図面 (/)

技術 操舵制御装置

出願人 株式会社ジェイテクト
発明者 小寺隆志山野尚紀板本英則山下佳裕安樂厚二
出願日 2016年3月15日 (4年8ヶ月経過) 出願番号 2016-051412
公開日 2017年9月21日 (3年2ヶ月経過) 公開番号 2017-165219
状態 特許登録済
技術分野 走行状態に応じる操向制御
主要キーワード 計量単位 目標動作 フィードフォワード成分 配分割合 フィードバック成分 最大値θ ECOモード 慣性係数
関連する未来課題
重要な関連分野

この項目の情報は公開日時点(2017年9月21日)のものです。
また、この項目は機械的に抽出しているため、正しく解析できていない場合があります

図面 (7)

課題

ステアリング路面情報を伝達させることによる操舵フィーリングを調整し易くすること。

解決手段

操舵制御装置は、操舵角θhの目標値である目標操舵角θh*にフィードバック制御するために反力アクチュエータを操作する操舵角フィードバック処理部M22及び操作信号生成処理部M24と、理想軸力Fibを算出する理想軸力演算部M10abと、路面軸力Ferを算出する路面軸力演算部M10acと、理想軸力Fib及び路面軸力Ferを所定割合で配分したベース反力Fdを算出する軸力配分演算部M10aaと、ベース反力Fdに基づき、目標操舵角θh*を設定する目標操舵角算出処理部M20とを備えている。そして、路面軸力Ferを通じて路面情報が反映される目標操舵角θh*は、操舵角フィードバック処理部M22によってフィードバックされることにより、角度制御されるようにしている。

概要

背景

例えば、特許文献1には、ステアリング転舵輪とが機械的に分離したステアバイワイヤシステム操舵装置が開示されている。特許文献1の操舵装置では、転舵輪に対して路面から伝達される路面情報が反映されないフィードバック成分と、当該路面情報が反映されるフィードフォワード成分とを所定の割合で配分して最終的に得られる最終成分に基づき、ステアリングに反力を付与するようにしている。この最終成分は、ステアリングに反力を付与する反力モータに供給する電流目標値である目標反力電流として設定される。そして、ステアリングに付与する反力は、反力モータに供給する電流を目標反力電流にフィードバック制御することによって制御されている。

概要

ステアリングに路面情報を伝達させることによる操舵フィーリングを調整し易くすること。操舵制御装置は、操舵角θhの目標値である目標操舵角θh*にフィードバック制御するために反力アクチュエータを操作する操舵角フィードバック処理部M22及び操作信号生成処理部M24と、理想軸力Fibを算出する理想軸力演算部M10abと、路面軸力Ferを算出する路面軸力演算部M10acと、理想軸力Fib及び路面軸力Ferを所定割合で配分したベース反力Fdを算出する軸力配分演算部M10aaと、ベース反力Fdに基づき、目標操舵角θh*を設定する目標操舵角算出処理部M20とを備えている。そして、路面軸力Ferを通じて路面情報が反映される目標操舵角θh*は、操舵角フィードバック処理部M22によってフィードバックされることにより、角度制御されるようにしている。

目的

本発明は、こうした実情に鑑みてなされたものであり、その目的は、ステアリングに路面情報を伝達させることによる操舵フィーリングを調整し易くした操舵制御装置を提供する

効果

実績

技術文献被引用数
0件
牽制数
0件

この技術が所属する分野

ライセンス契約や譲渡などの可能性がある特許掲載中! 開放特許随時追加・更新中 詳しくはこちら

請求項1

操舵装置に操作信号を出力する操舵制御装置において、前記操舵装置に前記操作信号を出力することによって、ステアリングに付与されるステアリングの操作に抗する力である反力を制御する反力処理部を備え、前記操舵装置は、前記反力を付与する反力アクチュエータと、少なくとも転舵輪とステアリングとの動力遮断状態において前記転舵輪を転舵させる力を付与する転舵アクチュエータとを備え、前記反力処理部は、操舵角検出値を、当該操舵角の目標値である目標操舵角フィードバック制御するために前記反力アクチュエータを操作する操舵角制御処理部と、前記転舵輪に対して路面から伝達される路面情報が反映されない成分である理想成分を演算する理想成分演算部と、前記路面情報が反映された成分である路面成分を演算する路面成分演算部と、前記理想成分及び前記路面成分を所定割合で配分した成分である配分成分を演算する配分成分演算部と、前記配分成分に基づき、前記目標操舵角を設定する目標操舵角算出処理部と、を有する操舵制御装置。

請求項2

前記転舵輪の転舵角換算可能な回転軸回転角の検出値を、当該回転角の目標値である目標転舵角にフィードバック制御するために前記転舵アクチュエータを操作する転舵角制御処理部を備え、前記理想成分演算部は、前記目標操舵角及び前記目標転舵角の少なくともいずれかに基づき、前記転舵輪に作用する伝達力理想値である理想伝達力を前記理想成分として演算し、前記路面成分演算部は、前記転舵アクチュエータの実電流値に基づき、前記転舵輪に作用する伝達力を前記路面成分として演算する請求項1に記載の操舵制御装置。

請求項3

操舵装置に操作信号を出力する操舵制御装置において、前記操舵装置に前記操作信号を出力することによってステアリングの操作を補助し、転舵輪を転舵させる補助力処理部を備え、前記操舵装置は、前記ステアリングの操作を補助する力である補助力を付与する補助力アクチュエータを備え、前記補助力処理部は、前記転舵輪の転舵角に換算可能な回転軸の回転角の検出値を、当該回転角の目標値である目標転舵角にフィードバック制御するために前記補助力アクチュエータを操作する転舵角制御処理部と、前記転舵輪に対して路面から伝達される路面情報が反映されない成分である理想成分を演算する理想成分演算部と、前記路面情報が反映された成分である路面成分を演算する路面成分演算部と、前記理想成分及び前記路面成分を所定割合で配分した成分である配分成分を演算する配分成分演算部と、前記配分成分に基づき、前記目標転舵角を設定する目標転舵角算出処理部と、を有する操舵制御装置。

請求項4

前記理想成分演算部は、前記目標転舵角に基づき、前記転舵輪に作用する伝達力の理想値である理想伝達力を前記理想成分として演算し、前記路面成分演算部は、前記補助力アクチュエータの実電流値に基づき、前記転舵輪に作用する伝達力を前記路面成分として演算する請求項3に記載の操舵制御装置。

請求項5

前記配分成分演算部は、車両の状態に応じて前記理想成分及び前記路面成分を配分する割合を可変させる請求項1〜請求項4のうちいずれか一項に記載の操舵制御装置。

請求項6

前記配分成分演算部は、前記理想成分を1とした場合の前記配分成分に配分される当該理想成分の割合と、前記路面成分を1とした場合の前記配分成分に配分される当該路面成分の割合との和が1よりも大きくなる割合での配分が可能に構成されている請求項1〜請求項5のうちいずれか一項に記載の操舵制御装置。

技術分野

0001

本発明は、操舵制御装置に関する。

背景技術

0002

例えば、特許文献1には、ステアリング転舵輪とが機械的に分離したステアバイワイヤシステム操舵装置が開示されている。特許文献1の操舵装置では、転舵輪に対して路面から伝達される路面情報が反映されないフィードバック成分と、当該路面情報が反映されるフィードフォワード成分とを所定の割合で配分して最終的に得られる最終成分に基づき、ステアリングに反力を付与するようにしている。この最終成分は、ステアリングに反力を付与する反力モータに供給する電流目標値である目標反力電流として設定される。そして、ステアリングに付与する反力は、反力モータに供給する電流を目標反力電流にフィードバック制御することによって制御されている。

先行技術

0003

特開2014−148299号公報

発明が解決しようとする課題

0004

特許文献1に記載の制御の場合、反力モータを流れる電流が目標反力電流にフィードバック制御されるのみで、反力モータがステアリングに反力を付与することで生じる当該ステアリングの操舵角成り行きとなる。この場合、路面情報を反力に反映させたとしても、ステアリングの操舵角については成り行きでしかなく、ステアリングに付与する反力による操舵フィーリング微調整は困難である。こうした課題は、ステアバイワイヤ方式の操舵装置に限らず、例えば、ユーザーのステアリングの操作を補助する電動パワーステアリング装置であっても、ユーザーのステアリングの操作に路面情報を伝達させて操舵フィーリングを考慮するものであれば同様である。

0005

本発明は、こうした実情に鑑みてなされたものであり、その目的は、ステアリングに路面情報を伝達させることによる操舵フィーリングを調整し易くした操舵制御装置を提供することにある。

課題を解決するための手段

0006

上記課題を解決する操舵制御装置は、操舵装置に操作信号を出力するものであり、操舵装置に操作信号を出力することによって、ステアリングに付与されるステアリングの操作に抗する力である反力を制御する反力処理部を備えている。また、操舵装置は、反力を付与する反力アクチュエータと、少なくとも転舵輪とステアリングとの動力遮断状態において前記転舵輪を転舵させる力を付与する転舵アクチュエータとを備えている。そして、この操舵制御装置において、反力処理部は、操舵角の検出値を、当該操舵角の目標値である目標操舵角にフィードバック制御するために反力アクチュエータを操作する操舵角制御処理部と、転舵輪に対して路面から伝達される路面情報が反映されない成分である理想成分を演算する理想成分演算部と、路面情報が反映された成分である路面成分を演算する路面成分演算部と、理想成分及び路面成分を所定割合で配分した成分である配分成分を演算する配分成分演算部と、配分成分に基づき、目標操舵角を設定する目標操舵角算出処理部とを有するようにしている。

0007

上記構成によれば、ステアリングに抗する力である反力には、配分成分演算部により、路面情報を路面成分として、そのうちのいくらかを反映させることができるように構成されている。そのため、操舵角制御処理部の目標値であって、反力に基づき演算される目標操舵角には、理想成分と路面成分とを配分することができるようになる。このように少なくとも路面成分が配分された目標操舵角は、操舵角制御処理部によってフィードバックされることにより、操舵角をあるべき角度に角度制御することができる。これにより、路面成分に反映されている路面情報を操舵角の微小角度のレベルでステアリングに伝達させることができ、操舵フィーリングの微調整が可能になる。したがって、ステアリングに付与する反力によって、ステアリングに路面情報を伝達させる際に、操舵角が成り行きである場合と比較して操舵フィーリングを調整し易くすることができる。

0008

また、こうした操舵制御装置は、転舵輪の転舵角換算可能な回転軸回転角の検出値を、当該回転角の目標値である目標転舵角にフィードバック制御するために転舵アクチュエータを操作する転舵角制御処理部を備え、理想成分演算部は、目標操舵角及び目標転舵角の少なくともいずれかに基づき、転舵輪に作用する伝達力理想値である理想伝達力を理想成分として演算し、路面成分演算部は、転舵アクチュエータの実電流値に基づき、転舵輪に作用する伝達力を路面成分として演算することが望ましい。

0009

上記構成によれば、転舵輪とステアリングとが動力遮断状態であっても、路面成分である転舵輪に作用する伝達力を難なく演算することができる。
そして、例えば、路面凍結時等、低μ路を走行する場合、低μ路でない路面を走行する場合と比較して転舵輪に対して加えられる伝達力が著しく低下する状況となる。この場合、転舵輪とステアリングとが機械的に連結されたものにおいて、ステアリングの反力が著しく低下する状況となる。こうした反力の変化は、上記構成であれば、転舵輪とステアリングとの動力遮断状態であっても、路面成分を通じてステアリングに反力の変化として伝達されるようになる。すなわち、上記例のように、低μ路でない路面を走行している状態から低μ路を走行する状態への移行時、転舵輪とステアリングとの動力遮断状態であっても、ステアリングの反力が急に低下する状況を反力アクチュエータによって実現することができる。

0010

また、上記課題を解決する操舵制御装置は、操舵装置に操作信号を出力するものであり、操舵装置に操作信号を出力することによってステアリングの操作を補助し、転舵輪を転舵させる補助力処理部を備えている。また、操舵装置は、ステアリングの操作を補助する力である補助力を付与する補助力アクチュエータを備えている。そして、この操舵制御装置において、補助力処理部は、転舵輪の転舵角に換算可能な回転軸の回転角の検出値を、当該回転角の目標値である目標転舵角にフィードバック制御するために補助力アクチュエータを操作する転舵角制御処理部と、転舵輪に対して路面から伝達される路面情報が反映されない成分である理想成分を演算する理想成分演算部と、路面情報が反映された成分である路面成分を演算する路面成分演算部と、理想成分及び路面成分を所定割合で配分した成分である配分成分を演算する配分成分演算部と、配分成分に基づき、目標転舵角を設定する目標転舵角算出処理部とを有するようにしている。

0011

上記構成によれば、ステアリングに抗する力である反力には、配分成分演算部により、路面情報を路面成分として、そのうちのいくらかを反映させることができるように構成されている。そのため、転舵角制御処理部の目標値であって、反力に基づき演算される目標転舵角には、理想成分と路面成分とを配分することができるようになる。このように少なくとも路面成分が配分された目標転舵角は、転舵角制御処理部によってフィードバックされることにより、転舵角をあるべき角度に角度制御することができる。これにより、路面成分に反映されている路面情報を転舵角の微小角度のレベルでステアリングに伝達させることができ、操舵フィーリングの微調整が可能になる。したがって、ステアリングの操作を補助する場合であっても、ステアリングに路面情報を伝達させる際に、転舵角が成り行きである場合と比較して操舵フィーリングを調整し易くすることができる。

0012

また、こうした操舵制御装置において、理想成分演算部は、目標転舵角に基づき、転舵輪に作用する伝達力の理想値である理想伝達力を理想成分として演算し、路面成分演算部は、補助力アクチュエータの実電流値に基づき、転舵輪に作用する伝達力を路面成分として演算することが望ましい。

0013

上記構成によれば、ステアリングの操作を補助する場合であっても、補助力を加味して路面成分である転舵輪に作用する伝達力を難なく演算することができる。
そして、例えば、路面凍結時等、低μ路を走行する場合、低μ路でない路面を走行する場合と比較して転舵輪に対して加えられる伝達力が著しく低下し、ステアリングの反力が著しく低下する状況となる。こうした反力の変化は、上記構成であれば、ステアリングの操作を補助するなかで、路面成分を通じてステアリングに反力の変化として伝達されるようになる。すなわち、上記例のように、低μ路でない路面を走行している状態から低μ路を走行する状態への移行時、ステアリングの反力が急に低下する状況を補助力アクチュエータによって、より精度よく実現することができる。

0014

ところで、車両の走行時には、その状態に応じて、路面情報をユーザーが取得できると有利な場合もある。例えば、ユーザーの要求に対する車両の走行への応答性が高められている場合には、ユーザーがより多くの路面情報を取得する必要があり、特に、この必要性は車速が大きいほど高まる。一方、ユーザーの要求に対する車両の走行への応答性が高められていない場合であっても、車速が大きくなれば、路面情報の取得の必要性が高まる。

0015

そこで、上述の操舵制御装置において、配分成分演算部は、車両の状態に応じて理想成分及び路面成分を配分する割合を可変させることが望ましい。
上記構成によれば、配分割合を可変させてステアリングに伝達させる路面情報量を可変させることができるので、車両の走行状態に応じて、必要なだけの路面情報をユーザーが取得できるように調整することができる。これにより、操舵フィーリングを効果的に向上させることができる。

0016

そして、理想成分及び路面成分を配分する割合については、具体的に、配分成分演算部は、理想成分を1とした場合の配分成分に配分される当該理想成分の割合と、路面成分を1とした場合の配分成分に配分される当該路面成分の割合との和が1よりも大きくなる割合での配分が可能に構成することもできる。

0017

上記構成によれば、ユーザーに取得させる路面情報の伝達のさせ方の幅を広げることができるようになる。これにより、操舵フィーリングの調整の自由度を高めることができ、操舵フィーリングの多様化に寄与することができる。

発明の効果

0018

本発明によれば、ステアリングに路面情報を伝達させることによる操舵フィーリングを調整し易くすることができる。

図面の簡単な説明

0019

第1の実施形態にかかる操舵制御装置及びその操作対象を示す図。
同実施形態にかかるブロック図。
同実施形態にかかる操舵角及び転舵角の閾値を示す図。
同実施形態にかかる軸力配分演算部を示すブロック図。
第2の実施形態にかかる操舵制御装置及びその操作対象を示す図。
第2の実施形態にかかるブロック図。

実施例

0020

(第1の実施形態)
以下、操舵制御装置にかかる第1の実施形態について図面を参照しつつ説明する。
図1に示すように、本実施形態にかかる操舵装置においては、ステアリングホイール(ステアリング10)が、ステアリング10の操作に抗する力である反力を付与する反力アクチュエータ20に接続されている。反力アクチュエータ20は、ステアリング10に固定されたステアリングシャフト22、反力側減速機24、反力側減速機24に回転軸26aが連結された反力モータ26、及び反力モータ26を駆動するインバータ28を備えている。ここで、反力モータ26は、表面磁石同期電動機(SPMSM)である。

0021

反力モータ26は、インバータ28を介してバッテリ72に接続されている。インバータ28は、バッテリ72の正極及び負極のそれぞれと反力モータ26の3個の端子のそれぞれとの間を開閉する回路である。

0022

ステアリングシャフト22は、クラッチ12を介して転舵アクチュエータ40のピニオン軸42に連結可能とされている。
転舵アクチュエータ40は、第1ラックアンドピニオン機構48、第2ラックアンドピニオン機構52、SPMSM(転舵側モータ56)及びインバータ58を備えている。

0023

第1ラックアンドピニオン機構48は、所定の交叉角をもって配置されたラック軸46とピニオン軸42とを備え、ラック軸46に形成された第1ラック歯46aとピニオン軸42に形成されたピニオン歯42aとが噛合されている。なお、ラック軸46の両端には、タイロッドを介して転舵輪30が連結されている。

0024

第2ラックアンドピニオン機構52は、所定の交叉角をもって配置されたラック軸46及びピニオン軸50を備えており、ラック軸46に形成された第2ラック歯46bとピニオン軸50に形成されたピニオン歯50aとが噛合されている。

0025

ピニオン軸50は、転舵側減速機54を介して、転舵側モータ56の回転軸56aに接続されている。転舵側モータ56には、インバータ58が接続されている。なお、ラック軸46は、ラックハウジング44に収容されている。

0026

なお、図1においては、インバータ58を構成するMOS電解効果トランジスタスイッチング素子)の符号のうち転舵側モータ56の3個の端子のそれぞれに接続されるものに、「u,v,w」のそれぞれを付与し、また、上側アームに「p」を、下側アームに「n」を付与している。なお、以下では、「u,v,w」を総括して「¥」と表記し、「p,n」を総括して「#」と表記する。すなわち、インバータ58は、バッテリ72の正極と転舵側モータ56の端子との間を開閉するスイッチング素子S¥pと、バッテリ72の負極と転舵側モータ56の端子との間を開閉するスイッチング素子S¥nとの直列接続体を備えて構成されている。そして、スイッチング素子S¥#には、ダイオードD¥#が逆並列接続されている。

0027

ステアリング10には、スパイラルケーブル装置60が連結されている。スパイラルケーブル装置60は、ステアリング10に固定された第1ハウジング62と、車体に固定された第2ハウジング64と、第1ハウジング62及び第2ハウジング64によって区画された空間に収容されて且つ第2ハウジング64に固定された筒状部材66と、筒状部材66に巻きつけられるスパイラルケーブル68とを備えている。筒状部材66には、ステアリングシャフト22が挿入されている。スパイラルケーブル68は、ステアリング10に固定されたホーン70と、車体に固定されたバッテリ72等とを接続する電気配線である。

0028

操舵制御装置(制御装置80)は、反力アクチュエータ20及び転舵アクチュエータ40を備えた操舵装置を操作することにより、ステアリング10の操作に応じて転舵輪30を転舵させる制御を実行する。本実施形態では、反力アクチュエータ20及び転舵アクチュエータ40によってステアバイワイヤシステムを実現しており、制御装置80は、通常、クラッチ12を遮断状態に維持しつつ、ステアリング10の操作に応じて転舵輪30を転舵させる制御を実行する。

0029

この際、制御装置80は、操舵センサ92によって検出される反力モータ26の回転軸26aの回転角度θs0や、トルクセンサ94によって検出されるステアリングシャフト22に加わる操舵トルクTrqsを取り込む。また、制御装置80は、転舵側センサ90によって検出される転舵側モータ56の回転軸56aの回転角度θt0や、車速センサ96によって検出される車速Vを取り込む。なお、制御装置80は、インバータ58において、スイッチング素子S¥nのそれぞれのソース側に接続されたシャント抵抗86の電圧降下を電流iu,iv,iwとして取得し、これらを参照する。また、制御装置80は、車載エンジン等の制御パターン設定状態を示すドライブモードDMを取り込む。ドライブモードDMによっては、燃費やユーザーの要求に対する車両の走行への応答性(ダイレクト感)が異なる。例えば、ドライブモードDMには、燃費が高まるようにエンジン等の出力を適正化するECOモード、ECOモードと比較してユーザーの要求に対する上記応答性が高まるようにエンジン等の出力を適正化するノーマルモード、燃費に関係なくユーザーの要求に対する上記応答性が高まるようにエンジン等の出力を適正化するスポーツモード等が含まれる。このドライブモードDMは、ユーザーが操作可能に設けられるスイッチ98によって切り替えられる。

0030

詳しくは、制御装置80は、中央処理装置(CPU82)及びメモリ84を備えており、メモリ84に記憶されたプログラムをCPU82が実行することにより、反力アクチュエータ20や転舵アクチュエータ40が操作される。

0031

図2に、制御装置80が実行する処理の一部を示す。図2に示す処理は、メモリ84に記憶されたプログラムをCPU82が実行することで実現される処理の一部を、実現される処理の種類毎に記載したものである。

0032

積算処理部M2は、操舵側センサ92によって検出された回転角度θs0と転舵側センサ90によって検出された回転角度θt0とを、0〜360°よりも広い角度領域数値に変換して回転角度θs,θtとする。例えば、ステアリング10が車両を直進させる中立位置から右側または左側に最大限回転操作される場合、回転軸26aは、複数回転する。したがって、積算処理部M2では、例えば、ステアリング10が中立位置にある状態から回転軸26aが所定方向に2回転する場合、出力値を720°とする。なお、積算処理部M2は、中立位置における出力値をゼロとする。

0033

計量単位設定処理部M4は、積算処理部M2による処理が施された操舵側センサ92の出力値に換算係数Ksを乗算して操舵角θhを算出し、積算処理部M2による処理が施された転舵側センサ90の出力値に換算係数Ktを乗算して、転舵角θpを算出する。ここで、換算係数Ksは、反力側減速機24と反力モータ26の回転軸26aとの回転速度比に応じて定められており、これにより、回転軸26aの回転角度θsの変化量をステアリング10の回転量に変換する。このため、操舵角θhは、中立位置を基準とするステアリング10の回転角度となる。また、換算係数Ktは、転舵側減速機54と転舵側モータ56の回転軸56aとの回転速度比、及びピニオン軸50とピニオン軸42との回転速度比の積となっている。これにより、回転軸56aの回転量を、クラッチ12が連結されていると仮定した場合におけるステアリング10の回転量に変換する。

0034

なお、図2における処理は、回転角度θs,θt、操舵角θh、及び転舵角θpが所定方向の回転角度の場合に正、逆方向の回転角度の場合に負とする。例えば、積算処理部M2は、ステアリング10が中立位置にある状態から回転軸26aが所定方向とは逆回転する場合に、出力値を負の値とする。ただし、これは、制御系ロジックの一例に過ぎない。特に、本明細書では、回転角度θs,θt、操舵角θh、及び転舵角θpが大きいとは、中立位置からの変化量が大きいこととする。換言すれば、上記のように正負の値を取りうるパラメータの絶対値が大きいこととする。

0035

反力トルク設定処理部M6は、操舵トルクTrqsに基づき、反力トルクTrqa*を設定する。反力トルクTrqa*は、操舵トルクTrqsが大きいほど大きい値に設定される。加算処理部M8は、反力トルクTrqa*に操舵トルクTrqsを加算して出力する。

0036

反力設定処理部M10は、ステアリング10の回転に抗する力である反力Firを設定する。詳しくは、反力設定処理部M10は、ベース反力設定処理部M10aによって、ステアリング10の操作に応じたベース反力Fdを設定する一方、制限用反力設定処理部M10bによって、ステアリング10の回転量が許容最大値に近づく場合に、ステアリング10が更に上限値側に操作されるのに抗する反力である制限用反力Fieを設定する。そして、反力設定処理部M10は、加算処理部M10cによってベース反力Fdと制限用反力Fieとを加算し、これを反力Firとして出力する。

0037

偏差算出処理部M12は、加算処理部M8の出力から反力Firを減算した値を出力する。
目標操舵角算出処理部M20は、偏差算出処理部M12の出力値に基づき、目標操舵角θh*を設定する。ここでは、偏差算出処理部M12の出力値Δと、目標操舵角θh*とを関係づける以下の式(c1)にて表現されるモデル式を利用する。

0038

Δ=C・θh*’+J・θh*’’ …(c1)
上記の式(c1)にて表現されるモデルは、ステアリング10と転舵輪30とが機械的に連結されたものにおいて、ステアリング10の回転に伴って回転する回転軸のトルクと回転角度との関係を定めるモデルである。上記の式(c1)において、粘性係数Cは、操舵装置の摩擦等をモデル化したものであり、慣性係数Jは、操舵装置の慣性をモデル化したものである。ここで、粘性係数C及び慣性係数Jは、車速Vに応じて可変設定される。

0039

操舵角フィードバック処理部M22は、操舵角θhを目標操舵角θh*にフィードバック制御するための操作量として、反力モータ26が生成する反力トルクの目標値である目標反力トルクTrqr*を設定する。具体的には、目標操舵角θh*から操舵角θhを減算した値を入力とする比例要素積分要素及び微分要素のそれぞれの出力値の和を、目標反力トルクTrqr*とする。

0040

操作信号生成処理部M24は、目標反力トルクTrqr*に基づき、インバータ28の操作信号MSsを生成してインバータ28に出力する。これは、例えば、目標反力トルクTrqr*に基づきq軸電流指令値を設定し、dq軸の電流を指令値にフィードバック制御するための操作量としてdq軸の電圧指令値を設定する周知の電流フィードバック制御にて実現することができる。なお、d軸電流はゼロに制御してもよいが、反力モータ26の回転速度が大きい場合には、d軸電流の絶対値をゼロより大きい値に設定し弱め界磁制御を実行してもよい。もっとも、低回転速度領域においてd軸電流の絶対値をゼロよりも大きい値に設定することも可能である。なお、反力トルク設定処理部M6、加算処理部M8、反力設定処理部M10、偏差算出処理部M12、目標操舵角算出処理部M20、操舵角フィードバック処理部M22、及び操作信号生成処理部M24は反力処理部の一例であり、特に、操舵角フィードバック処理部M22及び操作信号生成処理部M24は操舵角制御処理部の一例である。

0041

舵角比可変処理部M26は、目標操舵角θh*に基づき、操舵角θhと転舵角θpとの比である舵角比を可変設定するための目標動作角θa*を設定する。加算処理部M28は、目標操舵角θh*に目標動作角θa*を加算することにより、目標転舵角θp*を算出する。

0042

転舵角フィードバック処理部M32は、転舵角θpを目標転舵角θp*にフィードバック制御するための操作量として、転舵側モータ56が生成する目標転舵トルクTrqt*を設定する。具体的には、目標転舵角θp*から転舵角θpを減算した値を入力とする比例要素、積分要素及び微分要素のそれぞれの出力値の和を、目標転舵トルクTrqt*とする。

0043

操作信号生成処理部M34は、目標転舵トルクTrqt*に基づき、インバータ58の操作信号MStを生成してインバータ58に出力する。これは、操作信号生成処理部M24による操作信号の生成処理と同様に行うことができる。なお、転舵角フィードバック処理部M32及び操作信号生成処理部M34は転舵角制御処理部の一例である。

0044

最大値選択処理部M36は、目標操舵角θh*と目標転舵角θp*とのうちの大きい方の値(最大値θe)を選択して出力する。
上記ベース反力設定処理部M10aは、目標転舵角θp*を入力とする。一方、上記制限用反力設定処理部M10bは、最大値θeを入力として制限用反力Fieを設定する。これは、ラック軸46が軸方向に変位してラック軸46の端部がラックハウジング44(ラックストッパ)に接触する直前と、ステアリング10がスパイラルケーブル68から定まる上限値まで回転する直前との双方において、ステアリング10に、操舵角の大きさをそれ以上大きくするのに抗する力を増加制御するための設定である。以下、これについて説明する。

0045

図3に、操舵角θh及び転舵角θpのそれぞれの上限値θhH,θpHの関係を示す。図示されるように、本実施形態では、操舵角θhの上限値θhHと転舵角θpの上限値θpHとがほぼ等しい値となっている。これは、計量単位設定処理部M4による操舵角θh及び転舵角θpの計量単位の設定によって実現したものである。本実施形態では、クラッチ12が締結状態とされる場合に、ラック軸46がラックハウジング44に接触するまで軸方向に変位したときに、ステアリング10を更にわずかに回転可能なように、スパイラルケーブル68の長さにわずかにマージンを持たせてある。このため、計量単位設定処理部M4によって、操舵角θhをステアリング10の回転角度とし、転舵角θpを目標動作角θa*をゼロと仮定したときのステアリング10の回転角度とすることにより、操舵角θhの上限値θhHと転舵角θpの上限値θpHとがほぼ等しい値となる。

0046

本実施形態では、操舵角θh及び転舵角θpに共通閾値θenを設けて、操舵角θhが上限値θhHに達する前であって且つ転舵角θpが上限値θpHに達する前にステアリング10の反力を増加制御する。図2に示した制限用反力設定処理部M10bは、最大値θeと制限用反力Fieとの関係を定めたマップを備えている。このマップは、最大値θeの大きさが共通閾値θen以上となることでゼロよりも大きくなるものであり、特に、共通閾値θenを超えてある程度大きくなると、人の力ではそれ以上の操作ができないほど大きい値が設定されている。なお、図2には、最大値θeがゼロから所定の回転方向に大きくなるにつれて制限用反力Fieが大きくなることのみを示したが、所定の回転方向とは逆方向に大きくなる場合であっても、制限用反力Fieの絶対値は大きくなる。ただし、図2の処理における制限用反力Fieは、所定の回転方向とは逆方向の場合には負となる。

0047

図2に示すように、本実施形態において、反力設定処理部M10は、転舵輪30に対して路面から加えられる軸力が反映されるように、理想軸力Fib及び路面軸力Ferを所定割合で配分した配分成分として、ベース反力Fdを設定するための演算を実行する軸力配分演算部M10aaを備えている。この転舵輪30に対して加えられる軸力は、転舵輪30に対して路面から伝達される路面情報である。

0048

また、反力設定処理部M10は、ベース反力Fdの成分のうち、転舵輪30に作用する軸力(転舵輪30に伝達される伝達力)の理想値であって、路面情報が反映されない理想成分である理想軸力Fibを算出する理想軸力演算部M10abを備えている。理想軸力演算部M10abは、目標転舵角θp*に基づき、理想軸力Fibを算出する。例えば、目標転舵角θp*の絶対値が大きくなるにつれて理想軸力Fibの絶対値が大きくなるように設定されている。なお、軸力配分演算部M10aaは配分成分演算部の一例である。また、理想軸力演算部M10abは理想成分演算部の一例である。

0049

また、反力設定処理部M10は、ベース反力Fdの成分のうち、転舵輪30に作用する軸力(転舵輪30に伝達される伝達力)の推定値であって、路面情報が反映された路面成分である路面軸力Ferを算出する路面軸力演算部M10acを備えている。路面軸力演算部M10acは、転舵側モータ56の実電流値である電流iu,iv,iwを取得し、これにより算出されるq軸の電流iqに基づき、路面軸力Ferを算出する。q軸の電流ipの算出は、転舵側モータ56の回転角度θt0に基づき、回転座標系であるdq軸の座標系への変換処理によって実現することができる。そして、路面軸力演算部M10acは、q軸の電流iqに、所定の係数K1を乗算することによって路面軸力Ferを算出する。ここで、所定の係数K1は、転舵側減速機54のギア比や、ピニオン軸42のトルクとラック軸46の軸力との比、さらには、トルク定数に基づき設定されるものである。すなわち、q軸の電流iqに定数を乗算することによって、転舵側モータ56のトルクが定まる。そして、転舵側モータ56のトルクは、転舵側減速機54等によって変換されてラック軸46に加わる。このため、q軸の電流iqに所定の係数K1を乗算することによって、転舵側モータ56によってラック軸46に加えられる軸力を算出することができる。転舵側モータ56によってラック軸46に加えられる軸力と、転舵輪30に対して路面から加えられる軸力とがつり合いの関係とみなせる場合、q軸の電流iqに基づき、転舵輪30に対して路面から加えられる軸力を路面軸力Ferとして推定することができる。この路面軸力Ferは、少なくとも路面情報が反映された成分である。なお、路面軸力演算部M10acは路面成分演算部の一例である。

0050

図4に示すように、軸力配分演算部M10aaは、理想軸力Fibと路面軸力Ferとを配分するためのそれぞれの配分割合である配分ゲインGib及び配分ゲインGerを算出するゲイン演算部M10aaaを備えている。ゲイン演算部M10aaaは、車速Vと、各配分ゲインGib,Gerと、ユーザーにより選択されるドライブモードDMとの関係を定めた3次元マップを備えており、ドライブモードDM及び車速Vを入力とし、各配分ゲインGib,Gerをマップ演算する。配分ゲインGibは車速Vが大きい場合に小さい場合よりも値が小さくなる一方、配分ゲインGerは車速Vが大きい場合に小さい場合よりも値が大きくなる。各配分ゲインGib,Gerは、例えば、ドライブモードDMが上記ECOモードや上記ノーマルモードの場合に、総和が1となるように値が設定されている。一方、各配分ゲインGib,Gerは、例えば、ドライブモードDMが上記スポーツモードの場合に、総和が1を超えるように配分ゲインGerの値を大きくし、特に、車速Vが大きいほど配分ゲインGerの値を大きくするように設定されている。

0051

そして、軸力配分演算部M10aaは、乗算処理部M10aabにより、理想軸力演算部M10abの出力値に配分ゲインGibを乗算する。また、軸力配分演算部M10aaは、乗算処理部M10aacにより、路面軸力演算部M10acの出力値に配分ゲインGerを乗算する。また、軸力配分演算部M10aaは、加算処理部M10aadにおいて、理想軸力Fibに配分ゲインGibを乗算したものと、路面軸力Ferに配分ゲインGerを乗算したものとを加算して、ベース反力Fdを算出して出力する。

0052

以上に説明した本実施形態によれば、以下に示す作用及び効果を奏する。
(1)ステアリング10の回転に抗する力である反力Firには、軸力配分演算部M10aaにより、その時のドライブモードDMや車速Vに応じて必要とされる路面情報を路面軸力Ferとして、そのうちのいくらかを反映させることができるように構成されている。そのため、操舵角フィードバック処理部M22の目標値であって、反力Firに基づき演算される目標操舵角θh*には、理想軸力Fibと路面軸力Ferとを配分することができるようになる。このように少なくとも路面軸力Ferが配分された目標操舵角θh*は、操舵角フィードバック処理部M22によってフィードバックされることにより、操舵角θhをあるべき角度に角度制御することができる。これにより、路面軸力Ferに反映されている路面情報を操舵角θhの微小角度のレベルでステアリング10に伝達させることができ、操舵フィーリングの微調整が可能になる。したがって、ステアリング10に付与する反力によって、ステアリング10に路面情報を伝達させる際に、操舵角θhが成り行きである場合と比較して操舵フィーリングを調整し易くすることができる。

0053

また、本実施形態において、転舵角フィードバック処理部M32の目標値であって、反力Firに基づき演算される目標転舵角θp*には、理想軸力Fibと路面軸力Ferとが配分されている。このように少なくとも路面軸力Ferが配分された目標転舵角θp*は、転舵角フィードバック処理部M32によってフィードバックされることにより、転舵角θpをあるべき角度に角度制御することができる。これにより、路面軸力Ferに反映されている路面情報を転舵角θpの微小角度のレベルで転舵輪30に伝達させることができ、車両の進行方向に対するずれ等の微調整も可能にしている。

0054

(2)路面軸力Ferは、転舵側モータ56の実電流値に基づいた電流iqによって算出されるため、通常、クラッチ12を遮断状態に維持するステアバイワイヤシステムであっても、路面軸力Ferを難なく算出することができる。

0055

そして、例えば、路面凍結時等、低μ路を走行する場合、低μ路でない路面を走行する場合と比較して転舵輪30に対して加えられる軸力が著しく低下する状況となる。この場合、ステアリング10と転舵輪30とが機械的に連結されたものにおいて、ステアリング10の反力が著しく低下する状況となる。こうした反力の変化は、本実施形態であれば、クラッチ12が遮断状態であっても、路面軸力Ferを通じてステアリング10に反力の変化として伝達させることができる。すなわち、上記例のように、低μ路でない路面を走行している状態から低μ路を走行する状態への移行時、ステアリング10の反力が急に低下する状況を反力アクチュエータ20(反力モータ26)によって実現することができる。

0056

(3)ところで、車両の走行時には、その状態に応じて、路面情報をユーザーが取得できると有利な場合もある。例えば、上記スポーツモードでは、ユーザーの要求に対する車両の走行への応答性が高められるため、ユーザーがより多くの路面情報を取得する必要があり、特に、この必要性は車速Vが大きいほど高まる。また、上記ECOモードやノーマルモードであっても、車速Vが大きくなる場合には路面情報の取得の必要性が高まる。

0057

その点、本実施形態では、ドライブモードDM及び車速Vに基づき、各配分ゲインGib,Ger、すなわち理想軸力Fib及び路面軸力Ferの配分割合を可変させてステアリング10に伝達させる路面情報量を可変させることができるので、車両の走行状態に応じて、必要なだけの路面情報をユーザーが取得できるように調整することができる。これにより、操舵フィーリングを効果的に向上させることができる。

0058

一方、ステアリング10に伝達させる路面情報量を小さくする必要性が高まる場合もある。これは、例えば、砂利道を走行時であり、転舵輪30に対して砂利道から不規則振動が加えられるような場合である。この場合であっても、例えば、配分ゲインGibを大きくする等して、理想軸力Fibの配分を高めるように、ステアリング10に伝達させる路面情報量を可変させることができる。これにより、ステアリング10に伝達させる路面情報量が小さい操舵フィーリングを実現でき、砂利道の不規則な振動が与える操舵フィーリングへの影響を低減もしくは解消することができる。

0059

(4)例えば、上記スポーツモードの場合に、各配分ゲインGib,Gerの総和が1を超えるように配分ゲインGerが大きい値となるように構成している。そのため、ユーザーに取得させる路面情報の伝達のさせ方の幅を広げることができるようになる。これにより、操舵フィーリングの調整の自由度を高めることができ、操舵フィーリングの多様化に寄与することができる。

0060

(第2の実施形態)
以下、第2の実施形態について、第1の実施形態との相違点を中心に図面を参照しつつ説明する。

0061

図5に、本実施形態にかかるシステム構成を示す。なお、図5において、図1に示した部材に対応するものについては、便宜上同一の符号を付している。
本実施形態にかかる操舵装置は、クラッチ12及び反力アクチュエータ20を備えておらず、ステアリング10が、ステアリングシャフト100に固定されており、ステアリングシャフト100の回転に応じてラック軸46が軸方向に往復動する。なお、ステアリングシャフト100は、ステアリング10側から順にコラム軸102、中間軸104、及びピニオン軸106を連結することにより構成されている。

0062

ラック軸46とピニオン軸106とは、所定の交叉角をもって配置されており、ラック軸46に形成された第1ラック歯46aとピニオン軸106に形成されたピニオン歯106aとが噛合されることで第1ラックアンドピニオン機構48が構成されている。そして、ステアリング10の操作に伴うステアリングシャフト100の回転が第1ラックアンドピニオン機構48によりラック軸46の軸方向変位に変換され、この軸方向変位が転舵輪30の転舵角、すなわち車両の進行方向が変更される。

0063

制御装置80は、ステアリング10の操作を補助する力である補助力を付与する転舵アクチュエータ40を備えた操舵装置を操作することにより、ステアリング10の操作に応じて転舵輪30を転舵させる制御を実行する。本実施形態では、転舵アクチュエータ40によってラックアシスト型電動パワーステアリングシステムを実現しており、制御装置80は、転舵側モータ56に接続されたインバータ58を操作することによって、転舵側モータ56の制御量(トルク)を制御する。なお、トルクセンサ94は、ステアリングシャフト100のうちのピニオン軸106に加わる操舵トルクTrqsを検出する。なお、転舵アクチュエータ40は補助力アクチュエータの一例である。

0064

図6に、制御装置80が実行する処理の一部を示す。図6に示す処理は、メモリ84に記載されたプログラムをCPU82が実行することで実現される処理の一部を、実現される処理の種類毎に記載したものである。なお、図6において、図2に示した処理に対応する処理については、便宜上同一の符号を付している。

0065

積算処理部M2は、転舵側センサ90によって検出された回転角度θt0を、0〜360°よりも広い角度領域の数値に変換して回転角度θtとする。また、計量単位設定処理部M4は、積算処理部M2による処理が施された転舵側センサ90の出力値に換算係数Ktを乗算して、転舵角θpを算出する。なお、換算係数Ktは、転舵側減速機54と転舵側モータ56の回転軸56aとの回転速度比、及びピニオン軸50とピニオン軸106との回転速度比の積となっている。

0066

アシストトルク設定処理部M40は、車速Vと操舵トルクTrqsとに基づき、アシストトルクTrqa*を設定する。アシストトルクTrqa*は、操舵トルクTrqsが大きいほど大きい値に設定される。また、アシストトルクTrqa*は、車速Vが速くなるほど、操舵トルクTrqsに対する変化勾配アシスト勾配)が小さくなるように設定される。加算処理部M42は、アシストトルクTrqa*に操舵トルクTrqsを加算して出力する。

0067

反力設定処理部M44は、ステアリング10の回転に抗する力である反力Firを設定する。
偏差算出処理部M46は、加算処理部M42の出力から反力Firを減算した値を出力する。

0068

目標転舵角算出処理部M48は、偏差算出処理部M46の出力値に基づき、目標転舵角θp*を設定する。ここでは、偏差算出処理部M46の出力値Δと、目標転舵角θp*とを関係づける以下の式(c2)にて表現されるモデル式を利用する。

0069

Δ=C・θp*’+J・θp*’’ …(c2)
上記の式(c2)にて表現されるモデルは、ステアリング10の回転に伴って回転する回転軸のトルクと回転角度との関係を定めるモデルである。上記の式(c2)において、粘性係数C及び慣性係数Jは、式(c1)と同様のものである。

0070

転舵角フィードバック処理部M50は、転舵角θpを目標転舵角θp*にフィードバック制御するための操作量として、転舵側モータ56が生成する目標転舵トルクTrqt*を設定する。具体的には、目標転舵角θp*から転舵角θpを減算した値を入力とする比例要素、積分要素及び微分要素のそれぞれの出力値の和を、目標転舵トルクTrqt*とする。加算処理部M52は、加算処理部M42の出力値に目標転舵トルクTrqt*を加算して出力する。

0071

操作信号生成処理部M54は、加算処理部M52の出力値に基づき、インバータ58の操作信号MStを生成してインバータ58に出力する。これは、例えば、加算処理部M52の出力値である、アシストトルクTrqa*、操舵トルクTrqs、及び目標転舵トルクTrqt*をそれぞれ加算した値に基づきq軸電流の指令値を設定し、dq軸の電流を指令値にフィードバック制御するための操作量としてdq軸の電圧指令値を設定する周知の電流フィードバック制御にて実現することができる。なお、アシストトルク設定処理部M40、加算処理部M42、反力設定処理部M44、偏差算出処理部M46、目標転舵角算出処理部M48、転舵角フィードバック処理部M50、加算処理部M52、及び操作信号生成処理部M54は補助力処理部の一例である。そして特に、転舵角フィードバック処理部M50、加算処理部M52、及び操作信号生成処理部M54は転舵角制御処理部の一例である。

0072

図6に示すように、本実施形態において、反力設定処理部M44は、転舵輪30に対して路面から加えられる軸力(路面情報)が反映されるように、反力Firを設定するための演算を実行する軸力配分演算部M10aaを備えている。すなわち、反力設定処理部M44は、反力Firの成分のうち、理想軸力Fibを算出する理想軸力演算部M10abを備えている。理想軸力演算部M10abは、目標転舵角θp*に基づき、理想軸力Fibを算出する。また、反力設定処理部M44は、反力Firの成分のうち、路面軸力Ferを算出する路面軸力演算部M10acを備えている。

0073

そして、軸力配分演算部M10aaは、乗算処理部M10aabにより、理想軸力演算部M10abの出力値に配分ゲインGibを乗算する。また、軸力配分演算部M10aaは、乗算処理部M10aacにより、路面軸力演算部M10acの出力値に配分ゲインGerを乗算する。また、軸力配分演算部M10aaは、加算処理部M10aadにおいて、理想軸力Fibに配分ゲインGibを乗算したものと、路面軸力Ferに配分ゲインGerを乗算したものとを加算して、反力Firを算出して出力する。

0074

以上に説明した本実施形態によれば、上記第1の実施形態の(3)及び(4)の作用及び効果に加えて、以下の作用及び効果を得ることができる。
(5)転舵角フィードバック処理部M50の目標値であって、反力Firに基づき演算される目標転舵角θp*には、理想軸力Fibと路面軸力Ferとを配分することができるようになる。このように少なくとも路面軸力Ferが配分された目標転舵角θp*は、転舵角フィードバック処理部M50によってフィードバックされることにより、転舵角θpをあるべき角度に角度制御することができる。これにより、路面軸力Ferに反映されている路面情報を転舵角θpの微小角度のレベルでステアリング10に伝達させることができ、操舵フィーリングの微調整が可能になる。したがって、ステアリング10の操作を補助する場合であっても、ステアリング10に路面情報を伝達させる際に、転舵角θpが成り行きである場合と比較して操舵フィーリングを調整し易くすることができる。

0075

(6)路面軸力Ferは、転舵側モータ56の実電流値に基づいた電流iqによって算出されるため、ステアリング10の操作を補助する場合であっても、補助力の影響まで加味して路面軸力Ferを難なく算出することができる。

0076

そして、例えば、路面凍結時等、低μ路を走行する場合、低μ路でない路面を走行する場合と比較して転舵輪30に対して加えられる軸力が著しく低下し、ステアリング10の反力が著しく低下する状況となる。こうした反力の変化は、上記構成であれば、ステアリング10の操作を補助するなかで、路面軸力Ferを通じてステアリング10に反力の変化として伝達させることができる。すなわち、上記例のように、低μ路でない路面を走行している状態から低μ路を走行する状態への移行時、ステアリング10の反力が急に低下する状況を転舵アクチュエータ40(転舵側モータ40)によってより精度よく実現することができる。

0077

なお、各実施形態は、以下の形態にて実施することもできる。
・各配分ゲインGib,Gerは、ドライブモードDMに関係なく、総和が1となるように値が設定されていてもよい。この場合、ゲイン演算部M10aaaは、各配分ゲインGib,Gerの何れかをマップ演算し、得られた配分ゲインを1から減算することによって残りの配分ゲインを算出するようにしてもよい。また、各配分ゲインGib,Gerは、総和が1未満となるように値が設定されていてもよい。このように、各配分ゲインGib,Gerの設定の方法を変更することで、様々な操舵フィーリングを実現することができる。

0078

・各配分ゲインGib,Gerを算出するためのパラメータとしては、操舵角θh、転舵角θp、車両の重心点を通る鉛直軸回りの回転角速度(所謂、ヨーレート)、左右の転舵輪30に対してそれぞれ設けられる車輪速センサ車輪速差等のパラメータをドライブモードDMや車速Vの替わりに用いるようにしてもよい。これらドライブモードDMや車速Vを含むパラメータは、単独で用いるようにしてもよいし、任意に組み合わせて用いるようにしてもよい。また、各配分ゲインGib,Gerは、GPS等から得られる情報に基づき、算出されるようにしてもよい。このように、重要視したいパラメータを任意に選択して、操舵フィーリングを調整することができ、操舵フィーリングの調整の自由度を高めることができる。

0079

・各配分ゲインGib,Gerについて、車速Vとの関係は変更可能である。例えば、配分ゲインGibは、車速Vが大きいほど小さい値となるものであってもよい。また、配分ゲインGerは、車速Vが大きいほど大きい値となるものであってもよい。すなわち、車両の仕様や車両の使用環境等に応じて、各配分ゲインGib,Gerについて、車速Vとの関係を設定することができる。

0080

・ドライブモードDMの種類は、車両の仕様等に応じて増減させてもよい。この場合、ドライブモードDMの種類に応じてマップが備えられていればよい。また、ドライブモードDMは、ユーザーにより選択される構成でなくてもよく、例えば、車両の走行状態やユーザーの操作等に応じて、制御装置80(車両側)で自動的に選択される構成でもよい。

0081

・第1の実施形態において、理想軸力Fibは、目標操舵角θh*や操舵トルクTrqsや車速V等、目標転舵角θp*以外のパラメータに基づき、算出される等、他の方法で演算されるようにしてもよい。第2の実施形態についても同様である。

0082

・第1の実施形態において、路面軸力Ferは、上記ヨーレートや上記車速の変化に基づき、算出される等、他の方法で推定演算されるようにしてもよい。第2の実施形態についても同様である。

0083

・第1の実施形態では、反力設定処理部M10から、制限用反力設定処理部M10bを削除してもよい。一方、第2の実施形態では、反力設定処理部M44に、制限用反力設定処理部M10bを追加してもよい。

0084

・目標操舵角算出処理部M20や目標転舵角算出処理部M48において、サスペンションホールアライメント等の仕様によって決定されるバネ係数Kを用いた、所謂、バネ項を追加してモデル化したモデル式を用いるようにしてもよい。

0085

・第1の実施形態において、最大値選択処理部M36では、操舵角θh及び転舵角θpの一対のパラメータを閾値との比較対象としたが、これに限らない。例えば、4輪操舵車において、前輪側の転舵角と後輪側の転舵角と、操舵角との3つのパラメータであってもよい。この場合、最大値選択処理部M36では、3つのパラメータの最大値θeを選択すればよい。さらに、4輪操舵車において、4つの転舵輪のそれぞれの転舵角がそれぞれ異なるものとなる場合、4つの転舵角と、1つの操舵角との5つのパラメータであってもよい。

0086

・第1の実施形態において、最大値選択処理部M36では、1つのパラメータのみを閾値との比較対象としてもよい。例えば、スパイラルケーブル68に余裕を持たせ、いかなる舵角比であっても転舵角θpを転舵角閾値以下に制御すれば、スパイラルケーブル68が延びきることがないなら、転舵角θpのみをパラメータとしてもよい。また、スパイラルケーブル68に余裕がなく、いかなる舵角比であっても操舵角θhを操舵角閾値以下に制御すれば、ラック軸46がラックハウジング44に接触することがないなら、操舵角θhのみをパラメータとしてもよい。

0087

・第1の実施形態では、操舵角フィードバック処理部M22において、目標操舵角θh*から操舵角θhを減算した値を入力とする比例要素及び微分要素の各出力値の和や、比例要素のみによって、反力アクチュエータ20の操作量(目標反力トルクTrqr*)を算出するものであってもよい。また、各実施形態では、転舵角フィードバック処理部M32,M50において、目標転舵角θp*から転舵角θpを減算した値を入力とする比例要素及び微分要素の各出力値の和や、比例要素のみによって、転舵アクチュエータ40の操作量(目標転舵トルクTrqt*)を算出するものであってもよい。

0088

・第2の実施形態では、加算処理部M42を省いてもよく、偏差算出処理部M46や加算処理部M52において用いられる値は、アシストトルクTrqa*(車速V)及び操舵トルクTrqsの何れかのみであってもよい。

0089

・第2の実施形態では、路面軸力Ferの算出に操舵トルクTrqsを考慮するようにしてもよい。すなわち、路面軸力Ferは、q軸の電流iqに基づき演算される転舵側モータ56によってラック軸46に加えられる軸力と、操舵トルクTrqsとを加算して得られるようにしてもよい。この場合、路面軸力Ferをより精度よく算出することができる。

0090

・各実施形態において、路面軸力Ferは、q軸の電流iqに基づき演算されるものに限らない。転舵輪30に加えられる軸力を、例えば、ラック軸46に軸力を検出できる圧力センサ等を用いて直接的に検出し、その検出結果を路面軸力Ferとして用いるようにしてもよい。

0091

・各実施形態において、反力モータ26や転舵側モータ56としては、SPMSMに限らず、例えばIPMSMを用いてもよい。
・各実施形態において、転舵アクチュエータ40としては、ラックアシスト型であれば、例えば、ラック軸46の同軸上に転舵側モータ56を配置するものや、ラック軸46に平行に転舵側モータ56を配置するもの等であってもよい。また、第2の実施形態においては、ラックアシスト型電動パワーステアリングシステムに替えて、ステアリングシャフト100のコラム軸102に補助力を付与するコラムアシスト型電動パワーステアリングシステムを実現するようにしてもよい。この場合、転舵アクチュエータ40に替えて、転舵側モータ56に替えて補助力用のモータを備える補助力アクチュエータをステアリングシャフト100(特に、コラム軸102)に機械的に連結して設けるようにすればよい。なお、補助力用のモータの回転軸の回転角度とステアリングシャフト100の操舵角との間には相関関係がある。したがって、補助力用のモータの回転軸の回転角度と転舵輪30の転舵角との間にも相関関係がある。そのため、制御装置80は、積算処理部M2により、センサによって検出される補助力用のモータの回転軸の回転角度に処理を施し、これに換算係数を乗算して、転舵角θpを算出すればよい。なお、この場合の換算係数は、補助力アクチュエータにおける減速機と補助力用のモータの回転軸との回転速度比、及びコラム軸102とピニオン軸106との回転速度比の積とすればよい。

0092

・各実施形態において、制御装置80としては、CPU82やメモリ84の他、専用のハードウェアASIC)を設けるようにしてもよい。そして、CPU82の一部の処理については、ハードウェア処理とし、ハードウェアからCPU82が取得するようにしてもよい。

0093

10…ステアリング、12…クラッチ、20…反力アクチュエータ、22…ステアリングシャフト、26…反力モータ、28…インバータ、30…転舵輪、40…転舵アクチュエータ、42…ピニオン軸、46…ラック軸、56…転舵側モータ、58…インバータ、80…制御装置、82…CPU、84…メモリ、90…転舵側センサ、92…操舵側センサ、94…トルクセンサ、96…車速センサ、98…スイッチ、100…ステアリングシャフト、106…ピニオン軸。

ページトップへ

この技術を出願した法人

この技術を発明した人物

ページトップへ

関連する挑戦したい社会課題

関連する公募課題

該当するデータがありません

ページトップへ

技術視点だけで見ていませんか?

この技術の活用可能性がある分野

分野別動向を把握したい方- 事業化視点で見る -

ページトップへ

おススメ サービス

おススメ astavisionコンテンツ

新着 最近 公開された関連が強い技術

  • 株式会社ジェイテクトの「 車両統合制御装置」が 公開されました。( 2020/09/24)

    【課題】無駄時間の相違に起因した制御量の制御性の低下を抑制できるようにした車両統合制御装置を提供する。【解決手段】CPU62は、ヨーレート指令値と横加速度指令値とを実現すべく、前輪側転舵アクチュエータ... 詳細

  • 株式会社ジェイテクトの「 操舵制御装置」が 公開されました。( 2020/09/24)

    【課題】運転者によるステアリングホイールの操舵感を安定させることができる操舵制御装置を提供する。【解決手段】エンド反力演算部102は、操舵エンド角演算部102aと、減算器102bと、マップ演算部102... 詳細

  • トヨタ自動車株式会社の「 運転支援装置」が 公開されました。( 2020/09/24)

    【課題】 個々のドライバーの運転スタイルに合った運転支援を行うことができるようにする。【解決手段】 運転支援ECU10は、ドライバー固有の操舵操作特性を表すパラメータ(p1,p2,p3,p4)の値... 詳細

この 技術と関連性が強い技術

関連性が強い 技術一覧

この 技術と関連性が強い人物

関連性が強い人物一覧

この 技術と関連する社会課題

関連する挑戦したい社会課題一覧

この 技術と関連する公募課題

該当するデータがありません

astavision 新着記事

サイト情報について

本サービスは、国が公開している情報(公開特許公報、特許整理標準化データ等)を元に構成されています。出典元のデータには一部間違いやノイズがあり、情報の正確さについては保証致しかねます。また一時的に、各データの収録範囲や更新周期によって、一部の情報が正しく表示されないことがございます。当サイトの情報を元にした諸問題、不利益等について当方は何ら責任を負いかねることを予めご承知おきのほど宜しくお願い申し上げます。

主たる情報の出典

特許情報…特許整理標準化データ(XML編)、公開特許公報、特許公報、審決公報、Patent Map Guidance System データ