図面 (/)

技術 発光装置及びその製造方法

出願人 スタンレー電気株式会社
発明者 下田陽一
出願日 2017年4月4日 (4年7ヶ月経過) 出願番号 2017-074181
公開日 2017年10月12日 (4年1ヶ月経過) 公開番号 2017-188686
状態 特許登録済
技術分野 LED素子のパッケージ 発光性組成物
主要キーワード 多孔質透 反射樹脂層 投光機 光散乱度 反射樹脂 屋内照明 色ばらつき 低温同時焼成セラミック
関連する未来課題
重要な関連分野

この項目の情報は公開日時点(2017年10月12日)のものです。
また、この項目は機械的に抽出しているため、正しく解析できていない場合があります

図面 (15)

課題

薄い波長変換層を有する発光装置及びその製造方法を提供する。

解決手段

波長変換層塗布工程にて、発光素子1上に波長変換層2を塗布する。波長変換層2は蛍光体粒子2aを混練した樹脂2bよりなる未硬化ペーストである。多孔質透板状ガラス搭載工程にて、多孔質透明板状ガラス3に荷重をかけて押圧し、未硬化の波長変換層2上に平行に搭載する。蛍光体粒子2aの粒径より多孔質透明板状ガラス3の孔の孔径は小さい。波長変換層2の未硬化樹脂2bの一部のみが毛管現象によって多孔質透明板状ガラス3の孔3aに浸透し、蛍光体粒子2aは多孔質透明板状ガラス3に浸透しない。この結果、波長変換層2が薄くなり、蛍光体粒子2aの濃度が大きくなる。樹脂硬化工程にて、多孔質透明板状ガラス3の孔3aに浸透した樹脂及び波長変換層2の残りの樹脂を所定の硬化処理によって硬化させる。

概要

背景

発光装置として、発光素子からの光の一部分を波長変換層蛍光体でより長い異なる波長の光に変換し、これと発光素子からの光の他の部分とを混合してたとえば白色光を発生するものがある。

上述の発光装置において、発光効率を向上させるために、波長変換層の蛍光体濃度をたとえば50%以上の高濃度にすることにより波長変換効率を向上させることが知られている。この場合、蛍光体濃度を大きくした分、所望の色度を得るためには、波長変換層を高精度に薄くする必要がある。

図14は高濃度の蛍光体濃度を有しかつ精度よく薄くした波長変換層を備える従来の発光装置の製造方法を説明するための断面図である(参照:特許文献1の図2)。

始めに、図14の(A)の波長変換層塗布工程を参照すると、発光素子101たとえば青色発光ダイオードLED)素子上に、波長変換層102を塗布する。波長変換層102は黄色蛍光体粒子102aたとえば青色光黄色光に変換するYAG粒子及び透明なガラスビーズよりなるスペーサ102bを混練した樹脂102cたとえばシリコーン樹脂又はエポキシ樹脂よりなる未硬化ペーストである。この場合、スペーサ102bの粒径蛍光体粒子102aの粒径より十分大きい。

次に、図14の(B)の透明板状ガラス搭載工程を参照すると、図示しないコレット吸着保持器)によって透明板状ガラス103に荷重をかけて押圧し、未硬化の波長変換層102上に平行に搭載する。

最後に、図14の(C)の樹脂硬化工程を参照すると、波長変換層102の樹脂102cを所定の硬化処理たとえば加熱処理によって硬化させ、発光装置が完成する。

図14の(C)において、スペーサ102bの粒径によって波長変換層102の厚さが規定されると共に、透明板状ガラス103が発光素子101と平行とされる。従って、黄色蛍光体粒子102aの濃度を高くして発光効率を高めたとき、波長変換層102を精度よく薄くできるので、所望の色度を得ることができる。

概要

薄い波長変換層を有する発光装置及びその製造方法を提供する。 波長変換層塗布工程にて、発光素子1上に波長変換層2を塗布する。波長変換層2は蛍光体粒子2aを混練した樹脂2bよりなる未硬化ペーストである。多孔質透明板状ガラス搭載工程にて、多孔質透明板状ガラス3に荷重をかけて押圧し、未硬化の波長変換層2上に平行に搭載する。蛍光体粒子2aの粒径より多孔質透明板状ガラス3の孔の孔径は小さい。波長変換層2の未硬化樹脂2bの一部のみが毛管現象によって多孔質透明板状ガラス3の孔3aに浸透し、蛍光体粒子2aは多孔質透明板状ガラス3に浸透しない。この結果、波長変換層2が薄くなり、蛍光体粒子2aの濃度が大きくなる。樹脂硬化工程にて、多孔質透明板状ガラス3の孔3aに浸透した樹脂及び波長変換層2の残りの樹脂を所定の硬化処理によって硬化させる。

目的

効果

実績

技術文献被引用数
0件
牽制数
0件

この技術が所属する分野

ライセンス契約や譲渡などの可能性がある特許掲載中! 開放特許随時追加・更新中 詳しくはこちら

請求項1

発光素子と、前記発光素子上に設けられ、蛍光体粒子混練した樹脂よりなる波長変換層と、前記波長変換層上に設けられ、前記蛍光体粒子の粒径より小さい孔径の孔を有する多孔質透板状ガラスとを具備し、前記波長変換層の樹脂の一部は前記多孔質透明板状ガラスに浸透している発光装置

請求項2

発光素子と、前記発光素子上に設けられ、第1の粒径を有する第1の蛍光体粒子及び前記第1の粒径より小さい第2の粒径を有する第2の蛍光体粒子を混練した樹脂よりなる波長変換層と、前記波長変換層上に設けられ、前記第1の粒径より小さくかつ前記第2の粒径より大きい孔径の孔を有する多孔質透明板状ガラスとを具備し、前記波長変換層の樹脂の一部及び前記第2の蛍光体粒子の一部は前記多孔質透明板状ガラスに浸透している発光装置。

請求項3

前記第1の蛍光体粒子のバンドギャップは前記第2の蛍光体粒子のバンドギャップより小さい請求項2に記載の発光装置。

請求項4

さらに、前記発光素子を実装するための凹部を囲む枠を有する基板と、前記多孔質透明板状ガラスの上面に設けられた透明樹脂層と、前記発光素子、前記波長変換層及び前記多孔質透明板状ガラスの外側の前記基板の枠内に設けられた反射樹脂層とを具備する請求項1、2又は3に記載の発光装置。

請求項5

さらに、前記多孔質透明板状ガラス上に貼り付けられた非多孔質透明板状ガラスを具備し、前記多孔質透明板状ガラス及び前記非多孔質透明板状ガラスによりなる複合体ガラスを構成する請求項1に記載の発光装置。

請求項6

さらに、前記発光素子を実装するための凹部を囲む枠を有する基板と、前記発光素子、前記波長変換層及び前記多孔質透明板状ガラスの外側の前記基板の枠内に設けられた反射樹脂層とを具備する請求項5に記載の発光装置。

請求項7

発光素子上に蛍光体粒子を混練した未硬化樹脂よりなる波長変換層を塗布する波長変換層塗布工程と、前記波長変換層上に前記蛍光体粒子の粒径より小さい孔径の孔を有する多孔質透明板状ガラスを荷重をかけて押圧して搭載し、前記未硬化樹脂の一部を該多孔質透明板状ガラスに浸透させる多孔質透明板状ガラス搭載工程と、前記多孔質透明板状ガラス搭載工程後に、前記未硬化樹脂を硬化させる樹脂硬化工程とを具備する発光装置の製造方法。

請求項8

発光素子上に第1の粒径を有する第1の蛍光体粒子及び前記第1の粒径より小さい第2の粒径を有する第2の蛍光体粒子を混練した未硬化樹脂よりなる波長変換層を塗布する波長変換層塗布工程と、前記波長変換層上に前記第1の粒径より小さくかつ第2の粒径より大きい孔径の孔を有する多孔質透明板状ガラスを荷重をかけて押圧して搭載し、前記未硬化樹脂の一部及び前記第2の蛍光体粒子の一部を該多孔質透明板状ガラスに浸透させる多孔質透明板状ガラス搭載工程と、前記多孔質透明板状ガラス搭載工程後に、前記未硬化樹脂を硬化させる樹脂硬化工程とを具備する発光装置の製造方法。

請求項9

前記第1の蛍光体粒子のバンドギャップは前記第2の蛍光体粒子のバンドギャップより小さい請求項8に記載の発光装置の製造方法。

請求項10

さらに、凹部を囲む枠を有する基板に、前記発光素子を実装するための実装工程と、前記多孔質透明板状ガラスの上面に透明樹脂層を塗布硬化させるための透明樹脂層塗布硬化工程と、前記発光素子、前記波長変換層及び前記多孔質透明板状ガラスの外側の前記基板の枠内に反射樹脂層を塗布硬化させるための反射樹脂層塗布硬化工程とを具備する請求項7、8又は9に記載の発光装置の製造方法。

請求項11

前記多孔質透明板状ガラス搭載工程の代りに、前記多孔質透明板状ガラス及び該多孔質透明板状ガラス上に貼り付けられた非多孔質透明板状ガラスによりなる複合体ガラスを搭載する複合体ガラス搭載工程を具備する請求項1に記載の発光装置の製造方法。

請求項12

さらに、凹部を囲む枠を有する基板に前記発光素子を実装するための実装工程と、前記発光素子、前記波長変換層及び前記多孔質透明板状ガラスの外側の前記基板の枠内に反射樹脂層を塗布硬化させるための反射樹脂層塗布硬化工程とを具備する請求項11に記載の発光装置の製造方法。

技術分野

0001

本発明は発光素子からの光を波長変換する波長変換層を備える発光装置及びその製造方法に関する。

背景技術

0002

発光装置として、発光素子からの光の一部分を波長変換層の蛍光体でより長い異なる波長の光に変換し、これと発光素子からの光の他の部分とを混合してたとえば白色光を発生するものがある。

0003

上述の発光装置において、発光効率を向上させるために、波長変換層の蛍光体濃度をたとえば50%以上の高濃度にすることにより波長変換効率を向上させることが知られている。この場合、蛍光体濃度を大きくした分、所望の色度を得るためには、波長変換層を高精度に薄くする必要がある。

0004

図14は高濃度の蛍光体濃度を有しかつ精度よく薄くした波長変換層を備える従来の発光装置の製造方法を説明するための断面図である(参照:特許文献1の図2)。

0005

始めに、図14の(A)の波長変換層塗布工程を参照すると、発光素子101たとえば青色発光ダイオードLED)素子上に、波長変換層102を塗布する。波長変換層102は黄色蛍光体粒子102aたとえば青色光黄色光に変換するYAG粒子及び透明なガラスビーズよりなるスペーサ102bを混練した樹脂102cたとえばシリコーン樹脂又はエポキシ樹脂よりなる未硬化ペーストである。この場合、スペーサ102bの粒径蛍光体粒子102aの粒径より十分大きい。

0006

次に、図14の(B)の透明板状ガラス搭載工程を参照すると、図示しないコレット吸着保持器)によって透明板状ガラス103に荷重をかけて押圧し、未硬化の波長変換層102上に平行に搭載する。

0007

最後に、図14の(C)の樹脂硬化工程を参照すると、波長変換層102の樹脂102cを所定の硬化処理たとえば加熱処理によって硬化させ、発光装置が完成する。

0008

図14の(C)において、スペーサ102bの粒径によって波長変換層102の厚さが規定されると共に、透明板状ガラス103が発光素子101と平行とされる。従って、黄色蛍光体粒子102aの濃度を高くして発光効率を高めたとき、波長変換層102を精度よく薄くできるので、所望の色度を得ることができる。

先行技術

0009

特開2012−33823号公報

発明が解決しようとする課題

0010

しかしながら、図14の(C)に示す従来の発光装置においては、波長変換層102はある程度厚さを必要とする。従って、黄色蛍光体粒子102aが分散し、この結果、色ばらつきが大きくなり、また、温度特性が悪いという課題がある。

0011

また、スペーサ102bが青色に対して透明であるので、スペーサ102bに入った青色光の一部が透過して漏れるという課題もある。

0012

さらに、透明板状ガラス103を荷重をかけて押圧する際に、スペーサ102bが発光素子101に過負荷をかけてしまうという課題もある。

0013

さらにまた、スペーサ102bの粒径がばらつく。従って、透明板状ガラス103の押圧によって透明板状ガラス103が傾斜し、この結果、色ばらつきが大きくなるという課題もある。

0014

さらにまた、比較的厚い波長変換層の蛍光体粒子による大きな光散乱効果のために、指向特性が悪くかつ色度の角度依存性が大きいという課題もある。

課題を解決するための手段

0015

上述の課題を解決するために本発明に係る発光装置は、発光素子と、発光素子上に設けられ、蛍光体粒子を混練した樹脂よりなる波長変換層と、波長変換層上に設けられ、蛍光体粒子の粒径より小さい孔径の孔を有する多孔質透明板状ガラスとを具備し、波長変換層の樹脂の一部は多孔質透明板状ガラスに浸透しているものである。

0016

また、本発明に係る発光装置の製造方法は、発光素子上に蛍光体粒子を混練した未硬化樹脂よりなる波長変換層を塗布する波長変換層塗布工程と、波長変換層上に蛍光体粒子の粒径より小さい孔径の孔を有する多孔質透明板状ガラスを荷重をかけて押圧して搭載し、未硬化樹脂の一部を多孔質透明板状ガラスに浸透させる多孔質透明板状ガラス搭載工程と、多孔質透明板状ガラス搭載工程後に、未硬化樹脂を硬化させる樹脂硬化工程とを具備するものである。

発明の効果

0017

本発明によれば、波長変換層の未硬化樹脂が多孔質透明板状ガラスに浸透し、蛍光体粒子は多孔質透明板状ガラスに浸透しないので、波長変換層の実質的厚さは小さくなり、多孔質透明板状ガラスの傾斜を抑制でき、しかも、波長変換層の蛍光体粒子の濃度が実質的に大きくなり、この結果、色ばらつきを小さくでき、また、温度特性を向上できる。

0018

また、波長変換層にはたとえば青色光を透過させかつ発光素子に過負荷をかけてしまうスペーサは存在しないので、色漏れを防止できると同時に、発光素子の負荷軽減を図ることができる。

0019

さらにまた、実質的に薄くなった波長変換層の蛍光体粒子による光散乱効果は小さく、また、この光散乱効果は樹脂が浸透された多孔質透明板状ガラスの多孔質の光散乱効果によって緩和されるので、指向特性を良くできると共に色度の角度依存性を小さくできる。

図面の簡単な説明

0020

本発明に係る発光装置の製造方法の第1の実施の形態を説明するための断面図である。
図1の発光装置の製造方法の第1の変更例を説明するための断面図である。
図1の発光装置の製造方法の第1の変更例を説明するための断面図である。
図1の発光装置の製造方法の第2の変更例を説明するための断面図である。
図1の(C)の変更例を示すための断面図である。
本発明に係る発光装置の製造方法の第2の実施の形態を説明するための断面図である。
図6の発光装置の製造方法の第1の変更例を説明するための断面図である。
図6の発光装置の製造方法の第1の変更例を説明するための断面図である。
図6の発光装置の第2の変更例を説明するための断面図である。
図6の(C)の変更例を示す断面図である。
色度測定方法を説明するための図である。
色度測定結果を説明するための図である。
図1の発光装置の場合の色度の角度依存性を示すグラフであって、(A)は樹脂の多孔質透明板状ガラスへの浸透が小さい場合を示し、(B)は樹脂の多孔質透明板状ガラスへの浸透が中程度の場合を示し、(C)は樹脂の多孔質透明板状ガラスへの浸透が大きい場合を示す。
従来の発光装置の製造方法を説明するための断面図である。

実施例

0021

図1は本発明に係る発光装置の製造方法の第1の実施の形態を説明するための断面図である。

0022

始めに、図1の(A)の波長変換層塗布工程を参照すると、発光素子1たとえば青色LED素子上に波長変換層2を塗布する。波長変換層2は黄色蛍光体粒子2aたとえばYAG粒子を混練した樹脂2bたとえばシリコーン樹脂又はエポキシ樹脂よりなる未硬化ペーストである。

0023

次に、図1の(B)の多孔質透明板状ガラス搭載工程を参照すると、図示しないコレット(吸着保持器)によって多孔質透明板状ガラス3に荷重をかけて押圧し、未硬化の波長変換層2上に平行に搭載する。この場合、黄色蛍光体粒子2aの粒径より多孔質透明板状ガラス3の孔の孔径は小さい。従って、波長変換層2の未硬化樹脂2bの一部のみが毛管現象によって多孔質透明板状ガラス3の孔3aに浸透し、黄色蛍光体粒子2aは多孔質透明板状ガラス3に浸透しない。この結果、波長変換層2が薄くなり、黄色蛍光体粒子2aの濃度が大きくなる。尚、未硬化樹脂2bの多孔質透明板状ガラス3への浸透を促進する方法としては、減圧したり、樹脂2bとして粘度の低いものを採用したり、積極的に粘度が低下する温度とすることができる。

0024

尚、多孔質透明板状ガラス3は数μm程度のランダムガラス系粒子を板状に押し固めて焼成したものであり、このガラス系粒子の粒径は多孔質の孔径に合わせて適当な範囲で選択可能である。

0025

最後に、図1の(C)の樹脂硬化工程を参照すると、多孔質透明板状ガラス3の孔3aに浸透した樹脂及び波長変換層2の残りの樹脂を所定の硬化処理たとえば加熱処理によって硬化させ、発光装置が完成する。尚、図1の(C)においては、黄色蛍光体粒子2aの粒径はたとえば15μm、多孔質透明板状ガラス3の厚さ、孔径はたとえば約50〜250μm、約5μmである。

0026

図1の(C)において、波長変換層2の厚さが小さくなり、多孔質透明板状ガラス3の傾斜を抑制でき、しかも黄色蛍光体粒子2aの濃度が実質的に大きくなるので、色ばらつきを小さくでき、また、温度特性を向上できる。また、スペーサが存在しないので、色漏れを防止できると同時に、発光素子1の負荷を軽減できる。さらに、波長変換層2及び多孔質透明板状ガラス3の総厚さが小さくなるので、光取り出し効率も向上できる。さらにまた、多孔質透明板状ガラス3の孔3aに樹脂2bが浸透した結果、多孔質透明板状ガラス3の透過率が上昇する。つまり、多孔質透明板状ガラス3の孔3aに空気が存在すると光散乱が生ずるが、空気の屈折率より大きい屈折率を有する樹脂2bが孔3aに浸透すると、光散乱は抑制され、従って、多孔質透明板状ガラス3の光散乱度白色発光装置としての発光色角度依存性をなくしつつ適度な透過率を有する。従って、指向特性を良くしかつ色度の角度依存性を小さくできる。この点について後述する。

0027

図2図3図1の発光装置の製造方法の第1の変更例を説明するための断面図である。

0028

始めに、図2の(A)の実装工程を参照すると、発光素子1たとえば青色LED素子を上部に凹部を囲む枠が形成された基板11たとえば低温同時焼成セラミックLTCC)基板又は高温同時焼成セラミックHTCC)基板に接着層たとえばAuSn共晶接合層(図示せず)によって実装する。

0029

次に、図2の(B)の波長変換層塗布工程を参照すると、図1の(A)の場合と同様に、発光素子1上に波長変換層2を塗布する。波長変換層2は黄色蛍光体粒子2aたとえばYAG粒子を混練した樹脂2bたとえばシリコーン樹脂又はエポキシ樹脂よりなる未硬化ペーストである。

0030

次に、図2の(C)の多孔質透明板状ガラス搭載工程を参照すると、図1の(B)の場合と同様に、図示しないコレット(吸着保持器)によって多孔質透明板状ガラス3に荷重をかけて押圧し、未硬化の波長変換層2上に平行に搭載する。この場合、蛍光体粒子2aの粒径より多孔質透明板状ガラス3の孔3aの孔径は小さい。従って、波長変換層2の未硬化樹脂2bの一部のみが毛管現象によって多孔質透明板状ガラス3の孔3aに浸透し、黄色蛍光体粒子2aは多孔質透明板状ガラス3に浸透しない。この結果、波長変換層2が薄くなり、蛍光体粒子2aの濃度が大きくなる。

0031

次に、図2の(D)の樹脂硬化工程を参照すると、図1の(C)の場合と同様に、多孔質透明板状ガラス3の孔3aに浸透した樹脂及び波長変換層2の残りの樹脂を所定の硬化処理たとえば加熱処理によって硬化させる。図2の(D)においても、黄色蛍光体粒子2aの粒径はたとえば15μm、多孔質透明板状ガラス3の厚さ、孔径はたとえば50〜250μm、約5μmである。

0032

次に、図3の(A)の透明樹脂塗布工程を参照すると、波長変換層2上にたとえばシリコーン樹脂よりなる透明樹脂層12を塗布する。

0033

次に、図3の(B)の透明樹脂硬化工程を参照すると、透明樹脂層12を加熱して硬化させる。

0034

次に、図3の(C)の反射樹脂塗布工程を参照すると、透明樹脂層12上にたとえば酸化チタン酸化亜鉛等の反射性フィラを分散させたシリコーン樹脂よりなる反射樹脂層13を塗布する。

0035

最後に、図3の(D)の反射樹脂硬化工程を参照すると、反射樹脂層13を加熱して硬化させる。

0036

図3の(D)においては、図1の(C)の発光装置の作用効果に加えて、反射材である反射樹脂層13の存在より点光源を実現し、漏れ光を抑制して光取出し効率を向上できる。この場合、反射樹脂層13の約5〜15μmの反射性フィラが多孔質透明板状ガラス3の側面側から未充填の5μm程度の孔3aに浸透して光取出し効率の低下を招かないように、多孔質透明板状ガラス3の上面から透明樹脂層12で覆っている。このとき、透明樹脂層12は多孔質透明板状ガラス3の未充填の孔3aに浸透する。特に、透明樹脂層12は多孔質透明板状ガラス3の側面側の未充填の孔3aにも上方向から浸透するので、反射樹脂硬化工程において、反射樹脂層13の反射性フィラの多孔質透明板状ガラス3の側面側からの浸透が抑制され、この結果、多孔質透明板状ガラス3の光取出し効率の低下を抑制できる。

0037

図4図1の発光装置の製造方法の第2の変更例を説明するための断面図である。

0038

始めに、図4の(A)の波長変換層塗布工程を参照すると、発光素子1たとえば青色LED素子上に波長変換層2’を塗布する。波長変換層2’は蛍光波長が異なる2種類の蛍光体粒子、たとえば赤色蛍光体粒子2a’及び緑色蛍光体粒子2a”(たとえば半導体微粒子量子ドット)を混練した樹脂2bたとえばシリコーン樹脂又はエポキシ樹脂よりなる未硬化ペーストである。この場合、赤色蛍光体粒子2a’の蛍光波長に該当するエネルギーは緑色蛍光体粒子2a”のバンドギャップより小さい。量子ドットはZnSe、ZnTe、CdSe、CdTe、ZnO、GaN等の半導体材料、又はこれらの合金複合材料で構成される直径数nm〜数10nm程度の粒子の総称である。これらの量子ドットは所定波長の光たとえば青色光を吸収し、吸収した光より長波長たとえば緑色光を放出する。

0039

次に、図4の(B)の多孔質透明板状ガラス搭載工程を参照すると、図示しないコレット(吸着保持器)によって多孔質透明板状ガラス3に荷重をかけて押圧し、未硬化の波長変換層2’上に平行に搭載する。この場合、赤色蛍光体粒子2a’の粒径は多孔質透明板状ガラス3の孔3aの孔径より大きいが、緑色蛍光体粒子2a”の粒径は多孔質透明板状ガラス3の孔3aの孔径より小さい。従って、波長変換層2’の未硬化樹脂2bの一部及び緑色蛍光体粒子2a”の一部が毛管現象によって多孔質透明板状ガラス3の孔3aに浸透し、赤色蛍光体粒子2a’は多孔質透明板状ガラス3に浸透しない。この結果、波長変換層2’が薄くなり、赤色蛍光体粒子2a’の濃度が大きくなる一方、多孔質透明板状ガラス3において緑色蛍光体粒子2a”の濃度が大きくなり、この結果、多孔質透明板状ガラス3も波長変換層として作用する。

0040

最後に、図4の(C)の樹脂硬化工程を参照すると、多孔質透明板状ガラス3の孔3aに浸透した樹脂及び波長変換層2の残りの樹脂を所定の硬化処理たとえば加熱処理によって硬化させ、発光装置が完成する。

0041

図4の(C)の発光装置においては、図1の(C)の発光装置の作用効果に加えて、次の作用効果を有する。すなわち、赤色蛍光体粒子2a’からの赤色光が多孔質透明板状ガラス3を透過して外部に放出される際に、赤色光は緑色蛍光体粒子2a”のバンドギャップよりも小さいエネルギーの光であるので、光の再吸収は起こらず、効率よく外部へ取出すことができる。

0042

図1図4においては、発光素子としてフリップチップ型を採用しているが、第1の実施の形態はフェースアップ型の発光素子にも適用できる。この場合には、図1の(C)を図5に示すごとく、ワイヤボンディング5に接触しないように、多孔質透明板状ガラス3を小さくする。

0043

図6は本発明に係る発光装置の製造方法の第2の実施の形態を説明するための断面図である。

0044

始めに、図6の(A)の波長変換層塗布工程を参照すると、図1の(A)の場合と同様に、発光素子1上に波長変換層2を塗布する。

0045

次に、図6の(B)の複合体ガラス搭載工程を参照すると、図示しないコレット(吸着保持器)によって多孔質透明板状ガラス3’及び非多孔質透明板状ガラス3”よりなる複合体ガラス4に荷重をかけて押圧し、未硬化の波長変換層2上に平行に搭載する。この場合も、黄色蛍光体粒子2aの粒径より多孔質透明板状ガラス3’の孔の孔径は小さい。従って、波長変換層2の未硬化樹脂2bの一部のみが毛管現象によって多孔質透明板状ガラス3’の孔3aに浸透し、黄色蛍光体粒子2aは多孔質透明板状ガラス3’に浸透しない。この結果、波長変換層2が薄くなり、黄色蛍光体粒子2aの濃度が大きくなる。複合体ガラス4においては、上面が非多孔質のために、コレットによる吸着力が大きくなり、作業効率が上昇するという利点もある。

0046

最後に、図6の(C)の樹脂硬化工程を参照すると、多孔質透明板状ガラス3’の孔3aに浸透した樹脂及び波長変換層2の残りの樹脂を所定の硬化処理たとえば加熱処理によって硬化させ、発光装置が完成する。

0047

図6においても、波長変換層2の厚さが小さくなり、多孔質透明板状ガラス3の傾斜を抑制でき、しかも黄色蛍光体粒子2aの濃度が実質的に大きくなるので、色ばらつきを小さくでき、また、温度特性を向上できる。また、スペーサが存在しないので、色漏れを防止できると同時に、発光素子1の負荷を軽減できる。さらに、波長変換層2及び多孔質透明板状ガラス3’の総厚さが小さくなるので、光取り出し効率も向上できる。さらにまた、多孔質透明板状ガラス3’の孔3aに樹脂2bが浸透した結果、多孔質透明板状ガラス3’の透過率が上昇する。つまり、多孔質透明板状ガラス3’の孔3aに空気が存在すると光散乱が生ずるが、空気の屈折率より大きい屈折率を有する樹脂2bが孔3aに浸透すると、光散乱は抑制され、従って、多孔質透明板状ガラス3’の光散乱度は白色発光装置としての発光色角度依存性をなくしつつ適度な透過率を有する。従って、指向特性を良くしかつ色度の角度依存性を小さくできる。

0048

図7図8図6の発光装置の製造方法の第1の変更例を説明するための断面図である。

0049

始めに、図7の(A)の実装工程を参照すると、図2の(A)の場合と同様に、発光素子1たとえば青色LED素子を上部に凹部を囲む枠が形成された基板11たとえば低温同時焼成セラミック(LTCC)基板又は高温同時焼成セラミック(HTCC)基板に接着層たとえばAuSn共晶接合層(図示せず)によって実装する。

0050

次に、図7の(B)の波長変換層塗布工程を参照すると、図2の(B)の場合と同様に、発光素子1上に波長変換層2を塗布する。波長変換層2は黄色蛍光体粒子2aたとえばYAG粒子を混練した樹脂2bたとえばシリコーン樹脂又はエポキシ樹脂よりなる未硬化ペーストである。

0051

次に、図7の(C)の複合体ガラス搭載工程を参照すると、図6の(B)の場合と同様に、図示しないコレット(吸着保持器)によって多孔質透明板状ガラス3’及び非多孔質透明板状ガラス3”よりなる複合体ガラス4に荷重をかけて押圧し、未硬化の波長変換層2上に平行に搭載する。この場合、黄色蛍光体粒子2aの粒径は多孔質透明板状ガラス3’の孔3aの孔径より大きい。従って、波長変換層2の未硬化樹脂2bの一部のみが毛管現象によって多孔質透明板状ガラス3’の孔3aに浸透し、黄色蛍光体粒子2aは多孔質透明板状ガラス3’に浸透しない。この結果、波長変換層2が薄くなり、黄色蛍光体粒子2aの濃度が大きくなる。

0052

次に、図8の(A)の樹脂硬化工程を参照すると、図6の(C)と同様に、多孔質透明板状ガラス3の孔3aに浸透した樹脂及び波長変換層2の残りの樹脂を所定の硬化処理たとえば加熱処理によって硬化させる。

0053

次に、図8の(B)の反射樹脂塗布工程を参照すると、基板11の枠内にたとえば酸化チタン、酸化亜鉛等の反射性フィラを分散させたシリコーン樹脂よりなる反射樹脂層13を塗布する。

0054

最後に、図8の(C)の反射樹脂硬化工程を参照すると、反射樹脂層13を加熱して硬化させる。

0055

図8の(C)においては、図6の(C)の発光装置の効果に加えて、反射材である反射樹脂層13の存在より点光源を実現し、漏れ光を抑制して光取出し効率を向上できる。この場合、反射樹脂層13の約5〜15μmの反射性フィラが多孔質透明板状ガラス3’の側面側から未充填の5μm程度の孔3aに浸透して光取出し効率の低下を招かないように、多孔質透明板状ガラス3’の上面に非多孔質透明板状ガラス3”で覆っている。但し、図8の(C)において、反射樹脂硬化工程において、反射樹脂層13の反射性フィラの多孔質透明板状ガラス3’の側面側からの浸透は存在し、この結果、多孔質透明板状ガラス3’の光取出し効率の低下は少しある。

0056

図9図6の発光装置の製造方法の第2の変更例を説明するための断面図である。

0057

始めに、図9の(A)の波長変換層塗布工程を参照すると、図4の(A)の場合と同様に、発光素子1たとえば青色LED素子上に波長変換層2’を塗布する。波長変換層2’は蛍光波長が異なる2種類の蛍光体粒子、たとえば赤色蛍光体粒子2a’及び緑色蛍光体粒子2a”(たとえば半導体微粒子、量子ドット)を混練した樹脂2bたとえばシリコーン樹脂又はエポキシ樹脂よりなる未硬化ペーストである。この場合、赤色蛍光体粒子2a’の蛍光波長に該当するエネルギーは緑色蛍光体粒子2a”のバンドギャップより小さい。量子ドットはZnSe、ZnTe、CdSe、CdTe、ZnO、GaN等の半導体材料、又はこれらの合金、複合材料で構成される直径数nm〜数10nm程度の粒子の総称である。これらの量子ドットは所定波長の光たとえば青色光を吸収し、吸収した光より長波長たとえば緑色光を放出する。

0058

次に、図9の(B)の複合体ガラス搭載工程を参照すると、図示しないコレット(吸着保持器)によって多孔質透明板状ガラス3’及び非多孔質透明板状ガラス3”よりなる複合体ガラス4に荷重をかけて押圧し、未硬化の波長変換層2’上に平行に搭載する。この場合、赤色蛍光体粒子2a’の粒径は多孔質透明板状ガラス3の孔3aの孔径より大きいが、緑色蛍光体粒子2a”の粒径は多孔質透明板状ガラス3’の孔3aの孔径より小さい。従って、波長変換層2’の未硬化樹脂2bの一部及び緑色蛍光体粒子2a”の一部が毛管現象によって多孔質透明板状ガラス3’の孔3aに浸透し、赤色蛍光体粒子2a’は多孔質透明板状ガラス3’に浸透しない。この結果、波長変換層2’が薄くなり、赤色蛍光体粒子2a’の濃度が大きくなる一方、多孔質透明板状ガラス3’において緑色蛍光体粒子2a”の濃度が大きくなり、この結果、多孔質透明板状ガラス3’も波長変換層として作用する。

0059

最後に、図9の(C)の樹脂硬化工程を参照すると、多孔質透明板状ガラス3’の孔3aに浸透した樹脂及び波長変換層2の残りの樹脂を所定の硬化処理たとえば加熱処理によって硬化させ、発光装置が完成する。

0060

図9の(C)の発光装置においては、図6の(C)の発光装置の作用効果に加えて、次の作用効果を有する。すなわち、赤色蛍光体粒子2a’からの赤色光が多孔質透明板状ガラス3’を透過して外部に放出される際に、赤色光は緑色蛍光体粒子2a”のバンドギャップよりも小さいエネルギーの光であるので、光の再吸収は起こらず、効率よく外部へ取出すことができる。

0061

図6図9においては、発光素子としてフリップチップ型を採用しているが、第2の実施の形態はフェースアップ型の発光素子にも適用できる。この場合には、図6の(C)を図10に示すごとく、ワイヤボンディング5に接触しないように、多孔質透明板状ガラス3を小さくする。

0062

図11は色度測定方法を説明するための図である。図11に示すように、たとえばサイズ1mm×1mmの発光素子の出射光軸面を測定する。中心軸に対して角度θでのX軸面角度CX(θ)及びY軸面角度CY(θ)を測定する。この場合、後述の図14の(C)の場合、発光素子の出射光の中心軸から80°傾いた色度を基準値1とした場合の色度CX(θ)、CY(θ)とする。

0063

図14の(C)の従来の発光装置の場合、図12に示す色度差ΔCX(θ)、ΔCY(θ)が得られた。すなわち、θ=−60°〜60°のときの色度差は
ΔCX(θ)=0.65 (1)
ΔCY(θ)=0.7 (2)
と大きく、従って、指向特性が悪く、色度の角度依存性が大きいことが分る。これは波長変換層102の厚さが大きいからである。

0064

図1の(C)の発光装置の場合、図13に示す色度CX(θ)、CY(θ)が得られた。(A)は樹脂2bの多孔質透明板状ガラス3の孔3aへの浸透が比較的小さい場合を示し、θ=−80°〜80°のときの色度差は、
ΔCX(θ)=0.1 (3)
ΔCY(θ)=0.08 (4)
図14の(C)の発光装置の場合の式(1)、(2)に比較して非常に小さくなり、指向特性が良く、色度の角度依存性は小さくなることが分る。また、(B)は樹脂2bの多孔質透明板状ガラス3の孔3aへの浸透が中程度の場合を示し、θ=−80°〜80°のときの色度差は、
ΔCX(θ)=0.14 (5)
ΔCY(θ)=0.1 (6)
図14の(C)の発光装置の場合の式(1)、(2)に比較して非常に小さくなり、指向特性が良く、色度の角度依存性は小さくなることが分る。さらに、(C)は樹脂2bの多孔質透明板状ガラス3の孔3aへの浸透が比較的大きい場合を示し、θ=−80°〜80°のときの色度差は、
ΔCX(θ)=0.08 (7)
ΔCY(θ)=0.06 (8)
図14の(C)の発光装置の場合の式(1)、(2)に比較して非常に小さくなり、指向特性が良く、色度の角度依存性は小さくなることが分る。このように、図1の(C)の発光装置においては、未硬化樹脂2bが多孔質透明板状ガラス3の孔3aに浸透した分、波長変換層2の厚さは小さくなるので、波長変換層2の黄色蛍光体粒子2aによる光散乱効果が小さくなり、この結果、色度の角度依存性を小さくできる。また、図13の(A)、(B)、(C)に示すように、樹脂2bの多孔質透明板状ガラス3の孔3aへの浸透が増大すればする程多孔質透明板状ガラス3内に空気層がなくなるので、光散乱効果が抑制されて指向特性が良くなり、色度の角度依存性はさらに小さくなる。

0065

尚、図3の(D)、図4の(C)、図6の(C)、図8の(C)、図9の(C)の発光装置も、図13の色度差と同様の色度差特性を示した。

0066

本発明は、車両用灯具投光機屋内照明野外照明プロジェクタ用光源などに利用できる。

0067

1:発光素子
2:波長変換層
2a:黄色蛍光体粒子
2a’:赤色蛍光体粒子
2a”:緑色蛍光体粒子
2b:樹脂
3、3’:多孔質透明板状ガラス
3”:非多孔質透明板状ガラス
4:複合体ガラス
5:ボンディングワイヤ
11:基板
12:透明樹脂層
13:反射樹脂層
101:発光素子
102:波長変換層
102a:黄色蛍光体粒子
102b:スペーサ
102c:樹脂
103:透明板状ガラス

ページトップへ

この技術を出願した法人

この技術を発明した人物

ページトップへ

関連する挑戦したい社会課題

関連する公募課題

該当するデータがありません

ページトップへ

技術視点だけで見ていませんか?

この技術の活用可能性がある分野

分野別動向を把握したい方- 事業化視点で見る -

ページトップへ

おススメ サービス

おススメ astavisionコンテンツ

新着 最近 公開された関連が強い技術

この 技術と関連性が強い技術

関連性が強い 技術一覧

この 技術と関連性が強い人物

関連性が強い人物一覧

この 技術と関連する社会課題

関連する挑戦したい社会課題一覧

この 技術と関連する公募課題

該当するデータがありません

astavision 新着記事

サイト情報について

本サービスは、国が公開している情報(公開特許公報、特許整理標準化データ等)を元に構成されています。出典元のデータには一部間違いやノイズがあり、情報の正確さについては保証致しかねます。また一時的に、各データの収録範囲や更新周期によって、一部の情報が正しく表示されないことがございます。当サイトの情報を元にした諸問題、不利益等について当方は何ら責任を負いかねることを予めご承知おきのほど宜しくお願い申し上げます。

主たる情報の出典

特許情報…特許整理標準化データ(XML編)、公開特許公報、特許公報、審決公報、Patent Map Guidance System データ