図面 (/)

技術 シール付軸受

出願人 NTN株式会社
発明者 稲増一剛佐々木克明和久田貴裕水貝智洋
出願日 2017年2月24日 (4年10ヶ月経過) 出願番号 2017-033549
公開日 2017年9月14日 (4年3ヶ月経過) 公開番号 2017-161069
状態 特許登録済
技術分野 弾性リップ型 密封装置 軸受の密封 ころがり軸受
主要キーワード 粘性パラメータ プレス加工部品 潤滑モード 目詰まり原因 接触シール部材 建設用機械 シールリップ間 使用済み潤滑油
関連する未来課題
重要な関連分野

この項目の情報は公開日時点(2017年9月14日)のものです。
また、この項目は機械的に抽出しているため、正しく解析できていない場合があります

図面 (20)

課題

軸受高速運転に対応可能としながら、所定粒径異物侵入を防ぎつつ、シール付軸受低トルク化高速化を図る。

解決手段

シール部材150のシールリップ151に多数の突起152を形成する。これら突起152に対して周方向摺動するシール摺動面112と、シールリップ151との間に、軸受内部空間160及び外部間に亘って連通し、かつ所定粒径の異物にとって通過不可油通路170が生じる。突起152は周方向に0.3〜2.6mmの間隔で並ぶ。突起152とシール摺動面112間にくさび効果が生じる。軸受回転に伴い、油通路170内の潤滑油がシールリップ151及びシール摺動面112間での油膜形成が促進されて、シールリップ151とシール摺動面112との間が流体潤滑状態となる。

概要

背景

例えば、自動車、各種建設用機械等の車両に搭載されたトランスミッション内にはギア摩耗粉等の異物が混在する。このため、シール部材により、軸受内部空間への異物侵入を防ぎ、転がり軸受早期破損を防止することが行われている。

一般的なシール部材は、ゴム状材料等で形成されたシールリップを有する。軌道輪スリンガ等、シール部材に対して周方向に回転する軸受部品には、シールリップを滑り接触させるシール摺動面が形成されている。シールリップとシール摺動面が全周に亘って滑り接触するため、シールリップの引き摺り抵抗シールトルク)による軸受トルクの上昇を招く。また、その滑り接触の摩擦は、転がり軸受の温度上昇を促進する。この温度上昇が進むと、軸受内部空間及び外部間の圧力差による吸着作用を招き、その摩擦が大きくなる。

このような接触シール部材のシールトルクを抑えるため、シール摺動面にショットピーニングを施すことにより、最大粗さRy2.5μm以下の微小凹凸を有するシール摺動面とし、その凹部に貯留した潤滑油によりシールリップ及びシール摺動面間の油膜形成を促進することが提案されている(特許文献1)。

概要

軸受高速運転に対応可能としながら、所定粒径の異物侵入を防ぎつつ、シール付軸受低トルク化高速化をる。シール部材150のシールリップ151に多数の突起152を形成する。これら突起152に対して周方向に摺動するシール摺動面112と、シールリップ151との間に、軸受内部空間160及び外部間に亘って連通し、かつ所定粒径の異物にとって通過不可油通路170が生じる。突起152は周方向に0.3〜2.6mmの間隔で並ぶ。突起152とシール摺動面112間にくさび効果が生じる。軸受回転に伴い、油通路170内の潤滑油がシールリップ151及びシール摺動面112間での油膜形成が促進されて、シールリップ151とシール摺動面112との間が流体潤滑状態となる。

目的

効果

実績

技術文献被引用数
0件
牽制数
0件

この技術が所属する分野

(分野番号表示ON)※整理標準化データをもとに当社作成

ライセンス契約や譲渡などの可能性がある特許掲載中! 開放特許随時追加・更新中 詳しくはこちら

請求項1

軸受内部空間及び外部間を区切るシール部材と、前記シール部材に設けられたシールリップと、前記シールリップに対して周方向摺動するシール摺動面と、前記シールリップに形成され、前記軸受内部空間及び外部間に亘って連通する油通路を前記シール摺動面及び当該シールリップ間に生じさせる複数の突起と、を備え、前記突起と前記シール摺動面間の隙間は、油通路側で大、突起側で小のくさび状に形成されており、前記突起が、周方向に0.3〜2.6mmの間隔で並んでいるシール付軸受

請求項2

前記突起が、周方向と直交する向きに延びており、当該突起の周方向幅の両端から周方向幅の中央に向かって次第に前記シール摺動面に接近するR形状になっている請求項1に記載のシール付軸受。

請求項3

前記突起の高さが、0.07mm以下に設定されている請求項2に記載のシール付軸受。

請求項4

前記突起のR寸法が、0.15mm以上2.0mm未満になっており、前記突起の周方向幅が、0.2mm以上1.0mm以下になっている請求項3に記載のシール付軸受。

請求項5

前記突起が、周方向全周に亘って均一間隔で配置されている請求項1から4のいずれか1項に記載のシール付軸受。

請求項6

前記シールリップが、芯金の少なくとも内径部に付着した加硫ゴム材により形成されている請求項1から5のいずれか1項に記載のシール付軸受。

請求項7

車両のトランスミッションディファレンシャルの中の少なくとも一つの回転部を支持する請求項1から6のいずれか1項に記載のシール付軸受。

技術分野

0001

この発明は、転がり軸受及びシール部材を備えるシール付軸受に関する。

背景技術

0002

例えば、自動車、各種建設用機械等の車両に搭載されたトランスミッション内にはギア摩耗粉等の異物が混在する。このため、シール部材により、軸受内部空間への異物侵入を防ぎ、転がり軸受の早期破損を防止することが行われている。

0003

一般的なシール部材は、ゴム状材料等で形成されたシールリップを有する。軌道輪スリンガ等、シール部材に対して周方向に回転する軸受部品には、シールリップを滑り接触させるシール摺動面が形成されている。シールリップとシール摺動面が全周に亘って滑り接触するため、シールリップの引き摺り抵抗シールトルク)による軸受トルクの上昇を招く。また、その滑り接触の摩擦は、転がり軸受の温度上昇を促進する。この温度上昇が進むと、軸受内部空間及び外部間の圧力差による吸着作用を招き、その摩擦が大きくなる。

0004

このような接触シール部材のシールトルクを抑えるため、シール摺動面にショットピーニングを施すことにより、最大粗さRy2.5μm以下の微小凹凸を有するシール摺動面とし、その凹部に貯留した潤滑油によりシールリップ及びシール摺動面間の油膜形成を促進することが提案されている(特許文献1)。

先行技術

0005

特開2007−107588号公報

発明が解決しようとする課題

0006

しかしながら、特許文献1のようなショットピーニングによる低トルク化は、シールリップとシール摺動面間のすべり面積を低減させることでもたらされているが、その低減に限界があるので、達成し得る低トルク化が限られていた。

0007

また、軸受運転初期は、潤滑油の温度が比較的低いため、潤滑油の粘度が比較的高く、油膜を形成し易い潤滑条件にあるが、運転継続油温が上昇して粘度が低下すると、油膜が切れ易い潤滑条件となる。軸受高速運転する程、シールリップに対するシール摺動面の相対的な周速が大となり、シールリップ及びシール摺動面間の摩擦に伴う発熱が大となるので、油温上昇やシールリップの摩耗が進み易くなる。このため、シール付軸受の高速運転や許容回転速度には、潤滑条件から限界がある。電気自動車EV)では、駆動系の回転部を支持するシール付軸受の高速運転の要求が強いが、ショットピーニングによる低トルク化では要求に応えきれない。

0008

非接触シール部材とすれば、シールトルクを無くすことは可能だが、シール部材及び軸受部品間の隙間の大きさについて所定粒径の異物侵入を防止できるような各種誤差の管理が難しくなる。

0009

上述の背景に鑑み、この発明が解決しようとする課題は、所定粒径の異物侵入を防ぎつつ、軸受の高速運転に対応可能としながら、シール付軸受の低トルク化を図ることである。

課題を解決するための手段

0010

上記の課題を達成するため、この発明は、軸受内部空間及び外部間を区切るシール部材と、前記シール部材に設けられたシールリップと、前記シールリップに対して周方向に摺動するシール摺動面と、前記シールリップに形成され、前記軸受内部空間及び外部間に亘って連通する油通路を前記シール摺動面及び当該シールリップ間に生じさせる複数の突起と、を備え、前記突起と前記シール摺動面間の隙間は、油通路側で大、突起側で小のくさび状に形成されており、前記突起が、周方向に0.3〜2.6mmの間隔で並んでいるシール付軸受に構成したものである。

発明の効果

0011

上記構成によれば、シール摺動面及びシールリップ間において突起による油通路が生じ、油通路内の潤滑油が軸受回転に伴ってシール摺動面及びシールリップ間にくさび効果引きずり込まれ、この間での油膜形成を促進する。このため、シールリップとシール摺動面間の摩擦係数が低下し、シールトルクが低減する。さらに、軸受内部空間及び外部間の通油性が油通路によって向上するため、転がり軸受の温度上昇が抑制され、ひいては、吸着作用も防止される。
周方向に隣り合う突起間の間隔が小さい程、つまり突起の数が多い程、シールリップに対してシール摺動面が相対的に周方向に回転したとき、1回転当りの突起の通過回数が多くなる。突起が周方向に2.6mm以下の間隔で並んでいると、シール摺動面の周方向全周に亘って油膜が連続する状態に保たれ、各突起との間のくさび効果が途絶えることなく生じ、シールリップとシール摺動面とが油膜によって完全に分離されて直接接触しない状態(すなわち流体潤滑状態)で軸受運転を行うことが可能となる。流体潤滑状態では、シールトルクを実質的にに近づけ、シールリップが実質的に摩耗せず、シールリップ及びシール摺動面間の摺動による発熱を抑えることができる。したがって、シールリップに対するシール摺動面の相対的な周速として許容し得る速度も高くなり、従来では達成できなかったシール付軸受の高速運転の要求にも応えることが可能となる。
突起の間隔は、0.3mm未満に設定すると、シールリップを成形する金型の製造が困難になるので、0.3mm以上にするとよい。
また、油通路を通過可能な異物の粒径は、突起の突出高さに基づいて定めることができる。従い、侵入を防止すべき粒径を任意に定め、その所定粒径の異物が油通路から侵入しないようにすることが可能である。
このように、この発明は、上記構成の採用により、所定粒径の異物侵入を防ぎつつ、軸受の高速運転に対応可能としながら、シール付軸受の低トルク化を図ることができる。

図面の簡単な説明

0012

この発明の第1の実施例に係るシール付軸受を示す断面図
図1の図中右側のシール部材のシールリップ付近の拡大図
図2のIII−III線の拡大断面図
第1の実施例に係るシールリップを軸方向から示す部分正面図
車両のトランスミッション(AT/MT)内の潤滑油に含まれた異物の粒径分布と数を示す図
図5の粒径分布の割合を示す円グラフ
車両のトランスミッション(CVT)内の潤滑油に含まれた異物の粒径分布と数を示す図
図7の粒径分布の割合を示す円グラフ
突起のR寸法ごとに軸受のトルクを測定した試験結果を示すグラフ
第1の実施例での流体潤滑モードを示す潤滑領域
第1の実施例での突起間の間隔と理論油膜厚さと軸受回転トルクの関係を示す図
第1の実施例での突起のR寸法と理論油膜厚さとの関係を示す図
この発明の第2の実施例に係るシールリップを示す部分斜視図
(a)は図13のシールリップの加硫成形の様子を示す模式図、(b)は前記(a)で成形されたシールリップの模式図
(a)は仮想モデルのシールリップの加硫成形の様子を示す模式図、(b)は前記(a)で成形されたシールリップの模式図
この発明の第3の実施例に係るシール付軸受を示す断面図
図15の図中右側のシール部材のシールリップ付近の拡大図
この発明の第4の実施例に係るシール付軸受を示す断面図
この発明の第5の実施例に係るシール付軸受を示す断面図
第5の実施例での突起間の間隔と理論油膜厚さとの関係を示す図
この発明に係るシール付軸受を備えるトランスミッションの一例を示す断面図

0013

この発明の好ましい実施形態を説明する。
第1の実施形態では、前記突起が、周方向と直交する向きに延びており、当該突起が、周方向幅の両端から周方向幅の中央に向かって次第に前記シール摺動面に接近するR形状になっている。第1の実施形態によれば、突起がシール摺動面との摺動方向である周方向に直交する向きに延び、かつ突起が摺動接触し得る領域を減らすR形状になっているので、突起とシール摺動面の摺動接触する領域を線状にすることができる。また、このようなR形状にすると、前述のくさび状の隙間のくさび角度が広大側から狭小側に向かって次第に小さくなることから、くさび効果を効果的に発生させて線状領域での油圧を高めることができ、突起とシール摺動面との間の潤滑状態を流体潤滑状態とすることが容易となる。また、シール部材の取り付け時、突起がシール摺動面に擦られても、R形状の突起が周方向に曲がってしまう懸念がなく、取り付け時にシールトルクの低減性能を損なう恐れがない。

0014

第1の実施形態では、前記突起の高さが、0.07mm以下に設定されている。粒径0.05mm(50μm)を超える異物は、軸受寿命に悪影響を及ぼす。突起の高さを0.07mm以下に設定すれば、そのような異物が容易に通過できないような狭い隙間(油通路を含む)をシールリップとシール摺動面間に生じさせることができることがわかった。

0015

第1の実施形態では、前記突起のR寸法が、0.15mm以上2.0mm未満になっており、前記突起の周方向幅が、0.2mm以上1.0mm以下になっている。突起のR寸法が大きい方が、くさび効果が発生し易くなる。そのR寸法が0.15mmの場合、突起とシール摺動面とを完全に分離させるのに十分な油膜を形成することが可能となる。突起の高さを0.07mm以下に設定する場合、シールリップの金型製造が困難にならないようにするため、R寸法を0.15mm以上2.0mm未満にすることが好ましい。突起の周方向幅は、R寸法に依存するので、0.2mm以上1.0mm以下に設定することが好ましい。

0016

第2の実施形態では、前記突起が、周方向全周に亘って均一間隔で配置されている。第2の実施形態によれば、シール摺動面の全周に亘って油膜形成を均一に促進することができる。

0017

以下、この発明に係る第1の実施例を図1図12に基づいて説明する。図1に示すように、第1の実施例は、内輪110と、外輪120と、保持器130に保持された複数の転動体140と、内輪110及び外輪120間に形成された軸受内部空間の両端を密封する二つのシール部材150とを備えるシール付軸受100となっている。なお、以下では、シール付軸受100の軸受中心軸に沿った方向を「軸方向」という。軸方向に直交する方向を「径方向」という。軸受中心軸回り円周方向を「周方向」という。

0018

内輪110及び外輪120によって環状の軸受内部空間160が形成される。複数の転動体140は、軸受内部空間160内で内輪110及び外輪120間に介在しながら公転する。軸受内部空間160には、グリースオイルバス等の適宜の手段により、潤滑油が供給される。

0019

内輪110は、回転軸(図示省略)に取り付けられ、回転軸と一体に回転する。回転軸は、例えば、車両のトランスミッション又はディファレンシャルの回転部として設けられる。外輪120は、ハウジング、ギア等、前記回転軸からの荷重負荷させる部材に取り付けられる。

0020

このシール付軸受100は、深溝玉軸受となっている。転動体140として、玉が採用されている。内輪110及び外輪120は、それぞれ横断面(図示断面に相当)において転動体140の円周の約1/3に相当し、かつ周方向全周に亘って途切れのない軌道溝111、121をもっている。

0021

外輪120の内周の端部に、シール部材150を保持するシール溝122が形成されている。シール部材150は、その外周縁をシール溝122に圧入することにより、外輪120に取り付けられる。

0022

シール部材150は、軸受内部空間160及び外部間を区切る。シール部材150を境界とした外部側には、ギアの摩耗粉、クラッチの摩耗粉、微小砕石等、シール付軸受100の組み込み先に応じた異物が存在する。このような粉状の異物は、潤滑油や雰囲気の流れによってシール部材150付近に到達し得る。シール部材150は、外部から軸受内部空間160への異物侵入を防止する。

0023

シール部材150は、その内周側で舌片状に突き出たシールリップ151を有する。内輪110の外周には、シールリップ151に対して周方向に摺動するシール摺動面112が形成されている。シール摺動面112は、周方向全周に亘る円筒面状になっている。シールリップ151は、ラジアルリップになっている。ここで、ラジアルリップは、軸方向に沿ったシール摺動面又は軸方向に対して45°以内の鋭角勾配をもったシール摺動面と密封作用を奏するシールリップであって、当該シール摺動面との間に径方向の締め代をもったもののことをいう。

0024

図1のシール部材150のシールリップ151付近を図2に拡大して示す。また、図2中のIII−III線の断面図を図3に示す。この断面は、シールリップ151とシール摺動面112との間におけるシール摺動面112との直交方向の隙間(油通路170を含む)について、設計上、シール摺動面112との直交方向に最も狭いところでの様子を示すものである。また、シールリップ151を軸受内部空間側から軸方向に視たときの外観図4に示す。図4は、図1に示すシール部材150の単独かつ自然な状態におけるシールリップ151の外形を描いたものである。ここで、自然な状態は、単独の状態にあるシール部材に外力が作用していない、すなわち当該シール部材が外力によって変形していない状態のことをいう(以下、この状態のことを単に「自然状態と呼ぶ」。)。

0025

図2図4に示すように、シールリップ151は、シール摺動面112との直交方向、すなわちシール摺動面112に接する接線に垂直な法線方向に突出高さをもった突起152を有する。シール摺動面112が軸受中心軸を中心とした円筒面状なので、これとの直交方向は、径方向に相当する。

0026

シールリップ151及びシール摺動面112間に径方向の締め代が設定されている。この締め代により、シール摺動面112に径方向に押し付けられたシールリップ151が外部側へ曲がったゴム状弾性の変形を生じ、シールリップ151の緊迫力生む。シール部材150の取り付け誤差製造誤差等は、シールリップ151の曲がり具合の変化によって吸収される。

0027

図4に示すように、シールリップ151は、自然状態においてシールリップ151の内径を規定する先端153を有する。

0028

図2図4に示すように、突起152は、周方向と直交する向きに延びている。突起152は、シールリップ151の先端153まで及んでおり、シール摺動面112との間に径方向の締め代をもった範囲の概ね全域に亘って形成されている。

0029

突起152は、周方向に一定の間隔dで並んでいる。シールリップ151を軸方向から視た外観で考えると、複数の突起152が、間隔dに対応の一定のピッチ角度θで周方向に配置された放射状となって現れている。なお、放射中心は、図外のシール部材150の中心軸(軸受中心軸に一致)上にある。

0030

周方向に隣り合う突起152間の間隔d及び突起152の周方向幅wは、放射状に配置された各突起152がシールリップ151の先端153付近に存在していることと相俟って、シールリップ151が各突起152上でのみシール摺動面112と摺動接触し得るものとなり、各突起152間に油通路170が常に生じさせられるように設定されている。すなわち、シール部材150の取り付け時、シール摺動面112に接触する突起152がシールリップ151の緊迫力に抗して突っ張ることにより、突起152を境とした周方向両側において軸受内部空間160及び外部間に亘って連通する油通路170が生じる。潤滑油は、外部から油通路170を通って軸受内部空間160へ至る。軸受内部空間160内に入った潤滑油や、グリースを封入している場合の基油は、軸受内部空間160から油通路170を通って外部へ至る。

0031

油通路170を通過可能な粒径は、突起152のシール摺動面112との直交方向の突出高さhに基づいて定めることができる。従い、第1の実施例は、侵入を防止すべき粒径を任意に定め、その所定粒径の異物が油通路170から軸受内部空間160へ侵入しないようにすることが可能である。

0032

転がり軸受の早期破損原因となるような摩耗粉は、粒径50μmを超えるような異物である。突起152の突出高さhを0.07mm以下に設定しておけば、そのような摩耗粉が通過できない油通路170を生じさせることができることがわかった。なお、突出高さhは0.04mm以下に設定することが好ましく、公差を考慮して、0.07mm以下と設定している。一方、突起152の突出高さhを0.07mmに設定することで、油通路70の通油性を良好にすることができる。

0033

突起152及びシール摺動面112間に生じる隙間は、油通路170に周方向に近い側が大、突起152に周方向に近い側が小となるくさび状に形成されている。突起152の表面154は、前述のくさび状に対応の曲面となっている。図3に示すように、内輪110の回転に伴い、シール摺動面112がシールリップ151に対して周方向に回転するとき(同図中に回転方向矢線Aで示す。)、油通路170内の潤滑油(図中にドット模様で示す。)は、シール摺動面112の回転に伴ってシール摺動面112及びシールリップ151の突起152間に引きずり込まれ、この間での油膜形成を促進する。このため、シールリップ151とシール摺動面112間の摩擦係数(μ)が低下し、シールトルクが低減する。さらに、軸受内部空間160及び外部間の通油性は、油通路170によって向上する。このため、シール付軸受100の温度上昇が抑制され、ひいては、シールリップ151の吸着作用も防止される。

0034

図1に示すように、シール部材150は、金属板製の芯金155と、芯金155の少なくとも内径部に付着した加硫ゴム材156により形成されている。シールリップ151は、加硫ゴム材156により舌片状に形成されている。芯金155は、周方向全周に亘る環状に形成されたプレス加工部品になっている。加硫ゴム材156は、加硫成形されたゴム部になっている。シール部材150は、例えば、芯金155を型に入れて加硫ゴム材156を加硫成形することにより、一体の部品として製造される。加硫ゴム材156は、芯金155の全体に付着させてもよいし、芯金155の内径部のみに付着させてもよい。

0035

このように、第1の実施例は、シールリップ151の加硫成形時に突起152をシールリップ151に形成することが可能であり、また、シール摺動面112を加工の容易な円筒面状、溝状等、全周に亘って同じ断面形状として軌道輪に直接形成することが簡単である。

0036

シールリップ151の緊迫力や潤滑油の油圧により、中実な突起152に実質的変形(突起152とシール摺動面112間の潤滑性能に影響を及ぼすような変形)が生じないようになっている。したがって、軸受運転中の突起152の形状は、シールリップ151の加硫成形の際に転写された形状と同じに考えてよい。

0037

このシール付軸受100は、車両のトランスミッション内の回転部を支持する用途を想定している。車両のトランスミッション内に存在するシール付軸受への給油は、一般に、跳ねかけ、オイルバス、ノズル噴射等の適宜の方式で行われる。よって、シール付軸受の内輪もしくは外輪に固定されるシール部材のシールリップ周辺には、潤滑油が存在している。給油される潤滑油は、トランスミッション内に存在するギア等の他の潤滑部分でも共通に用いられるものである。その潤滑油は、オイルポンプ循環されており、その循環経路に設けられたオイルフィルタによって濾過される。

0038

本願の発明者は、実際に市場で使用された潤滑油を車両の走行距離別に回収し、それら使用済み潤滑油に混ざっている異物の数、異物の粒径の分布、異物の材料を調べた。そのオーマチクトランスミッション(AT)又はマニュアルトランスミッション(MT)の車両8台から回収した潤滑油について調べた異物の数と粒径分布を図5に示す。図5縦軸対数目盛りとし、横軸に車両の走行距離を取り、その縦軸に異物(微粒きょう雑物)の100ml当り個数を取っている。計数対象とする異物は、粒径5μm以上のものとした。計数は、粒径の区分ごとに行った。その区分は、粒径5μm以上15μm未満、粒径15μm以上25μm未満、粒径20μm以上50μm未満、粒径50μm以上100μm未満、粒径100μm以上としている。ここでの測定は、ハイアックロイコ社製の型番8000Aの測定器にて、微粒きょう雑物質量法を用いた。図5の粒径分布を図6に円グラフで示す。

0039

図7は、無段変速機(CVT)の車両10台から回収した潤滑油について調べた異物の数と粒径分布を図5と同様に示した。図7の粒径分布を図8に円グラフで示す。回収対象とした車両メーカー、車種、走行距離はばらばらであるが、図5図6図7図8との比較から明らかなように、ギアが多用されるAT/MTの方がCVTよりも異物の粒径、異物の数ともに多い傾向が認められた。また、トランスミッションの形式を問わず、粒径の分布としては、50μm以下のものが99.9%以上を占めた。粒径50μmを超える異物の数は、走行距離が大きくなってもAT/MTの場合で1000個未満、CVTの場合で200個未満であった。このことは、近年、オイルフィルタの性能が向上し、潤滑油中の異物が微細化している(つまり大きな粒径の異物がオイルフィルタで取り除かれる)ことを示している。

0040

一方、軸受内部の潤滑油が異物を含む場合に、その異物の粒径と軸受寿命との関係について調査を行なったところ、粒径の大きな異物が多くなる程に軸受寿命が低下する傾向は存在するが、近年のトランスミッション内の環境のように粒径50μm以上の異物が少々存在する程度であれば、シールが無い状態で異物が軸受内に入っても、転がり軸受の寿命比実際寿命計算寿命に対する比)が、自動車のトランスミッションでの実用に十分耐えうる値(例えば7〜10倍程度)を示すことが分かった。

0041

以上の結果に基づき、車両のトランスミッションやディファレンシャルギヤ等の駆動系の回転部支持に用いられるシール付軸受に対し、オイルフィルタで濾過される潤滑油を給油する場合、粒径50μmを超えるような大きな異物が軸受内部へ侵入することをシール部材で防止する限り、潤滑油に含まれる粒径50μm以下の異物が軸受内部に侵入することを許容しても軸受寿命に問題を起こさない、といえる。そして、これを許容するのならば、シールリップとシール摺動面間での潤滑油の流通を潤沢に確保し、前述のくさび効果と相俟ってシールリップとシール摺動面間を流体潤滑状態にすることが実現可能である。

0042

そこで、図2図3に示すように、突起152の高さhは、0.07mmに設定されている。この突起152の高さhは、設計上、シール摺動面112と摺動接触し得る範囲内において最も高い位置での値である。この位置は、各突起152とシール摺動面112との間に設定された締め代が最大となるところでもある。軸受運転中の突起152の変形量は無視できるから、シールリップ151とシール摺動面112との間におけるシール摺動面112との直交方向の隙間(油通路170を含む)は、シール摺動面112との直交方向に最も狭いところで突起152の高さhに相当の広さとなり、実質的に0.07mmを超えない。このため、粒径50μmを超える異物が外部の潤滑油に含まれていたとしても、その異物が油通路170を通過することは略起こらない、と考えられる。

0043

突起152は、周方向幅wの両端から周方向幅の中央に向かって次第にシール摺動面112に接近するR形状になっている。このR形状は、突起152の放射方向の全長に亘って与えられている。このため、突起152とシール摺動面112とが摺動接触し得る領域は、突起152の周方向幅の中央を通る仮想アキシアル平面Pax上に線状で存在する。突起152のR形状の曲率中心は、仮想アキシアル平面Pax上にある。

0044

シールリップ151に対してシール摺動面112が相対的に図中矢線A方向に回転すると、油通路170内の潤滑油が突起152とシール摺動面112との間のくさび状の隙間に引き摺り込まれる。前述のくさび状の隙間におけるくさび角度は、引き込まれる潤滑油が存在する広大側の油通路170から狭小側に向かって次第に小さくなることから、突起152とシール摺動面112とが摺動接触し得る線状領域(仮想アキシアル平面Pax上)に近いところ程、くさび効果が強く生じる。したがって、その線状領域での油膜の油圧をより効果的に高め、突起152をシール摺動面112から完全に離れさせ、その線状領域での油膜を厚く生じさせることができ、ひいては、突起152とシール摺動面112との間の潤滑状態を流体潤滑状態とすることが容易となる。

0045

ここで、突起152とシール摺動面112との間を完全に分離させる油膜があれば、突起152に対してシール摺動面112が直接に接触しない状態で摺動する流体潤滑状態となる。このような油膜を各突起152とシール摺動面112との間で保つことにより、シールリップ151及びシール摺動面112間を流体潤滑状態にすることができる。

0046

その流体潤滑状態を容易に実現するため、シールリップ151とシール摺動面112間の締め代に基づくシールリップ151の緊迫力をなるべく弱く設定する方がよい。このため、シールリップ151のうち、外部側への曲げ変形を与える腰部をなるべく薄く形成している。

0047

また、最大高さ粗さRzを小さくする方が、流体潤滑状態とするのに必要な油膜の厚さが小さくなる。このため、シール摺動面112にショットピーニング処理を施しておらず、シール摺動面112の最大高さ粗さRzを1μm未満としている。ここで、最大高さ粗さRzは、JIS規格のB0601:2013で規定された最大高さ粗さのことをいう。

0048

また、周方向に隣り合う突起152間の間隔dが小さい程、つまり突起152の数が多い程、シールリップ151に対してシール摺動面112が相対的に周方向に回転したとき、1回転当りの突起152の通過回数が多くなり、シール摺動面112の周方向全周に亘って油膜が連続する状態に保たれ、各突起152との間のくさび効果が途絶えることなく生じ易くなるので、流体潤滑状態を保ち易くなる。

0049

また、突起152のR寸法(突起152の表面154における曲率半径)が大きい方が、くさび効果が発生し易くなる。

0050

また、突起152のR寸法ごとに軸受のトルク測定試験を行ったところ(図9参照)、突起152のR寸法が1.5mmのとき、R寸法が0.2mm又は0.8mmのときと比較して、軸受100の実使用環境下に近い温度80℃におけるトルクが最小の値となった。突起152のR寸法が1.8mmのときも1.5mmと同等の結果が得られた。くさび効果を発生し易く、かつ、低トルクを実現するため、公差を考慮して、突起152のR寸法は、1.5mm以上2.0mm以下の値が好ましい。なお、図9中には、参考として、シールを備えておらず、かつ、軸受の転動体中心(軸受の最下端)が油面となる油浴潤滑環境下で使用される軸受のトルクを理論的に算出した計算値も示した。突起152のR寸法を1.5mm以上2.0mm以下(より具体的には、1.5mm以上1.8mm以下)とすることにより、シールを備えていないことからシールトルクが存在せず、かつ、攪拌抵抗も小さいと考えられる軸受(図9に示す計算値)と同等の低トルクを実現することができる。

0051

本願発明者は、突起152の高さhが0.07mmの前提で、突起152間の間隔dが0.3mm以上2.6mm以下、突起152の周方向幅wが0.2mm以上1.0mm以下、かつ突起152のR寸法が0.15mm以上2.0mm未満の範囲で突起152とシール摺動面112間の理論油膜厚さを計算した。その計算は、シールリップ151に対してシール摺動面112が相対的に周方向に回転する速度(周速)を0.02〜20.2m/sの範囲で行なった。また、その計算は、潤滑油として、CVTのプーリベルト潤滑を行うCVTFを想定し、油温30℃の場合と、油温120℃の場合とで行なった。その結果、これらの使用条件であれば、計算上、Greenwood−Johnsonの決めた無次元数である粘性パラメータgvと弾性パラメータgeに基づく線接触の場合の潤滑領域図において、等粘度-剛体領域(R−Iモード)又は等粘度-弾性体領域(E−Iモード,ソフトEHL)のいずれかの潤滑モードに分布する、すなわち流体潤滑状態となることが分かった。図10に前述の潤滑領域図における計算結果分布状況を示す。

0052

また、本願発明者は、図3図4に示す突起152間の間隔dと、突起152及びシール摺動面112間の理論油膜厚さとの関係を計算で求めた。また、本願発明者は、突起152のR寸法と、突起152及びシール摺動面112間の理論油膜厚さとの関係を計算で求めた。理論油膜厚さは、R−IモードにおいてMartinの最小膜厚計算式を用い、E−IモードにおいてHerrebrughの最小膜厚計算式を用いた。さらに、本願発明者は、突起152間の間隔dと、シール付軸受100の回転トルクとの関係を実験で調べた。図11に、突起152間の間隔dと、理論油膜厚さと、軸受回転トルクとの関係を示す。図12に、突起152のR寸法と、理論油膜厚さとの関係を示す。突起152とシール摺動面112間の油膜厚さが薄すぎると摩擦係数μが増大し、逆に厚すぎると異物の侵入抑制効果を悪化させる可能性が出てくるので、最大高さ粗さRzを上回る油膜厚さを前提で最適な油膜厚さを設定すればよい。

0053

図11より、突起152間の間隔dが2.6mmの場合、突起152とシール摺動面112との間には、計算上、約3μmの油膜(1μm未満の最大高さ粗さRzを余裕で上回る)が形成され、2.6mmより小さい場合に油膜が厚くなる傾向があることが分かり、また、2.6mm以下の場合に軸受回転トルクが低下傾向(すなわちシールトルクの低下傾向)を示すことが分かる。したがって、突起152間の間隔dは、2.6mm以下に設定することができる。なお、突起152間の間隔dが0.3mm未満になると、シールリップ151を金型で成形することが困難になるので、間隔dを0.3mm以上に設定することが好ましい。

0054

図12より、突起152のR寸法が0.15mmの場合、計算上、3μm以上の油膜が形成されることが分かる。したがって、突起152の高さhを0.07mmに設定する場合、金型で成形することを考慮すると、R寸法を0.15mm以上2.0mm未満に設定することが好ましい。また、突起152の高さhを0.07mmに設定する場合、突起152の周方向幅wがR寸法に依存するので、突起152の周方向幅wを0.2mm以上1.0mm以下に設定することが好ましい。

0055

これまでの計算結果等を踏まえ、第1の実施例では、図2図4に示すような突起152の高さhが0.07mmに設定され、突起152間の間隔dが0.3mm以上2.6mm以下に設定され、突起152の周方向幅wが0.2mm以上1.0mm以下に設定され、かつ突起152のR寸法が0.15mm以上2.0mm未満の範囲に設定されている。すなわち、シールリップ151には、前述のシール摺動面112の周速0.2m/s以上においてシールリップ151及びシール摺動面112間を流体潤滑状態にすることが可能な態様で突起152が形成されている。なお、その周速0.2m/s未満のときは、突起152とシール摺動面112間が境界潤滑状態になる。周速0.2m/sは、車両のトランスミッションにおいて停止から速やかに到達する速度であるから、軸受運転時間の略全時間においてシールリップ151及びシール摺動面112間を流体潤滑状態にすることができる。

0056

このように、第1の実施例に係るシール付軸受100は、軸受寿命に悪影響を及ぼすような粒径の異物の軸受内部空間への侵入をシール部材150によって防ぎつつ、シールリップ151及びシール摺動面112間の摺動の摩擦係数μを流体潤滑によって極限まで低減し、ひいては、シールトルクを顕著に低減して軸受回転トルクの低トルク化を著しく図ることができる(図1図3参照)。

0057

さらに、第1の実施例に係るシール付軸受100は、従来であればシールリップの摩耗やシールリップ及びシール摺動面間の摺動による発熱の問題が起こるようなシール摺動面の周速(例えば30m/s以上)で運転される場合において、シールリップ151及びシール摺動面112間を直接接触のない流体潤滑状態とすることが可能なため、シールリップ151の摩耗を実質的に無くすと共に前述の発熱も抑えることができる。このため、第1の実施例に係るシール付軸受100は、従来達成できなかったシール付軸受の高速運転の要求にも対応することが可能である。

0058

さらに、第1の実施例に係るシール付軸受100は、突起152がR形状に形成されているので、シール部材150を外輪120に取り付ける際に突起152がシール摺動面112に擦られても、突起152が周方向に曲がってしまう懸念がなく、取り付け時にシールトルクの低減性能を損なう恐れがない。例えば、突起をった形状にした場合、シール部材の取り付け時にシール摺動面に擦られる多数の突起が周方向のどちら側に曲がるか分からず、シール摺動面との相対回転方向に対して適切なくさび状の隙間となる方へ全ての突起が曲がるように取り付けることは極めて困難である。不適切な向きに曲がった突起のところではくさび効果を満足に得ることができず、シールトルクの低減性能を損なうことになる。

0059

第2の実施例を図13図15に基づいて説明する。第2の実施例は、第1の実施例から突起形状のみを変更したものであり、図13に示すように、第2の実施例に係る突起201は、シールリップ202の先端203に向かって次第に低くなる形状となっている。なお、図13は、自然状態におけるシールリップ202の突起201付近の拡大斜視図を描いたものである。突起202のR寸法(突起201の表面204における曲率半径)や曲率中心については、突起201をシールリップ202の先端203に向かって次第に低くするため、シールリップ202の先端203に向かって次第にR寸法を拡大し、かつ曲率中心を外部側へ移している。

0060

その突起201の高さは、シールリップ202の先端203上で実質的に零となっている。このため、突起201は、シールリップ202の先端203上に及んでおらず、突起201とシールリップ202の先端203との間には、平坦な面205が存在している。このため、シールリップ202の先端203は、シールリップ202の軸受内部空間側で周方向全周に亘る面205と、シールリップ202の外部側で周方向全周に亘る表面の交わる境界線となっている。

0061

シールリップ202を加硫成形する様子を図14に示す。なお、図14は、理解を容易にするために概略的に描いたものであり、シールリップ202の形状も大雑把に示している。シールリップ202の加硫成形は、芯金206にゴムシートを加硫成形することで行われる。この際、上型Mp1と下型Mp2とでゴムシートを挟み込み、シール部材のシールリップ202等のゴム部分を成形する。上型Mp1と下型Mp2を合せる上下方向は、軸方向に相当する。したがって、自然状態においてシールリップ202の内径を規定する先端203は、上型Mp1の転写面に接するシールリップ202の上面部と、下型Mp2の転写面に接するシールリップ202の下面部の境界線となるので、上型Mp1と下型Mp2の合わせ部であるパーティングラインPl上に位置することになる。

0062

今、シールリップの先端に突起が及んでいるモデルを仮想すると、図15のようになる。この仮想モデルでは、シールリップ202’の先端203’上に突起201’を成形するための凹凸状がパーティングラインPl上に存在するため、加硫後に図示のようなバリ207が発生し易い。バリ207が発生すると、軸受運転中にバリ207がシールリップ202’から離れると、オイルフィルタや潤滑油の循環経路の目詰まり原因となる。

0063

一方、図14に示すように、シールリップ202が突起201とシールリップ202の先端203との間に平坦な面205を有する形状の場合、パーティングラインPl上に突起201を成形するための凹凸状が存在せず、図15のようなバリ207が発生しない。このように、第2の実施例に係るシール部材は、シールリップ202を加硫成形する際にシールリップ202の先端203上にバリが発生しないようにすることができる。

0064

なお、第2の実施例では、突起201がシールリップ202の先端203上で高さをもたず、突起201とシールリップ202の先端203との間に平坦な面205が存在する例を示したが、突起がシールリップの先端上で高さをもつ場合でも、突起がシールリップの先端に向かって次第に低くなる形状であれば、パーティングライン上において突起を成形するための凹凸状が穏やかになるので、シールリップの先端上においてバリを発生しにくくすることができる。

0065

第3の実施例を図16図17に基づいて説明する。第3の実施例に係るシール付軸受300の内輪310は、周方向全周に亘って形成されたシール溝311を有する。内輪310及び外輪320間に形成された軸受内部空間の両端を密封するシール部材330、340は、外輪320のシール溝321、322に保持されている。

0066

シール部材330、340は、アキシアルリップとして設けられたシールリップ331、341と、シールリップ331、341よりも外部側に位置する外側リップ332、342とを有する。シールリップ331、341と外側リップ332、342は、芯金333、343に付着する腰部から分岐している。

0067

ここで、アキシアルリップは、径方向に沿ったシール摺動面又は径方向に対して45°未満の鋭角の勾配をもったシール摺動面と密封作用を奏するシールリップであって、当該シール摺動面との間に軸方向の締め代をもったもののことをいう。

0068

シール部材330、340のシールリップ331、341に対して摺動するシール摺動面312、313は、シール溝311の溝底から軌道溝314側に向かって拡径する溝側面に存在しており、径方向に対して45°未満の鋭角の勾配αをもっている。

0069

内輪310の軌道溝314の両側に形成された一対の肩部315、316のうち、アキシアル荷重を受ける負荷側(図中右側)の肩部315が、反対の非負荷側(図中左側)の肩部316よりも高く形成されている。非負荷側の肩部316は、深溝玉軸受相当の肩高さになっている。したがって、シール付軸受300は、深溝玉軸受の良好な低トルク性を奏するものでありながら、深溝玉軸受よりも優れたアキシアル荷重の負荷能力をもっている。

0070

それら肩部315、316にシール摺動面312、313が形成されている。負荷側の肩部315の外径と非負荷側の肩部316の外径との間に大きな径差があるため、負荷側の肩部315に形成されたシール摺動面312の径と、非負荷側の肩部316に形成されたシール摺動面313の径とが相異している。すなわち、図中右側のシール摺動面312の径は、図中左側のシール摺動面313の径よりも大きい。このため、軸受運転中、図中右側のシール摺動面312の周速は、図中左側のシール摺動面313よりも高速になる。

0071

また、軸受運転中、軸受内部空間では、前述の肩部315、316間の径差により、潤滑油を図中左側から右側へ送るポンプ作用が生じる。

0072

シールリップ331、341の突起334、344は、加硫成形の際、径方向に沿った向きに形成されている。なお、図示では、シール摺動面312、313と突起334、344間の締め代を見せるため、自然状態に相当のシールリップ331、341の形状を描いている。突起334、344がシール摺動面312、313に軸方向から押し当てられることでシールリップ331、341が概ねシール摺動面312、313に沿うように傾き、突起334、344とシール摺動面312、313との間に前述のような油通路と、くさび状の隙間とが生じさせられる(図3参照)。

0073

図16図17に示す外側リップ332、342は、シール溝311の外側の溝壁部との間にラビリンスすきま350を形成する。このため、粒径50μmを超える異物は、外部からシール溝311内へ容易には侵入できない。

0074

図中右側のシール部材330での突起334の数と、図中左側のシール部材340での突起344の数とが相異している。また、図中右側のシール部材330での突起334の周方向ピッチ角度と、図中左側のシール部材340での突起344の周方向ピッチ角度とが相異している。これら相異は、図中右側のシール部材330及びシール摺動面312間と、図中左側のシール部材340及びシール摺動面313間とで前述の周速差やポンプ作用による潤滑条件の相違があることから、これら左右の各間で形成される油膜を同等にすることと、厚すぎる油膜形成のために粒径50μmを超える異物の侵入が発生し易くならいないように最適にすることを目的として設定されている。したがって、第3の実施例に係るシール付軸受300は、図中右側のシール部材330とシール摺動面312間と、図中左側のシール部材340とシール摺動面313間のそれぞれを適切に流体潤滑状態として低トルク化と異物侵入の抑制とを両立させることができる。

0075

また、第3の実施例に係るシール付軸受300は、ラビリンスすきま350の形成によって、シールリップ331、341への異物到達を困難にしているので、低トルク化を阻害しないように異物侵入をより抑制することができる。一般に、アキシアルリップとして設けられたシールリップは、ラジアルリップとして設けられたシールリップに比べて、軸受運転中に起こす軸方向の移動量が大きく、その最大移動時に対応のシール摺動面との間に隙間が大きく開くことがある。このため、アキシアルリップとしてシールリップを設けることは、異物侵入に対して不利となる。第3の実施例では、そのようなアキシアルリップであるシールリップ331、341の不利をラビリンスすきま350によるシール効果で補うことができるので、ラジアルリップとして設けられた第1〜第2の実施例に対して大きく軸受寿命が劣る懸念はない。

0076

第4の実施例を図18に基づいて説明する。第4の実施例に係るシール付軸受400は、内輪410と、外輪420と、内輪410及び外輪420の軌道溝411、421間に介在する複数の玉430と、内輪410及び外輪420間に形成された軸受内部空間の両端を密封する二つのシール部材440、450とを備え、内輪410の軌道溝411の両側に形成された一対の肩部412、413のうち、アキシアル荷重を受ける負荷側の肩部412が、反対の非負荷側の肩部413よりも高く形成されている玉軸受という点で第3の実施例と共通するものであって、シール部材440、450が、ラジアルリップとして設けられたシールリップ441、451を有する点で第1の実施例と共通するものとなっている。

0077

内輪410は、シール溝をもたず、負荷側の肩部412の外径を規定する円筒面状のシール摺動面414と、非負荷側の肩部413の外径を規定する円筒面状のシール摺動面415とを有する。図中右側のシール摺動面414と図中左側のシール摺動面415との間の径差は、第3の実施例と同程度であり、軸受運転中の周速差も同程度となる。このため、図中右側のシール部材440と図中左側のシール部材450との間での突起442、452の数や周方向ピッチ角度の相違が第3の実施例と同程度である。これにより、第4の実施例に係るシール付軸受400においても、シール部材440とシール摺動面414との間、シール部材450とシール摺動面415との間で、油膜を最適かつ同等に形成して流体潤滑状態にする低トルク化と、異物侵入の抑制とを両立させている。

0078

第5の実施例を図19に基づいて説明する。第5の実施例は、円すいころ軸受にこの発明を適用したものである。図19に示すように、第5の実施例に係るシール付軸受500は、軌道面511、大つば512及び小つば513を有する内輪510と、軌道面521を有する外輪520と、内輪510及び外輪520の軌道面511、521間に介在する複数の円すいころ530と、内輪510及び外輪520間に形成された軸受内部空間の両端を密封する二つのシール部材540、550とを備える円すいころ軸受となっている。

0079

大つば512は、軸受運転中、円すいころ530の大端面を案内し、アキシアル荷重を受ける。小つば513は、大つば512よりも小さな外径をもち、円すいころ530の小端面を受けて円すいころ530の内輪510からの脱落を防止する。

0080

外輪520はシール溝をもたず、シール部材540、550の芯金が外輪520の内周端部に圧入嵌合されている。

0081

シール部材540、550は、ラジアルリップとして設けられたシールリップ541、551を有する。図中右側のシール部材540のシールリップ541に対して周方向に摺動するシール摺動面514は、内輪510の大つば512の外径を規定する円筒面状に形成されている。図中左側のシール部材550のシールリップ551に対して周方向に摺動するシール摺動面515は、小つば513の外径を規定する円筒面状に形成されている。大つば512に形成されたシール摺動面514と、小つば513に形成されたシール摺動面515との間に大きな径差があるため、軸受運転中、図中右側のシール摺動面514の周速は、図中左側のシール摺動面515よりも高速になる。また、軸受運転中、軸受内部空間では、前述の径差により、潤滑油を図中左側から右側へ送るポンプ作用が生じる。

0082

シールリップ541、551に形成された突起542、552により、図3のような油通路及びくさび状の隙間が生じさせられるので、シールリップ541及びシール摺動面514間、シールリップ551及びシール摺動面515間をそれぞれ流体潤滑状態にすることが可能となっている。

0083

ここで、図中右側のシール部材540での突起542の数と、図中左側のシール部材550での突起552の数とが相異している。また、図中右側のシール部材540での突起542の周方向ピッチ角度と、図中左側のシール部材550での突起552の周方向ピッチ角度とが相異している。これら相違は、図中右側のシール部材540及びシール摺動面514間と、図中左側のシール部材550及びシール摺動面515間とで前述の周速差やポンプ作用による潤滑条件の相違があることから、これら左右の各間で形成される油膜を同等にすること、及び、最適にすることを目的として設定されている。

0084

図20に、突起542、552間の間隔dと、理論油膜厚さとの関係を示す。この計算結果では、小つば513側(図中で「小端面側」と表示)で突起552間の間隔d(図中で「ピッチ間隔」と表示)が6.4mmのときの理論油膜厚さが4.0μmとなり、大つば512側(図中で「大端面側」と表示)で突起542間の間隔d(図中で「ピッチ間隔」と表示)が11.5mmのときの理論油膜厚さが4.0μmとなる。この計算結果から明らかなように、突起間の間隔dに関するパラメータである突起数や周方向ピッチ角度に相異をもたせることにより、図19に示すシールリップ541及びシール摺動面514間、シールリップ551及びシール摺動面515間で同等の厚さの油膜を形成することができる。

0085

また、シールリップ541及びシール摺動面514間の隙間、シールリップ551及びシール摺動面515間の隙間が、厚すぎる油膜形成のために0.07mmを大きく超える広がりをもってしまうと、粒径50μmを超える異物の侵入が発生し易くなる。このような問題が起きないような油膜厚さを決め、突起間の間隔dに関するパラメータである突起数や周方向ピッチ角度に相異をもたせることにより、図中右側のシール部材540及びシール摺動面514間、図中左側のシール部材550及びシール摺動面515間のいずれでも最適な厚さの油膜を形成することができる。

0086

このように、第5の実施例に係るシール付軸受500は、第3の実施例及び第4の実施例と同様、図中右側のシール部材540とシール摺動面514間と、図中左側のシール部材550とシール摺動面515間のそれぞれを適切に流体潤滑状態として低トルク化と異物侵入の抑制とを両立させることができる。

0087

また、従来、円すいころ軸受においては、玉軸受よりもトルクが大きい問題があり、そのためシール部材を設けない場合もあった。この場合、その形状に由来したポンピング作用により軸受内部へ潤滑剤が流入して、潤滑剤の撹拌抵抗が大きくなることや、潤滑剤と一緒に異物も流入するので、異物により円すいころ軸受の転動面に傷が付かないように内外輪に特殊熱処理等の硬化処理を必要とすることがあった。これに対し、シール付軸受500は、前述の流体潤滑で達成される低トルク化により、円すいころ軸受においてシール部材540、550を設けることができるようになる。また、シール部材540、550を設けると、ポンピング作用による軸受内部への潤滑剤の流入を抑制し、潤滑剤の撹拌抵抗を抑えることで、円すいころ軸受自身の低トルク化を実現できる。さらに、潤滑剤と一緒に流入する異物をシール部材540、550によって防ぐことで、内外輪510、520への特殊処理を不要とし、コストの低減も実現できる。

0088

図21に、車両のトランスミッションの回転部を支持する転がり軸受として、この発明に係るシール付軸受を使用した例を示す。図示のトランスミッションは、段階的に変速比を変化させる多段変速機になっており、その回転部(例えば入力軸S1および出力軸S2)を回転可能に支持するシール付軸受Bとして、上述の実施例のようなシール付軸受を備えている。図示のトランスミッションは、エンジンの回転が入力される入力軸S1と、入力軸S1と平行に設けられた出力軸S2と、入力軸S1から出力軸S2に回転を伝達する複数のギア列G1〜G4と、各ギア列G1〜G4と入力軸S1または出力軸S2との間に組み込まれた図示しないクラッチとを有し、そのクラッチを選択的に係合させることで使用するギア列G1〜G4を切り替え、これにより、入力軸S1から出力軸S2に伝達する回転の変速比を変化させるものである。出力軸S2の回転は出力ギアG5に出力され、その出力ギアG5の回転がディファレンシャルギヤ等に伝達される。入力軸S1と出力軸S2は、それぞれシール付軸受Bで回転可能に支持されている。また、このトランスミッションは、ギアの回転に伴う潤滑油のはね掛けにより、又はハウジングHの内部に設けられたノズル(図示省略)からの潤滑油の噴射により、はね掛け又は噴射された潤滑油が各シール付軸受Bの側面にかかるようになっている。

0089

上述の各実施例では、突起がR形状のものを示したが、突起は、シール摺動面との相対的な周速が一定以上のときに流体潤滑状態とすることが可能なくさび効果を得られるように適宜の形状にすればよく、例えば、R面取り、C面取り等の面取り形状を採用することができる。

0090

また、上述の各実施例では、突起を周方向に均一配置した例を示したが、不均一に配置することも可能である。

0091

また、上述の各実施例では、シール部材を芯金と加硫ゴム材とから構成したものを例示したが、この発明は、単材により形成されるシール部材にも適用することも可能である。この場合、シールリップに所要の締め代を設定可能であればよく、例えば、シール部材の材料として、ゴム材又は樹脂材を用いることができる。

0092

また、上述の各実施例では、内輪回転ラジアル軸受を例示したが、この発明は、外輪回転スラスト軸受に適用することも可能である。

実施例

0093

今回開示された実施形態及び実施例はすべての点で例示であって制限的なものではないと考えられるべきである。したがって、本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。

0094

100、300、400、500、Bシール付軸受
110、310、410、510内輪
111、121、314、411、421軌道溝
112、312、313、414、415、514、515シール摺動面
120、320、420、520外輪
122、311、321、322シール溝
140転動体
150、330、340、440、450、540、550シール部材
151、202、331、341、441、451、541、551シールリップ
152、201、334、344、442、452、542、552突起
153、203 先端
154、204 表面
155、206、333、343芯金
156加硫ゴム材
160軸受内部空間
170油通路
205 面
315、316、412、413肩部
332、342外側リップ
350ラビリンスすきま
430 玉
511、521軌道面
512大つば
513小つば
530円すいころ
S1入力軸(回転部)
S2出力軸(回転部)

ページトップへ

この技術を出願した法人

この技術を発明した人物

ページトップへ

関連する挑戦したい社会課題

関連する公募課題

該当するデータがありません

ページトップへ

技術視点だけで見ていませんか?

この技術の活用可能性がある分野

分野別動向を把握したい方- 事業化視点で見る -

(分野番号表示ON)※整理標準化データをもとに当社作成

ページトップへ

おススメ サービス

おススメ astavisionコンテンツ

新着 最近 公開された関連が強い技術

この 技術と関連性が強い技術

関連性が強い 技術一覧

この 技術と関連性が強い人物

関連性が強い人物一覧

この 技術と関連する社会課題

関連する挑戦したい社会課題一覧

この 技術と関連する公募課題

該当するデータがありません

astavision 新着記事

サイト情報について

本サービスは、国が公開している情報(公開特許公報、特許整理標準化データ等)を元に構成されています。出典元のデータには一部間違いやノイズがあり、情報の正確さについては保証致しかねます。また一時的に、各データの収録範囲や更新周期によって、一部の情報が正しく表示されないことがございます。当サイトの情報を元にした諸問題、不利益等について当方は何ら責任を負いかねることを予めご承知おきのほど宜しくお願い申し上げます。

主たる情報の出典

特許情報…特許整理標準化データ(XML編)、公開特許公報、特許公報、審決公報、Patent Map Guidance System データ