図面 (/)

技術 導電部材およびセルスタックならびに電気化学モジュール、電気化学装置

出願人 京セラ株式会社
発明者 東昌彦
出願日 2017年1月25日 (3年9ヶ月経過) 出願番号 2017-010893
公開日 2017年7月6日 (3年4ヶ月経過) 公開番号 2017-119916
状態 特許登録済
技術分野 濃淡電池(酸素濃度の測定) 非金属・化合物の電解製造;そのための装置 金属質材料の表面への固相拡散 非絶縁導体 燃料電池(本体)
主要キーワード 電解モジュール 空気流通口 中空平板状 複数個電気的 ガス流通管 プレス加工機 電流引 集電片
関連する未来課題
重要な関連分野

この項目の情報は公開日時点(2017年7月6日)のものです。
また、この項目は機械的に抽出しているため、正しく解析できていない場合があります

図面 (10)

課題

解決手段

Crを含有する合金からなる導電基体41と、該導電基体41の表面に酸化クロム14を介して被覆された被覆層43とを含み、導電基体41は表面から内部に向けて延びる凹溝15を有し、該凹溝15の内部に酸化クロム14が埋まっており、凹溝15内に埋まっている酸化クロム14の表面が被覆層43で被覆されている。

概要

背景

近年、次世代エネルギーとして、燃料ガス水素含有ガス)と酸素含有ガス(空気等)とを用いて、例えば、600〜1000℃の高温下で発電する固体酸化物形の燃料電池セルが知られている。そして、この燃料電池セルが集電部材を介して複数個電気的直列に接続してなるセルスタックが知られている(例えば、特許文献1参照)。

この特許文献1では、集電部材として耐熱性が必要であるため、Crを含有する合金からなる集電基板の表面を、Crの拡散を低減する被覆層被覆したものが使用されている。集電基板はプレス加工による剪断力で所定形状に切断等され、加工される。この後に、集電基板の表面に、ディッピングスパッタリング法等により被覆層が被覆され、これにより集電部材が構成されている。

概要

導電基体凹溝を被覆層で被覆できる導電部材およびセルスタックならびに電気化学モジュール電気化学装置を提供する。 Crを含有する合金からなる導電基体41と、該導電基体41の表面に酸化クロム14を介して被覆された被覆層43とを含み、導電基体41は表面から内部に向けて延びる凹溝15を有し、該凹溝15の内部に酸化クロム14が埋まっており、凹溝15内に埋まっている酸化クロム14の表面が被覆層43で被覆されている。

目的

本発明は、導電基体の凹溝を被覆層で被覆できる集電部材およびセルスタックならびに電気化学モジュール、電気化学装置を提供する

効果

実績

技術文献被引用数
0件
牽制数
0件

この技術が所属する分野

(分野番号表示ON)※整理標準化データをもとに当社作成

ライセンス契約や譲渡などの可能性がある特許掲載中! 開放特許随時追加・更新中 詳しくはこちら

請求項1

Crを含有する合金からなる導電基体と、該導電基体の表面に酸化クロムを介して被覆された被覆層とを含み、前記導電基体は表面から内部に向けて延びる凹溝を有し、該凹溝の内部に前記酸化クロムが埋まっており、前記凹溝内に埋まっている前記酸化クロムの表面が前記被覆層で被覆されていることを特徴とする導電部材

請求項2

前記導電基体を断面視したときに、前記導電基体の表面側に存在する凹部と、該凹部から前記導電基体の内部に向けて線状に延びる亀裂とを具備することを特徴とする請求項1に記載の導電部材。

請求項3

前記凹部内に埋まっている前記酸化クロムは表面が凹んでおり、該凹んだ部分に前記被覆層の前記酸化クロム側の面の一部が食い込んでいることを特徴とする請求項2に記載の導電部材。

請求項4

前記導電基体を断面視したときに、前記酸化クロムは、前記導電基体の表面側の凹部内に存在するとともに、該凹部から前記導電基体の内部に向けて線状に点在しており、前記凹部内に埋まっている前記酸化クロムは表面が凹んでおり、該凹んだ部分に前記被覆層の前記酸化クロム側の面の一部が食い込んでいることを特徴とする請求項1に記載の導電部材。

請求項5

前記導電基体の表面から20μm以上内部の前記凹溝内には、前記被覆層を構成する材料が存在しないことを特徴とする請求項3または4に記載の導電部材。

請求項6

複数の電気化学セルを、請求項1乃至5のうち何れかに記載の導電部材により電気的に接続してなることを特徴とするセルスタック

請求項7

請求項6に記載のセルスタックを、収納容器内収納してなることを特徴とする電気化学モジュール

請求項8

請求項7に記載の電気化学モジュールと、該電気化学モジュールを作動させるための補機とを、外装ケース内に収納してなることを特徴とする電気化学装置

技術分野

0001

本発明は、導電基体の表面が被覆層被覆された導電部材およびセルスタックならびに電気化学モジュール電気化学装置に関する。

背景技術

0002

近年、次世代エネルギーとして、燃料ガス水素含有ガス)と酸素含有ガス(空気等)とを用いて、例えば、600〜1000℃の高温下で発電する固体酸化物形の燃料電池セルが知られている。そして、この燃料電池セルが集電部材を介して複数個電気的直列に接続してなるセルスタックが知られている(例えば、特許文献1参照)。

0003

この特許文献1では、集電部材として耐熱性が必要であるため、Crを含有する合金からなる集電基板の表面を、Crの拡散を低減する被覆層で被覆したものが使用されている。集電基板はプレス加工による剪断力で所定形状に切断等され、加工される。この後に、集電基板の表面に、ディッピングスパッタリング法等により被覆層が被覆され、これにより集電部材が構成されている。

先行技術

0004

特開2005−339904号公報

発明が解決しようとする課題

0005

しかしながら、従来、集電基板をプレス加工する際に、集電基板に生じる剪断力で、集電基板の側面から内部に向けて延びる凹溝(亀裂)が生じる場合がある。この凹溝の開口は大きく、かつ深いことに起因し、凹溝の内面全体に被覆層を形成することは困難であったため、集電基板の表面の被覆層に凹溝に基づく開口部が存在しており、この被覆層の開口部を起点として集電基板が酸化していき、耐熱性が低下していくおそれがあった。

0006

本発明は、導電基体の凹溝を被覆層で被覆できる集電部材およびセルスタックならびに電気化学モジュール、電気化学装置を提供することを目的とする。

課題を解決するための手段

0007

本発明の導電部材は、Crを含有する合金からなる導電基体と、該導電基体の表面に酸化クロムを介して被覆された被覆層とを含み、前記導電基体は表面から内部に向けて延びる凹溝を有し、該凹溝の内部に前記酸化クロムが埋まっており、前記凹溝内に埋まっている前記酸化クロムの表面が前記被覆層で被覆されていることを特徴とする。

0008

本発明のセルスタックは、複数の電気化学セルを、上記導電部材により電気的に接続してなることを特徴とする。

0009

また、本発明の電気化学モジュールは、上記セルスタックを、収納容器内収納してなることを特徴とする。

0010

さらに、本発明の電気化学装置は、上記電気化学モジュールと、該電気化学モジュールを作動させるための補機とを、外装ケース内に収納してなることを特徴とする。

発明の効果

0011

本発明の導電部材によれば、導電基体の凹溝の内部は酸化クロムで埋まっており、この凹溝内に埋まっている酸化クロムの表面および導電基体の表面が被覆層で被覆されている。これにより、導電基体の凹溝を被覆層で覆うことができ、凹溝からの耐熱性の低下を抑制することができる。従って、このような導電部材をセルスタック、電気化学モジュールおよび電気化学装置に用いることにより、長期信頼性を向上することができる。

図面の簡単な説明

0012

セルスタック装置を示す図で、(a)は側面図、(b)は(a)の一部を拡大して示す断面図である。
図1燃料電池用集電部材抜粋して示す斜視図である。
(a)は図2に示す燃料電池用集電部材のA−A線から見た側面図、(b)は図2に示す燃料電池用集電部材のB−B線断面図である。
(a)は図3(b)に示す燃料電池用集電部材の集電片を拡大して示す拡大断面図、(b)は(a)のC−C線断面図、(c)は(a)の凹溝部分を拡大して示す拡大断面図、(d)は(c)よりもプレス圧を高くして、凹溝の厚さを狭くした場合の拡大断面図である。
燃料電池用集電部材の製造工程の前半を示す説明図である。
燃料電池用集電部材の製造工程の後半を示す説明図である。
図1に示すセルスタック装置における燃料電池セルと燃料電池用集電部材との接合状態を示す縦断面図である。
図1に示すセルスタック装置を収納容器に収納してなる燃料電池モジュールを分解して示す外観斜視図である。
図8に示す燃料電池モジュールを外装ケースに収納してなる燃料電池装置を示す斜視図である。

実施例

0013

先ず、導電部材として燃料電池用集電部材を備えてなるセルスタック装置について図1を用いて説明する。セルスタック装置1は、固体酸化物形の燃料電池セル3を有している。この燃料電池セル3は、内部にガス流路12を有し、一対の対向する主面をもつ全体的に見て柱状の導電性支持体7と、この導電性支持体7の一方の主面上に内側電極層である燃料極層8と、固体電解質層9と、外側電極層である酸素極層10とをこの順に配置してなる発電部を備えている。導電性支持体7の他方の主面には、インターコネクタ11を配置し、柱状(中空平板状)の燃料電池セル3が構成されている。

0014

そして、これらの燃料電池セル3の複数個を1列に配列し、隣接する燃料電池セル3間に燃料電池用集電部材(導電部材)4(以下、単に集電部材4という)を配置することで、燃料電池セル3同士を電気的に直列に接続してなるセルスタック2が構成されている。

0015

燃料電池セル3と集電部材4とは、詳しくは後述するが、導電性接合材13を介して接合されており、それにより、複数個の燃料電池セル3を、集電部材4を介して電気的および機械的に接合して、セルスタック2を構成している。

0016

また、インターコネクタ11の外面にはP型半導体層(図示せず)を設けることもできる。集電部材4を、P型半導体層を介してインターコネクタ11に接続させることより、両者の接触がオーム接触となって電位降下を少なくすることができる。このP型半導体層は、酸素極層10の外面にも設けてもよい。

0017

セルスタック2を構成する各燃料電池セル3の下端部は、ガスタンク6に、ガラス等のシール材(図示せず)により固定されており、これにより、ガスタンク6の燃料ガスを、燃料電池セル3の内部に設けられたガス流路12を介して燃料電池セル3の燃料極層8に
供給することができる。

0018

図1に示すセルスタック装置1においては、燃料電池セル3のガス流路12の内部を燃料ガスとして水素含有ガスが流れるとともに、燃料電池セル3の外側、特に燃料電池セル3の間に配置された集電部材4の内部空間を酸素含有ガス(空気)が流れる構成となる。それにより、燃料極層8にガスタンク6から燃料ガスが供給され、酸素極層10に酸素含有ガスが供給されることで、燃料電池セル3の発電が行なわれる。

0019

セルスタック装置1は、燃料電池セル3の配列方向xの両端から、集電部材4を介してセルスタック2を挟持するように、弾性変形可能な導電性挟持部材5を配置して構成され、この挟持部材5の下端部は、ガスタンク6に固定されている。挟持部材5は、セルスタック2の両端に位置するように設けられた平板部5aと、燃料電池セル3の配列方向xに沿って外側に向けて延びた形状で、セルスタック2(燃料電池セル3)の発電により生じる電流を引き出すための電流引出部5bとを有している。

0020

以下に、図1の燃料電池セル3を構成する各部材について説明する。

0021

燃料極層8は、一般的に公知のものを使用することができ、多孔質導電性セラミックス、例えば希土類元素酸化物が固溶しているZrO2(安定化ジルコニアと称する)とNiおよび/またはNiOとで構成することができる。

0022

固体電解質層9は、電極間電子の橋渡しをする電解質としての機能を有していると同時に、燃料ガスと酸素含有ガスとのリークを防止するためにガス遮断性を有することが必要とされ、3〜15モル%の希土類元素(希土類元素酸化物)が固溶したZrO2で構成される。なお、上記特性を有する限りにおいては、他の材料等を用いて構成してもよい。

0023

酸素極層10は、一般的に用いられるものであれば特に制限はなく、例えば、いわゆるABO3型ペロブスカイト型複合酸化物からなる導電性セラミックスで構成することができる。酸素極層10はガス透過性を有していることが必要であり、開気孔率が20%以上、特に30〜50%の範囲とすることができる。酸素極層10としては、例えば、BサイトにMn、Fe、Coなどが存在するランタンマンガナイト(LaSrMnO3)、ランタンフェライト(LaSrFeO3)、ランタンコバルタイト(LaSrCoO3)などの少なくとも一種を用いることができる。

0024

インターコネクタ11は、導電性セラミックスで構成することができるが、燃料ガス(水素含有ガス)および酸素含有ガス(空気等)と接触するため、耐還元性及び耐酸化性を有することが必要であり、ランタンクロマイト(LaCrO3)を用いることができる。インターコネクタ11は、導電性支持体7に存在する複数のガス流路12を流通する燃料ガス、および導電性支持体7の外側を流通する酸素含有ガスのリークを防止するために緻密質でなければならず、93%以上、特に95%以上の相対密度であることが好ましい。

0025

導電性支持体7としては、燃料ガスを燃料極層8まで透過するためにガス透過性であること、さらには、インターコネクタ11を介して集電するために導電性であることが必要とされる。したがって、導電性支持体7としては、かかる要求を満足する材質を用いる必要があり、例えば導電性セラミックスやサーメット等を用いることができる。

0026

なお、燃料電池セル3を作製するにあたり、燃料極層8または固体電解質層9との同時焼成により導電性支持体7を作製する場合においては、鉄属金属成分と特定希土類元素酸化物とから導電性支持体7を構成することができる。また、導電性支持体7は、ガス透過性を備えるために開気孔率が30%以上、特に35〜50%の範囲にあるのが好適であり
、そしてまたその導電率は50S/cm以上、さらには300S/cm以上、440S/cm以上にしてもよい。

0027

さらに、P型半導体層(図示せず)としては、遷移金属ペロブスカイト型酸化物からなる層を例示することができる。具体的には、インターコネクタ11を構成するランタンクロマイトよりも電子伝導性が大きいもの、例えば、BサイトにMn、Fe、Coなどが存在するランタンマンガナイト(LaSrMnO3)、ランタンフェライト(LaSrFeO3)、ランタンコバルタイト(LaSrCoO3)などの少なくとも一種からなるP型半導体セラミックスを用いることができる。このようなP型半導体層の厚みは、一般に、30〜100μmの範囲とすることが好ましい。

0028

導電性接合材13は、燃料電池セル3と集電部材4とを接合するもので、導電性セラミックス等を用いて構成することができる。導電性セラミックスとしては、酸素極層10を構成するものと同様のものを用いることができ、酸素極層10と同じ成分により構成すると、酸素極層10と導電性接合材13との接合強度が高くなるため好ましい。

0029

具体的には、LaSrCoFeO3、LaSrMnO3、LaSrCoO3等を用いることができる。これらの材料を単一の材料を用いて作製してもよく、2種以上組み合わせて導電性接合材13を作製してもよい。

0030

また、導電性接合材13は、粒径の異なる異種材料により構成してもよく、粒径の同じ異種材料により構成してもよい。さらに、粒径の異なる同材料により構成してもよく、粒径の同じ同材料により構成してもよい。異なる粒径を用いた場合には微粒の粒径を0.1〜0.5μm、粗粒の粒径を1.0〜3.0μmとすることが好ましい。また同じ粒径で導電性接合材13を構成する場合は、粒径が0.5〜3μmとすることが好ましい。

0031

このように、異なる粒径の材料を用いて導電性接合材13を作製することにより、粒径の大きな粗粒が導電性接合材13の強度を向上させるとともに、粒径の小さな微粒が導電性接合材13の焼結性を向上させることができる。

0032

次に、集電部材4について図2〜4を用いて説明する。図2に示す集電部材4は、隣接する一方の燃料電池セル3と接合される複数の第1集電片4aと、隣接する他方の燃料電池セル3と接合される複数の第2集電片4bと、複数の第1集電片4aおよび複数の第2集電片4bの一端同士を連結する第1連結部4cと、複数の第1集電片4aおよび複数の第2集電片4bの他端同士を連結する第2連結部4dとを一組のユニットとしている。そして、これらのユニットの複数組が、燃料電池セル3の長手方向に導電性連結片4eにより連結されて構成されている。第1集電片4aおよび第2集電片4bは、燃料電池セル3に接合される部位を示し、これらの部位が燃料電池セル3により電力を取り出す集電部4fとなっている。また、第1集電片4aと第2集電片4bとの間が、酸素含有ガスが通過する空間とされている。

0033

燃料電池セル3において、上述したように、固体電解質層9を介して燃料極層8と、酸素極層10とが対向する部位が発電する部位となる。それゆえ、燃料電池セル3の発電部で発電された電流を効率よく集電するにあたり、集電部材4の燃料電池セル3の長手方向に沿った長さは、燃料電池セル3における酸素極層10の長手方向における長さと同等以上とすることがよい。集電部材4の構造はこれに限定されるものではない。

0034

集電部材4は、セルスタック装置1の作動時に高温の酸化雰囲気に曝されることから、集電基板(導電基体)41の表面全体に被覆層43を形成してなり、これにより、集電部材4の劣化を低減することができる。なお、図2図3(a)では被覆層43を省略し、
図4では、集電基板41の表面全体に被覆層43を形成した状態を示し、集電基板41の断面を示す斜線は省略している。

0035

集電部材4は、耐熱性および高温の酸化性雰囲気で導電性を有する必要があるため、集電基板41は、例えば合金により作製することができる。特には、集電部材4は、高温の酸化雰囲気に曝されることから、集電基板41は4〜30質量%の割合でCrを含有する合金で構成されている。集電基板41は、例えば、Fe−Cr系の合金やNi−Cr系の合金等により作製できる。集電基板41は高温用(600〜1000℃)の導電基体である。

0036

また、集電基板41のCrが燃料電池セル3に拡散することを低減するために、被覆層43として、Znの酸化物、あるいはLaおよびSrを含有するペロブスカイト型複合酸化物等を用いることができる。被覆層43はCrの拡散を低減できればよく、上記材料以外であっても良い。

0037

図3に示すように、第1集電片4aおよび第2集電片4bは、燃料電池セル3の配列方向xに対して異なる角度で交差する第1表面4g、燃料電池セル3の配列方向xと平行に形成された第2表面4hおよび第3表面4iを有している。言い換えると、燃料電池セル3と対向する第1表面4gと、第1表面4gの両側に隣り合う第2表面4hおよび第3表面4iとを有している。この第2表面4hおよび第3表面4iが、集電基板41の側面である。

0038

そして、第1集電片4aおよび第2集電片4bの第2表面4hおよび第3表面4iには複数の凹溝15が形成されており、これらの凹溝15内には酸化クロム14が埋まっている。言い換えると、プレス加工時の剪断力で切断され、厚み方向に形成された面(側面)には、亀裂状の凹溝15が形成されており、これらの凹溝15内には酸化クロム14が充填されている。この酸化クロム14は、集電基板41の熱処理時に、集電基板41内部から集電基板41の凹溝15の表面に拡散してきたCrを酸化して形成されている。

0039

凹溝15は、図3(b)、図4(c)に示すように、集電基板41の厚み方向(配列方向x)の内壁面が当接するほどほぼ閉じられており、開口しているとしても、厚みWが狭い面状の空間であって、内部が先細り形状に形成され、凹溝15内には、酸化クロム14がほぼ充填され凹溝15が酸化クロム14でほぼ埋設されている。

0040

図4(c)で説明すると、凹溝15は、集電基板41の厚み方向の断面において(集電基板41を断面視したとき)、集電基板41の側面側に形成された厚みが大きい凹部15aと、該凹部15aから集電基板41の内部に向けて線状に延び、凹部15aよりも厚みが小さい亀裂15bとを具備するとともに、凹部15a内に埋まっている酸化クロム14の表面は凹んでおり、この凹んだ部分に、被覆層43の酸化クロム14側の面の一部が食い込んでいる。被覆層43は、凹部15a内の酸化クロム14表面全体を覆っている。

0041

また、酸化クロム14は、図4(d)に示すように、対向する凹溝15の内壁面が当接するほど閉じられた面状の空間内に埋設され、集電基板41の厚み方向の断面で、複数の酸化クロム14の塊が線状に並んで点在するように見える場合がある。一つ一つの酸化クロム14の塊は、集電基板41の厚み方向の断面で見れば、球状ではなく、楕円状または棒状に見える。

0042

図4(d)の構造は、プレスによる加圧力図4(c)の場合よりも増加することにより達成することができる。凹溝15内の酸化クロム14は、集電基板41の厚み方向の断面において、集電基板41の側面側に形成された凹部15a内に存在するとともに、該凹
部15aから集電基板41の内部に向けて線状に点在するように構成されている。凹部15a内に埋まっている酸化クロム14の表面は凹んでおり、この凹んだ部分に、被覆層43の酸化クロム14側の面の一部が食い込んでいる。被覆層43は、凹部15a内の酸化クロム14表面全体を覆っている。

0043

集電基板41の内部に向けて線状に点在するとは、直線状でも曲線状でもよく、また、凹溝15を構成する内壁面が当接するほどほぼ閉じられており、このほぼ閉じられた部分では、酸化クロム14が存在しないように見え、酸化クロム14の塊が点在するように見える。

0044

集電基板41の側面から20μm以上内部の凹溝15内には、被覆層43を構成する材料が配置されていない。すなわち、集電基板41の側面から20μm以上内部の凹溝15内には酸化クロム14が存在しており、被覆層43は、凹溝15の凹部15a内の酸化クロム14の表面全体を覆っている。なお、集電基板41の側面から20μm以上内部とは、集電基板41の厚み方向の断面において、集電基板41の凹溝15の上下の側面間を結ぶ直線から、20μm以上内部という意味である。

0045

図4では、凹溝15は、集電基板41の側面を構成する第2表面4h、第3表面4iから、第1表面4gと反対側に向けて斜めに設けられている。

0046

凹溝15は、集電部4fの第2表面4h、第3表面4iから内部に向けて5〜30μmの深さ(図4(a)で示すL)で設けられており、凹溝15の凹部15aは閉じられているか、開口しているとしても、1〜5μmの厚み(開口幅図4で示すW)とされている。これにより、後述するように酸化クロム14が充填されやすくなり、集電基板41の凹溝15を被覆層43により被覆することができ、集電基板41の表面全体を被覆層43で隙間無く被覆することが可能となる。これにより、集電部材4の凹溝15からの酸化を抑制し、耐熱性を向上できる。

0047

集電基板41、酸化クロム14、被覆層43の順に熱膨張係数が小さくなるため、さらに、凹溝15内にも酸化クロム14を構成する材料が存在するため、 集電基板41から
の被覆層43の剥離を抑制できる。

0048

次に、集電部材4の作製方法について説明する。図5(a)に示すように、下型19a1と上型19b1とを具備したプレス加工機の下型19a1上に、一枚の矩形状をした厚み0.1〜1mmの板状の集電基板41を載置する。この後、上型19b1を下降させることにより、図5(b)に示すように、集電基板41の幅方向に延びるスリットを形成する。スリットを形成する形状の上型19b1を、スリット部分がくり抜かれた下型19a1の穴内に挿入して、剪断力により集電基板41にスリットを形成する。この際、図5(c)に示すように、剪断力により集電基板41の側面(第1集電片4a、第2集電片4bの第2表面4h、第3表面4i)に斜めに楔状の凹溝15が形成されることがある。

0049

そして、図6(d)に示すように、下型19a2と上型19b2とで挟持して、集電基板41の主面側を押圧することにより、図6(e)に示すように、楔状の凹溝15の開口部が狭まり、厚みが小さい亀裂状の凹溝15とできる。すなわち、剪断力により形成された凹溝15は、集電基板41の側面側に厚みがある程度大きい開口である凹部15aと、凹部15aから内部側に向けて厚みが凹部15aよりも小さい裂け目状の亀裂15bとを有することとなる。この際、集電基板41の角部を丸めるような下型19a2と上型19b2を用いて加圧することにより、集電基板41の角部を丸めることができ、この部分に被覆層43を容易に形成できるようになる。

0050

この後、集電基板41を、例えば、大気中500〜1000℃で0.5〜5時間熱処理し、集電基板41の表面に層状の酸化クロム14を形成するとともに、図6(f)に示すように、凹溝15の内表面に酸化クロム14を析出させ、凹溝15の内部が酸化クロム14で埋められている。なお、集電基板41の熱処理条件により、凹溝15内における酸化クロム14の充填程度を制御できる。すなわち、凹溝15の寸法が同じなら、熱処理温度を高くすることにより、または熱処理時間を長くすることにより、集電基板41からクロムを集電基板41表面まで拡散させ、酸化クロム14を多く生成でき、凹溝15内に酸化クロム14を充填させることができる。

0051

また、図6(d)に示す、下型19a2と上型19b2とによる加圧力を調整することで、凹溝15の厚みを調整できる。すなわち、プレス圧を高くすることにより、凹溝15の厚みを狭くでき、凹溝15内を酸化クロム14で埋設し易くでき、例えば、図4(d)に示す構造とすることができる。プレス圧は、例えば、1〜100kg/mm2とすることができる。

0052

下型19a2と上型19b2とによる加圧力を制御し、熱処理条件を制御することにより、凹溝15内を酸化クロム14で完全に埋設することなく、集電基板41の凹溝15の表面から少し凹むように酸化クロム14を形成することができる。この形態では、被覆層43を構成する材料が酸化クロム14の凹みに配置されており、被覆層43の集電基板41からの剥離を抑制できる。なお、下型19a2と上型19b2とによる加圧力を制御し、熱処理条件を制御することにより、集電基板41の表面とほぼ同一位置まで酸化クロム14を形成し、あるいは集電基板41の表面から少し飛び出るように酸化クロム14を形成することもできる。

0053

この後、集電基板41表面(詳細には、酸化クロム14の表面)、および凹溝15に埋まっている酸化クロム14の表面に、図6(g)に示すように、例えばスパッタリング法により被覆層43を形成することにより集電部材4を構成することができる。

0054

凹溝15の開口部が広くて浅い場合には、集電基板41の主面の加圧によっても開口部の厚みはそこまで狭まらないが、開口部が広いため、スパッタリング法等により凹溝15内の酸化クロム14を被覆層43で被覆できる。また、逆に、凹溝15の開口部が広くて深い場合には、凹溝15の内部側はプレスによって厚みが狭められ、酸化クロム14が充填され、凹溝15の開口部は、スパッタリング法等により凹溝15内の酸化クロム14を被覆層43で被覆できる。さらに、凹溝15の開口部が狭い場合には、凹溝15の開口部を被覆層43で被覆できる。

0055

なお、図5(c)、図6(d)〜(g)は断面図であるが、集電基板41、被覆層43における斜線を削除した。また、集電基板41表面全体に酸化クロム14が形成されるが、図6(f)(g)では、凹溝15の酸化クロム14のみ記載している。

0056

また、図6(d)の工程で、6(e)〜(g)に示すように、集電基板41の角部を丸めることができ、集電基板41の全周囲に被覆層を容易に形成できる。

0057

次に、集電部材4と燃料電池セル3との導電性接合材13による接合状態について、図7を用いて説明する。

0058

図7に示すように集電部材4と燃料電池セル3とは導電性接合材13を介して接合されている。つまり、導電性接合材13により、集電部材4と燃料電池セル3とは電気的および機械的に接続されている。導電性接合材13は、集電部4fの第1表面4g、第2表面4hおよび第3表面4iを覆うように設けられており、第2表面4hおよび第3表面4i
に位置する導電性接合材13はそれぞれ接合される燃料電池セル3側の方に多くなるように設けられている。また、集電部材4の全周を被覆することにより、集電部4fを完全に覆うように導電性接合材13を設けてもよい。なお、図7では、被覆層43の記載を省略した。

0059

すなわち、図7では、導電性接合材13は、燃料電池セル3と集電部材4とを接合するために配置されており、燃料電池セル3の酸素極層10側には、酸素極層10の全面にわたり設けられている。燃料電池セル3のインターコネクタ11側には、導電性接合材13がインターコネクタ11の全面にわたり設けられている。なお、酸素極層10やインターコネクタ11の一部にのみ導電性接合材13を設けて、集電部材4と燃料電池セル3とを接合してもよい。

0060

次に、セルスタック装置1を収納容器21内に収納してなる燃料電池モジュール20について図8を用いて説明する。

0061

図8に示す燃料電池モジュール20は、燃料電池セル3にて使用する燃料ガスを得るために、天然ガス灯油等の原燃料改質して燃料ガスを生成するための改質器22をセルスタック2の上方に配置して構成されている。そして、改質器22で生成された燃料ガスは、ガス流通管23を介してガスタンク6に供給され、ガスタンク6を介して燃料電池セル3の内部に設けられたガス流路12に供給される。

0062

なお、図8においては、収納容器21の一部(前後面)を取り外し、内部に収納されているセルスタック装置1および改質器22を後方に取り出した状態を示している。ここで、図8に示した燃料電池モジュール20においては、セルスタック装置1を、収納容器21内にスライドして収納することが可能である。

0063

また収納容器21の内部に設けられた酸素含有ガス導入部材24は、図8においてはガスタンク6に並置された一対のセルスタック2の間に配置されるとともに、酸素含有ガスが、燃料ガスの流れに合わせて、燃料電池セル3の側方を下端部側から上端部側に向かって流れるように、燃料電池セル3の下端部側に酸素含有ガスを供給するように構成されている。そして、燃料電池セル3のガス流路12より排出され、発電に使用されなかった余剰の燃料ガス(燃料オフガス)を燃料電池セル3の上端部の上方で燃焼させることにより、セルスタック2の温度を効果的に上昇させることができ、セルスタック装置1の起動を早めることができる。また、燃料電池セル3の上端部の上方にて、燃料電池セル3のガス流路12から排出される発電に使用されなかった燃料ガスを燃焼させることにより、セルスタック2の上方に配置された改質器22を温めることができる。それにより、改質器22で効率よく改質反応を行うことができる。

0064

次に、燃料電池モジュール20と、燃料電池モジュール20を作動させるための補機(図示せず)とを外装ケースに収納してなる燃料電池装置25について図9を用いて説明する。

0065

図9に示す燃料電池装置25は、支柱26と外装板27から構成される外装ケース内を仕切板28により上下に区画し、その上方側を上述した燃料電池モジュール20を収納するモジュール収納室29とし、下方側を燃料電池モジュール20を作動させるための補機を収納する補機収納室30として構成されている。なお、補機収納室30に収納する補機は省略している。

0066

また、仕切板28には、補機収納室30の空気をモジュール収納室29側に流すための空気流通口31が設けられており、モジュール収納室29を構成する外装板27の一部に
、モジュール収納室29内の空気を排気するための排気口32が設けられている。

0067

以上、本発明について詳細に説明したが、本発明は上述の実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内において、種々の変更、改良等が可能である。

0068

例えば、上記形態では、セルスタック装置1の燃料電池用集電部材4を本発明の導電部材として説明したが、本発明の導電部材は燃料電池用に限定されるものではなく、高温の酸化性雰囲気で使用される用途、例えば酸素センサ用の導電部材に用いることができる。

0069

また、上記形態では燃料電池セルおよび燃料電池モジュールならびに燃料電池装置について説明したが、本発明はこれに限定されるものではなく、電解セル水蒸気電圧とを付与して水蒸気(水)を電気分解することにより、水素酸素(O2)を生成する電解セル(SOEC)およびこの電解セルを備える電解モジュールおよび電解装置にも適用することができる。

0070

1:セルスタック装置
2:セルスタック
3:燃料電池セル
4:集電部材
6:ガスタンク
13:導電性接合材
14:酸化クロム
15:凹溝
15a:凹部
15b:亀裂
20:燃料電池モジュール
21:収納容器
25:燃料電池装置
41:集電基板
43:被覆層

ページトップへ

この技術を出願した法人

この技術を発明した人物

ページトップへ

関連する挑戦したい社会課題

関連する公募課題

ページトップへ

技術視点だけで見ていませんか?

この技術の活用可能性がある分野

分野別動向を把握したい方- 事業化視点で見る -

(分野番号表示ON)※整理標準化データをもとに当社作成

ページトップへ

おススメ サービス

おススメ astavisionコンテンツ

新着 最近 公開された関連が強い技術

  • ナミックス株式会社の「 複合銅箔」が 公開されました。( 2020/09/24)

    【課題】新規な複合銅箔を提供することを目的とする。【課題を解決するための手段】 銅箔の少なくとも一部の表面に、銅以外の金属層が形成されている複合銅箔であって、少なくとも一部の前記複合銅箔の表面に凸部... 詳細

  • 住友電気工業株式会社の「 レドックスフロー電池」が 公開されました。( 2020/09/24)

    【課題・解決手段】正極電解液を貯留する正極電解液タンクを収納した正極タンクコンテナと、負極電解液を貯留する負極電解液タンクを収納した負極タンクコンテナと、正極電極、負極電極、及び隔膜を有する電池セルと... 詳細

  • ヴィーラントウェルケアクチーエンゲゼルシャフトの「 銅合金からなる線材、網および水産養殖用飼育かご」が 公開されました。( 2020/09/24)

    【課題・解決手段】本発明は、酸化物表面を有する金属材料からなる線材に関し、前記線材の酸化物表面は、部分的に前記金属材料を覆い少なくとも200nmから2μmの厚さを有する第1酸化物層を有し、および前記線... 詳細

この 技術と関連性が強い人物

関連性が強い人物一覧

この 技術と関連する社会課題

関連する挑戦したい社会課題一覧

この 技術と関連する公募課題

関連する公募課題一覧

astavision 新着記事

サイト情報について

本サービスは、国が公開している情報(公開特許公報、特許整理標準化データ等)を元に構成されています。出典元のデータには一部間違いやノイズがあり、情報の正確さについては保証致しかねます。また一時的に、各データの収録範囲や更新周期によって、一部の情報が正しく表示されないことがございます。当サイトの情報を元にした諸問題、不利益等について当方は何ら責任を負いかねることを予めご承知おきのほど宜しくお願い申し上げます。

主たる情報の出典

特許情報…特許整理標準化データ(XML編)、公開特許公報、特許公報、審決公報、Patent Map Guidance System データ