03〜0.13である請求項1に記載の共役ジエン化合物の製造方法。

請求項4

前記脱水触媒のアルミニウムとケイ素の原子比(Al/Si)が0.005〜0.025である請求項2に記載の共役ジエン化合物の製造方法。

請求項5

前記脱水触媒がシリカアルミナである請求項1又は3に記載の共役ジエン化合物の製造方法。

請求項6

前記脱水触媒の窒素ガス吸着法により測定された平均細孔径が6.0〜70.0nmである請求項1〜5のいずれか一項に記載の共役ジエン化合物の製造方法。

請求項7

一般式(1)及び一般式(2)のR1〜R6がすべて水素原子である請求項1〜6のいずれか一項に記載の共役ジエン化合物の製造方法。

技術分野

0001

本発明はアリル型不飽和アルコール脱水し、効率的に共役ジエン化合物を製造することのできる触媒を用いた共役ジエン化合物の製造方法に関する。

背景技術

0002

1,3−ブタジエンイソプレン等の共役ジエンモノマーは、合成ゴムプラスチックなどの樹脂原料としての工業的価値が高く、その効率的な製造法が求められている。

0003

従来、ジエンモノマーナフサ熱分解炉クラッカー)の熱分解物蒸留分離し、その一留分として得られている。しかしながら、この留分精製による方法では、ジエンモノマーを選択的に得たい場合であっても他のモノマー留分(エチレンプロピレンなど)を含めた採算性を考慮せねばならず、工業的な製造の自由度が低かった。

0004

そこで、入手の容易なエチレン等の低分子量の化合物原料としたジエンモノマーの製造方法が検討されている。例えば低級オレフィン二量化を行った後にMo−Bi−X系触媒の存在下で酸化脱水素処理を行うことによる製造法が特許文献1及び特許文献2に開示されている。しかしこの方法では、酸素を用いることによる爆発の危険性があるほか、未反応ブテンの分離等を行うなど付帯設備が必要となり、設備全体が大型化するという問題がある。特にブテンの副生量が多い場合、1,3−ブタジエン中からブテンを除去する工程が必要となるが、ブテンは蒸留操作では除去することが困難であるため、溶媒抽出法等の多大なコスト又は設備投資が必要な精製操作が必要となる。

0005

別の方法として、不飽和アルコールの脱水反応による製造法があげられる。このような不飽和アルコールは、例えば特許文献3及び特許文献4に示すようなジオールの1分子脱水反応により得ることができる。しかし、ジエン生成物である1,3−ブタジエンの選択率が不十分であり、特にブテンの副生成量が多く、ブテンの分離のためには上述のような設備上の問題点を有している。

0006

別の方法として、特許文献5に記載されるようなアリル型不飽和アルコールの脱水反応による製造法があげられる。特許文献5では特定のケイバン比シリカアルミナ触媒を用いてα,β−脂肪族不飽和アルコールを脱水して、共役ジエンを生成させている。実施例ではクロチアルコールの脱水反応により1,3−ブタジエンを製造しているが、その選択率は94〜96%にとどまっている。副生物のブテンについての記述はないほか、複数種のα,β−不飽和アルコールを同時に脱水して共役ジエン化合物を得る可能性の記載もない。また、明細書中ブレンステッド酸点ルイス酸点比率弱酸強酸の比率についても記述があるが、酸量及び酸量をアルミニウム量で割った値であるアルミニウム分散度についての記載はない。

0007

本反応の原料であるアリル型不飽和アルコール及び生成物である共役ジエンモノマーは重合性化合物である。また、副生物であるブテン等も重合性を示すほか、クロトンアルデヒドメチルビニルケトンに代表される脱水素副生物は特に高い重合性を有する。そのため、本脱水反応は本質的にコークの生成が起こりやすい反応であり、触媒にコークが付着することが触媒失活主要因となる。多量のコークの付着に起因して触媒寿命(連続使用時間)が短いこと、及び共役ジエンモノマーの消費による選択率低下が起こることが本脱水反応の大きな問題点として挙げられる。

0008

このようなコークの付着により失活した触媒は、例えば空気を含むガス流通下に触媒を高温で処理するなど、適切な再生処理を行うことにより、その性能を回復させることができるが、その為には余分な設備、工程、費用などが必要となる。したがって、共役ジエン選択率が高く、ブテンなどの副生物が少なく、触媒寿命の長い触媒が強く望まれている。

先行技術

0009

特開2010−120933号公報
特開2011−006395号公報
特開2004−306011号公報
特開2005−238095号公報
特開2015−182032号公報

発明が解決しようとする課題

0010

本発明の課題は、選択率が高く、触媒寿命の長い、アリル型不飽和アルコール原料から対応する共役ジエン化合物を効率よく製造する方法を提供することである。

課題を解決するための手段

0011

本発明者らはさらなる鋭意検討を行った結果、アリル型不飽和アルコールに対し、アルミニウム酸化物及びケイ素の酸化物を含み、NH3−TPD法により測定された酸量(mol/g)をアルミニウム含有量(mol/g)で割った値で定義されるアルミニウム分散度が特定の範囲内にある脱水触媒を作用させることにより、効率的に対応する共役ジエン化合物を製造できることを見いだし、本発明を完成させるに至った。

0012

すなわち本発明は以下の項目[1]〜[7]に関する。
[1]
脱水触媒の存在下、一般式(1)又は一般式(2)で示されるアリル型不飽和アルコールの少なくとも一種を原料とし、脱水反応によって一般式(3)で示される共役ジエン化合物を製造する方法であって、前記脱水触媒がケイ素の酸化物とアルミニウムの酸化物とが原子レベル又は微粒子レベルで混ざり合った複合型触媒であり、NH3−TPD法により測定された酸量(mol/g)をアルミニウムの含有量(mol/g)で割った値で定義されるアルミニウム分散度が0.10〜0.30であることを特徴とする共役ジエン化合物の製造方法。



(式中、R1〜R6はそれぞれ独立に水素原子炭素数1〜5のアルキル基、又は炭素数6〜12のアリール基を示す。)



(式中、R1〜R6は一般式(1)と同一のものを示す。)



(式中、R1〜R6は一般式(1)と同一のものを示す。)



[2]
脱水触媒の存在下、一般式(1)又は一般式(2)で示されるアリル型不飽和アルコールの少なくとも一種を原料とし、脱水反応によって一般式(3)で示される共役ジエン化合物を製造する方法であって、前記脱水触媒が二酸化ケイ素担体上にアルミニウムの酸化物が担持された担持型触媒であり、NH3−TPD法により測定された酸量(mol/g)をアルミニウムの含有量(mol/g)で割った値で定義されるアルミニウム分散度が0.20〜0.45であることを特徴とする共役ジエン化合物の製造方法。



(式中、R1〜R6はそれぞれ独立に水素原子、炭素数1〜5のアルキル基、又は炭素数6〜12のアリール基を示す。)



(式中、R1〜R6は一般式(1)と同一のものを示す。)



(式中、R1〜R6は一般式(1)と同一のものを示す。)



[3]
前記脱水触媒のアルミニウムとケイ素の原子比(Al/Si)が0.03〜0.13である[1]に記載の共役ジエン化合物の製造方法。
[4]
前記脱水触媒のアルミニウムとケイ素の原子比(Al/Si)が0.005〜0.025である[2]に記載の共役ジエン化合物の製造方法。
[5]
前記脱水触媒がシリカアルミナである[1]又は[3]のいずれかに記載の共役ジエン化合物の製造方法。
[6]
前記脱水触媒の窒素ガス吸着法により測定された平均細孔径が6.0〜70.0nmである[1]〜[5]のいずれかに記載の共役ジエン化合物の製造方法。
[7]
一般式(1)及び一般式(2)のR1〜R6がすべて水素原子である[1]〜[6]のいずれかに記載の共役ジエン化合物の製造方法。

発明の効果

0013

本発明の触媒を用いると、アリル型不飽和アルコールの脱水による共役ジエンの製造をより高い選択率かつより長い触媒寿命で行うことができ、副生物の生成量をより減らすことができる。よって、一般的な蒸留操作のみで工業的に価値のある共役ジエンを得ることができ、溶媒抽出法等の多大なコストや設備投資が必要な精製操作を経る必要がない。また、触媒再生頻度を抑えることで再生操作にかかる設備、工程、及び費用を大きく抑えることができる。

図面の簡単な説明

0014

反応実施例1〜10及び反応比較例1〜3におけるアルミニウム分散度と触媒寿命の関係を示すグラフである。
反応実施例1〜10及び反応比較例1〜3におけるアルミニウム分散度と生成物である1,3−ブタジエンの選択率の関係を示すグラフである。

0015

本発明では、一般式(1)又は一般式(2)で示されるアリル型不飽和アルコールの少なくとも一種を原料とし、脱水反応によって一般式(3)で示される共役ジエン化合物を製造するにあたり、アルミニウムの酸化物及びケイ素の酸化物を含み、下記数式であらわされるアルミニウム分散度が特定の範囲内にある脱水触媒を使用する。本明細書において、「アルミニウムの酸化物及びケイ素の酸化物を含む触媒」は、後述する担持型(本明細書において「表面型」ともいう。)触媒と複合型(本明細書において「バルク型」ともいう。)触媒の両方を包含する。



(式中、R1〜R6はそれぞれ独立に水素原子、炭素数1〜5のアルキル基、又は炭素数6〜12のアリール基を示す。)



(式中、R1〜R6は一般式(1)と同一のものを示す。)



(式中、R1〜R6は一般式(1)と同一のものを示す。)

0016

一般式(1)、(2)及び(3)においてR1〜R6はそれぞれ独立に水素原子、炭素数1〜5のアルキル基、又は炭素数6〜12のアリール基を示す。炭素数1〜5のアルキル基としてはメチル基エチル基プロピル基イソプロピル基ペンチル基などが挙げられる。炭素数6〜12のアリール基としてはフェニル基トリル基ナフチル基などが挙げられる。R1〜R6はそれぞれ独立に、水素原子、又は炭素数1〜5のアルキル基であることが好ましく、得られる共役ジエン化合物の有用性から水素原子であることがより好ましい。R1〜R6は互いに同じであっても、異なっていてもよいが、すべて水素原子であることが最も好ましい。このとき、一般式(1)の化合物は2−ブテン−1オール(クロチルアルコール)、一般式(2)の化合物は3−ブテン−2−オールとなり、生成物である一般式(3)の化合物は1,3−ブタジエンとなる。

0017

本脱水反応では、一般式(1)で示されるアリル型不飽和アルコール及び一般式(2)で示されるアリル型不飽和アルコールの両方を原料とし、同時に脱水反応に供することが有利である。これにより、例えばジオールの一分子脱水反応によって得ることができる、一般式(1)で示されるアリル型不飽和アルコール及び一般式(2)で示されるアリル型不飽和アルコールの両方を含有する生成物を、これらのアリル型不飽和アルコールを互いに分離することなく脱水反応に使用することができる。脱水反応の前に上記生成物に対して必要に応じて他の成分の分離及び精製を行ってもよい。

0018

本脱水反応においては、一般式(1)又は一般式(2)で示されるアリル型不飽和アルコール以外の不飽和アルコールが併存していてもよい。

0019

本発明の脱水触媒は、アルミニウムの酸化物及びケイ素の酸化物を含み、NH3−TPD(Temperature−Programmed Desorption)法により測定された酸量(mol/g)をアルミニウム含有量(mol/g)で割った値で定義されるアルミニウム分散度が、下記特定の範囲内にある触媒である。
(1)前記脱水触媒がケイ素の酸化物とアルミニウムの酸化物とが原子レベル又は微粒子レベルで混ざり合った複合型触媒である場合:
アルミニウム分散度 0.10〜0.30
(2)前記脱水触媒が二酸化ケイ素担体上にアルミニウムの酸化物が担持された担持型触媒である場合:
アルミニウム分散度 0.20〜0.45

0020

脱水触媒のNH3−TPD法による酸量(mol/g)は、自動昇温脱離装置を用いて以下の手順で決定することができる。粉砕した触媒100mgに対してHeガスを50sccmで流通させながら、400℃で2時間前処理を行う。100℃まで冷却したら、NH3を100Torrの定圧吸着させる。続いて、50sccmのHeガス流通下、100℃、160Torrの減圧条件で50分間処理を行う。その後、160〜200Torrの間の減圧条件で、700℃まで10℃/分の速度で昇温し、700℃で50分間保持する。分析終了後、0.193体積%のNH3ガス(Heバランス)と0.97体積%のNH3ガス(Heバランス)を用いて検量線を作成する。各温度で脱離するNH3と水の合計量と検量線作成時のNH3の量を質量分析計(Mass=16)で測定し、脱離するNH3と水の合計量を算出する。続いて、100℃、100TorrでのNH3定圧吸着を行わない他は同一の条件でブランク測定を行い、触媒から脱離する水由来測定値を算出する。本測定の測定値からブランク測定の測定値を減算し、脱離NH3量とする。脱離NH3量(mol数)が触媒の酸点のmol数と等しいとして、触媒1g当たりの酸量(mol/g)を計算することができる。

0021

脱水触媒のアルミニウム含有量(mol/g)は、複合型触媒に関しては走査型蛍光X線分析装置を用いたXRF分析により、担持型触媒に関してはICP−MSにより、それぞれ決定することができる。測定方法の詳細は実施例の項に記載する。

0022

アルミニウムの酸化物及びケイ素の酸化物を含む触媒は、調製法により一般に複合型(バルク型)触媒と担持型(表面型)触媒の2種類に分類することができる。触媒の調製方法としては種々の方法を用いることが可能であり、例えば含浸法イオン交換法CVD法混練法、共沈法ゾルゲル法等があげられる。

0023

複合型(バルク型)触媒は、二酸化ケイ素前駆体及び二酸化ケイ素から選ばれる第1触媒原料と、アルミニウム酸化物前駆体及びアルミニウム酸化物から選ばれる第2触媒原料との組み合わせを用いて、混練法、共沈法、ゾルゲル法などによって調製される。複合型(バルク型)触媒は、各成分が原子レベルで結合した複合酸化物であり、表面だけでなく固体内部にもアルミニウム原子が多く存在している。ゾルゲル法としては、ケイ素アルコキシド及びアルミニウムアルコキシドアルコール溶液に、水を添加してゲルを調製した後、乾燥及び焼成する方法が挙げられる。この際、触媒として酸又は塩基を加えてもよいし、無触媒で触媒調製を行ってもよい。複合酸化物の例としてはシリカアルミナ等が挙げられる。

0024

担持型(表面型)触媒は、二酸化ケイ素(SiO2)担体に含浸法、イオン交換法、CVD法などによってアルミニウム酸化物前駆体を付着又は堆積させて調製される触媒であり、二酸化ケイ素(SiO2)担体上にアルミニウム酸化物が担持されている。この型の場合、焼結時に一部のアルミニウム酸化物と二酸化ケイ素は混じり合い複合酸化物を形成することがあるが、アルミニウム原子の多くが触媒表面に存在している。二酸化ケイ素(SiO2)は市販の物をそのまま、あるいは粉砕処理強熱処理、酸処理等の前処理を行ってから使用することができる。含浸法としては、アルミニウムの硝酸塩水溶液又はアルミニウムアルコキシドのアルコール溶液を二酸化ケイ素担体に加えた後、乾燥及び焼成する方法が挙げられる。加える溶液の量は二酸化ケイ素担体の細孔容積相当でもよいし、細孔容積以上の量を加えて溶液を濃縮し得られた含浸担体濾別してもよい。アルミニウムの硝酸塩水溶液に二酸化ケイ素担体を加えた後、pHを調整するなどしてアルミニウムを水酸化物にして沈降させ担体上に担持させる等の方法をとることもできる。

0025

本発明の触媒には、アルミニウムとは異なる金属酸化物又は金属が含まれていてもよい。そのような金属酸化物又は金属の例としては、酸化マグネシウム酸化ランタン酸化モリブデンなどがあげられる。

0026

本発明の触媒のアルミニウム分散度は複合型(バルク型)触媒においては、0.10〜0.30、好ましくは、0.10〜0.15である。担持型(表面型)触媒においては0.20〜0.45、好ましくは0.30〜0.40である。

0027

本発明の反応では、コーキングにより触媒の反応点である酸点が覆われ、失活が進行する。そのため酸量が多いと、コーキングにより酸点がある程度減少しても原料の転化率が維持される。すなわち、触媒寿命が長くなる。一般にアルミニウム含有量がシリカ含有量より少ない場合は、アルミニウム含有量を増やすと酸量は増える。しかし、単にアルミニウム含有量を増やすとアルミナクラスターがより多く生成してしまう。アルミナ触媒は、本反応の発明においては脱水素副反応又はコーキングを起こしやすく、選択率も触媒寿命も短い。反応成績低下の原因となるアルミナクラスターを減らすためには、シリカアルミナ混合具合が良いこと、つまりアルミニウムの分散性が高いことが好ましい。すなわち、アルミニウム分散度が高い触媒は、反応点である酸点を増やしつつも、アルミナクラスターに代表される好ましくない反応点が少ない触媒であることを意味し、選択率が高く、触媒寿命が長い。一方で、反応点である酸点が多すぎると、反応点の密度が高く、活性化された基質又は生成物が互いに近傍に位置しやすいために反応生成物などの重合反応が進行しやすく、コーキングが生じてしまう。よって、アルミニウム分散度の高すぎる触媒は、反応の選択率又は触媒寿命が低下してしまう。また、複合型触媒と担持型触媒では反応点となる表面に存在するアルミニウムの比率が異なるため、最適なアルミニウム分散度の範囲が異なる。

0028

本発明の脱水触媒のアルミニウムとケイ素の原子比(Al/Si)は0.001〜0.13であることが好ましい。複合型の脱水触媒では0.03〜0.13であることがより好ましく、0.08〜0.12が最も好ましい。担持型の脱水触媒では0.005〜0.025であることがより好ましく、0.006〜0.012が最も好ましい。原子比がこの範囲内であると、副生物の低減又はコーキングの抑制の面で好ましく、また、細孔構造及び成形性を含めた触媒調製の自由度を高くできる。複合型触媒の原子比(Al/Si)は、リガク製の走査型蛍光X線分析装置ZSX PrimusIIを用いて、XRF分析にて決定される。担持型(表面型)触媒の原子比(Al/Si)は仕込み比から計算することもできるが、ICP−MSによりアルミニウム量を求め、触媒の乾燥質量からアルミニウム酸化物の質量を差し引いた質量を二酸化ケイ素の質量とし、Al/Siが計算される。測定方法の詳細は実施例の項に記載する。

0029

本発明の触媒は、窒素ガス吸着法により測定された平均細孔径が6.0〜70.0nmであるメソ孔を有することが好ましい。平均細孔径はより好ましくは9.0〜55.0nm、特に好ましくは12.0〜40.0nmである。測定方法の詳細は実施例の項に記載する。平均細孔径が6.0nm以上であると、コーキングの進行が遅く、触媒寿命が長くなる。また、副反応が少ないため共役ジエン化合物の選択率も向上する。平均細孔径が70.0nm以下である触媒は表面積及び反応点の数が適切であり、生産性(STY)の低下が小さい。

0030

触媒成形体は、成形体に触媒成分を担持して得ることもできるし、粉末触媒を種々の方法で成形して得ることもできる。成形方法に特に制限はなく、例えば打錠成形押出成形転動造粒等から選択される。

0031

触媒成形体の粒径及び形状は、反応方式、反応器の形状などに応じて適宜選択できる。

0032

触媒の成形に用いるバインダー滑剤等の添加剤は、特に制限されない。なお、これらの添加剤の添加による平均細孔径への影響は本発明において考慮しない。すなわち、バインダー、滑剤等の添加剤を加えて調製した触媒について測定して得られた平均細孔径が、バインダー、滑剤等の添加剤を添加せずに類似の方法で調製した触媒について測定して得られた平均細孔径と異なる場合、後者を本発明における平均細孔径とみなす

0033

本発明の脱水反応で使用する反応装置として連続式気相流通反応装置が好適である。触媒は固定床又は流動床のいずれの方式でもよく、特にメンテナンスの面などから固定床が望ましい。

0034

反応装置の一例として、上部に反応原料であるアリル型不飽和アルコールの気化器を備えた直管型反応器が挙げられる。反応器に触媒を充填し、原料を気化器で蒸発させて生じた原料ストリームを反応器に導入する。反応器下部の熱交換器で反応生成物を冷却して水等を分離し、生成物を回収する。気化した原料のアリル型不飽和アルコールを窒素ガス水蒸気などの不活性ガス希釈して反応に供してもよい。

0035

反応温度は200〜450℃の範囲であることが適しており、250〜350℃であることがより好ましい。200℃以上であると反応が速やかに進む。また、450℃以下とすると副反応による選択率低下の影響が小さくなる。反応圧力加圧、常圧、又は減圧のいずれでもよい。

0036

触媒充填容積あたりの不飽和アルコールの導入量は0.05〜20kg/(h・L−cat)の範囲とすることができ、好ましくは0.1〜10kg/(h・L−cat)であり、最も好ましくは0.2〜5kg/(h・L−cat)である。導入量が少ない場合は十分な生産量を得ることができないことがある。多い場合には未反応の原料が増加し、分離及び精製に余分な労力が必要となる。

0037

アリル型不飽和アルコールを含む原料ストリームの触媒充填容積に対する空間速度[SV]は100〜40000[/h]の範囲とすることができ、特に400〜10000[/h]であることが好適である。空間速度が低すぎる場合は接触時間の増加により、不飽和アルコール原料及び生成したジエン化合物から副生成物が生じる可能性がある。空間速度が高すぎる場合には転化率が低下し、収率が低下することがある。触媒の空時収率STYは、反応圧力を上げる、原料ガス中の不飽和アルコール濃度を高める、SVを上げることにより大きくすることができる。

0038

得られた共役ジエン化合物に対し、さらに蒸留等による精製操作を行うことで、純度を高めたジエン化合物を入手することができる。

0039

上記に述べた方法は、本発明の実施形態の一つであり、実施に当たってはその神に照らして、別の実施形態をとることもできるが、それらは全て本発明の範疇に含まれる。

0040

以下、実施例により本発明の効果を具体的に説明するが、本発明はこれらの実施例により限定されるものではない。

0041

[測定方法]
酸量はNH3−TPD法により測定する。具体的には、日本ベル株式会社製自動昇温脱離装置TPD−1−ATを用いて以下の手順で測定する。乳鉢で粉砕した触媒100mgを測定用セルに充填する。Heガスを50sccmで流通させながら、400℃で2時間触媒の前処理を行う。100℃まで冷却したら、NH3を100Torrの定圧で吸着させる。続いて、50sccmのHeガス流通下、100℃、160Torrの減圧条件で50分間処理を行う。その後、160〜200Torrの間の減圧条件で、700℃まで10℃/分の速度で昇温し、700℃で50分間保持する。分析終了後、0.193体積%のNH3ガス(Heバランス)と0.97体積%のNH3ガス(Heバランス)を用いて検量線を作成する。各温度で脱離するNH3と水の合計量と検量線作成時のNH3の量を質量分析計(Mass=16)で測定し、脱離するNH3と水の合計量を算出する。続いて、100℃、100TorrでのNH3定圧吸着を行わない他は同一の条件でブランク測定を行い、触媒から脱離する水由来の測定値を算出する。本測定の測定値からブランク測定の測定値を減算し、脱離NH3量とする。脱離NH3量(mol数)が触媒の酸点のmol数と等しいとして、触媒1g当たりの酸量(mol/g)を計算する。

0042

複合型触媒のアルミニウム酸化物量とケイ素酸化物量は、リガク製の走査型蛍光X線分析装置ZSX PrimusIIを用いて、XRF分析にて行う。乳鉢で粉砕した触媒粉を、外径18mm、内径13mm、高さ5mmのポリ塩化ビニル製セルにつめて35kNで15秒間加圧して、測定試料を調製する。標準試料外標準としてEZスキャンモードにて分析する。アルミニウム酸化物量とケイ素酸化物量の測定値から、Al/Si比及びアルミニウム含有量を求める。アルミニウム含有量は触媒1gあたりのアルミニウム元素のmol数とする。

0043

担持型触媒のアルミニウム含有量はICP−MSにより求め、乾燥減量を考慮したうえで算出することができる。具体的には、以下の手順で求める。乳鉢で粉砕した試料にフッ酸2mL及び純水10mLを添加し試料を溶解させる。その後50mLに定容してICP発光分析によりアルミニウム元素を定量する。TG−DTAを用いて、乳鉢で粉砕した試料を窒素ガス気流下300℃で1時間処理し、その質量変化から乾燥質量を算出する。乾燥触媒1g中のアルミニウム元素のmol数をアルミニウム含有量とする。乾燥質量からアルミニウムの酸化物の質量を差し引いた質量を二酸化ケイ素の質量とし、Al/Si比を計算する。簡便のため、仕込み比から算出することも可能であり、本実施例ではこの簡便法によった。

0044

アルミニウム分散度は、下記数式より算出する。アルミニウム分散度は触媒に含有されるアルミニウム原子のうち酸として寄与しているものの比率を表す値である。

0045

触媒成形体の窒素ガス吸着法による平均細孔径とBET比表面積は、以下のように測定する。150℃、40mTorrで3時間前処理したサンプルについて、Micromeritics社製の自動比表面積細孔分布測定装置(TristarII 3020)を用い、液体窒素温度で、相対圧(P/P0、P0:飽和蒸気圧)が0.14〜0.992の範囲で窒素脱着等温線を測定する。窒素ガスを吸着質として用い、吸着質断面積は0.162nm2として計算する。BET多点法を用いてBET比表面積を算出する。平均細孔径及び細孔容積はBJH法を用い、吸着膜の厚みをHarkins−Juraの式でt=[13.99/0.034—log(P/P0)]^0.5として算出する。

0046

触媒成形体の嵩密度は以下のように決定する。10mLメスシリンダーに約5mLの触媒を測りとる。その際、数回タッピングを行い、触媒をならし、その体積と重量を測定する。測定重量測定体積除算し、嵩密度を計算する。

0047

[反応装置]
以下の実施例及び比較例の脱水反応には、固定床の常圧気相流通反応装置を使用した。反応管ステンレス製)は内径13mm、全長300mmで、上部に原料を蒸発させるための気化器、及び希釈剤(窒素ガス)の導入口が接続され、下部には冷却器、及び気液分離器が設置されている。反応によって生じたガス及び液はそれぞれ別々に回収し、ガスクロマトグラフィー装置にて測定し、検量線補正後、目的物の収量及び原料残量を求め、これらより転化率及び選択率を求めた。

0048

脱水反応における、転化率及び選択率の計算には以下の式を用いた。選択率は、転化率が98.5%を下回るまでの結果から計算した。

0049

代表的な副生成物であるブテンの選択率計算には、以下の式を用いた。選択率は、転化率が98.5%を下回るまでの結果から計算した。

0050

[触媒調製]
以下、脱水触媒の調製に関する実施例及び比較例を示す。

0051

(実施例1:複合型触媒Aの調製)
500mLの3口フラスコに、メカニカルスターラーに接続したテフロン登録商標半月板撹拌翼滴下ロート、及びジムロート冷却管を装着した。このフラスコに、窒素ガス雰囲気中で、テトラエチルオルトシリケートシグマアルドリッチ社製、>99%)60.0g、アルミニウムイソプロポキシド(東京化成工業株式会社製)2.9g、超脱水イソプロパノール和光純薬工業株式会社製)173gを加え、液温が79〜80℃になるように油浴中、250rpmで撹拌した。滴下ロートにイソプロパノール(特級、和光純薬工業株式会社製)9gと蒸留水(和光純薬工業株式会社製)10.9gの混合溶液を入れ、上記フラスコに30分間かけて滴下した。滴下終了後も撹拌を続け、合計9時間、79〜80℃で反応させた。得られた白色粉末濾過後、イソプロパノールで洗浄した。70℃のオーブンで12時間乾燥したのち、マッフル炉(ADVANTEC製KM−280)で500℃、5時間焼成した。得られた粉末を、ポリ塩化ビニル製のセル(30mmφ)に入れ、80MPaの圧力で1分間プレスした。得られたディスク状のセル(厚さ5mm)を破砕し、1.4〜2.8mmのふるい間に残るものを回収した。得られた成形体を、同じマッフル炉で500℃、2時間焼成し、複合型触媒Aを得た。XRF分析で測定されたAlとSiの原子比(Al/Si)は0.09(mol/mol)であった。

0052

(実施例2:複合型触媒Bの調製)
1Lの3口フラスコに、メカニカルスターラーに接続したテフロン(登録商標)半月板撹拌翼、滴下ロート、及びジムロート冷却管を装着した。このフラスコに、窒素ガス雰囲気中で、テトラエチルオルトシリケート(シグマアルドリッチ社製、>99%)120.0g、アルミニウムイソプロポキシド(東京化成工業株式会社製)5.9g、超脱水イソプロパノール(和光純薬工業株式会社製)320gを加え、液温が69〜70℃になるように油浴中、250rpmで撹拌した。滴下ロートにイソプロパノール(特級、和光純薬工業株式会社製)44gと蒸留水(和光純薬工業株式会社製)21.8gの混合溶液を入れ、上記フラスコに30分間かけて滴下した。滴下終了後も撹拌を続け、合計24時間、69〜70℃で反応させた。得られた白色粉末を濾過後、イソプロパノールで洗浄した。70℃のオーブンで12時間乾燥したのち、マッフル炉(ADVANTEC製KM−280)で500℃、5時間焼成した。得られた粉末を実施例1と同様の方法で成形及び焼成し、複合型触媒Bを得た。XRF分析で測定されたAlとSiの原子比(Al/Si)は0.10(mol/mol)であった。

0053

(比較例1:複合型触媒Cの調製)
500mLの3口フラスコに、メカニカルスターラーに接続したテフロン(登録商標)半月板撹拌翼、滴下ロート、及びジムロート冷却管を装着した。このフラスコに、窒素ガス雰囲気中で、テトラエチルオルトシリケート(シグマアルドリッチ社製、>99%)90.0g、アルミニウムイソプロポキシド(東京化成工業株式会社製)4.4g、超脱水イソプロパノール(和光純薬工業株式会社製)260gを加え、液温が71〜72℃になるように油浴中、100rpmで撹拌した。滴下ロートにイソプロパノール(特級、和光純薬工業株式会社製)13gと蒸留水(和光純薬工業株式会社製)16.3gの混合溶液を入れ、上記フラスコに30分間かけて滴下した。滴下終了後も撹拌を続け、合計24時間、71〜72℃で反応させた。得られた白色粉末を濾過後、イソプロパノールで洗浄した。70℃のオーブンで12時間乾燥したのち、マッフル炉(ADVANTEC製KM−280)で500℃、5時間焼成した。得られた粉末を実施例1と同様の方法で成形及び焼成し、複合型触媒Cを得た。XRF分析で測定されたAlとSiの原子比(Al/Si)は0.10(mol/mol)であった。

0054

(実施例3:複合型触媒Dの調製)
500mLの3口フラスコに、メカニカルスターラーに接続したテフロン(登録商標)半月板撹拌翼、滴下ロート、及びジムロート冷却管を装着した。このフラスコに、窒素ガス雰囲気中で、アセチルアセトン(特級、和光純薬工業株式会社製)2.2gと超脱水イソプロパノール(和光純薬工業株式会社製)100gを入れたのち、アルミニウムイソプロポキシド(東京化成工業株式会社製)4.4g、テトラエチルオルトシリケート(シグマアルドリッチ社製、>99%)60.0g、超脱水イソプロパノール(和光純薬工業株式会社製)60gの順に加え、液温が69〜70℃になるように油浴中、250rpmで撹拌した。滴下ロートに25質量%のアンモニア水2.0gと蒸留水(和光純薬工業株式会社製)23.2gの混合溶液を入れ、上記フラスコに30分間かけて滴下した。滴下終了後も撹拌を続け、合計24時間、69〜70℃で反応させた。得られたゲルを70℃のオーブンで12時間乾燥したのち、1Mアンモニア水で10質量%のスラリーとして50℃で24時間熟成させた。得られた白色粉末を濾過及び水洗後、70℃のオーブンで12時間乾燥し、次いでマッフル炉(ADVANTEC製KM−280)で500℃、5時間焼成した。得られた粉末を実施例1と同様の方法で成形及び焼成し、複合型触媒Dを得た。XRF分析で測定されたAlとSiの原子比(Al/Si)は0.08(mol/mol)であった。

0055

(実施例4:複合型触媒Eの調製)
500mLナスフラスコ硝酸アルミニウム・九水和物(和光純薬工業株式会社製、特級)16.2g、エタノール(特級、和光純薬工業株式会社製)34mL、蒸留水(和光純薬工業株式会社製)66mLを加え、メカニカルスターラーに接続したテフロン(登録商標)半月板撹拌翼で撹拌した。テトラエチルオルトシリケート(シグマアルドリッチ社製、>99%)91.0g、エタノール100mLの混合溶液を上記フラスコに加え入れた。室温で3時間撹拌を継続した後、25%アンモニア水91.0gを投入した。内容物をナスフラスコに移し、ロータリーエバポレーターを用いて60℃の湯浴中で4時間かけて溶媒を留去し、粉末を得た。得られた粉末は120℃のオーブンで12時間乾燥し、次いでマッフル炉(ADVANTEC製KM−280)で500℃、4時間焼成した。得られた粉末を実施例1と同様の方法で成形及び焼成し、複合型触媒Eを得た。XRF分析で測定されたAlとSiの原子比(Al/Si)は0.11(mol/mol)であった。

0056

(実施例5:複合型触媒Fの調製)
硝酸アルミニウム・九水和物(和光純薬工業株式会社製、特級)20.3gと硝酸(和光純薬工業株式会社製、特級、60%)51.3gと酢酸(和光純薬工業株式会社製、特級)3.3gとポリビニルアルコール(和光純薬工業株式会社製、完全鹸化型、平均重合度400〜600)16.0gと蒸留水(和光純薬工業株式会社製)326mLの混合液をメカニカルスターラーに接続したテフロン(登録商標)製撹拌翼で撹拌した。ケイ酸ナトリウム溶液(和光純薬工業株式会社製、濃度55質量%、SiO2/Na2O=2.2)93.1gと蒸留水(和光純薬工業株式会社製)334mLの混合溶液を、上記硝酸アルミニウム水溶液に滴下した。30分間熟成したのち、アンモニア水溶液でpHを8にして沈殿析出させ、さらに3時間撹拌を継続した。析出物に対し、ろ過、水洗浄、1%酢酸アンモニウム(和光純薬工業株式会社製)水溶液洗浄、水洗浄の順に処置を行った後、得られた析出物を50℃に加温したpH9のアンモニア水溶液中で48時間熟成させた。イオン交換水で2回洗浄後、70℃で12時間乾燥したのち、マッフル炉(ADVANTEC製KM−280)で500℃、2時間焼成した。得られた粉末を実施例1と同様の方法で成形及び焼成し、複合型触媒Fを得た。XRF分析で測定されたAlとSiの原子比(Al/Si)は0.11(mol/mol)であった。

0057

(比較例2:複合型触媒Gの調製)
Pluronic123(シグマアルドリッチ社製)8.0gを蒸留水(和光純薬工業株式会社製)72gに溶解させた。この溶液にコロイダルシリカスノーテックス(登録商標)O、シリカ20.4質量%、日産化学工業化学株式会社)47.4g、ムライトゾル(AS−L10、固形分10質量%、多木化学製)11.8g、蒸留水(和光純薬工業株式会社製)49.3gを加えた。得られた白濁液を磁製皿に薄く広げて130℃のオーブンで乾燥させ、さらにマッフル炉(ADVANTEC製KM−280)で500℃、5時間焼成した。得られた粉末を実施例1と同様の方法で成形及び焼成し、複合型触媒Gを得た。XRF分析で測定されたAlとSiの原子比(Al/Si)は0.15(mol/mol)であった。

0058

(実施例6:担持型触媒Aの調製)
1Lビーカーに硝酸アルミニウム・九水和物(和光純薬工業株式会社製、特級)0.88gとイオン交換水300gを入れ、メカニカルスターラーに接続したテフロン(登録商標)半月板撹拌翼で撹拌して硝酸アルミニウムを溶解させた。このビーカーにシリカ粉であるキャリアクト(登録商標)G−10(粒径5μm、富士シリシア化学株式会社)13.2gを加え、20分間撹拌を継続した。この時点でのスラリー液のpHは約3であった。続いて1Mアンモニア水28gを30分かけて滴下した。この時点でのスラリー液のpHは約9であった。さらに24時間室温で撹拌を継続したのち、ろ過及び水洗を3回繰り返した。最後にろ過した粉末を80℃のオーブン中で12時間風乾した。得られた粉末を、ポリ塩化ビニル製のセル(30mmφ)に入れ、80MPaの圧力で1分間プレスした。得られたディスク状のセル(厚さ5mm)を破砕し、1.4〜2.8mmのふるい間に残るものを回収し、その後、マッフル炉(ADVANTEC製KM−280)で600℃、5時間焼成し、担持型触媒Aを得た。

0059

(実施例7:担持型触媒Bの調製)
硝酸アルミニウム・九水和物(和光純薬工業株式会社製、特級)を0.59g使用したほかは、実施例6と同様にして担持型触媒Bを調製した。

0060

(実施例8:担持型触媒Cの調製)
硝酸アルミニウム・九水和物(和光純薬工業株式会社製、特級)を1.76g使用したほかは、実施例6と同様にして担持型触媒Cを調製した。

0061

(実施例9:担持型触媒Dの調製)
300mLナスフラスコに硝酸アルミニウム・九水和物(和光純薬工業株式会社製、特級)0.54gとイオン交換水180gを入れ、メカニカルスターラーに接続したテフロン(登録商標)半月板撹拌翼で撹拌して硝酸アルミニウムを溶解させた。このフラスコにシリカ粉であるキャリアクト(登録商標)G−10(粒径5μm、富士シリシア化学株式会社)8.2gと尿素4.7gを加えた。このスラリー液を80℃に加温し、6時間撹拌を継続した。この時点でのスラリー液のpHは約8であった。さらに18時間室温で撹拌を継続したのち、ろ過・水洗を3回繰り返した。最後にろ過した粉末を80℃のオーブン中で12時間風乾を行った。得られた粉末を実施例6と同様に成形及び焼成して担持型触媒Dを得た。

0062

(実施例10:担持型触媒Eの調製)
300mLナスフラスコに15%塩酸(和光純薬工業株式会社製、特級)100gとシリカ粉であるキャリアクト(登録商標)G−10(粒径5μm、富士シリシア化学株式会社)15gを入れ、メカニカルスターラーに接続したテフロン(登録商標)半月板撹拌翼で撹拌した。このスラリー液を70℃に加温して6時間撹拌を継続したのち、ろ過及び水洗をろ液中性になるまで繰り返した。最後にろ過した粉末を80℃のオーブン中で12時間風乾を行った。得られたシリカ粉末を担体に用いて、実施例6と同様にして担持型触媒Eを得た。

0063

(比較例3:担持型触媒Fの調製)
シリカ粉であるキャリアクト(登録商標)G−10(粒径5μm、富士シリシア化学株式会社)20gに対し、硝酸アルミニウム・九水和物(和光純薬工業株式会社製、特級)1.34gを含む水溶液を含浸担持させ、エバポレーターで大部分の水を除いたのちに80℃のオーブン中で12時間風乾を行った。得られた粉末を実施例6と同様に成形及び焼成して担持型触媒Fを得た。

0064

[脱水反応]
以下、反応実施例を示す。触媒寿命は、原料のアリル型不飽和アルコール(式(1)及び式(2)の合計)の転化率と反応時間とのグラフから、転化率が約100%から低下して、98.5%となるまでの時間を読み取り、その値とした。平均コーク付着速度は、反応後に抜き出した触媒を用いて以下のように算出する。TG−DTAを用いて、反応後の抜出触媒の室温から650℃の区間質量減少を、乾燥空気流通下、10℃/分の速度で昇温しながら測定する。室温から300℃までの質量減少をx%、300℃から650℃までの質量減少をy%とした場合に、下式に当てはめて平均コーク付着速度を算出する。

0065

(反応実施例1)
複合型触媒Aに対して3−ブテン−2−オール/2−ブテン−1−オール混合溶液を基質とし、窒素ガス及び水蒸気を希釈剤として反応を行った。触媒は5mL使用した。基質の3−ブテン−2−オール及び2−ブテン−1−オールのモル比率は6:4であり、合計導入量は触媒1mLあたり毎時1.35gであった。水蒸気の導入量は触媒1mLあたり毎時0.84L、窒素ガス導入量は触媒1mLあたり毎時0.42Lで反応温度は300℃に設定した(SV=1680[/h])。結果を表1に示す。

0066

(反応実施例2〜10、反応比較例1〜3)
表1又は表2に示す触媒を使用し、反応実施例1と同様にして脱水反応を行った。結果を表1又は表2に示す。

実施例

0067

反応実施例1〜10と反応比較例1〜3のアルミニウム分散度に対する触媒寿命を図1に、1,3−ブタジエンの選択率を図2に示す。これらの図から理解できるように、複合型触媒ではアルミニウム分散度が0.10〜0.30の触媒、担持型触媒ではアルミニウム分散度が0.20〜0.45の触媒を用いると、非常に高選択的かつ長寿命で1,3−ブタジエンを得ることができる。

ページトップへ

この技術を出願した法人

この技術を発明した人物

ページトップへ

関連する挑戦したい社会課題

関連する公募課題

該当するデータがありません

ページトップへ

技術視点だけで見ていませんか?

この技術の活用可能性がある分野

分野別動向を把握したい方- 事業化視点で見る -

(分野番号表示ON)※整理標準化データをもとに当社作成

ページトップへ

おススメ サービス

おススメ astavisionコンテンツ

新着 最近 公開された関連が強い技術

この 技術と関連性が強い技術

関連性が強い 技術一覧

この 技術と関連性が強い人物

関連性が強い人物一覧

この 技術と関連する社会課題

関連する挑戦したい社会課題一覧

この 技術と関連する公募課題

該当するデータがありません

astavision 新着記事

サイト情報について

本サービスは、国が公開している情報(公開特許公報、特許整理標準化データ等)を元に構成されています。出典元のデータには一部間違いやノイズがあり、情報の正確さについては保証致しかねます。また一時的に、各データの収録範囲や更新周期によって、一部の情報が正しく表示されないことがございます。当サイトの情報を元にした諸問題、不利益等について当方は何ら責任を負いかねることを予めご承知おきのほど宜しくお願い申し上げます。

主たる情報の出典

特許情報…特許整理標準化データ(XML編)、公開特許公報、特許公報、審決公報、Patent Map Guidance System データ