図面 (/)

この項目の情報は公開日時点(2017年8月24日)のものです。
また、この項目は機械的に抽出しているため、正しく解析できていない場合があります

図面 (9)

課題

車両に搭載された発電機による発電を利用してリーン燃焼運転ストイキ燃焼運転との間の運転切替頻度を低減することにより、N2Oの生成量を低減することが可能な車両の制御装置を提供する。

解決手段

機関要求トルクTqtgtが閾値トルクTqbよりも大きく混合気空燃比リーン空燃比に設定されている状態から、機関要求トルクTqtgtが閾値トルクTqb以下となった場合、触媒温度Tcatが、三元触媒不活性化温度より高いときには、発電機の発電量を増加させることにより機関要求トルクTqtgtを閾値トルクTqb以上に変更して混合気の空燃比をリーン空燃比に維持しながら機関の運転を継続する。制御装置は、機関要求トルクTqtgtが閾値トルクTqb以下となった場合、触媒温度Tcatが不活性化温度以下であるときには、混合気の空燃比を理論空燃比に設定して機関の運転を継続する。

概要

背景

従来から、ガソリン混合気空燃比を、理論空燃比と理論空燃比よりも大きい(リーンな)空燃比(リーン空燃比)との間で切替え可能な内燃機関が知られている(例えば、特許文献1を参照。)。なお、本明細書において、ガソリン混合気の空燃比が理論空燃比に設定されている場合の機関運転を「ストイキ燃焼運転」と称呼し、ガソリン混合気の空燃比がリーン空燃比に設定されている場合の機関の運転を「リーン燃焼運転」と称呼する場合がある。

概要

車両に搭載された発電機による発電を利用してリーン燃焼運転とストイキ燃焼運転との間の運転切替頻度を低減することにより、N2Oの生成量を低減することが可能な車両の制御装置を提供する。機関要求トルクTqtgtが閾値トルクTqbよりも大きく混合気の空燃比がリーン空燃比に設定されている状態から、機関要求トルクTqtgtが閾値トルクTqb以下となった場合、触媒温度Tcatが、三元触媒不活性化温度より高いときには、発電機の発電量を増加させることにより機関要求トルクTqtgtを閾値トルクTqb以上に変更して混合気の空燃比をリーン空燃比に維持しながら機関の運転を継続する。制御装置は、機関要求トルクTqtgtが閾値トルクTqb以下となった場合、触媒温度Tcatが不活性化温度以下であるときには、混合気の空燃比を理論空燃比に設定して機関の運転を継続する。

目的

本発明の目的の一つは、車両に搭載された発電機による発電を利用してリーン燃焼運転とストイキ燃焼運転との間の運転切替え頻度を低減することにより、N2Oの生成量を低減することが可能な車両の制御装置を提供する

効果

実績

技術文献被引用数
0件
牽制数
0件

この技術が所属する分野

(分野番号表示ON)※整理標準化データをもとに当社作成

ライセンス契約や譲渡などの可能性がある特許掲載中! 開放特許随時追加・更新中 詳しくはこちら

請求項1

車両の駆動源としての内燃機関と、前記車両に搭載され且つ前記機関により駆動されることにより発電を行う発電機と、前記車両に搭載され且つ前記発電機が発電する電力により充電される蓄電池と、前記機関の排気通路に配設された三元触媒と、を備える車両に適用され、前記車両の運転者により要求されるユーザ要求トルク相関を有するパラメータに基づいて前記機関に要求される機関要求トルクを決定する機関要求トルク決定手段と、前記機関要求トルクが閾値トルク以下である場合に前記機関の燃焼室内に形成される混合気空燃比理論空燃比に設定し、前記機関要求トルクが前記閾値トルクよりも大きい場合に前記混合気の空燃比を理論空燃比よりも大きいリーン空燃比に設定する、空燃比設定手段と、を含む制御装置を備えた車両の制御装置において、前記制御装置は、前記三元触媒の温度に相関を有する温度パラメータを取得するとともに、前記混合気の空燃比が前記リーン空燃比に設定されている状態から前記機関要求トルクが低下して前記閾値トルク以下となった場合、前記温度パラメータにより表される前記三元触媒の温度が、前記三元触媒が全く活性化しない不活性化温度より高いときには、前記発電機の発電量を増加させることにより前記機関要求トルクを前記閾値トルク以上に変更して、前記混合気の空燃比を前記リーン空燃比に維持しながら前記機関の運転を行い、前記温度パラメータにより表される前記三元触媒の温度が、前記不活性化温度以下であるときには、前記混合気の空燃比を理論空燃比に設定して前記機関の運転を行うように構成された、車両の制御装置。

技術分野

0001

本発明は、リーン燃焼運転が可能な内燃機関駆動力源として搭載した車両の制御装置に関する。

背景技術

0002

従来から、ガソリン混合気空燃比を、理論空燃比と理論空燃比よりも大きい(リーンな)空燃比(リーン空燃比)との間で切替え可能な内燃機関が知られている(例えば、特許文献1を参照。)。なお、本明細書において、ガソリン混合気の空燃比が理論空燃比に設定されている場合の機関運転を「ストイキ燃焼運転」と称呼し、ガソリン混合気の空燃比がリーン空燃比に設定されている場合の機関の運転を「リーン燃焼運転」と称呼する場合がある。

先行技術

0003

特開2003−65127号公報

0004

ところで、例えば、アイドル運転状態のように、機関の負荷が極めて小さい場合(即ち、機関に要求されるトルクが小さい場合)にリーン燃焼運転が行われると、混合気燃焼温度が低くなって失火する場合がある。更に、始動直後アイドル運転時にリーン燃焼運転が行われると、排気浄化触媒(以下、単に「触媒」と称呼する。)が正常に機能する温度に達するまでの時間(即ち、活性化するまでの時間)が長くなるという問題がある。そこで、従来の制御装置は、機関の負荷が極めて小さくなった場合、機関の運転をリーン燃焼運転からストイキ燃焼運転へと切り替えている。

0005

しかしながら、機関の運転をストイキ燃焼運転とリーン燃焼運転との間で切替える際、ガソリン混合気の空燃比が「触媒においてNOxが完全には還元されない」空燃比となるので、温室効果ガスである一酸化二窒素亜酸化窒素:N2O)が生成されてしまうという問題があることが、発明者の検討により明らかになった。N2Oの地球温暖化係数は298である。即ち、N2Oは同じ重量のCO2と比べて298倍の温室効果を有する。よって、N2Oは僅かな量であっても地球温暖化に与える影響は大きく、極力その生成が抑えられることが望ましい。

0006

本発明は上記問題に対処するために為されたものである。即ち、本発明の目的の一つは、車両に搭載された発電機による発電を利用してリーン燃焼運転とストイキ燃焼運転との間の運転切替頻度を低減することにより、N2Oの生成量を低減することが可能な車両の制御装置を提供することにある。

0007

本発明の車両の制御装置(以下、「本発明装置」とも称呼する。)は、車両(10)の駆動源としての内燃機関(20)と、前記車両に搭載され且つ前記機関により駆動されることにより発電を行う発電機(51)と、前記車両に搭載され且つ前記発電機が発電する電力により充電される蓄電池(53)と、前記機関の排気通路に配設された三元触媒(36)と、備える車両に適用され、
前記車両の運転者により要求されるユーザ要求トルク相関を有するパラメータに基づいて前記機関に要求される機関要求トルク(Tqtgt)を決定する機関要求トルク決定手段(ステップ510)と、
前記機関要求トルクが閾値トルク(Tqb)以下である場合に前記機関の燃焼室(28)内に形成される混合気の空燃比を理論空燃比に設定し(ステップ515:No、及び、ステップ535)、前記機関要求トルクが前記閾値トルクよりも大きい場合に前記混合気の空燃比を理論空燃比よりも大きいリーン空燃比に設定する(ステップ515:Yes、及び、ステップ520)、空燃比設定手段、と、
を含む制御装置(70)を備える。

0008

本発明装置によれば、機関要求トルクが閾値トルク(Tqb)以下である場合にはストイキ燃焼運転が行われる。これにより、失火の発生が回避される。更に、本発明装置によれば、機関要求トルク閾値トルク(Tqb)よりも大きい場合にはリーン燃焼運転が行われる。これにより、燃費が改善される。しかしながら、機関要求トルクが閾値トルク(Tqb)以上か否かに応じて機関の運転をリーン燃焼運転とストイキ燃焼との間で切り替えると、N2Oが多く生成される場合が生じる。

0009

そこで、前記制御装置は、前記三元触媒の温度(Tcat)に相関を有する温度パラメータを取得するとともに、前記混合気の空燃比が前記リーン空燃比に設定されている状態から前記機関要求トルクが低下して前記閾値トルク以下となった場合(ステップ525:Yes)、
前記温度パラメータにより表される前記三元触媒の温度(Tcat)が、前記三元触媒が全く活性化しない不活性化温度(Tnop=T1)より高いときには、前記発電機の発電量を増加させることにより前記機関要求トルクを前記閾値トルク以上に変更して、前記混合気の空燃比を前記リーン空燃比に維持しながら前記機関の運転を行い(ステップ530:No、ステップ545、ステップ550、ステップ510、ステップ515及びステップ520)
前記温度パラメータにより表される前記三元触媒の温度(Tcat)が、前記不活性化温度(Tnop=T1)以下であるときには、前記混合気の空燃比を理論空燃比に設定して前記機関の運転を行う(ステップ530:Yes、及び、ステップ535)、
ように構成される。

0010

これによれば、混合気の空燃比がリーン空燃比に設定されている状態から機関要求トルクが低下して閾値トルク以下となった場合(即ち、従来装置において機関の運転がストイキ燃焼運転に切り替えられる場合)であっても、三元触媒の温度が不活性化温度より高いときには、発電機の発電量を増加させることにより機関要求トルクが閾値トルク以上に変更されて、リーン燃焼運転が継続される。この結果、ガソリン混合気の空燃比が「触媒においてNOxが完全には還元されない」空燃比とならないので、N2Oの生成量を低減させることができる。加えて、機関要求トルクが増大させられることにより、リーン燃焼運転において失火が発生しないようにすることができる。

0011

加えて、混合気の空燃比がリーン空燃比に設定されている状態から機関要求トルクが低下して閾値トルク以下となった場合(即ち、従来装置において機関の運転がストイキ燃焼運転に切り替えられる場合)であっても、三元触媒の温度が不活性化温度以下であるときには、触媒においてNOxの還元がなされないことから触媒においてN2Oが生成されることもない。従って、本発明装置は、機関の運転をリーン燃焼運転からストイキ燃焼運転に切り替える。これにより、失火の発生を回避しながらN2Oの生成量を低減することができる。更に、触媒温度できるだけ早く上昇させて触媒の活性化を促進することができる。

0012

上記説明においては、本発明の理解を助けるために、後述する実施形態に対応する発明の構成に対し、その実施形態で用いた名称及び/又は符号を括弧書きで添えている。しかしながら、本発明の各構成要素は、前記符号によって規定される実施形態に限定されるものではない。本発明の他の目的、他の特徴及び付随する利点は、以下の図面を参照しつつ記述される本発明の実施形態についての説明から容易に理解されるであろう。

図面の簡単な説明

0013

図1は、本発明の実施形態に係る車両の制御装置の概略構成図である。
図2は、図1に示した車両の制御装置の上流側触媒エミッション浄化率を示す図である。
図3は、図1に示した車両の制御装置の上流側触媒の出口におけるN2O濃度空燃比モードに対する変化を表す図である。
図4は、図1に示した車両の制御装置の上流側触媒の内燃機関始動時における温度の推移触媒出口におけるN2O濃度の推移を表す図である。
図5は、図1に示した車両の制御装置のCPUが実行する「運転モード決定ルーチン」を示したフローチャートである。
図6は、図1に示した車両の制御装置のCPUが参照するルックアップテーブルである。
図7は、機関回転速度及び機関要求トルクと、リーン燃焼運転領域と、の関係を表す図である。
図8は、図1に示した車両の制御装置のCPUが実行する「発電電力アップ停止ルーチン」を示したフローチャートである。

実施例

0014

以下、図面を参照しながら本発明の実施形態に係る車両の制御装置(以下、「本制御装置」と称呼する。)について説明する。

0015

(構成)
本制御装置は、図1に示した車両10に適用される。車両10は、内燃機関20、オルタネータ51、レギュレータ52、蓄電池53、動力伝達機構60及び電子制御装置70等を備えている。

0016

内燃機関(以下、単に「機関」とも称呼する。)20は、火花点火式4サイクルピストン往復動型・直列気筒直噴ガソリン機関である。機関20は、周知のエンジンアクチュエータ21を備えている。エンジンアクチュエータ21には、燃料噴射弁インジェクタ)22を含む燃料供給装置点火プラグを含む点火装置23及びスロットルモータ24等が含まれる。機関20は、リーン燃焼運転とストイキ燃焼運転との何れでも運転され得る。

0017

機関20は、ストイキ燃焼運転にて運転されているとき、スロットルモータ24により吸気通路に配設されたスロットル弁25の開度が変更されることによって吸入空気量が変更され、その吸入空気量に応じて燃料噴射量が変更されることにより、発生するトルクを変更することができる。機関20は、機関20の出力軸であるクランクシャフト26にトルクを発生する。

0018

機関20は、リーン燃焼運転にて運転されているとき、スロットルモータ24によりスロットル弁25が略全開に維持され、燃料噴射量及び燃料噴射時期等が変更されることにより、発生するトルクを変更することができる。

0019

機関20は、シリンダブロックシリンダヘッド及びクランクケース等を含む本体27を備える。本体27には4つの気筒(燃焼室)28が形成されている。各気筒28の上部には燃料噴射弁22及び点火装置23が配設されている。燃料噴射弁22は、後述する電子制御装置70の指示に応答して開弁し、気筒内に燃料直接噴射するようになっている。

0020

機関20は、燃料加圧ポンプと、燃料送出管と、デリバリパイプと、を含む燃料供給系統31を備えている。機関20は、更に、インテークマニホールド32、吸気管33、エキゾーストマニホールド34、排気管35、上流側触媒36、NOx吸蔵還元型触媒37及び下流側触媒38を備えている。以下において、上流側触媒36は「SC触媒36」と称呼され、NOx吸蔵還元型触媒37は「NSR触媒37」と称呼される。SCは、Start-up Converterの略であり、NSRは、NOx Storage Reductionの略である。

0021

エキゾーストマニホールド34は各気筒28に接続された枝部と、枝部が集合した集合部と、を含む。排気管35はエキゾーストマニホールド34の集合部に接続されている。エキゾーストマニホールド34及び排気管35は排気通路を構成している。排気管35には、排ガスの流れの上流から下流に向け、SC触媒36、NSR触媒37、下流側触媒38が配設されている。

0022

SC触媒36及び下流側触媒38は、所謂、白金及びパラジウム等の貴金属からなる活性成分担持する三元触媒装置排気浄化装置)である。各触媒は、各触媒に流入するガスの空燃比が理論空燃比であるとき、HC及びCO等の未燃成分酸化するとともに窒素酸化物(NOx)を還元する機能を有する。この機能は触媒機能とも称呼される。更に、各触媒は、酸素吸蔵貯蔵)する酸素吸蔵能を有し、空燃比が理論空燃比から偏移したとしても、未燃成分及び窒素酸化物を浄化することができる。この酸素吸蔵能は、触媒に担持されている酸化セリウム(CeO2)によってもたらされる。

0023

NSR触媒37は、内燃機関20のリーン燃焼運転時にSC触媒36にて浄化できずに排出されるNOxを吸蔵材に貯蔵する。この機能により、リーン燃焼運転中においてNOxが大気中に放出される事態を抑制することができる。NSR触媒37のNOx吸蔵能はNOxの吸蔵量が増加するにつれて低下するので、リーン燃焼運転が長時間継続されると、NOxが吸蔵されずにNSR触媒37の下流に流出する。そこで、本制御装置は、NSR触媒37に吸蔵されているNOxを定期的に脱離させるためのリッチスパイク制御を実行する。より具体的に述べると、NSR触媒37のNOxの吸蔵量が所定の吸蔵限界量(例えば、NOxの最大吸蔵量の8割に相当する量)に達すると、極く短い時間、混合気の空燃比を理論空燃比よりも小さい(リッチな)空燃比(例えば、空燃比=12)に設定する「リッチスパイク」を導入する。このとき、排気ガス中のCO、H2及びHCを還元剤としてNOxがN2まで還元される。

0024

クランクシャフト26の一端は、動力伝達機構60の一部である変速機61の入力軸に接続されている。
クランクシャフト26の他端には、クランクシャフトプーリ42が固定されている。
クランクシャフトプーリ42は、オルタネータプーリ43に、ベルト44を介して動力伝達可能に接続されている。
オルタネータプーリ43は、オルタネータ51の図示しないロータと一体的に回転するようになっている。

0025

オルタネータ51は、何れも図示しない「三相捲線を有するステータコイル、ロータに巻回されたフィールドコイル、及び、ステータコイルに発生した交流電流直流電流整流する整流器」を備える三相交流発電機である。オルタネータ51は、フィールドコイルにフィールド電流が流されたとき、ステータコイルに誘起電流三相交流電流)を発生させ、発生した三相交流電流を直流電流に整流して出力する。

0026

レギュレータ52はオルタネータ51により生成した直流電流を一定の電圧に変換する。レギュレータ52は、電子制御装置(ECU)70の指示に基づいてフィールド電流の電流値を制御することができる。よって、レギュレータ52は、オルタネータ51の出力電圧を調整することができ、その結果、オルタネータ51の発電量を調整することができる。

0027

蓄電池53は、エンジンアクチュエータ21及び車両10内の電装品を作動させるための電気エネルギーを蓄える蓄電手段であり、充電と放電とを繰り返すことができるリチウムイオン電池等の二次電池により構成されている。なお、蓄電池74は、放電及び充電が可能な蓄電装置であればよく、従って、ニッケル水素電池鉛蓄電池ニッケルカドミウム電池及び他の二次電池であってもよい。

0028

動力伝達機構60は、変速機61に加え、プロペラシャフト62、ディファレンシャルギア63及び駆動軸ドライブシャフト)64を含んでいる。

0029

変速機61の出力軸は、プロペラシャフト62の一端に連結されている。プロペラシャフト62の他端は、ディファレンシャルギア63を介して駆動軸64に連結されている。駆動軸64の両端には駆動輪Wが取り付けられている。従って、変速機61の出力軸のトルクは、ディファレンシャルギア63及び駆動軸64を介して駆動輪Wに伝達される。この駆動輪Wに伝達されたトルクにより車両10は走行することができる。

0030

電子制御装置(ECU)70は、周知のマイクロコンピュータを含む電子回路であり、CPU、ROM、RAM、バックアップRAM(スタティックRAM又は不揮発性メモリ)及びインタフェース等を含む。電子制御装置70は、燃料噴射弁22、点火装置23、スロットルモータ24、レギュレータ52及び蓄電池53等と電気的に接続されている。

0031

電子制御装置70は、CPUからの指示に応じて、燃料噴射弁22、点火装置23及びスロットルモータ24等のアクチュエータに指示(駆動)信号を送出するようになっている。更に、電子制御装置70は、クランクポジションセンサ91、エアフローメータ92、スロットル弁開度センサ93、アクセル操作量センサ94、水温センサ95、上流側空燃比センサ96、下流側空燃比センサ97及び排ガス温度センサ98等と電気的に接続されており、各センサからの信号を受信(入力)するようになっている。

0032

クランクポジションセンサ91は、クランクシャフト26が10°回転する毎に狭幅のパルスを有するとともにクランクシャフト26が360°回転する毎に広幅のパルスを有する信号を出力するようになっている。この信号は、電子制御装置70によって機関回転速度NE(機関20の回転速度)に変換される。

0033

エアフローメータ92は、吸気管33内を流れる吸入空気の質量流量(以下、「吸入空気量」と称呼する。)Gaに応じた信号を出力するようになっている。

0034

スロットルポジションセンサ93は、スロットルバルブ25の開度(スロットル弁開度)を検出し、スロットル弁開度TAを表す信号を出力するようになっている。

0035

アクセル操作量センサ94は、運転者により操作可能に設けられたアクセルペダルAP操作量(以下、「アクセル操作量Accp」と称呼する。)を表す出力信号を発生するようになっている。

0036

水温センサ95は、機関20の冷却水の温度を検出し、冷却水温THWを表す信号を出力するようになっている。

0037

上流側空燃比センサ96は、排気通路であってエキゾーストマニホールド34の枝部の集合部又はその集合部よりも下流側であり且つSC触媒36の上流側に配設されている。上流側空燃比センサ96は、限界電流式酸素濃度センサである。上流側空燃比センサ96は、その配設場所を流れる排ガスの空燃比に応じた電圧である出力値Vabyfs を出力するようになっている。即ち、上流側空燃比センサ96は、被検出ガスの空燃比の変化に対してその出力が連続的に変化する広域空燃比センサである。

0038

下流側空燃比センサ97は、排気通路であってNSR触媒37よりも下流側であり且つ下流側触媒38よりも上流側に配設されている。下流側空燃比センサ97は、周知の起電力式の酸素濃度センサ(安定化ジルコニアを用いた周知の濃淡電池型の酸素濃度センサ)である。下流側空燃比センサ97は、その配設場所を流れる排ガスの空燃比に応じた出力値Voxs を発生するようになっている。

0039

排ガス温度センサ98は、排気通路であってSC触媒36の出口近傍に配設されている。排ガス温度センサ98は、SC触媒36から流出した排出ガスの温度に応じた出力値を発生するようになっている。電子制御装置70は、この出力値をSC触媒36の温度Tcat(以下、「触媒温度Tcat」とも称呼する。)として扱う。即ち、排ガス温度センサ98の出力値は、SC触媒36(三元触媒)の温度に相関を有する温度パラメータである。

0040

(N2Oの生成)
次に、気筒(燃焼室)28内に形成される混合気の空燃比(以下、「機関の空燃比」と称呼する。)と、N2Oの生成との関係について記述する。

0041

触媒温度Tcatが、SC触媒36が完全に活性化した温度(例えば、450℃)である場合、図2に示したように、SC触媒36のNOx浄化率は、空気過剰率(=空燃比/理論空燃比)が「1」より小さい範囲(以下、「リッチ範囲」と称呼する。)及び空気過剰率が「1」前後(以下、「理論空燃比範囲」と称呼する。)の範囲において100%に近い値となる。即ち、リッチ範囲及び理論空燃比範囲においては、SC触媒36によるNOxの還元反応活発である。従って、機関の空燃比が図2の第1領域RA1(ストイキ運転領域RA1)に対応する空燃比である場合、換言すると、機関20の運転がストイキ燃焼運転である場合、実質的に総てのNOxがN2まで還元されるので、N2Oは生成されない。

0042

空気過剰率の値が「1.01」から「1.02」の間である場合、SC触媒36のNOx浄化率は急激に低下する。即ち、機関の空燃比が図2の第2領域RA2に対応する空燃比である場合、SC触媒36によるNOxの還元反応が不活発となる。従って、NOxは、N2及びN2Oへと変化する。その結果、N2Oが生成されて大気に放出されてしまう。

0043

リーン燃焼運転時の機関の空燃比は17前後であり、空気過剰率の値は「1.16前後」である。機関の空燃比が、リーン燃焼運転時の機関の空燃比に相当する「図2の第3領域RA3」に対応する空燃比である場合、NOx浄化率は極めて低い。換言すると、リーン燃焼運転が行われている場合、SC触媒36においてNOxの還元反応は生じない。その結果、機関の空燃比が第3領域RA3(リーン運転領域RA3)に対応する空燃比である場合、換言すると、機関20の運転がリーン燃焼運転である場合、NOxからN2Oが生成されることはない。

0044

ところで、機関20の運転をストイキ燃焼運転とリーン燃焼運転との間で切り替える際、機関の空燃比は第2領域RA2に対応する空燃比を必然的に通過する。よって、SC触媒36が十分に活性化した状態であったとしても、機関20の運転をストイキ燃焼運転とリーン燃焼運転との間で切り替える際、機関の空燃比が「第2領域RA2」に対応する空燃比となるためにN2Oが生成されてしまう。

0045

一方、機関20は、アイドル運転状態のように、機関の負荷が極めて小さい場合(即ち、機関に要求されるトルクである機関要求トルクが小さい場合)にリーン燃焼運転が行われると、混合気の燃焼温度が低くなって失火する場合がある。そのため、機関20は、機関の負荷が極めて小さい場合、ストイキ燃焼運転にて運転される。従って、例えば、車両10が停止状態から走行を開始する場合には機関20の負荷が極めて小さい状態から大きい状態へと変化するから、機関20の運転はストイキ燃焼運転からリーン燃焼運転へと切り替えられる。その結果、N2Oが生成されてしまう。或いは、機関20が減速される場合には負荷(機関要求トルク)が減少するから、機関20の運転はリーン燃焼運転からストイキ燃焼運転へと切り替えられる。その結果、N2Oが生成されてしまう。

0046

図3は、機関20の運転が、リーン燃焼運転とストイキ燃焼運転との間で切り替えられる場合のN2Oの生成状況を示している。図3の「空燃比モード」は、機関20の空燃比制御目標値として設定される空燃比(目標空燃比)である。リーン燃焼運転中の空燃比モードはリーンモード(空燃比=17)であり、ストイキ燃焼運転中の空燃比モードはストイキモード(空燃比=14.6)である。また、空燃比モードがリッチである期間は、リッチスパイク制御を実行している期間である。リッチスパイク制御中の空燃比は12である。

0047

図3からも理解されるように、ストイキ燃焼運転からリーン燃焼運転に切替わるとき(時刻t12及び時刻t14を参照。)において、SC触媒36の出口におけるN2Oの濃度は急増する。更に、リッチスパイク制御の開始時(時刻t15を参照。)においてもSC触媒36の出口におけるN2O濃度が増加する。

0048

これは、前述したように、機関20の空燃比が、NOxの還元反応が不完全な第2領域RA2に対応する空燃比を通過するからである。なお、理由は未だ明らかではないが、リーン燃焼運転からストイキ燃焼運転に切替わるとき(時刻t11及び時刻t13を参照。)、SC触媒36の出口におけるN2Oの濃度は殆ど増加しない。これは、リーン燃焼運転からストイキ燃焼運転への切替え時には機関20の空燃比が目標空燃比(即ち、理論空燃比=14.6)に収束する時間が極めて短いことが原因と考えられる。但し、リーン燃焼運転からストイキ燃焼運転への切替え時に機関20の空燃比が理論空燃比に収束するまでの時間が長ければ、SC触媒36の出口におけるN2Oの濃度は増加する。

0049

このように、SC触媒36が完全に活性化している場合であっても、機関20の運転が、リーン燃焼運転とストイキ燃焼運転との間で切り替えられる場合にN2Oが多量に生成される。一方、触媒温度Tcatが相対的に低く、SC触媒36が十分に活性化していない(完全不活性状態ではないが、完全活性状態でもない)場合、NOxの還元反応が不活発であるから、ストイキ燃焼運転が行われていてもN2Oが生成される場合がある。この点について、図4を参照しながら説明する。

0050

図4グラフにおいて、横軸は機関20の始動からの経過時間であり、縦軸は触媒温度Tcat(℃)である。この例においては、時刻t=0(機関20の始動時;グラフの左端)から時刻t24までの期間において、目標空燃比が理論空燃比に設定されてストイキ燃焼運転が行われている。これは、機関20の始動開始直後は、失火の虞があるので燃焼温度の低いリーン燃焼運転は行われないからである。その後、SC触媒36が十分に活性化した時刻t24以降において目標空燃比がリーン空燃比(例えば、17)に変更されてリーン燃焼運転が行われている。

0051

図4破線により囲まれた領域RT1(以下、「第1温度領域」とも称呼される。)において、SC触媒36は全く活性化していない。よって、この第1温度領域RT1においてはNOxの還元反応は起こらず、従って、N2Oは生成されない。以下、SC触媒36が全く活性化しない温度を「不活性化温度」と称呼する。

0052

図4に破線により囲まれた領域RT2(以下、「第2温度領域」とも称呼される。)の温度範囲はSC触媒36の不活性化温度よりも高く活性化温度Topよりも低い。この温度範囲の温度はライトオフ温度とも称呼される場合がある。この第2温度領域RT2において、SC触媒36は活性化が不十分な状態にある。従って、NOxの還元反応が完全に行われず(即ち、NOxがN2まで還元されず)、N2Oが生成される機会が増える(時刻t22を参照。)。

0053

図4に破線により囲まれた領域RT3(以下、「第3温度領域」とも称呼される。)の温度範囲は活性化温度Topよりも高い。よって、第3温度領域においてSC触媒36は完全に活性化している。従って、この領域においてNOxの還元反応は正常に行われるので、N2Oは生成されない。

0054

(具体的作動)
以上に説明したN2Oが生成される状況が出来るだけ生じないように、本制御装置は以下に述べるように作動する。即ち、電子制御装置(ECU)70のCPUは、所定時間が経過する毎に図5にフローチャートにより示したルーチンを実行するようになっている。

0055

従って、所定のタイミングになると、CPUは図5のステップ500から処理を開始してステップ505に進み、図6に示した「機関回転速度NE、アクセル開度Accp及び機関要求基本トルクTqbse」との関係を規定するルックアップテーブルに、取得した機関回転速度NEと取得したアクセル開度Accpとを適用することにより、機関要求基本トルクTqbseを取得する。このルックアップテーブルは予め実験等により定められ、電子制御装置70のROMに格納されている。アクセル開度Accpは車両10の運転者により要求されるユーザ要求トルクに相関を有するパラメータである。

0056

次いで、CPUはステップ510に進み、機関要求基本トルクTqbseに後述するステップ550にて決定されるトルク増量分ΔTqを加えた値を求め、その値を最終的な機関要求トルクTqtgtとして設定する。

0057

次いで、CPUはステップ515に進み、機関要求トルクTqtgtと機関回転速度NEとにより決まる動作点図7に示したリーン燃焼運転領域R1内にあるか否かを判定する。図7に示したように、リーン燃焼運転領域R1は、機関要求トルクTqが一定の低側トルク閾値Tqb以上であり且つ所定の高側トルク閾値Tqc以下、且つ、機関回転速度NEが低側速度閾値NEL以上であり且つ高側速度閾値NEH以下、である領域である。ストイキ燃焼運転領域R2は、リーン燃焼運転領域R1以外の領域である。なお、ラインL1は機関20の最大トルクを表している。また、高側トルク閾値Tqcは機関回転速度NEが高くなるにつれ低下する。

0058

動作点がリーン燃焼運転領域R1内にある場合、CPUはステップ515にて「Yes」と判定してステップ520に進み、リーン燃焼運転を行う。その後、CPUはステップ522に進んでトルク増量分ΔTqを「0」に設定し、ステップ595に進んで本ルーチンを一旦終了する。

0059

これに対し、動作点がストイキ燃焼運転領域R2にある場合、CPUはステップ515にて「No」と判定してステップ525に進み、本ルーチンを前回実行したときの機関要求基本トルクTqbseが閾値トルクTqbより大きく且つ今回の機関要求基本トルクTqbse以下であるか否かを判定する。即ち、CPUは、図7の点P3から点S1のように、動作点が閾値トルクTqbのラインを横切ってリーン燃焼運転領域R1からストイキ燃焼運転領域R2に遷移している状態であるか否かを判定する。

0060

ステップ525の判定条件が満たされない場合、CPUはステップ525にて「No」と判定してステップ535に直接進んでストイキ燃焼運転を実行する。その後、CPUはステップ537に進んでトルク増量分ΔTqを「0」に設定し、ステップ595に進んで本ルーチンを一旦終了する。

0061

一方、ステップ525の判定条件が満たされる場合、CPUはステップ525にて「Yes」と判定してステップ530に進み、触媒温度TcatがSC触媒36の不活性化温度Tnop(=T1)以下であるか否かを判定する。

0062

前述したように、触媒温度Tcatが不活性化温度Tnop(=T1)以下である場合、機関20の運転がリーン燃焼運転からストイキ燃焼運転に移行しても、SC触媒36においてNOxの還元反応は発生しないので、N2Oは生成されない。そこで、触媒温度Tcatが不活性化温度Tnop(=T1)以下である場合、CPUはステップ530にて「Yes」と判定してステップ535に進み、ストイキ燃焼運転を実行する。この結果、機関20の運転はリーン燃焼運転からストイキ燃焼運転へと変更され、失火の発生が回避される。

0063

これに対し、触媒温度Tcatが不活性化温度Tnop(=T1)より高い場合、CPUはステップ530にて「No」と判定してステップ540に進み、触媒温度Tcatが所定温度T2よりも低いか否かを判定する。所定温度T2はSC触媒36の活性化温度Topよりも高い温度であって、例えば、アイドリングストップ後に機関20を再始動したときの触媒温度Tcatが活性化温度Top以上となるような温度に設定されている。

0064

触媒温度Tcatが所定温度T2より低い場合、CPUはステップ540にて「Yes」と判定してステップ545に進み、レギュレータ52に指示を送信してオルタネータ51の発電量を増大させる。次いで、CPUはステップ550に進み、トルク増量分ΔTqを「正の所定値A」に設定し、ステップ595に進んで本ルーチンを一旦終了する。この正の所定値Aは、オルタネータ51の発電量を増大させるために機関20が発生すべきトルクの増加分に相当する。

0065

この状態において、CPUが所定時間の経過後に本ルーチンを再び実行すると、ステップ510にて決定される機関要求トルクTqtgtが、機関要求基本トルクTqbseよりも所定値Aだけ大きい値になる。その結果、機関要求トルクTqtgt及び機関回転速度NEにより定まる動作点はリーン燃焼運転領域R1内に留まるので、リーン燃焼運転が継続される。例えば、本来であれば動作点は図7の点S1に移行しているところ、発電量の増大を行うことにより機関要求トルクTqtgtが所定値Aだけ増大するので、動作点はS2に移行する。従って、燃焼が不安定になることがなく、且つ、リーン燃焼運転からストイキ燃焼運転への移行がないのでN2Oは生成されない。

0066

CPUがステップ540の処理を実行する時点において、触媒温度Tcatが所定温度T2以上である場合、CPUはそのステップ540にて「No」と判定してステップ560に進み、S&S(スタートアンドストップ、即ち、アイドリングストップ)条件が成立しているか否かを判定する。

0067

S&S条件は、図示しない車速センサにより検出される車両10の速度(車速)が「0」であり、且つ、アクセルペダル操作量Accpが「0」であり、且つ、図示しないブレーキセンサにより検出されるブレーキ操作量が「0」より大きい(ブレーキオン)であり、且つ、図示しない冷却水温センサにより検出される冷却水温が暖機完了温度以上であるとき成立する。

0068

S&S条件が成立している場合、CPUはステップ560にて「Yes」と判定してステップ565に進み、機関20を停止してステップ595に進んで本ルーチンを一旦終了する。この場合、アクセルペダル操作量Accpが「0」より大きくなるか、又は、ブレーキ操作量が「0」になると、機関20は再始動される。この再始動がなされた場合であっても、触媒温度Tcatは活性化温度Top以上であるので、N2Oは生成されない。この結果、N2Oの生成を抑えつつ、燃料の消費を低減することができる。

0069

一方、S&S条件が成立していない場合、CPUはステップ560にて「No」と判定してステップ545以降に進む。その結果、機関要求トルクTqtgt及び機関回転速度NEにより定まる動作点はリーン燃焼運転領域R1内に留まるので、リーン燃焼運転が継続される。従って、燃焼が不安定になることがなく、且つ、リーン燃焼運転からストイキ燃焼運転への移行がないのでN2Oは生成されない。

0070

更に、CPUは、所定時間が経過する毎に図8にフローチャートにより示したルーチンを実行するようになっている。従って、所定のタイミングになると、CPUは図8のステップ800から処理を開始してステップ810に進み、先のステップ545の処理によって発電量を増加させているか否かを判定する。発電量が増加させられていない場合、CPUはステップ810にて「No」と判定してステップ895に直接進み、本ルーチンを一旦終了する。

0071

これに対し、発電量を増加させている場合、CPUはステップ810にて「Yes」と判定してステップ820に進み、その時点で図6のルックアップテーブルにより決定されている機関要求基本トルクTqbseと機関回転速度NEの組合せ(即ち、動作点)がリーン燃焼運転領域R1内にあるか否かを判定する。

0072

動作点がリーン燃焼運転領域R1内にある場合、もはや発電量を増大させて機関要求トルクTqtgtを増大させなくても、機関20はリーン燃焼運転を安定して行うことができる。そこで、この場合、CPUはステップ820にて「Yes」と判定してステップ830に進み、発電量の増大を停止する。次いで、CPUはステップ840に進んでトルク増量分ΔTqの値を「0」に設定し、ステップ895に進んで本ルーチンを一旦終了する。この結果、CPUは図5のステップ520に進むので、リーン燃焼運転が継続して実行される。

0073

これに対し、動作点がリーン燃焼運転領域R1内にない場合、CPUはステップ820にて「No」と判定してステップ895に直接進んで本ルーチンを一旦終了する。即ち、この場合、発電量は増大され続ける。

0074

その結果、触媒温度Tcatが非活性化温度Tnop以上である場合は、リーン燃焼運転とストイキ燃焼運転との間のモードの切替頻度を低減することができる。更に、触媒温度Tcatが非活性化温度Tnopよりも低い場合は、リーン燃焼運転に代えてストイキ燃焼運転を行うことにより、触媒温度Tcatを活性化温度Topまで早期に上昇させることができる。以上より、本制御装置は、N2Oの生成量を低減することが可能となる。

0075

本発明は上記実施形態に限定されることはなく、本発明の範囲内において種々の変形例を採用することができる。

0076

例えば、上記実施形態において、触媒温度Tcatは排ガス温度センサ98により検出される排ガス温度と等しいとして取得されていたが、筒内吸入空気量及び機関回転速度NE等に基づいて推定されてもよい。

0077

更に、上記実施形態において、ステップ540、ステップ560、ステップ565及びステップ567は省略されてもよい。この場合、CPUは、ステップ530にて「No」と判定した場合、ステップ545及びステップ550を実行すればよい。

0078

上記実施形態の車両10は車両10の駆動力源として内燃機関20のみを有する通常のガソリンエンジン車両であったが、本発明は、内燃機関及び発電電動機車両駆動源として有するハイブリッド車両に適用することもできる。この場合、機関要求トルクを増大するために使用する機器として、オルタネータ51に代えてハイブリッド車両が有する発電電動機(発電機)を用いてもよい。

0079

10…車両、20…内燃機関、21…エンジンアクチュエータ、31…燃料供給系統、36…上流側触媒(SC触媒)、37…NSR触媒、41…変速機、42…クランクシャフトプーリ、43…オルタネータプーリ、44…ベルト、51…オルタネータ、52…レギュレータ、53…蓄電池、60…駆動力伝達機構、70…電子制御装置(ECU)、96…上流側空燃比センサ、98…排ガス温度センサ。

ページトップへ

この技術を出願した法人

この技術を発明した人物

ページトップへ

関連する挑戦したい社会課題

関連する公募課題

該当するデータがありません

ページトップへ

技術視点だけで見ていませんか?

この技術の活用可能性がある分野

分野別動向を把握したい方- 事業化視点で見る -

(分野番号表示ON)※整理標準化データをもとに当社作成

ページトップへ

おススメ サービス

おススメ astavisionコンテンツ

新着 最近 公開された関連が強い技術

  • 愛三工業株式会社の「 ガソリンエンジンシステム」が 公開されました。( 2019/09/19)

    【課題】エンジン減速時においてEGR弁が異物噛み込み等で完全に全閉にならない場合、減速初期にアイドルアップによる吸気増大遅れを回避してエンストを回避すること。【解決手段】エンジンシステムは、エンジン1... 詳細

  • 愛三工業株式会社の「 エンジンシステム」が 公開されました。( 2019/09/19)

    【課題】エンジン運転状態の検出に対する各種影響にかかわらずEGR弁が完全に全閉とならない異常に関する誤判定を防止し、異常時にはエンストを適正に回避すること。【解決手段】エンジンシステムは、スロットル装... 詳細

  • 愛三工業株式会社の「 エンジンシステム」が 公開されました。( 2019/09/19)

    【課題】エンジン減速時にEGR弁の異物噛み込み異常を早期検出して早期エンスト回避制御を実行し、併せて異常の誤検出と不要なエンスト回避制御の実行を防ぐこと。【解決手段】エンジンシステムは、スロットル装置... 詳細

この 技術と関連性が強い人物

関連性が強い人物一覧

この 技術と関連する社会課題

関連する挑戦したい社会課題一覧

この 技術と関連する公募課題

該当するデータがありません

astavision 新着記事

サイト情報について

本サービスは、国が公開している情報(公開特許公報、特許整理標準化データ等)を元に構成されています。出典元のデータには一部間違いやノイズがあり、情報の正確さについては保証致しかねます。また一時的に、各データの収録範囲や更新周期によって、一部の情報が正しく表示されないことがございます。当サイトの情報を元にした諸問題、不利益等について当方は何ら責任を負いかねることを予めご承知おきのほど宜しくお願い申し上げます。

主たる情報の出典

特許情報…特許整理標準化データ(XML編)、公開特許公報、特許公報、審決公報、Patent Map Guidance System データ