図面 (/)

技術 内燃機関の排気浄化装置

出願人 株式会社デンソー
発明者 上野友博窪島司
出願日 2015年12月11日 (4年0ヶ月経過) 出願番号 2015-241781
公開日 2017年6月15日 (2年6ヶ月経過) 公開番号 2017-106399
状態 特許登録済
技術分野 排気の後処理 触媒による排ガス処理 ガス中の分散粒子の濾過
主要キーワード 旋廻流 析出固形物 増加度合い 全熱量 流通範囲 単位流量 電磁式開閉弁 アンモニア消費量
関連する未来課題
重要な関連分野

この項目の情報は公開日時点(2017年6月15日)のものです。
また、この項目は機械的に抽出しているため、正しく解析できていない場合があります

図面 (18)

課題

PMを捕集するフィルタにNOxを選択的に還元する選択還元触媒担持された触媒担持フィルタ前端への尿素由来デポジット堆積によりPMを燃焼させるための昇温を実施してしまうのを抑制する。

解決手段

ECU1は、触媒担持フィルタとしてのSCRF7の温度及び添加弁5から添加される尿素添加量を取得する。これら温度、添加量に基づいて、SCRF7の前端への尿素由来デポジットの堆積によるSCRF7の前後差圧の影響の大きさを示した影響指標を算出する。また、SCRF7でのNOx浄化率や最近のエンジン停止時間に基づいて影響指標を補正する。差圧センサ8が検出する差圧閾値以上の場合には、算出した影響指標が閾値以上か否かを判断する。影響指標が閾値未満の場合には、PM除去用の昇温を実施する。影響指標が閾値以上の場合には、PM除去用の昇温に代えて、尿素由来デポジットを除去するための昇温を実施する。

概要

背景

従来、内燃機関から排出される排気浄化するシステムの一つに尿素SCR(Selective Catalytic Reduction)システムが知られている。尿素SCRシステムでは、内燃機関の排気管に、尿素から生成されたアンモニア貯蔵してそのアンモニアにより排気中のNOxを選択的に還元する選択還元触媒SCR触媒)と、その選択還元触媒の排気上流側に尿素を添加する添加弁とが設けられる(例えば特許文献1参照)。

また、排気管には、排気中の粒子状物質パティキュレートマター、PM)を捕集するフィルタが設けられることがある。このフィルタに一定量以上の粒子状物質が堆積した場合には、フィルタを昇温させて堆積した粒子状物質を燃焼させる再生処理が実施される。再生処理としては、例えば内燃機関のトルクを得るためのメイン噴射後続して、排気の温度を上げるためのアフター噴射ポスト噴射を実施する。また、フィルタに粒子状物質の堆積量が多くなるにしたがってフィルタの前後差圧圧損)が次第に大きくなっていく。そこで、再生処理を実施するか否かは、例えばフィルタの前後の差圧を取得する差圧センサを設けて、その差圧センサが取得した値に基づき判断している。

概要

PMを捕集するフィルタにNOxを選択的に還元する選択還元触媒が担持された触媒担持フィルタ前端への尿素由来デポジットの堆積によりPMを燃焼させるための昇温を実施してしまうのを抑制する。ECU1は、触媒担持フィルタとしてのSCRF7の温度及び添加弁5から添加される尿素添加量を取得する。これら温度、添加量に基づいて、SCRF7の前端への尿素由来デポジットの堆積によるSCRF7の前後差圧の影響の大きさを示した影響指標を算出する。また、SCRF7でのNOx浄化率や最近のエンジン停止時間に基づいて影響指標を補正する。差圧センサ8が検出する差圧が閾値以上の場合には、算出した影響指標が閾値以上か否かを判断する。影響指標が閾値未満の場合には、PM除去用の昇温を実施する。影響指標が閾値以上の場合には、PM除去用の昇温に代えて、尿素由来デポジットを除去するための昇温を実施する。

目的

本発明は上記問題に鑑みてなされたものであり、触媒担持フィルタの前端への尿素由来デポジットの堆積により、粒子状物質を燃焼させるための昇温を頻繁に実施してしまうのを抑制できる内燃機関の排気浄化装置を提供する

効果

実績

技術文献被引用数
0件
牽制数
0件

この技術が所属する分野

(分野番号表示ON)※整理標準化データをもとに当社作成

ライセンス契約や譲渡などの可能性がある特許掲載中! 開放特許随時追加・更新中 詳しくはこちら

請求項1

内燃機関(2)の排気管(3)に設けられ、前記内燃機関の排気中の粒子状物質捕集するフィルタに、排気中のNOxを選択的に還元する選択還元触媒担持された触媒担持フィルタ(7)と、前記触媒担持フィルタの排気上流側に、前記触媒担持フィルタにおいてNOxを還元させるための尿素を添加する添加弁(5)と、前記触媒担持フィルタの前後の差圧を取得する差圧センサ(8)と、前記差圧センサが取得した値に基づいて前記触媒担持フィルタの再生実施を判断する判断部(S31、1)と、前記触媒担持フィルタの前端への尿素由来デポジット堆積による前記差圧への影響の大きさを示した影響指標を検出する指標検出部(S1、1)と、前記判断部が前記触媒担持フィルタの再生実施を判断した場合に、前記影響指標が所定値未満のときに、前記触媒担持フィルタに堆積した粒子状物質が燃焼するよう前記触媒担持フィルタを昇温させる第1再生処理を実施する第1の再生制御部(S32、S34、S4、1)と、前記判断部が前記触媒担持フィルタの再生実施を判断した場合に、前記影響指標が前記所定値以上のときには、前記第1再生処理に代えて、前記触媒担持フィルタに堆積した尿素由来デポジットを除去する第2再生処理を実施する第2の再生制御部(S32、S33、S5、1)と、を備える内燃機関の排気浄化装置

請求項2

前記指標検出部は、前記触媒担持フィルタの温度と、前記添加弁から添加される尿素の添加量とを取得して、前記温度と前記添加量とに基づき前記影響指標を算出する請求項1に記載の内燃機関の排気浄化装置。

請求項3

前記指標検出部は、前記触媒担持フィルタの各時点での温度を取得する温度取得部(S11)と、前記添加弁から添加される各時点での尿素の添加量を取得する添加量取得部(S12)と、時点毎に前記温度と前記添加量とに応じた前記影響指標を算出する算出部(S13)と、前記算出部が算出した時点毎の前記影響指標を積算する積算部(S14)とを備え、前記第1の再生制御部は、前記積算部により得られた積算の前記影響指標が前記所定値未満のときに基づき前記第1再生処理を実施し、前記第2の再生制御部は、前記積算部により得られた積算の前記影響指標が前記所定値以上のときに前記第2再生処理を実施する請求項2に記載の内燃機関の排気浄化装置。

請求項4

前記指標検出部は、前記触媒担持フィルタでのNOx浄化率を取得する浄化率取得部(S15)と、前記浄化率取得部が取得したNOx浄化率に基づいて前記影響指標を補正する補正部(S16、S17)とを備える請求項2又は3に記載の内燃機関の排気浄化装置。

請求項5

前記指標検出部は、前記内燃機関の最近の停止時間を取得する停止時間取得部(S18)と、前記停止時間取得部が取得した停止時間に基づいて前記影響指標を補正する補正部(S19、S20)とを備える請求項2〜4のいずれか1項に記載の内燃機関の排気浄化装置。

請求項6

前記第2再生処理は、尿素由来デポジットが燃焼するよう前記触媒担持フィルタを昇温させる処理であり、前記第2再生処理の実施時における前記触媒担持フィルタの目標温度は、前記第1再生処理の実施時における前記触媒担持フィルタの目標温度より低温である請求項1〜5のいずれか1項に記載の内燃機関の排気浄化装置。

請求項7

前記第2の再生制御部は、前記第2再生処理を所定時間継続した後、終了する請求項1〜6のいずれか1項に記載の内燃機関の排気浄化装置。

技術分野

0001

本発明は内燃機関排気浄化装置に関する。

背景技術

0002

従来、内燃機関から排出される排気浄化するシステムの一つに尿素SCR(Selective Catalytic Reduction)システムが知られている。尿素SCRシステムでは、内燃機関の排気管に、尿素から生成されたアンモニア貯蔵してそのアンモニアにより排気中のNOxを選択的に還元する選択還元触媒SCR触媒)と、その選択還元触媒の排気上流側に尿素を添加する添加弁とが設けられる(例えば特許文献1参照)。

0003

また、排気管には、排気中の粒子状物質パティキュレートマター、PM)を捕集するフィルタが設けられることがある。このフィルタに一定量以上の粒子状物質が堆積した場合には、フィルタを昇温させて堆積した粒子状物質を燃焼させる再生処理が実施される。再生処理としては、例えば内燃機関のトルクを得るためのメイン噴射後続して、排気の温度を上げるためのアフター噴射ポスト噴射を実施する。また、フィルタに粒子状物質の堆積量が多くなるにしたがってフィルタの前後差圧圧損)が次第に大きくなっていく。そこで、再生処理を実施するか否かは、例えばフィルタの前後の差圧を取得する差圧センサを設けて、その差圧センサが取得した値に基づき判断している。

先行技術

0004

特開2010−270624号公報

発明が解決しようとする課題

0005

ところで、尿素SCRシステムでは、添加弁から添加された尿素の添加量や選択還元触媒の温度等の条件によっては、排気管の内壁や選択還元触媒の前端などに、尿素や中間生成物シアヌル酸メラミンメルムなど)の析出固形物である尿素由来デポジットが堆積することがある。

0006

一方で、上記フィルタに上記選択還元触媒が担持された触媒担持フィルタがある。この触媒担持フィルタを採用した場合、触媒担持フィルタの上流から尿素水を添加するため、尿素水由来のデポジットが排気管内ミキサー触媒前端に堆積する。触媒担持フィルタの前端に尿素由来デポジットが堆積した場合、尿素由来デポジットにより触媒担持フィルタの前後差圧が増加する。尿素由来デポジットの堆積による差圧増加により、触媒担持フィルタへの粒子状物質の堆積量が少ない時にも粒子状物質を燃焼させるための昇温が実施され、無駄な昇温が繰り返されることにより燃費が悪化するという問題がある。

0007

本発明は上記問題に鑑みてなされたものであり、触媒担持フィルタの前端への尿素由来デポジットの堆積により、粒子状物質を燃焼させるための昇温を頻繁に実施してしまうのを抑制できる内燃機関の排気浄化装置を提供することを課題とする。

課題を解決するための手段

0008

上記課題を解決するため、本発明の内燃機関の排気浄化装置は、
内燃機関(2)の排気管(3)に設けられ、前記内燃機関の排気中の粒子状物質を捕集するフィルタに、排気中のNOxを選択的に還元する選択還元触媒が担持された触媒担持フィルタ(7)と、
前記触媒担持フィルタの排気上流側に、前記触媒担持フィルタにおいてNOxを還元させるための尿素を添加する添加弁(5)と、
前記触媒担持フィルタの前後の差圧を取得する差圧センサ(8)と、
前記差圧センサが取得した値に基づいて前記触媒担持フィルタの再生実施を判断する判断部(S31、1)と、
前記触媒担持フィルタの前端への尿素由来デポジットの堆積による前記差圧への影響の大きさを示した影響指標を検出する指標検出部(S1、1)と、
前記判断部が前記触媒担持フィルタの再生実施を判断した場合に、前記影響指標が所定値未満のときに、前記触媒担持フィルタに堆積した粒子状物質が燃焼するよう前記触媒担持フィルタを昇温させる第1再生処理を実施する第1の再生制御部(S32、S34、S4、1)と、
前記判断部が前記触媒担持フィルタの再生実施を判断した場合に、前記影響指標が前記所定値以上のときには、前記第1再生処理に代えて、前記触媒担持フィルタに堆積した尿素由来デポジットを除去する第2再生処理を実施する第2の再生制御部(S32、S33、S5、1)と、
を備える。

0009

本発明によれば、触媒担持フィルタの前端への尿素由来デポジットの堆積による差圧への影響の大きさを示した影響指標を検出する。そして、触媒担持フィルタの前後の差圧に基づいて触媒担持フィルタの再生実施を判断した場合には、再生実施する前に影響指標を確認する。影響指標が所定値未満のときに、堆積した粒子状物質を燃焼させるための昇温(第1再生処理)を実施する。一方、影響指標が所定値以上のときには、第1再生処理の実施を中止して、尿素由来デポジットを除去する第2再生処理を実施するので、尿素由来デポジットの堆積により粒子状物質を燃焼させるための昇温(第1再生処理)を頻繁に実施してしまうのを抑制できる。加えて、第2再生処理により触媒担持フィルタに堆積した尿素由来デポジットを除去できるので、尿素由来デポジットの堆積により触媒担持フィルタの前後の差圧が増加してしまうのを抑制できる。

図面の簡単な説明

0010

内燃機関の排気浄化装置の構成図である。
SCRF前端に尿素デポが堆積した状態を示した図である。
差圧が閾値に達したときにおける、PM堆積による差圧と尿素デポ堆積による差圧との内訳を示した図である。
SCRF前端の狭い範囲に尿素デポが堆積した状態を示した図である。
SCRFの再生処理を構成する各工程のブロック図である。
SCRF温度及び尿素添加量から影響指標を算出する工程を示したブロック図である。
SCRF温度と影響指標との関係を示した図である。
SCRF温度が低い時の尿素添加量と影響指標との関係を示した図である。
SCRF温度が高い時の尿素添加量と影響指標との関係を示した図である。
上段にSCRF温度の推移を例示し、その温度の推移に対応させた形で影響指標の推移を下段に示した図である。
SCRF温度及び尿素添加量に加えて、NOx浄化率を考慮した影響指標を算出する工程を示したブロック図である。
NOx浄化率と影響指標の補正項との関係を示した図である。
SCRF温度とSCRFでのNOx浄化能力との関係を示した図である。
SCRF温度及び尿素添加量に加えて、エンジン停止時間を考慮した影響指標を算出する工程を示したブロック図である。
エンジン停止時間と影響指標の補正項との関係を示した図である。
PM除去用の昇温を実施するか尿素デポ除去用の昇温を実施するかの昇温実施判定のフローチャートである。
SCRFの再生処理に関連する各パラメータタイムチャートである。

実施例

0011

以下、本発明の実施形態を図面を参照しながら説明する。図1は、本発明が適用された内燃機関の排気浄化装置の構成図である。図1の排気浄化装置は車両に搭載されて、車両のエンジン2(内燃機関)から排出された排気中の有害物質を除去する装置である。排気浄化装置は、排気中のNOxを浄化する尿素SCRシステムを含んで構成される。さらに、排気浄化装置は、排気中のPM(Soot、すす)を除去する装置でもある。

0012

エンジン2は、例えば、筒内に燃料直接噴射するインジェクタを備えて、そのインジェクタから噴射された燃料が筒内で自己着火することで、車両を駆動するためのトルクを生み出すディーゼルエンジンである。

0013

エンジン2の排気管3には、排気中の有害成分の一つであるHCやCOを酸化浄化する酸化触媒4(DOC:Diesel Oxidation Catalyst)が配置されている。酸化触媒4は、例えば、ウォールスルータイプセラミックハニカムや金属製のメッシュなどに、HC、COの酸化反応を促進させる触媒成分(例えば、Pt(白金)やPd(パラジウム)など)を担持した構造となっている。また、酸化触媒4は、後述のSCRF7に堆積したPMや尿素由来デポジットを燃焼除去するために、酸化触媒4に供給された未燃燃料(未燃HC)との酸化反応により排気を昇温する役割も担っている。

0014

酸化触媒4の下流の排気管3には、排気管3内に還元剤としての尿素水を添加する添加弁5が配置されている。添加弁5は、ガソリンエンジンの筒内または吸気ポート内に燃料を噴射する燃料噴射弁(インジェクタ)と同様の構造を有している。すなわち、添加弁5は、噴孔が形成されたノズルと、電磁ソレノイド等からなる駆動部と、尿素水を流通させる尿素水通路やノズルを開閉するためのニードルとを備えた電磁式開閉弁として構成されている。そして、電磁ソレノイドが通電されると、その通電に伴いニードルが開弁方向に移動し、そのニードルの移動に伴いノズル先端に形成された噴孔から尿素水が噴射される。

0015

添加弁5の下流の排気管3にはミキサー6が配置されている。ミキサー6は、添加弁5から添加された尿素水を微粒化して排気中に分散させる装置である。ミキサー6は、例えば、排気の旋廻流蛇行流を生じさせる通路として構成される。

0016

ミキサー6の下流の排気管3には、触媒担持フィルタとしてのSCRF(Selective Catalytic Reduction Filter)7が配置されている。SCRF7は、排気中のPMを捕集する、例えばウォールスルータイプのセラミック製ハニカムに構成されたフィルタ(DPF:Diesel Particulate Filter)に、排気中のNOxを選択的に還元する選択還元触媒としてのSCR触媒が担持された構造を有する。つまり、SCRF7は、PMを除去する機能と、NOxを還元浄化する機能の両方を備えている。排気は、SCRF7の多孔性隔壁を通過しながら下流に流れ、その間に排気中のPMがSCRF7に捕集される。

0017

SCRF7に担持されているSCR触媒は、尿素水から生成されたアンモニア(NH3)とNOxとの還元反応として例えば下記式1、式2、式3の還元反応を促進させるものであり、例えばバナジウムモリブデンタングステン等の卑金属酸化物ゼオライト貴金属である。このように、排気がSCRF7を通過する間に、NOxは例えば下記式1、式2、式3により水や窒素に分解(浄化)する。
4NO+4NH3+O2→4N2+6H2O ・・・(式1)
6NO2+8NH3→7N2+3H2O ・・・(式2)
NO+NO2+2NH3→2N2+3H2O ・・・(式3)

0018

また、排気浄化装置には、添加弁5に尿素水を供給する尿素水供給装置(図示外)が備えられている。その尿素水供給装置は、尿素水を貯蔵する尿素水タンクと、尿素水タンクと添加弁5の間を繋ぐ配管と、尿素水タンクから尿素水を汲み上げて配管を通じて添加弁5側に吐出するポンプと、配管内の尿素水の圧力を所定圧力となるように調整するレギュレータとを備えている。

0019

さらに、排気浄化装置には各種センサが設けられている。具体的には、SCRF7の前後の差圧(SCRF7の上流の圧力と下流の圧力との差)を検出する差圧センサ8が設けられている。また、SCRF7の上流には、SCRF7に流入する排気の温度を検出する排気温センサ9と、NOx濃度を検出する上流NOxセンサ10とが設けられている。SCRF7に流入するNOx濃度を推定する機能がECU1内にある場合には上流NOxセンサ10は無くても良い。センサ9は、ミキサー6の下流に設けられている。センサ10を搭載する場合は添加弁5の上流に設けられている。また、SCRF7の下流には、SCRF7から流出した排気中のNOx濃度を検出する下流NOxセンサ11が設けられている。さらに、エンジン2の吸気管を流れる吸気ガスの流量(例えば質量流量)を検出するエアフロメータ12、エンジン2の回転数を検出する回転数センサ13及び車両の運転者要求トルク車両側に知らせるためのアクセルペダル操作量踏み込み量)を検出するアクセルペダルセンサ14などが設けられている。これらセンサ8〜14の検出値はECU1に入力されるようになっている。

0020

排気浄化装置は、排気浄化装置の全体制御を司るECU(Electronic Control Unit)1を備えている。そのECU1は、通常のコンピュータの構造を有するものとし、各種演算を行うCPU(図示外)や各種情報の記憶を行うROM、RAM等のメモリ15を備えている。ECU1は、例えば、上記各種センサからの検出信号を基にエンジン2の運転条件を検出し、運転条件に応じた最適な燃料噴射量、噴射時期噴射圧等を算出して、エンジン2への燃料噴射を制御する。また、ECU1は、SCRF7に流入するNOx濃度を推定する機能を有する場合もある。

0021

また、ECU1は、SCRF7でのNOx浄化に必要な尿素水の添加量を算出し、その添加量の尿素水が添加されるよう添加弁5を駆動する。尿素水の添加量の算出に関し、例えばSCRF7に流入するNOxを浄化するのに必要なアンモニア量と、これまでに添加した尿素水添加量から定まるSCRF7へのアンモニア供給量と、SCRF7でのアンモニア消費量との収支に基づいて、SCRF7でのアンモニア吸着量を算出する。そして、アンモニア吸着量と目標吸着量との偏差に応じた尿素水添加量を今回時点の添加量として算出する。なお、SCRF7でのアンモニア消費量は、例えば上流NOxセンサ10やエンジン2の運転条件(回転数センサ13から求まるエンジン回転数及びアクセルペダルセンサ14から求まるエンジン負荷(燃料噴射量)等)に基づいてSCRF7に流入するNOx量を算出し、下流NOxセンサ11からSCRF7から流出するNOx濃度を算出し、SCRF上流のNOx量とSCRF下流のNOx量とから求める。

0022

さらに、ECU1は、差圧センサ8が検出する差圧が大きくなった時に、SCRF7に堆積したPMを燃焼除去してSCRF7を再生させる再生処理を実行する。この再生処理の詳細は後述する。

0023

再生処理の詳細を説明する前に、尿素由来デポジットについて説明する。添加弁5から添加された尿素水が排気熱により熱分解されることでアンモニアとシアヌル酸が生成される。ここで、尿素水からアンモニアやシアヌル酸が生成される過程で、メラミン、メルムなどの中間生成物が発生する。その中間生成物は通常は熱によって分解するが、条件によっては消滅せずに固形化することがある。また、尿素水の水分のみが蒸発し尿素が析出して固形化する場合もある。以下では、尿素や尿素由来の中間生成物の析出固形物である尿素由来デポジットを尿素デポという。尿素デポは、例えばSCRF7の温度が低温(具体的には例えば250℃以下)の時に発生しやすい。また、尿素デポは、添加弁5による尿素水添加量が多いほど発生しやすい。

0024

尿素デポは、排気管3の内壁、ミキサー6、SCRF7などに堆積する。SCRF7について言えば、図2に示すように、尿素デポは、SCRF7の前端(排気上流側の端部)に堆積しやすい。これは、SCRF7の前端までに尿素水の蒸発や分解が完了しない場合に、SCRF前端に尿素水が溜まり固形化した尿素デポが発生する。

0025

SCRF7に尿素デポが堆積すると、その堆積により排気の流れが阻害され、その結果、SCRF7の前後の差圧(圧損)が増加する。このとき、差圧がSCRF7の再生処理(PM除去用の昇温)を実施するための判定閾値に達した場合であっても、図3に示すように、差圧の内訳としてPM量による差圧が大きく、尿素デポによる差圧が小さい場合もあれば、反対に、PM量による差圧が小さく、尿素デポによる差圧が大きい場合もある。PMを燃焼除去するための昇温は、図3の左に示す内訳のようにできるだけSCRF7に堆積したPM量が多い時に実施するのが良い。なぜなら、PMを除去するために必要な温度は尿素デポを除去するために必要な温度より高いため、排気を昇温させるのに必要な燃料が多い。そのため図3の右に示す内訳のようにPM量が少ない時にも昇温を実施すると、排気の昇温に無駄に燃料が使用され、結果、燃費の悪化につながるためである。

0026

なお、図4に示すように、尿素デポがSCRF7の前端の狭い範囲に堆積した場合には、図2の場合に比べて、尿素デポがSCRF7における排気の流れを阻害する程度が小さく、尿素デポによる差圧への影響は小さい。この場合、差圧が判定閾値に達したときには、図3の左の内訳になると考えられるので、それほど問題にはならない。

0027

以下に説明するSCRF7の再生処理は、図2のようにSCRF7の前端に尿素デポが堆積したことにより、図3の右の内訳のときにPM除去用の昇温を実施してしまうのを抑制することを目的として構成されている。以下、ECU1が実行するSCRF7の再生処理の詳細を説明する。

0028

図5は、この再生処理を構成する各工程のブロック図を示している。図5に示す再生処理は、例えばエンジン2の始動と同時に開始し、所定周期で繰り返し実行される。図5の再生処理では、SCRF7の前端への尿素デポ堆積による差圧への影響の大きさを示した影響指標を算出する(S1)。影響指標は、別の言い方をすると、SCRF7の前端への尿素デポ堆積による差圧への寄与度を示した指標であって、値が大きいほど寄与度が大きいことを示した指標である。

0029

影響指標は、具体的には図6の工程にしたがって算出する。図6において、各時点のSCRF7の温度を取得する(S11)。具体的には、SCRF7の温度は排気の温度に応じて変化するので、例えば排気温センサ9が検出する排気の温度に基づいてSCRF7の温度を推定する。より具体的には、例えばSCRF7の内部を仮想的に上流側から下流側へ複数個の領域(セル)に分割し、各セルの温度を推定することで、SCRF7内部の温度分布を求める。そして、例えば得られた温度分布の平均値をSCRF7の温度とする。セルの分割数は、分割数が多いほど正確な温度を求めることができるが、計算量が多くなる。温度の精度と計算量とに鑑みて、セルの分割数が適宜に設定される。

0030

以下、各セルの温度の推定方法を説明する。各セルの温度の推定は例えば上流側から順に行う。なお、セルの温度とはそのセル部分基材の温度とすればよい。各時点において全てのセル温度を推定する処理を1回の処理とし、1回前に行った処理を前回の処理、現在行っている処理を今回の処理などと呼称する。また、セル温度推定の対象となる1つのセルを当該セル、当該セルに隣接する1つ上流側のセルを上流セル、当該セルに隣接する1つ下流側のセルを下流セルと呼称する。

0031

具体的には、当該セルを流通する排気から当該セルへの熱伝達量Q1を求める。この熱伝達量Q1は、当該セルを流通する排気の温度(以下セルガス温度という)と当該セルの温度と当該セルを流通する排気流量と排気とセル間の熱の伝わりやすさを示す熱伝達係数とにより得られる。排気流量はエアフロメータ12の検出値により得られる。セルガス温度は前回の処理にて得られた値又は今回の処理において得られた上流セルにおけるセルガス温度を用いれば良い。なお、セルガス温度の求め方は後述する。また、当該セルの温度は、前回の処理にて得られた値を用いれば良い。熱伝達係数は、予め定められた固定値であっても良いし、排気流量に応じた値であっても良い。セルガス温度、当該セルの温度及び排気流量と、熱伝達量Q1との関係を予め求めておいて、例えばマップとしてメモリ15に記憶しておき、そのマップを用いて熱伝達量Q1を算出する。

0032

また、当該セルの上下流に隣接するセルから当該セルへの熱伝達量Q2を求める。この熱伝達量Q2は、上流セルの温度、下流セルの温度、当該セルの温度及びSCRF7内の熱の伝わりやすさを示す熱伝導係数により得られる。上流セルの温度は、上流のセルから順にセル温度を求めるとして、今回の処理により得られる値を用いれば良い。下流セルの温度及び当該セルの温度は前回の処理により得られる値を用いれば良い。熱伝導係数は予め定められた固定値とすれば良い。上流セルの温度、下流セルの温度及び当該セルの温度と、熱伝達量Q2との関係を予め求めておいて、例えばマップとしてメモリ15に記憶しておき、そのマップを用いて熱伝達量Q2を算出する。

0033

得られた2つの熱伝達量Q1、Q2の合計値を算出する。これにより、当該セルへ伝達される全熱量が求められる。次に、当該セルへの熱伝達量の合計値から、当該セルの温度上昇値を算出する。この算出では、熱伝達量の合計値を予め定められたセルの熱容量で除算すれば良い。さらに、求まった温度上昇値を前回算出した当該セルの温度に加算する。これにより、当該セルの今回の温度が求まる。

0034

次に、各セルの温度を求めるために必要なセルガス温度の求め方を説明する。当該セルのセルガス温度の算出の基本的な考え方は、当該セルを流通するガスから当該セルへの熱伝達量Q1による温度低下分(熱伝達量Qを、ガスの熱容量で除算することにより得られる)を、上流セルのセルガス温度から減算するというものである。つまり、当該セルのセルガス温度は、熱伝達量Q1及び上流セルのセルガス温度により得られる。熱伝達量Q1及び上流セルのセルガス温度は今回の処理において既に得られている。なお、当該セルより上流にセルが無い場合、つまり当該セルが最上流のセルである場合には、上流セルのセルガス温度として排気温センサ9の検出値を用いれば良い。熱伝達量Q1及び上流セルのセルガス温度と、当該セルのセルガス温度との関係を予め求めておいて例えばマップとしてメモリ15に記憶しておき、そのマップを用いて当該セルのセルガス温度を算出する。

0035

結局、SCRF7の温度は、SCRF7に流入する排気の温度及び流量に応じた値となる。したがって、S11では、排気の温度及び流量に基づくSCRF7の温度の推定モデルをメモリ15に記憶しておき、その推定モデルに基づいてSCRF7の温度を推定することを意味する。

0036

なお、上記ではSCRF7に堆積したPMが燃焼しないものとしてSCRF7の温度の算出を説明したが、SCRF7の温度が高くPMが燃焼した場合には、その燃焼による発熱量によってもSCRF7の温度が変化する。したがって、PM燃焼による発熱量も考慮してSCRF7の温度を推定しても良い。また、図6のS11の工程では、SCRF7の内部に温度センサを設けて、その温度センサの検出値を、SCRF7の温度として取得しても良い。

0037

図6の説明に戻り、各時点において添加弁5から添加される単位時間当たりの尿素添加量を取得する(S12)。尿素添加量は、ECU1自身が各時点において求めた添加弁5への添加量指令値とすれば良い。

0038

S11、S12で得られた各時点のSCRF7の温度及び尿素添加量(尿素デポ堆積に関係する条件)に基づいて、各時点における尿素デポによる差圧への影響指標を算出する(S13)。ここで算出する影響指標は、各時点におけるSCRF7への尿素デポ堆積量の単位時間当たりの変化量、すなわち尿素デポの堆積率に相当する指標である。言い換えると、S13の影響指標は、各時点におけるSCRF7への尿素デポの堆積のしやすさを示した指標である。

0039

ここで、図7図9は、SCRF温度又は尿素添加量と影響指標との関係を例示している。尿素デポは温度が低温の時に発生しやすく、高温になると分解してしまう。したがって、図7に示すように、SCRF温度が低温の領域では影響指標が大きい値となっており、SCRF温度が高温になるほど影響指標は小さくなる。また、SCRF温度がある程度高温になると、堆積していた尿素デポが分解して消滅する。そのため、図7においては、SCRF温度が所定温度以上の領域では、影響指標は、尿素デポが消滅することを示したマイナス値となる。影響指標は、プラス側に大きい値ほど尿素デポの堆積量が多いことを示し、マイナス側に大きい値ほど堆積した尿素デポが分解して消滅する量が多いことを示している。

0040

また、図8図9に示すように、尿素添加量が多いほど影響指標が大きくなる。これは、尿素添加量が多いほど尿素デポの原因となる中間生成物の発生量が多くなるためである。また、尿素添加量が多いと、少ない場合に比べて、SCRF7に供給された尿素水によりSCRF7の温度が低下しやすくなり、その温度低下により尿素デポが発生しやすくなるためである。

0041

図8図9とを比較すると、図8のSCRF温度が低い時には尿素添加量の増加に対する影響指標の増加度合いが大きいのに対し、図9のSCRF温度が高い時にはその増加度合いは小さい。言い換えると、同じ尿素水添加量であっても、図8のSCRF温度が低い時の影響指標のほうが、図9のSCRF温度が高い時の影響指標よりも大きい値となる。これは、図7で説明したように、SCRF温度が低いと尿素デポが発生しやすくなるためである。なお、図8図9においても、影響指標はマイナス値を取り得る。例えば、尿素添加量が少ない時には、尿素デポの新たな堆積よりも、SCRF温度の影響で既に堆積した尿素デポの分解のほうが優位となる。この場合、影響指標はマイナス値となる。

0042

S13の工程では、SCRF温度及び尿素添加量と影響指標との関係を予め求めておいて例えばマップ101(図6参照)としてメモリ15に記憶しておく。そして、このマップ101とS11、S12で求めたSCRF温度及び尿素添加量とから、時点毎にSCRF温度及び尿素添加量に応じた影響指標を算出する。マップ101は、図7図9の関係を統合したものに相当する。

0043

S13の工程を実施した後、次に、S13で得られた各時点における影響指標を積算する(S14)。すなわち、現時点のS13で得られた影響指標を、前回時点までにS14で得られた影響指標の積算値に加えて、現時点における積算値とする。この積算値は、SCRF7の前端に堆積した尿素デポの積算量に相当する。S14により得られた積算値を、図5のS1の工程における出力値とする。なお、積算値は、例えば下限をゼロ、上限を所定値(例えば100)として、それら下限、上限間で変化する。

0044

ここで、図10は、S1の工程(図6の工程)で得られる影響指標の時間に対する推移を例示した図であり、詳しくは、上段に、SCRF温度の推移を例示し、その温度の推移に対応させた形で影響指標の推移を下段に示している。なお、図10の符号「m」は、図6のS13で算出する影響指標を示している。図10の例では、SCRF温度が低い時には、時間の経過にしたがって次第に影響指標(積算値)が増加していき、単位時間当たりの増加量(各時点での影響指標m)は、SCRF温度が中程度又は高い時に比べて大きくなっている。また、SCRF温度が中程度の時には、時間の経過にしたがって次第に影響指標(積算値)が増加していくが、単位時間当たりの増加量は、SCRF温度が低い時に比べて小さくなっている。また、SCRF温度が高い時には、時間の経過にしたがって次第に影響指標(積算値)が減少していく。このように、影響指標の積算値は、時間の経過にしたがって単調に増加し続けるわけではなく、SCRF温度及び尿素添加量の条件によっては、増加率が変わったり、逆に減少したりする。

0045

なお、図10の影響指標の積算の開始点ゼロ点)つまり図6のS13の影響指標の算出及びS14の積算の開始時は、後述の図5のS4によるPM除去用の昇温を実施した時、又はS5の尿素デポ除去用の昇温を実施した時とする。すなわち、S1の工程では、前回にS4又はS5の昇温を実施してから現時点までの影響指標の積算値を算出する。これは、昇温を実施することで、SCRF7に堆積した尿素デポは除去されて、影響指標がゼロにリセットされるためである。

0046

このように、図6においては、各時点におけるSCRF温度及び尿素添加量から影響指標を求めており、これを別の言い方をすると、SCRF温度の履歴と尿素添加量の履歴とに基づいて影響指標を求めている。

0047

ところで、尿素デポは、SCRF温度及び尿素添加量の他に、SCRF7でのNOx浄化率や最近のエンジン停止時間によっても影響する。そこで、SCRF温度及び尿素添加量に加えて、以下に説明するようにNOx浄化率やエンジン停止時間も考慮して、影響指標を求めても良い。

0048

先ず、NOx浄化率を考慮した影響指標の算出を説明する。SCRF7の前端に図2のように尿素デポが堆積すると、その堆積によりSCRF7での排気の流通範囲が狭くなって、結果、NOx浄化率が想定よりも低下する。逆に言うと、NOx浄化率が想定よりも低い場合には、尿素デポ堆積の影響が大きいと考えることができる。この考え方をもとに、SCRF温度及び尿素添加量から求めた影響指標をNOx浄化率に応じて補正する。

0049

図11は、図6の各工程に、NOx浄化率による補正に関連する工程を追加したブロック図である。図11においてSCRF7での各時点でのNOx浄化率を取得する(S15)。NOx浄化率は、SCRF7に流入するNOx量B1と、SCRF7から流出するNOx量B2とを取得して、それらNOx量B1、B2の差分を流入NOx量B1で除算することで得られる。つまり、NOx浄化率=(B1−B2)/B1を計算する。ここで、流入NOx量B1は、例えば上流NOxセンサ10の検出値から求めても良いし、エンジン運転条件(エンジン回転数、エンジン負荷等)から推定しても良い。また、流出NOx量B2は例えば下流NOxセンサ11の検出値から求める。エンジン運転条件から流入NOx量B1を推定する場合、エンジン運転条件としてのエンジン回転数は回転数センサ13から得られる。エンジン負荷は、アクセルペダルセンサ14の検出値(アクセルペダルの操作量)及びエンジン回転数等に基づいてECU1自身が設定したインジェクタへの燃料噴射量の指令値とすれば良い。エンジン運転条件と流入NOx量B1との関係を予め求めておいて例えばマップとしてメモリ15に記憶しておき、このマップに基づいて流入NOx量B1を得ることができる。

0050

次に、NOx浄化率に基づいてS11〜S14の工程で得られる影響指標を補正するための補正項(補正係数)を算出する(S16)。なお、補正項は、影響指標に乗算することで影響指標を増加側に補正するための係数であり、1以上の値に設定される。補正項=1の場合には、影響指標の補正が行われないことを意味する。

0051

ここで、図12はNOx浄化率と補正項との関係を示している。図12において、ライン103はSCRF温度が高い時の関係を示し、ライン104はSCRF温度が低い時の関係を示している。また、図13は、SCRF温度とSCRF7でのNOx浄化能力(NOx浄化率)との関係を示している。図13に示すように、SCRF温度が低温の領域(温度T1以下の領域)では、SCRF7での触媒の活性度が低いため、NOx浄化能力は低い。また、SCRF温度がある程度高くなると、触媒の活性度が上がるため、NOx浄化能力が高くなる。ただし、SCRF温度が高温になりすぎると(温度T2以上の領域)、NOx浄化能力が低下する。

0052

SCRF温度が高い時(図13の例では温度がT1からT2の間)には通常ならばNOx浄化能力が高いにもかかわらず、実際のNOx浄化率が低いということは、SCRF7への尿素デポ堆積の影響でNOx浄化率が低下していると考えることができる。また、NOx浄化率が低いほど尿素デポ堆積による影響度が高いと考えることができる。この考え方のもと、図12のライン103では、NOx浄化率が低いほど補正項が大きくなっている。一方で、SCRF温度が高い時にNOx浄化率が高い場合には、もともとNOx浄化能力が高く(図13参照)、SCRF温度及び尿素水添加量から得られる影響指標の補正が必要な程の尿素デポ堆積ではないとして、ライン103ではNOx浄化率がある値以上の領域では補正項が1となっている。

0053

また、SCRF温度が低い時(図13では温度T1以下)には、もともとNOx浄化能力が低いので、実際のNOx浄化率が低いからといって尿素デポ堆積による影響が大きいと判断することはできない。そのため、図12のライン104では、ライン103に比べて補正項が小さく設定されている。

0054

S16の工程では、図12の関係つまりSCRF温度及びNOx浄化率と補正項との関係を予め求めておいてマップ102(図11参照)としてメモリ15に記憶しておく。そして、マップ102と、S11及びS15の工程で取得したSCRF温度及びNOx浄化率とに基づいて補正項を算出する。なお、図12では、SCRF温度が高い時の関係103と低い時の関係104との2つを例示したが、マップ102は2つより多くのSCRF温度の領域ごとにNOx浄化率と補正項との関係が設定されたマップである。なお、SCRF温度が高い時にNOx浄化率が低い場合に影響指標を補正する必要性が特に高いので、マップ102を図12のライン103のみから構成して、S11で取得したSCRF温度が所定値以上の場合にS16の補正項の算出及び後述のS17による補正を実施し、SCRF温度が所定値未満の場合にはS16、S17の工程を省略しても良い。

0055

S16の工程で補正項を算出した後、次に、その補正項を、S14の工程で得られた影響指標に乗算することで、影響指標を補正する(S17)。これによって、SCRF温度及び尿素添加量に加えて、NOx浄化率も考慮した影響指標を得ることができる。例えば、SCRF温度が高く、NOx浄化率が低い場合には、影響指標が増加する方向に補正される。補正後の影響指標を、図5のS1の工程における出力値とする。

0056

次に、最近のエンジン停止時間を考慮した影響指標の算出を説明する。エンジン2が停止するとSCRF温度が低下するが、エンジン停止時間が長いほど、つまりSCRF温度が低下した状態が長く継続するほど、尿素デポが発生しやすい。そこで、SCRF温度及び尿素添加量から求めた影響指標を、最近のエンジン停止時間に応じて補正する。

0057

具体的には、図14に示すように、最近のエンジン停止時間を取得する(S18)。ECU1は、時計を有しており、エンジン2が停止する度にその時計によりエンジン2が停止してから次に始動するまでの時間であるエンジン停止時間を算出して、メモリ15に記憶しておく。S18の工程では、メモリ15に記憶されたエンジン停止時間を読み出す。

0058

次に、エンジン停止時間に基づいてS11〜S14の工程で得られる影響指標を補正するための補正項(補正係数)を算出する(S19)。この補正項も、S16で算出する補正項と同様に、影響指標に乗算することで影響指標を増加側に補正するための係数であり、1以上の値に設定される。

0059

ここで、図15はエンジン停止時間と補正項との関係を示している。図15に示すようにエンジン停止時間が短い領域では補正項は、1又は1に近い値となっているが、エンジン停止時間が長くなると補正項は急激に増加する。これは、信号待ち等でエンジンが自動停止するアイドルストップ機能によるエンジン停止などエンジン停止時間が短い場合には、エンジン停止中に尿素デポが発生することはほとんど無い。これに対し、車両を一晩中停止していた場合などエンジン停止時間が長い場合には、エンジン停止前に添加弁5から供給されSCRF7に残留している尿素が、エンジン作動時では固形化しない尿素添加量であったとしても、SCRF温度が低い状態が長時間継続することで、固形化する場合がある。このとき、エンジン停止の終了時(エンジン始動時)におけるSCRF7の前後差圧は、エンジン停止前における前後差圧から、エンジン停止中に発生した尿素デポ堆積量に応じた分だけ増加した値となる。この増加分が、図15の補正項に相当する。

0060

S19の工程では、図15の関係を予め求めておいてこれをマップ105(図14参照)としてメモリ15に記憶しておく。そして、マップ105とS18で取得したエンジン停止時間とに基づいて補正項を算出する。

0061

次に、S19の工程で求めた補正項を、S14の工程で得られた影響指標に乗算することで、影響指標を補正する(S20)。これによって、SCRF温度及び尿素添加量に加えて、最近のエンジン停止時間をも考慮した影響指標を得ることができる。例えば、エンジン停止時間が長い場合には、影響指標が増加する方向に補正される。補正後の影響指標を、図5のS1の工程における出力値とする。

0062

なお、S15で取得するエンジン停止時間が、同一時刻に発生したエンジン停止に対するエンジン停止時間である限りにおいては、該エンジン停止時間に基づくS20の補正は1回のみ行う。すなわち、例えばある時刻t1でエンジン停止した場合には、そのエンジン停止に対するエンジン停止時間に基づくS20の補正は1回のみ実施する。その後、別の時刻t2でエンジン停止した場合には、そのエンジン停止に対するエンジン停止時間に基づくS20の補正も1回のみ実施する。

0063

また、アイドルストップ機能に基づくエンジン停止の場合には、エンジン停止時間が非常に短く、エンジン停止中に尿素デポが発生することはほとんど無い。そのため、S18〜S20の工程では、アイドルストップ機能によるエンジン停止を除外した、車両のキーオフに基づくエンジン停止のみを考慮して、影響指標の補正を行っても良い。この場合、S18の工程では、車両のキーオフに基づくエンジン停止のうち最近のエンジン停止におけるエンジン停止時間を取得する。なお、アイドルストップ機能に基づくエンジン停止も考慮して補正する場合であっても、アイドルストップ機能に基づくエンジン停止時間は非常に短いので、S19で算出する補正項は1となって、実質的には影響指標の補正を行わないようにしても良い。

0064

なお、NOx浄化率に基づく影響指標の補正と、エンジン停止時間に基づく影響指標の補正はいずれか一方のみ実施しても良いし、両方実施しても良い。両方実施する場合には、例えば、図11のS16で算出した補正項と、図14のS19で算出した補正項の両方をS14で算出した影響指標に乗算する。または、図11のマップ102と、図14のマップ105とを統合した、SCRF温度、NOx浄化率及びエンジン停止時間と補正項とのマップを求めてこれをメモリ15に記憶しておく。そして、このマップに基づいてSCRF温度、NOx浄化率及びエンジン停止時間に応じた一つの補正項を算出して、この補正項に基づいて影響指標を補正しても良い。

0065

このように、SCRF温度及び尿素添加量に加えて、NOx浄化率やエンジン停止時間も考慮することで、高精度の影響指標を得ることができる。

0066

以上が図5のS1の工程の内容である。なお、S1の工程を実行するECU1が指標検出部に相当する。また、S11の工程を実行するECU1が温度取得部に相当する。S12の工程を実行するECU1が添加量取得部に相当する。S13の工程を実行するECU1が算出部に相当する。S14の工程を実行するECU1が積算部に相当する。S15の工程を実行するECU1が浄化率取得部に相当する。S16及びS17の工程を実行するECU1が補正部に相当する。S18の工程を実行するECU1が停止時間取得部に相当する。S19及びS20の工程を実行するECU1が補正部に相当する。

0067

図5の説明に戻り、差圧センサ8からSCRF7の前後差圧を取得する(S2)。S1及びS2で影響指標及び差圧を取得した後、次に、これらに基づいてPM除去用の昇温を実施するか、尿素デポ除去用の昇温を実施するかの昇温実施判定を行う(S3)。具体的には、図16のフローチャートの処理を実行する。

0068

図16において、先ずS2の工程で取得した差圧が予め定められた閾値以上か否かを判断する(S31)。なお、差圧は、同一のPM量が堆積されている場合であっても、SCRF7を通過する排気の流量によって変化し、具体的には高流量ほど差圧が大きくなる。そこで、S31では、排気の流量による差圧の影響を除外するために、例えば排気の流量に応じた閾値を設定する。この閾値は高流量ほど大きい値に設定される。排気の流量はエアフロメータ12とSCRF上流の排気温センサ9、差圧センサ8により得られる。そして、流量に応じた閾値と、差圧とを比較する。または、排気の流量に基づいて、差圧センサ8の検出値を単位流量当たりの差圧に変換して、その単位流量当たりの差圧と閾値とを比較しても良い。なお、S31の工程を実施するECU1が判断部に相当する。

0069

差圧が閾値未満の場合には(S31:No)、差圧が閾値以上になるまで待機する。差圧が閾値以上になった場合には(S31:Yes)、次に、S1の工程で求めた影響指標が予め定められた閾値以上か否かを判断する。閾値未満の場合には(S32:No)、尿素デポ堆積による差圧への影響が小さく、差圧の内訳が図3の左の内訳であるとして、PM除去用の昇温実施を判定する(S34)。その後、図16の処理を終了する。

0070

一方、影響指標が閾値以上の場合には(S32:Yes)、尿素デポ堆積による差圧への影響が大きく、差圧の内訳が図3の右の内訳であるとして、尿素デポ除去用の昇温実施を判定する(S33)。その後、図16の処理を終了する。

0071

図5に戻って、S3の実施判定の結果に基づいて、PM除去用の昇温(S4)又は尿素デポ除去用の昇温(S5)のいずれか一方を実施する。具体的には、図16のS34でPM除去用の昇温実施を判定した場合には、PM除去用の昇温を実施する(S4)。この昇温は、例えばエンジン2のトルクを得るためのメイン噴射に後続して、アフター噴射やポスト噴射を実施する。ここで、アフター噴射は、排気の温度を高めることを目的にメイン噴射の直後に行う少量の燃料噴射である。ポスト噴射は、未燃燃料を排気管3に送り込むため排気バルブが開く直前に行う少量の燃料噴射である。また、排気管3の酸化触媒4の上流に燃料を添加する燃料添加弁を設けて、この燃料添加弁により未燃燃料を排気管3内に直接添加しても良い。

0072

アフター噴射、ポスト噴射又は燃料添加弁による燃料添加によって、酸化触媒4に未燃燃料が供給され、酸化触媒4において未燃燃料が酸化反応することで排気の温度が昇温する。昇温した排気がSCRF7に流入することで、SCRF温度が昇温する。PM除去用の昇温時におけるSCRF温度の目標温度は、後述のデポ除去用の昇温時における目標温度より高温に設定され、具体的にはPMが燃焼除去する温度(600℃〜700℃程度)に設定される。ECU1は、PM除去用の昇温を実施中、SCRF温度を監視して、SCRF温度が目標温度となるようにポスト噴射量などを調整する。例えば、SCRF温度が目標温度より低温の場合にはポスト噴射量を増量し、反対に目標温度より高温の場合にはポスト噴射量を減量する。なお、SCRF温度の監視(取得)は、図11のS11の工程と同様に行えばよい。また、SCRF温度は排気温度相関するので、排気温センサ9の検出値が目標温度となるように噴射量を調整しても良い。このように、SCRF温度を監視しながら昇温を実施することで、SCRF7が過昇温となるのを抑制でき、過昇温によってSCRF7が熱で溶けてしまうのを抑制できる。

0073

また、PM除去用の昇温は、予め定められた固定時間(例えば20分〜30分)継続しても良いし、差圧センサ8の検出値が所定値(図16のS31の閾値よりも小さい値)以下となるまで継続しても良い。PM除去用の昇温の継続時間は、尿素デポ除去用の昇温の継続時間よりも長い。

0074

このように、PM除去用の昇温を実施することで、SCRF7に堆積したPMを燃焼除去できる。加えて、尿素デポはPMよりも低温で燃焼するので、尿素デポも燃焼除去できる。

0075

一方、図16のS33で尿素デポ除去用の昇温実施を判定した場合には、尿素デポ除去用の昇温を実施する(S5)。この昇温も、PM除去用の昇温と同様に、例えばアフター噴射、ポスト噴射又は燃料添加弁による燃料添加を実施する。ただし、SCRF温度の目標温度や、昇温の継続時間が、PM除去用の昇温とは異なっている。具体的には、尿素デポ除去用の昇温時におけるSCRF温度の目標温度は、PM除去用の昇温時における目標温度より低温に設定され、具体的には、PMは燃焼除去されないことを許容しつつ、尿素デポは燃焼除去される温度(例えば350℃〜400℃程度)に設定される。

0076

尿素デポ除去用の昇温においては、SCRF温度が過昇温となるのは想定しにくいので、例えばポスト噴射等の燃料噴射量は、目標温度となるように運転条件ごとに予め定められた固定値とする。つまり、昇温処理中のSCRF温度の監視及びSCRF温度に基づく噴射量の調整は行わない。なお、PM除去用の昇温と同様に、SCRF温度を監視して、SCRF温度が目標温度となるように噴射量を調整するようにしても良い。

0077

また、尿素デポ除去用の昇温の継続時間は、PM除去用の継続時間よりも短い時間(例えば5分〜10分程度)に設定される。つまり、尿素デポ除去用の昇温は、PM除去用の昇温の継続時間より短い、予め定められた固定時間継続した後、終了する。なお、尿素デポ除去用の昇温の継続時間は、影響指標に応じた時間に設定しても良く、具体的には影響指標が大きいほど長い時間に設定しても良い。影響指標に応じて継続時間を設定する場合であっても、PM除去用の昇温における継続時間より短い時間に設定する。このように、影響指標に応じて継続時間を設定することで、SCRF7に堆積した尿素デポを完全に燃焼除去する前に昇温が終了してしまうのを抑制でき、また、尿素デポの燃焼除去が完了したにもかかわらず無駄に昇温を継続してしまうのを抑制できる。このように、尿素デポ除去用の昇温を実施することで、SCRF7に堆積した尿素デポを燃焼除去できる。

0078

なお、S32、S34及びS4の工程を実行するECU1が第1の再生制御部に相当する。S32、S33及びS5の工程を実行するECU1が第2の再生制御部に相当する。また、PM除去用の昇温が第1再生処理に相当し、尿素デポ除去用の昇温が第2再生処理に相当する。

0079

ここで、図17は、本実施形態の作用を説明する図であり、SCRF7の再生処理に関連する各パラメータのタイムチャートを示している。詳しくは、図17は、上から、SCRFの前後の差圧(同図(a))、SCRF内のPM量(同図(b))、SCRF前端への尿素デポによる差圧(影響指標)(同図(c))、SCRF温度(同図(d))、及び昇温用の噴射量(同図(e))のタイムチャートを示している。また、図17では、点線が本実施例を示し、実線が従来例を示している。

0080

図17に示すように、差圧が閾値に達した場合に、従来では図17(d)、(e)の実線で示されるように必ずPM除去用の昇温を実施するのに対し、本実施例では、昇温を実施する前にSCRF前端への尿素デポによる影響指標を確認する。その影響指標が所定値に達していた場合には(図17(c)参照)、PM除去用の昇温に代えて、尿素デポ除去用の昇温を実施する(図17(d)、(e)の点線参照)。尿素デポ除去用の昇温を実施することで、SCRF内のPM量が減少しないものの(図17(b)の点線参照)、尿素デポによる差圧は減少する(図17(c)参照)。その結果、図17(a)の点線で示される差圧は、図17(c)の差圧が減少した分だけ減少する。ただし、PM量が燃焼除去されるわけではないので、図17(a)の点線は、実線よりも高くなっている。

0081

以上、本実施形態によれば、SCRF前端への尿素デポ堆積による影響指標を算出し、差圧が閾値に達した場合にはその影響指標を確認し、影響指標が閾値以上の場合には、PM除去用の昇温に代えて、尿素デポ除去用の昇温を実施する。これにより、尿素デポ堆積の影響でPM除去用の昇温が頻繁に実施されてしまうのを抑制できる。尿素デポ除去用の昇温は、PM除去用の昇温に比べて、目標温度が低く、継続時間が短いので、燃費が良い昇温である。PM除去用の昇温が頻繁に実施されるのを抑制できることで、燃費の悪化を抑制できる。また、尿素デポ除去用の昇温を実施することで、SCRFに堆積した尿素デポを除去でき、尿素デポ堆積による差圧の増加を抑制できる。

0082

また、SCRFへの尿素デポの堆積量を正確に検出することは困難であるが、本実施形態では、差圧センサの検出値と影響指標の両方を用いているので、図2のようなSCRF前端への尿素デポの堆積量が多く、尿素デポによる差圧が大きい状態を精度よく捉えることができる。また、図4のようにSCRF前端の狭い範囲に尿素デポが堆積し尿素デポによる差圧が小さい時にも尿素デポ除去用の昇温を実施してしまう可能性がある。この場合には、車両性能やSCRF触媒性能への影響が小さいにもかかわらず、尿素デポ除去用の昇温が頻繁に実施されることとなり、燃費が悪化してしまう。本実施形態では、尿素デポ除去用の昇温が頻繁に(無駄に)実施されてしまうのも抑制できる。

0083

なお、本発明は上記実施形態に限定されるものではなく、特許請求の範囲の記載を逸脱しない限度で種々の変更が可能である。例えば、上記実施形態では、SCRFに堆積した尿素デポを除去する手段として、ポスト噴射等に基づくSCRF温度の昇温処理を例示したが、例えば排気の流量が増加させて、排気流によって尿素デポをSCRFから飛ばしても良い。排気の流量増加は、例えばエンジンを高回転数、高負荷の条件で運転させるようにする。

0084

また、上記実施形態では、SCRFの上流に酸化触媒を配置した例を示したが、SCRFの基材に酸化触媒を担持しても良い。これによっても、SCRFに担持された酸化触媒に未燃燃料を供給することで、SCRF温度を昇温させることができる。

0085

1 ECU(判断部、指標検出部、温度取得部、添加量取得部、算出部、積算部、浄化率取得部、停止時間取得部、補正部、第1の再生制御部、第2の再生制御部)
2エンジン(内燃機関)
3排気管
5添加弁
7SCRF(触媒担持フィルタ)
8 差圧センサ

ページトップへ

この技術を出願した法人

この技術を発明した人物

ページトップへ

関連する挑戦したい社会課題

関連する公募課題

該当するデータがありません

ページトップへ

技術視点だけで見ていませんか?

この技術の活用可能性がある分野

分野別動向を把握したい方- 事業化視点で見る -

(分野番号表示ON)※整理標準化データをもとに当社作成

ページトップへ

おススメ サービス

おススメ astavisionコンテンツ

新着 最近 公開された関連が強い技術

  • ユミコア日本触媒株式会社の「 排気ガス浄化用触媒、および排気ガスの浄化方法」が 公開されました。( 2019/09/26)

    【課題・解決手段】長期間高温で排気ガスに曝された後においても、高い触媒活性を維持することができる排気ガス浄化用触媒を提供する。排気ガス浄化用触媒は、PraPdbOcで表したとき、a=1〜3、b=1〜1... 詳細

  • 日本碍子株式会社の「 ハニカム構造体」が 公開されました。( 2019/09/12)

    【課題】排気ガス浄化用の触媒を担持した際に、隔壁の細孔内への触媒の充填率を高くすることが可能なハニカム構造体を提供する。【解決手段】多孔質の隔壁1を有する柱状のハニカム構造部4を備え、隔壁1の気孔率が... 詳細

  • マツダ株式会社の「 エンジンの制御装置」が 公開されました。( 2019/09/12)

    【課題】エンジン冷間時におけるエミッション性能の悪化を抑制する。【解決手段】電動過給機53と、排気浄化触媒61と、排気浄化触媒61の活性状態を検出又は推定する手段と、エンジン本体10の有効圧縮比を変化... 詳細

この 技術と関連性が強い人物

関連性が強い人物一覧

この 技術と関連する社会課題

関連する挑戦したい社会課題一覧

この 技術と関連する公募課題

該当するデータがありません

astavision 新着記事

サイト情報について

本サービスは、国が公開している情報(公開特許公報、特許整理標準化データ等)を元に構成されています。出典元のデータには一部間違いやノイズがあり、情報の正確さについては保証致しかねます。また一時的に、各データの収録範囲や更新周期によって、一部の情報が正しく表示されないことがございます。当サイトの情報を元にした諸問題、不利益等について当方は何ら責任を負いかねることを予めご承知おきのほど宜しくお願い申し上げます。

主たる情報の出典

特許情報…特許整理標準化データ(XML編)、公開特許公報、特許公報、審決公報、Patent Map Guidance System データ