図面 (/)

技術 レンズシート、撮像モジュール、撮像装置

出願人 大日本印刷株式会社
発明者 播戸一樹荒川文裕川口修司
出願日 2015年11月26日 (5年2ヶ月経過) 出願番号 2015-230650
公開日 2017年6月1日 (3年8ヶ月経過) 公開番号 2017-097219
状態 特許登録済
技術分野 スタジオ装置 写真撮影方法及び装置 レンズ以外の光学要素 光学要素・レンズ レンズ鏡筒
主要キーワード 隔壁シート 四角錐型 荷重時間 垂直方向上側 押込み荷重 一部形状 表裏判別 荷重面
関連する未来課題
重要な関連分野

この項目の情報は公開日時点(2017年6月1日)のものです。
また、この項目は機械的に抽出しているため、正しく解析できていない場合があります

図面 (13)

課題

撮像装置撮像モジュール薄型化でき、外部衝撃等によるレンズシート表面の傷つき及び他部材との光学密着を抑制できるレンズシート、及び、これを備える撮像モジュール、撮像装置を提供する。

解決手段

レンズシート11は、柱状であってシート面に沿って一方向に配列され、一方の面側に凸状の単位レンズ形状を有する光透過部111と、光透過部と交互に配列される光吸収部113とを備え、光透過部は、単位レンズ形状の頂点において、20℃の温度下で、ナノインデンテーション法(ISO14577−1に準拠)により、対面角が90°の四角錘圧子を用いて、押し込み荷重を変化させながら荷重時間10秒間で押し込み、押し込み深さが1μmに到達した後5秒間保持してから、60秒間かけて除荷する条件で測定される押し込み弾性率EIT)が、150〜3500MPaであり、かつ、復元仕事率(ηIT)が、30%以上100%以下である。

概要

背景

近年、スマートフォンタブレット等の携帯端末に備えられるカメラにおいては、画質の向上等、様々に開発が行われている(例えば、特許文献1参照)。特に、スマートフォン等の携帯端末においては、薄型化が進んでおり、携帯端末に備えられるカメラ(以下、携帯端末用カメラという)においても、薄型化が図られている。

また、ライトフィールドカメラと呼ばれる、撮影後に焦点距離被写界深度を変更できるカメラが開発され、近年広まっている(例えば、特許文献2参照)。このライトフィールドカメラは、イメージセンサ上に配置されたマイクロレンズアレイにより、入射光を分割して複数の方向の光を撮影することにより、撮影後に光の入射方向や強度に基づいて所定の画像処理を行って、画像の焦点距離や被写界深度を変更することができる。

概要

撮像装置撮像モジュールを薄型化でき、外部衝撃等によるレンズシート表面の傷つき及び他部材との光学密着を抑制できるレンズシート、及び、これを備える撮像モジュール、撮像装置を提供する。レンズシート11は、柱状であってシート面に沿って一方向に配列され、一方の面側に凸状の単位レンズ形状を有する光透過部111と、光透過部と交互に配列される光吸収部113とを備え、光透過部は、単位レンズ形状の頂点において、20℃の温度下で、ナノインデンテーション法(ISO14577−1に準拠)により、対面角が90°の四角錘圧子を用いて、押し込み荷重を変化させながら荷重時間10秒間で押し込み、押し込み深さが1μmに到達した後5秒間保持してから、60秒間かけて除荷する条件で測定される押し込み弾性率EIT)が、150〜3500MPaであり、かつ、復元仕事率(ηIT)が、30%以上100%以下である。

目的

本発明の課題は、撮像装置や撮像モジュールを薄型化でき、かつ、外部衝撃等によるレンズシート表面の傷つき及び他部材との光学密着を抑制できるレンズシート、及び、これを備える撮像モジュール、撮像装置を提供する

効果

実績

技術文献被引用数
0件
牽制数
0件

この技術が所属する分野

ライセンス契約や譲渡などの可能性がある特許掲載中! 開放特許随時追加・更新中 詳しくはこちら

請求項1

一方の面が光学形状を有する光学形状面であるレンズシートであって、柱状であってシート面に沿って一方向に配列され、前記光学形状面側に凸状の単位レンズ形状を有する光透過部と、前記光透過部と交互に配列され、前記光透過部の長手方向に延在し、かつ、前記レンズシートの厚み方向に沿って前記単位レンズ形状側から反対側である裏面側へ延びる光吸収部と、を備え、前記光透過部は、前記単位レンズ形状の頂点において、20℃の温度下で、ナノインデンテーション法(ISO14577−1に準拠)により、対面角が90°の四角錘圧子を用いて、押し込み荷重を変化させながら荷重時間10秒間で押し込み、押し込み深さが1μmに到達した後5秒間保持してから、60秒間かけて除荷する条件で測定される押し込み弾性率EIT)が、150〜3500MPaであり、かつ、復元仕事率(ηIT)が、30%以上100%以下であること、を特徴とするレンズシート。

請求項2

請求項1に記載のレンズシートにおいて、前記単位レンズ形状は、前記光透過部の配列方向に平行であって該レンズシートの厚み方向に平行な断面における断面形状が円の一部形状であり、その曲率半径が10μm以上80μm以下であること、を特徴とするレンズシート。

請求項3

請求項1又は請求項2に記載のレンズシートにおいて、前記光透過部の屈折率N1と前記光吸収部の屈折率N2とは、N1≦N2を満たすこと、を特徴とするレンズシート。

請求項4

請求項1から請求項3までのいずれか1項に記載のレンズシートにおいて、前記光透過部と前記光吸収部との界面が、該レンズシートの厚み方向となす角度θは、0°≦θ≦10°を満たすこと、を特徴とするレンズシート。

請求項5

入射する光を電気信号に変換する複数の画素2次元配列された撮像素子部と、前記撮像素子部よりも被写体側に配置される請求項1から請求項4までのいずれか1項に記載のレンズシートを備えるレンズシートユニットと、を備える撮像モジュールであって、前記レンズシートユニットは、前記レンズシートの前記撮像素子部側に、一方の面が光学形状を有する第2の光学形状面である第2のレンズシートを備え、前記第2のレンズシートは、柱状であってシート面に沿って一方向に配列され、前記第2の光学形状面側に凸状の第2の単位レンズ形状を有する第2の光透過部と、前記第2の光透過部と交互に配列され、前記第2の光透過部の長手方向に延在し、かつ、前記第2のレンズシートの厚み方向に沿って、前記の第2単位レンズ形状側から反対側である裏面側へ延びる第2の光吸収部と、を備え、光軸方向から見て、前記光透過部の配列方向と、前記第2の光透過部の配列方向とは、角度αをなして交差し、前記レンズシートと前記第2のレンズシートとが積層されていること、を特徴とする撮像モジュール。

請求項6

請求項5に記載の撮像モジュールにおいて、前記第2のレンズシートの前記第2の光透過部は、前記第2の単位レンズ形状の頂点において、20℃の温度下で、ナノインデンテーション法(ISO14577−1に準拠)により、対面角が90°の四角錘型圧子を用いて、押し込み荷重を変化させながら荷重時間10秒間で押し込み、押し込み深さが1μmに到達した後5秒間保持してから、60秒間かけて除荷する条件で測定される押し込み弾性率(EIT)が、150〜3500MPaであり、かつ、復元仕事率(ηIT)が、30%以上100%以下であること、を特徴とする撮像モジュール。

請求項7

請求項5又は請求項6に記載の撮像モジュールにおいて、前記第2の単位レンズ形状は、前記第2の光透過部の配列方向に平行であって前記第2のレンズシートの厚み方向に平行な断面における断面形状が円の一部形状であり、その曲率半径が10μm以上80μm以下であること、を特徴とする撮像モジュール。

請求項8

請求項5から請求項7までのいずれか1項に記載の撮像モジュールにおいて、前記角度αは、80°≦α≦100°を満たすこと、を特徴とする撮像モジュール。

請求項9

請求項5から請求項8までのいずれか1項に記載の撮像モジュールにおいて、前記各光透過部の屈折率N1と前記各光吸収部の屈折率N2とは、N1≦N2を満たすこと、を特徴とする撮像モジュール。

請求項10

請求項5から請求項9までのいずれか1項に記載の撮像モジュールにおいて、前記各光透過部と前記各光吸収部との界面が、前記各レンズシートの厚み方向となす角度θは、0°≦θ≦10°を満たすこと、を特徴とする撮像モジュール。

請求項11

請求項5から請求項10までのいずれか1項に記載の撮像モジュールを備える撮像装置

請求項12

入射する光を電気信号に変換する複数の画素が2次元配列された撮像素子部と、前記撮像素子部よりも被写体側に配置される請求項1から請求項4までのいずれか1項に記載のレンズシートと、を備える撮像モジュール。

請求項13

入射する光を電気信号に変換する複数の画素が2次元配列された撮像素子部と、前記撮像素子部よりも被写体側に配置される請求項1から請求項4までのいずれか1項に記載のレンズシートと、を備える撮像装置。

技術分野

0001

本発明は、レンズシート撮像モジュール撮像装置に関するものである。

背景技術

0002

近年、スマートフォンタブレット等の携帯端末に備えられるカメラにおいては、画質の向上等、様々に開発が行われている(例えば、特許文献1参照)。特に、スマートフォン等の携帯端末においては、薄型化が進んでおり、携帯端末に備えられるカメラ(以下、携帯端末用カメラという)においても、薄型化が図られている。

0003

また、ライトフィールドカメラと呼ばれる、撮影後に焦点距離被写界深度を変更できるカメラが開発され、近年広まっている(例えば、特許文献2参照)。このライトフィールドカメラは、イメージセンサ上に配置されたマイクロレンズアレイにより、入射光を分割して複数の方向の光を撮影することにより、撮影後に光の入射方向や強度に基づいて所定の画像処理を行って、画像の焦点距離や被写界深度を変更することができる。

先行技術

0004

特開2015−99345号公報
特表2015−520992号公報

発明が解決しようとする課題

0005

携帯端末用カメラでは、高画質な画像を撮影するためには、レンズ収差補正等が必要となる。そのため、携帯端末用カメラでは、複数枚レンズにより構成される撮像レンズが用いられている。しかし、この撮像レンズは、複数枚のレンズにより構成されているため、全体としてのカメラの厚さ(5〜7mm程度)の約80%(約4mm)を撮像レンズが占めることとなる。そのため、携帯端末用カメラにおいて、高画質な画像の撮影と薄型化との両立が、大きな課題となっている。

0006

一方、ライトフィールドカメラでは、イメージセンサ上に配置される各マイクロレンズアレイの各レンズからの光(像)が、受光面上で重ならないようにするために、前述のような撮像レンズや、各レンズに対応した隔壁を有する隔壁シート等が必要となっている。
前述のように撮像レンズは、複数枚のレンズにより構成されるため、大型であり、ライトフィールドカメラの小型化、薄型化が困難であった。また、隔壁シートを配置する場合には、隔壁とマイクロレンズアレイとの位置合わせが困難であるという問題があった。

0007

本願発明者は、先に出願の特願2015−169288号において、一方の面側に凸形状の単位レンズ形状を有する柱状の光透過部と、これと交互に配列される壁状の光吸収部とを備える2枚のレンズシートを撮像素子部よりも被写体側に一体に積層して配置し、光軸方向から見て2枚のレンズシートの光透過部の配列方向が角度αをなす撮像装置及び撮像モジュールを提案し、リフォーカス処理が可能な撮像モジュール及び撮像装置の薄型化を実現している。
その後の検討において、上記撮像装置や撮像モジュールの組み立て工程や、組み立て後輸送時や使用時等において、外部からの衝撃によりレンズシート同士が擦れたり、他部材と擦れたりする等して、単位レンズ形状の表面に傷がつく場合があることがわかった。
また、撮像装置や撮像モジュールの組み立て工程や、組み立て後の輸送時や使用時等において、単位レンズ形状が外圧等により隣接するレンズシート等に押し付けられ、潰れて隣接するレンズシートに密着する等により光学密着が生じ、被写体からの光が設計上の光路とは異なる方向へ出射し、画質が低下する場合があることがわかった。

0008

以上のことから、本発明の課題は、撮像装置や撮像モジュールを薄型化でき、かつ、外部衝撃等によるレンズシート表面の傷つき及び他部材との光学密着を抑制できるレンズシート、及び、これを備える撮像モジュール、撮像装置を提供することである。

課題を解決するための手段

0009

本発明は、以下のような解決手段により、前記課題を解決する。なお、理解を容易にするために、本発明の実施形態に対応する符号を付して説明するが、これに限定されるものではない。
請求項1の発明は、一方の面が光学形状を有する光学形状面であるレンズシートであって、柱状であってシート面に沿って一方向に配列され、前記光学形状面側に凸状の単位レンズ形状(112)を有する光透過部(111)と、前記光透過部と交互に配列され、前記光透過部の長手方向に延在し、かつ、前記レンズシートの厚み方向に沿って前記単位レンズ形状側から反対側である裏面(11b)側へ延びる光吸収部(113)と、を備え、前記光透過部は、前記単位レンズ形状の頂点において、20℃の温度下で、ナノインデンテーション法(ISO14577−1に準拠)により、対面角が90°の四角錘圧子を用いて、押し込み荷重を変化させながら荷重時間10秒間で押し込み、押し込み深さが1μmに到達した後5秒間保持してから、60秒間かけて除荷する条件で測定される押し込み弾性率EIT)が、150〜3500MPaであり、かつ、復元仕事率(ηIT)が、30%以上100%以下であること、を特徴とするレンズシート(11)である。
請求項2の発明は、請求項1に記載のレンズシートにおいて、前記単位レンズ形状(112)は、前記光透過部(111)の配列方向に平行であって該レンズシートの厚み方向に平行な断面における断面形状が円の一部形状であり、その曲率半径が10μm以上80μm以下であること、を特徴とするレンズシート(11)である。
請求項3の発明は、請求項1又は請求項2に記載のレンズシートにおいて、前記光透過部(111)の屈折率N1と前記光吸収部(113)の屈折率N2とは、N1≦N2を満たすこと、を特徴とするレンズシート(11)である。
請求項4の発明は、請求項1から請求項3までのいずれか1項に記載のレンズシートにおいて、前記光透過部(111)と前記光吸収部(113)との界面が、該レンズシートの厚み方向となす角度θは、0°≦θ≦10°を満たすこと、を特徴とするレンズシート(11)である。
請求項5の発明は、入射する光を電気信号に変換する複数の画素2次元配列された撮像素子部(21)と、前記撮像素子部よりも被写体側に配置される請求項1から請求項4までのいずれか1項に記載のレンズシート(11)を備えるレンズシートユニット(10)と、を備える撮像モジュールであって、前記レンズシートユニットは、前記レンズシートの前記撮像素子部側に、一方の面が光学形状を有する第2の光学形状面(12a)である第2のレンズシート(12)を備え、前記第2のレンズシートは、柱状であってシート面に沿って一方向に配列され、前記第2の光学形状面側に凸状の第2の単位レンズ形状(122)を有する第2の光透過部(121)と、前記第2の光透過部と交互に配列され、前記第2の光透過部の長手方向に延在し、かつ、前記第2のレンズシートの厚み方向に沿って、前記の第2単位レンズ形状側から反対側である裏面(12b)側へ延びる第2の光吸収部(123)と、を備え、光軸(O)方向から見て、前記光透過部の配列方向(R11)と、前記第2の光透過部の配列方向(R12)とは、角度αをなして交差し、前記レンズシートと前記第2のレンズシートとが積層されていること、を特徴とする撮像モジュール(20)である。
請求項6の発明は、請求項5に記載の撮像モジュールにおいて、前記第2のレンズシート(12)の前記第2の光透過部(121)は、前記第2の単位レンズ形状(122)の頂点において、20℃の温度下で、ナノインデンテーション法(ISO14577−1に準拠)により、対面角が90°の四角錘型圧子を用いて、押し込み荷重を変化させながら荷重時間10秒間で押し込み、押し込み深さが1μmに到達した後5秒間保持してから、60秒間かけて除荷する条件で測定される押し込み弾性率(EIT)が、150〜3500MPaであり、かつ、復元仕事率(ηIT)が、30%以上100%以下であること、を特徴とする撮像モジュール(20)である。
請求項7の発明は、請求項5又は請求項6に記載の撮像モジュールにおいて、前記第2の単位レンズ形状(122)は、前記第2の光透過部(121)の配列方向に平行であって前記第2のレンズシートの厚み方向に平行な断面における断面形状が円の一部形状であり、その曲率半径が10μm以上80μm以下であること、を特徴とする撮像モジュール(20)である。
請求項8の発明は、請求項5から請求項7までのいずれか1項に記載の撮像モジュールにおいて、前記角度αは、80°≦α≦100°を満たすこと、を特徴とする撮像モジュール(20)である。
請求項9の発明は、請求項5から請求項8までのいずれか1項に記載の撮像モジュールにおいて、前記各光透過部(111,121)の屈折率N1と前記各光吸収部(113,123)の屈折率N2とは、N1≦N2を満たすこと、を特徴とする撮像モジュール(20)である。
請求項10の発明は、請求項5から請求項9までのいずれか1項に記載の撮像モジュールにおいて、前記各光透過部(111,121)と前記各光吸収部(113,123)との界面が、各レンズシートの厚み方向となす角度θは、0°≦θ≦10°を満たすこと、を特徴とする撮像モジュール(20)である。
請求項11の発明は、請求項5から請求項10までのいずれか1項に記載の撮像モジュール(20)を備える撮像装置(1)である。
請求項12の発明は、入射する光を電気信号に変換する複数の画素が2次元配列された撮像素子部(21)と、前記撮像素子部よりも被写体側に配置される請求項1から請求項4までのいずれか1項に記載のレンズシート(11)と、を備える撮像モジュール(20)である。
請求項13の発明は、入射する光を電気信号に変換する複数の画素が2次元配列された撮像素子部(21)と、前記撮像素子部よりも被写体側に配置される請求項1から請求項4までのいずれか1項に記載のレンズシート(11)と、を備える撮像装置(1)である。

発明の効果

0010

本発明によれば、撮像装置や撮像モジュールを薄型化でき、さらに、外部衝撃等によるレンズシート表面の傷つき及び他部材との光学密着を抑制できるレンズシート、及び、これを備える撮像モジュール、撮像装置を提供できる。

図面の簡単な説明

0011

実施形態のカメラ1を説明する図である。
実施形態の撮像モジュール20を説明する図である。
実施形態のレンズシートユニット10を説明する図である。
実施形態の第1レンズシート11及び第2レンズシート12を説明する図である。
押し込み弾性率(EIT)及び復元仕事率(ηIT)の測定方法を模式的に示す図である。
復元仕事率(ηIT)を求める際に用いられるF1(h)、F2(h)、弾性変形仕事量(Welast)、及び塑性変形仕事量(Wplast)の一例を示す図である。
実施形態の撮像モジュール20のイメージセンサ21の受光面上での結像の様子を説明する図である。
実施例及び比較例のレンズシートの耐摺動性評価方法を模式的に示す図である。
実施例及び比較例のレンズシートの光学密着の評価方法を模式的に示す図である。
第1レンズシート11及び第2レンズシート12のレンズ形状面11a,12aの向きを説明する図である。
レンズシートユニット10の各光透過部111,121の配列方向R11,R12とイメージセンサ21の画素の配列方向G1,G2との関係を示す図である。
レンズシートユニット10の変形形態の一例を示す図である。

実施例

0012

以下、図面等を参照して、本発明の実施形態について説明する。なお、図1を含め、以下に示す各図は、模式的に示した図であり、各部の大きさ、形状は、理解を容易にするために、適宜誇張している。
明細書中において、記載する各部材の寸法等の数値及び材料名等は、実施形態としての一例であり、これに限定されるものではなく、適宜選択して使用してよい。
本明細書中において、形状や幾何学的条件を特定する用語、例えば、平行や直交等の用語については、厳密に意味するところに加え、同様の光学的機能を奏し、平行や直交と見なせる程度の誤差を有する状態も含むものとする。
本明細書中において、シート面とは、シート状の部材において、そのシート全体として見たときにおける、シートの平面方向となる面を示すものであるとする。

0013

(実施形態)
図1は、本実施形態のカメラ1を説明する図である。
図2は、本実施形態の撮像モジュール20を説明する図である。
図1を含め、以下に示す各図において、理解を容易にするために、適宜、XYZ直交座標系を設けて示している。この座標系では、撮影者が、撮像装置を基本的な姿勢で支持し、光軸Oを水平として画像を撮影するとき、水平方向(左右方向)をX方向、鉛直方向(上下方向)をY方向とし、撮影者側から見て左側(被写体側から見て右側)に向かう方向を+X方向、鉛直方向上側に向かう方向を+Y方向、光軸O方向をZ方向とし、被写体側に向かう方向を+Z方向とする。

0014

図1に示すように、本実施形態のカメラ1は、開口部31を有する筐体30内に、撮像モジュール20を備える撮像装置である。
カメラ1は、スマートフォン等の携帯電話タブレット端末等の携帯端末に用いられる撮像装置であり、この筐体30は、携帯端末本体の筐体に相当する。このカメラ1は、さらに、不図示の制御部、記憶部等を備えている。
また、カメラ1は、筐体30をカメラ本体の筐体として備える、一般的な撮像装置としてもよい。この場合、カメラ1は、制御部、記憶部等に加えて、不図示のシャッタ部、シャッタ駆動部等を備える。
開口部31は、被写体側からの光を、カメラ1の撮像モジュール20へ取り込む開口である。この開口部31には、撮像モジュール20への埃やゴミ等の異物侵入を防止する等の観点から、開口部31を覆うように、透光性を有する保護シート32が配置されている。この保護シート32は、ガラス製としてもよいし、樹脂製としてもよい。

0015

本実施形態の撮像モジュール20は、光軸O(Z方向)に沿って、光の入射側(被写体側、+Z側)から順に、レンズシートユニット10、イメージセンサ21等を備えている。この撮像モジュール20は、前述の制御部からの出力信号により、イメージセンサ21の受光面上に結像した像を撮像する。
レンズシートユニット10及びイメージセンサ21は、矩形状の平板状の部材であり、その幾何学的中心に光軸Oが直交している。

0016

図3は、本実施形態のレンズシートユニット10を説明する図である。図3(a)では、レンズシートユニット10の第1レンズシート11及び第2レンズシート12の斜視図を示し、図3(b)では、光軸O方向から見た後述する第1レンズシート11の光透過部111の配列方向R11及び第2レンズシート12の光透過部121の配列方向R12を示している。なお、図3(a)では、理解を容易にするために、第1レンズシート11と第2レンズシート12とは、Z方向に離間させて示している。
図4は、本実施形態の第1レンズシート11及び第2レンズシート12を説明する図である。図4(a)では、第1レンズシート11の光透過部111の配列方向及び第1レンズシート11の厚み方向に平行な断面の一部を拡大して示し、図4(b)では、図4(a)に示す断面の一部をさらに拡大して示している。また、図4では、第1レンズシート11の符号を示し、括弧内に対応する第2レンズシート12の符号を示している。

0017

レンズシートユニット10は、光軸O方向(Z方向)において、イメージセンサ21の被写体側(+Z側)に位置している。レンズシートユニット10は、光軸O方向(Z方向)に沿って被写体側(+Z側)から順に、第1レンズシート11、第2レンズシート12を備えている。
レンズシートユニット10は、第1レンズシート11、第2レンズシート12が一体に積層されて不図示の支持部材により支持され、イメージセンサ21に対する上下方向(Y方向)及び左右方向(X方向)、光軸O方向(Z方向)での位置が位置決めされている。

0018

第1レンズシート11は、片面に、後述する単位レンズ形状112が複数形成されたレンズ形状面11aを有するレンズシートである。この第1レンズシート11は、柱状であってシート面に沿って一方向に配列される光透過部111と、光透過部111の配列方向において、光透過部111と交互に配置される光吸収部113とを備える。
本実施形態の第1レンズシート11では、光透過部111は、その配列方向R11が上下方向(Y方向)に平行であり、その長手方向(稜線方向)が左右方向(X方向)に平行となっている。
光透過部111は、光を透過する部分であり、イメージセンサ21側(−Z側)に、凸形状の単位レンズ形状112を有している。第1レンズシート11のイメージセンサ21側(−Z側)の面は、単位レンズ形状112が複数配列されたレンズ形状面11aとなっている。また、第1レンズシート11の被写体側(+Z側)の面(レンズ形状面11aとは反対側の面)である裏面11bは、略平面状となっている。

0019

単位レンズ形状112は、イメージセンサ21側(−Z側)に凸となっており、光透過部111の配列方向R11(Y方向)及び第1レンズシート11の厚み方向(Z方向)に平行な断面における断面形状が円の一部形状となっている。単位レンズ形状112は、この断面形状が光透過部111の長手方向に沿って延在している。
また、単位レンズ形状112の表面には、反射防止機能を有する不図示の反射防止層が形成されている。この反射防止層は、反射防止機能を有する材料(例えば、フッ化マグネシウム(MgF2)、二酸化ケイ素(SiO2)、フッ素光学用コーティング剤等)を所定の膜厚コーティングする等により形成される。
光透過部111の裏面11b側(+Z側)には、光透過部111がシート面に平行な方向に連続しているランド部114が形成されている。ランド部114は、その厚みができる限り薄い方が好ましく、ランド部114の厚さが0であること(即ち、ランド部114が存在しない形態)が、迷光や後述のクロストーク等を抑制し、高画質の画像を提供する観点から理想的である。

0020

光透過部111は、光透過性を有する樹脂により形成され、その屈折率N1は、約1.38〜1.60である。
また、光透過部111は、その押し込み弾性率(EIT)が150〜3500MPaであり、かつ、復元仕事率(ηIT)が30%以上100%以下であることが、単位レンズ形状112表面の傷つきを抑制したり、他の部材と光学密着を抑制したりする観点から好ましい。この光透過部111の押し込み弾性率(EIT)及び復元仕事率(ηIT)に関する詳細に関しては、後述する。
このような光透過部111は、例えば、ウレタンアクリレートポリエステルアクリレートエポキシアクリレート等の紫外線硬化型樹脂を用いて、紫外線成形法等により形成されている。
なお、これに限らず、光透過部111は、電子線硬化型樹脂等の他の電離放射線硬化型樹脂により形成してもよい。また、光透過部111は、PET(ポリエチレンテレフタレート)樹脂等の熱可塑性樹脂等を用いて熱溶融押出成形法等により形成されてもよいし、ガラスにより形成されてもよい。

0021

光吸収部113は、光を吸収する作用を有し、第1レンズシート11の厚み方向(Z方向)に沿って、単位レンズ形状112が形成されたレンズ形状面11a側から反対側の面(裏面)11b側へ延びる壁状の部分である。また、光吸収部113は、光透過部111の長手方向(X方向)に沿って延在している。
光吸収部113は、その配列方向及び第1レンズシート11の厚み方向に平行な断面における断面形状が楔形形状、もしくは、矩形形状である。ここでいう楔形形状とは、一方の端部の幅が広く、他方に向けて次第に幅が狭くなる形状をいい、三角形形状台形形状等を含む。

0022

本実施形態の光吸収部113は、その配列方向及び第1レンズシート11の厚み方向に平行な断面での断面形状が、レンズ形状面11a側の寸法が裏面11b側の寸法に比べて大きい台形形状となっている。これに限らず、光吸収部113は、その配列方向及び第1レンズシート11の厚み方向に平行な断面での断面形状が、裏面11b側を頂点とする三角形形状としてもよい。
光吸収部113は、光透過部111内を進む光のうち、隣接する他の光透過部111側へ向かうような迷光を吸収する機能を有する。

0023

光吸収部113の屈折率N2は、約1.48〜1.60である。また、光吸収部113の屈折率N2は、光透過部111の屈折率N1に対して、N2≧N1となっていることが好ましい。これは、光吸収部113と光透過部111との界面で、光が全反射する等して、不要な光がイメージセンサ21に到達することを防ぐためである。
また、光吸収部113は、その押し込み弾性率(EIT)が、光透過部111の押し込み弾性率(EIT)の±30%の範囲内の値であり、その復元仕事率(ηIT)が、光透過部111の復元仕事率の(ηIT)の±30%の範囲内の値であることが、第1レンズシート11の反り(カール)を抑制する観点から好ましい。光吸収部113の押し込み弾性率(EIT)及び復元仕事率(ηIT)に関する詳細は、後述する。

0024

このような光吸収部113は、カーボンブラック等の光吸収性を有する材料(以下、光吸収材という)や、光吸収材を含有した樹脂等により形成される。
光吸収部113に用いられる光吸収材は、可視光領域の光を吸収する機能を有する粒子状等の部材が好適である。このような部材としては、カーボンブラック、グラファイト黒色酸化鉄等の金属塩顔料染料、顔料や染料で着色された樹脂粒子等が挙げられる。
光吸収材として顔料や染料で着色された樹脂粒子を用いる場合には、その樹脂粒子は、アクリル系樹脂や、PC(ポリカーボネート)樹脂、PE(ポリエチレン)樹脂、PS(ポリスチレン)樹脂、MBSメチルメタクリレートブタジエンスチレン)樹脂、MS(メチルメタクリレート・スチレン)樹脂等により形成されたものが用いられる。
また、光吸収材としては、カーボンブラック等と上記のような着色された樹脂粒子とを組み合わせて用いてもよい。
このような光吸収材を含有する樹脂としては、ウレタンアクリレート、エポキシアクリレート等の紫外線硬化型樹脂や電子線硬化型樹脂等の電離放射線硬化型樹脂が挙げられる。
本実施形態の光吸収部113は、カーボンブラックを含有するアクリル系樹脂により形成されている。

0025

光吸収部113は、例えば、光透過部111を形成後に、光吸収部113を形成する材料を、レンズ形状面11a側の面に塗布し、ワイピング等で光透過部111間の溝状の部分に光吸収部123を充填した後、硬化させる等により形成される。
また、例えば、光吸収部113を形成する材料は、光透過部111間の溝部分に、真空充填により充填してもよいし、毛細管現象を利用して充填してもよい。

0026

ここで、光透過部111は、その押し込み弾性率(EIT)が150〜3500MPaであることが、他部材との光学密着を抑制する観点から好ましい。
光透過部111の押し込み弾性率(EIT)がこの範囲よりも低いと、撮像モジュール20及びカメラ1の組み立て工程等において、第1レンズシート11に第2レンズシート12等の他部材を積層した場合に、単位レンズ形状112が外力等により他部材に押し付けられて潰れ、他部材との接触面積が設計以上に増大した状態で密着する光学密着が生じる可能性がある。光学密着は、設計外の好ましくない方向へ光が進む光経路変化を生じさせ、画質の劣化を招き、好ましくない。
光透過部111の押し込み弾性率(EIT)がこの範囲よりも高いと、光吸収部113を光透過部111間に形成するために光吸収部113を形成する材料を塗布してワイピング等を行った場合に、光透過部111の変形量が小さく、十分に光吸収部113を形成する材料を掻きとれず、単位レンズ形状112の裾部分に光吸収部113を形成する材料が残り、好ましくない。
従って、光透過部111の押し込み弾性率(EIT)は、上記範囲を満たすことが好ましい。

0027

また、光透過部111の復元仕事率(ηIT)が、30%以上100%以下であることが、光学密着を抑制し、かつ、外部からの衝撃等により他部材と擦れる等によって生じる単位レンズ形状112表面の傷を抑制する観点から好ましい。
光透過部111の復元仕事率(ηIT)が30%未満である場合、撮像モジュール20の組み立て工程時等に第2レンズシート12等を積層すると、単位レンズ形状112が潰れたままその形状が戻らず、光学密着が生じやすい。また、光透過部111の復元仕事率(ηIT)が30%未満である場合、擦れ等による光透過部111の単位レンズ形状112の表面の傷等が生じやすい。
なお、復元仕事率(ηIT)の上限は、100%であり、光透過部111の復元仕事率(ηIT)は、100%となることが理想的である。

0028

図5は、押し込み弾性率(EIT)及び復元仕事率(ηIT)の測定方法を模式的に示す図である。
本実施形態の光透過部111の押し込み弾性率(EIT)及び復元仕事率(ηIT)は、ナノインデンテーション法(ISO14577−1に準拠)による測定装置、例えば、ナノインデンテーションテスター(株式会社フィッシャーインストルメンツ製、PICODNTOR HM500)を用いて、以下の測定条件により測定される。
測定点:単位レンズ形状112の頂点t3
圧子:対面角90°の四角錘型
最大押し込み深さ:1μm
荷重時間:10秒
保持時間:5秒
除荷時間:60秒
測定環境:20℃

0029

即ち、押し込み弾性率(EIT)及び復元仕事率(ηIT)は、20℃の温度下で、ISO14577−1に準拠し、対面角が90°の四角錐型圧子iを光透過部111の単位レンズ形状112の頂点t3に当て、押込み荷重を変化させながら、荷重時間10秒間で厚み方向へ押し込み、押し込み深さが1μmに到達した後、その状態で5秒間保持し、その後60秒間かけて除荷するという条件で測定される。
なお、押込み荷重は、荷重時間10秒後に押込み深さが1μmに到達するように調節する。

0030

図6は、復元仕事率ITを求める際に用いられるF1(h)、F2(h)、弾性変形仕事量(Welast)、塑性変形仕事量(Wplast)の一例を示す図である。
復元仕事率(ηIT)は、下記の式(1)により求められる値である。
復元仕事率(ηIT)(%)={弾性変形仕事量(Welast)/全変形仕事量(Wtotal)}×100 ・・・式(1)
ここで、hは押込み深さであり、F1(h)は荷重時の押込み深さ(h)の時の荷重であり、F2(h)は除荷時の押込み深さ(h)の時の荷重であり、heは60秒間かけて除荷した後の押込み深さであり、hmaxは最大押込み深さである。ここでの最大押込み深さhmaxは1μmである。

0031

全変形仕事量(Wtotal)は、荷重時における、押し込み深さhが0〜hmaxまでの押し込み深さhとそのときの荷重(F1(h))の積の合計である。また、全変形仕事量(Wtotal)は、弾性変形仕事量(Welast)と塑性変形仕事量(Wplast)との和である。
弾性変形仕事量(Welast)は、除荷時における、押し込み深さhがhe〜hmaxまでの押し込み深さhとそのときの荷重(F2(h))の積の合計である。
また、復元仕事率(ηIT)は、より具体的には、下記式(2)により求められる。
この復元仕事率(ηIT)及び押し込み弾性率(EIT)は、光透過部111の単位レンズ形状112の稜線から任意に選択された5点において測定された測定値平均値とする。

0032

0033

光吸収部113の押し込み弾性率(EIT)及び復元仕事率(ηIT)に関しては、光吸収部113が隣接する光透過部111の弾性率(EIT)及び復元仕事率(ηIT)の値に対して、それぞれ、±30%以内の値(光透過部111の押し込み弾性率(EIT)及び復元仕事率(ηIT)の値を1とするとき、その値の0.7〜1.3倍となる範囲の値)であることが好ましい。
光吸収部113の押し込み弾性率(EIT)及び復元仕事率(ηIT)が、上記範囲外となる、即ち、光透過部111の押し込み弾性率(EIT)及び復元仕事率(ηIT)と光吸収部113の押し込み弾性率(EIT)及び復元仕事率(ηIT)との差が大きくなると、第1レンズシート11に反り(カール)が生じやすくなり、第1レンズシート11の平面性が低下し、所望する方向へ光を集光できない。従って、光吸収部113と光透過部111との押し込み弾性率(EIT)及び復元仕事率(ηIT)は、近しいこと好ましく、上記範囲内であることが好ましい。

0034

第1レンズシート11の各部の寸法は、以下の通りである。
光透過部111(単位レンズ形状112)の配列ピッチPは、約20〜180μmとすることが好ましい。
単位レンズ形状112の曲率半径Rは、約10〜80μmとすることが、光学密着を抑制する観点から好ましい。曲率半径Rが、この範囲よりも小さいと、単位レンズ形状112として所望するレンズ効果が得られない。また、曲率半径Rが、この範囲よりも大きいと、単位レンズ形状112が平坦な形状に近くなり、光学密着が生じやすくなる。従って、単位レンズ形状112の曲率半径Rは、上記範囲とすることが好ましい。

0035

単位レンズ形状112のレンズ開口幅D1は、光透過部111の配列方向R11において、光透過部111のレンズ形状面11a側の寸法(光透過部111と光吸収部113の最もレンズ形状面11a側の端部との境界となる点t1〜点t2間の寸法)であり、約20〜160μmとすることが好ましい。
単位レンズ形状112のレンズ高さH1は、第1レンズシート11の厚み方向(Z方向)において、光吸収部113のレンズ形状面11a側の面から単位レンズ形状112の最も凸となる点(頂点)t3までの寸法であり、約2〜40μmとすることが好ましい。
この第1レンズシート11の厚みTは、光透過部111の厚さに等しく、第1レンズシート11の厚み方向(Z方向)における裏面11bから点t3までの寸法であり、約30〜240μmである。

0036

光吸収部113の幅D2は、光透過部111の配列方向(Y方向)における、光吸収部113の最もレンズ形状面11a側の寸法であり、約1〜30μmとすることが好ましい。
光吸収部113の高さH2は、第1レンズシート11の厚み方向(Z方向)における光吸収部113の寸法であり、約20〜230μmとすることが好ましい。
光吸収部113と光透過部111との界面がシート面の法線方向(Z方向)となす角度θは、0〜10°程度とすることが好ましい。

0037

ランド厚D3は、ランド部114の厚さであり、第1レンズシート11の厚み方向(Z方向)において、光吸収部113の裏面11b側先端から第1レンズシート11の裏面11bまでの寸法であり、約1〜30μmとすることが、迷光や、所定の光透過部111(単位レンズ形状112)に入射した光が、隣接する他の光透過部111(単位レンズ形状112)側へ光が進んでしまうことを抑制する観点から好ましい。

0038

第2レンズシート12は、第1レンズシート11のイメージセンサ21側(−Z側)に位置するレンズシートである。
第2レンズシート12は、前述の第1レンズシート11と略同様の形状であり、単位レンズ形状122を有する光透過部121、光吸収部123等を有している。しかし、第2レンズシート12では、凸状の単位レンズ形状122が形成されるレンズ形状面12aの位置、及び、光透過部121及び光吸収部123の配列方向R12は、第1レンズシート11とは異なる。

0039

即ち、第2レンズシート12では、レンズ形状面12aは、光の入射側となる被写体側(+Z側)に位置し、裏面12bは、イメージセンサ21側(−Z側)に位置している。
また、図3(b)に示すように、第2レンズシート12では、光透過部121及び光吸収部123の配列方向R12は、光軸O方向(Z方向)から見て、第1レンズシート11の光透過部111及び光吸収部113の配列方向R11と交差し、角度αをなしている。本実施形態では、この角度α=90°であり、第2レンズシート12の光透過部121(単位レンズ形状122)は、配列方向R12が左右方向(X方向)に平行であり、長手方向(稜線方向)が上下方向(Y方向)に平行である。
第2レンズシート12の裏面12bは、イメージセンサ21との光学密着を抑制する観点から、その表面に微細凹凸が形成されたマット面とすることが好ましい。また、裏面12bをこのようなマット面とすることにより、イメージセンサ21の受光面の傷つきを防止する効果も得られる。
第2レンズシート12は、第1レンズシート11と同様の材料を用いて形成される。

0040

なお、第2レンズシート12は、不図示の接合層により、イメージセンサ21と一体に接合されていてもよい。第2レンズシート12とイメージセンサ21とを接合することにより、第2レンズシート12とイメージセンサ21との光学密着やイメージセンサ21の傷つきを抑制できることに加え、撮像モジュール20の組み立て作業をより容易とすることができる。
このような接合層は、光透過性を有する粘着剤又は接着剤により形成されている。
また、この接合層は、その屈折率が、第2レンズシート12の光透過部121の屈折率N1と等しい、もしくは、屈折率差ができる限り小さいことが好ましい。
また、イメージセンサ21の駆動時の発熱によるレンズシートユニット10の反り等の変形を抑制する観点から、この接合層は、耐熱性を有することが好ましい。
このような接合層としては、エポキシ樹脂製ウレタン樹脂製等の粘着剤、接着剤が好適である。
また、この接合層は、その屈折率が光透過部121の屈折率N1よりも小さいものも適用可能であり、例えば、シリコーン系粘着剤等が適用可能である。

0041

レンズシートユニット10を透過した光は、単位レンズ形状112,122により、後述するイメージセンサ21の受光面上が焦点となるように集光される。即ち、単位レンズ形状112,122の曲率半径R、屈折率N1は、イメージセンサ21の受光面上が焦点となるように設定されている。
また、第1レンズシート11と第2レンズシート12とは、単位レンズ形状112,122がその頂点(点t3)で互いに接した状態で配置されており、第1レンズシート11の単位レンズ形状112と第2レンズシート12の単位レンズ形状122との間の隙間部分には、空気が位置する形態となっている。なお、光軸O方向において、単位レンズ形状112の頂点と単位レンズ形状122の頂点とは、わずかに隙間を有し、接していない形態としてもよい。

0042

図3(b)に示すように、第1レンズシート11、第2レンズシート12は、光軸O方向(Z方向)から見た場合に、光透過部111(単位レンズ形状112)の配列方向R11と光透過部121(単位レンズ形状122)の配列方向R12とが角度α=90°をなすように配置されている。また、第1レンズシート11、第2レンズシート12は、光透過部111,121間に光吸収部113,123を有している。
従って、レンズシートユニット10は、光学的には、マイクロレンズが2次元方向(X方向及びY方向)に配置され、マイクロレンズ間遮光壁が形成された状態に略等しい。

0043

イメージセンサ21は、受光面で受光した光を電気信号に変換して出力する部分である。イメージセンサ21は、複数の画素が2次元方向に配列されており、各画素により、その画素に入射した光の強度を検出可能である。
イメージセンサ21を構成する複数の画素は、イメージセンサ21の受光面である被写体側の表面に、2次元方向に配列されている。本実施形態では、イメージセンサ21の画素は、左右方向及び上下方向(X方向及びY方向)に複数配列されているものとする。
このようなイメージセンサ21としては、例えば、CCD(Charge Coupled Device)やCMOS(Complementary Metal Oxide Semiconductor)等が好適に用いられる。
本実施形態のイメージセンサ21は、CMOSが用いられている。

0044

被写体からの光は、開口部31の保護シート32を透過し、撮像モジュール20のレンズシートユニット10内に進み、第1レンズシート11及び第2レンズシート12を透過する。
そして、第1レンズシート11の単位レンズ形状112により、その配列方向であるY方向(上下方向)において集光され、また、第2レンズシート12の単位レンズ形状122により、その配列方向であるX方向(左右方向)において集光される。また、光透過部111,121内を光軸O方向に対して大きな角度をなす方向へ進む光の少なくとも一部は、光吸収部113,123に入射して吸収される。そして、レンズシートユニット10を透過した光は、イメージセンサ21の受光面で焦点を結ぶ。

0045

前述のように、第1レンズシート11及び第2レンズシート12は、単位レンズ形状112,122の長手方向(稜線方向)が直交するように配置されているので、レンズシートユニット10は、光学的には、左右方向及び上下方向(X方向及びY方向)にマイクロレンズが複数配列されている形態に近しい。
そして、イメージセンサ21の受光面上には、この疑似的なマイクロレンズにより結像された像が、それぞれ重なることなく形成される(後述の図7(a)参照)。

0046

本実施形態では、疑似的なマイクロレンズの1つ1つのレンズに対して、イメージセンサ21の複数の画素が対応するように配置されている。そして、撮影時には、各画素には、対応する疑似的なマイクロレンズにより分割された光が入射し、各画素により、光の強度が検出される。また、各画素と、XY平面上のどの位置の単位レンズ形状112,122を透過したか(XY平面上の疑似的なマイクロレンズの位置)との関係から、画素に入射した光の入射方向が検出可能となる。
撮影時に撮像モジュール20により得られた、各画素が検出した入射光の強度及び入射方向の情報は、記憶部に記憶される。そして、制御部により各種演算等が行われることにより、撮影後に、その焦点距離や被写界深度等を変更した(リフォーカス処理を行った)画像データとして生成可能である。

0047

図7は、本実施形態の撮像モジュール20のイメージセンサ21の受光面上での結像の様子を説明する図である。
一般的に、ライトフィールドカメラでは、マイクロレンズアレイの1つのマイクロレンズに対して、イメージセンサ21の所定の領域内に位置する複数個の画素211が対応している。そして、それぞれのマイクロレンズによる像が、対応する領域内に投影されることが重要である。
このとき、例えば、図7(b)に示すように、各マイクロレンズの像が隣の領域等に投影され、像が重なると、被写体面上で異なる位置と角度を有する光が同一の画素に入射するクロストークという現象が生じ、光の入射方向や強度を分解できなくなる。
これを解消するために、従来のライトフィールドカメラでは、マイクロレンズアレイよりも被写体側に設けられた撮像レンズの絞りを利用したり、マイクロレンズアレイの各単位レンズに対応した隔壁を有する隔壁シートをマイクロレンズアレイのイメージセンサ側等に別体で用意したりする必要があった。

0048

しかし、本実施形態によれば、光吸収部113,123が、光透過部111,121間に形成され、各レンズシートの厚み方向(Z方向)に延びているので、撮像レンズや隔壁シート等を用いることなく、かつ、図7(a)に示すように、クロストークを生じさせることなく、単位レンズ形状112,122により集光された光を、イメージセンサ21の対応する領域の画素211に入射させることができる。これにより、画素211は、入射光の強度と入射方向の情報を高精度で出力することができる。

0049

従って、本実施形態によれば、複数枚の光学レンズからなる撮像レンズが不要であり、レンズシートユニット10の厚みを数10〜数100μm程度に抑えることができ、撮像モジュール20及びカメラ1の薄型化、軽量化を図ることができる。また、撮像レンズが不要となるので、撮像モジュール20及びカメラ1の生産コストを低減できる。さらに、カメラ1が搭載される携帯端末本体等の薄型化を妨げることがなく、意匠性の向上にも寄与できる。

0050

また、本実施形態によれば、撮影時に、画素211が入射光の強度と入射方向とを高精度で出力でき、撮影後に、その焦点距離や被写界深度等を変更可能であり、焦点距離や被写界深度を変更可能なライトフィールドカメラとしての機能を携帯端末用のカメラに付与することができ、カメラ1の高性能化を図ることができる。しかも、本実施形態の撮像モジュール20及びカメラ1は、パンフォーカスでの撮影画像も形成可能であり、様々な焦点距離及び被写界深度での撮影画像が形成可能となり、カメラ機能の向上を図ることができる。
また、本実施形態によれば、レンズシート11,12内に光透過部111,121(単位レンズ形状112,122)に対応して光吸収部113,123が一体に形成されているので、従来のライトフィールドカメラで必要であった、隔壁シートとマイクロレンズアレイとの高精度の位置合わせが不要となる。従って、マイクロレンズアレイと隔壁シートとの位置合わせ精度ずれによる歩留りの低下を抑制できる。また、位置合わせが不要となるので、ハンドリングが容易となり、製造が容易に行え、生産コスト低減できる。

0051

また、本実施形態によれば、光透過部111,121のレンズ開口幅D1を小さくしてX方向及びY方向に配列される単位レンズ形状112,122を増やすことも容易であり、かつ、光吸収部113,123が一体に形成されるので、レンズシートユニット10による疑似的なマイクロレンズをより細密化することができ、画像の空間解像度を向上させることができる。
また、本実施形態によれば、従来のライトフィールドカメラで必要であった、撮像レンズや、マイクロレンズアレイとは別体の光線分割用の隔壁シート等が不要となり、小型化が困難であったライトフィールドカメラの薄型化及び軽量化、生産コストの低減等を図ることができる。

0052

(第1レンズシート11及び第2レンズシート12の耐摺動性及び光学密着に関して)
ここで、本実施形態の第1レンズシート11及び第2レンズシート12の実施例に相当する実施例1〜5のレンズシートと、押し込み弾性率(EIT),復元仕事率(ηIT)、単位レンズ形状の曲率半径Rの少なくともいずれか1つが好ましい範囲を満たさない比較例1〜4のレンズシートを試料Sとして用意し、その耐摺動性や光学密着の発生状況を調べた。
実施例1〜5のレンズシートと比較例1〜4のレンズシートは、光透過部の単位レンズ形状の曲率半径R、押し込み弾性率(EIT)、復元仕事率(ηIT)が異なる以外は、略同様の形態である。

0053

実施例1のレンズシートは、単位レンズ形状の曲率半径Rが40μmであり、押し込み弾性率(EIT)が3500MPa、復元仕事率(ηIT)が30%である。この実施例1のレンズシートの光透過部は、芳香族ウレタンアクリレート70質量部と、ペンタエリスリトールトリアクリレート及びペンタエリスリトールテトラアクリレートの混合物(PETA)30質量部と、光開始剤イルガキュア184(チバ・ジャパン社製)1質量部との混合物のUV硬化物により形成されている。
実施例2のレンズシートは、単位レンズ形状の曲率半径Rが10μm、押し込み弾性率(EIT)が3500MPa、復元仕事率(ηIT)が30%である。この実施例2のレンズシートの光透過部は、芳香族ウレタンアクリレート70質量部と、ペンタエリスリトールトリアクリレート及びペンタエリスリトールテトラアクリレートの混合物(PETA)30質量部と、光開始剤イルガキュア184(チバ・ジャパン社製)1質量部との混合物のUV硬化物により形成されている。

0054

実施例3のレンズシートは、単位レンズ形状の曲率半径Rが80μm、押し込み弾性率(EIT)が3500MPa、復元仕事率(ηIT)が30%である。この実施例3のレンズシートの光透過部は、芳香族ウレタンアクリレート70質量部と、ペンタエリスリトールトリアクリレート及びペンタエリスリトールテトラアクリレートの混合物(PETA)30質量部と、光開始剤イルガキュア184(チバ・ジャパン社製)1質量部との混合物のUV硬化物により形成されている。
実施例4のレンズシートは、単位レンズ形状の曲率半径Rが40μm、押し込み弾性率(EIT)が750MPa、復元仕事率(ηIT)が53%である。この実施例4のレンズシートの光透過部は、ポリエチレングリコールジアクリレート(PEG)30質量部と、ペンタエリスリトールトリアクリレート及びペンタエリスリトールテトラアクリレートの混合物(PETA)70質量部と、光開始剤イルガキュア184(チバ・ジャパン社製)1質量部との混合物のUV硬化物により形成されている。

0055

実施例5のレンズシートは、単位レンズ形状の曲率半径Rが40μm、押し込み弾性率(EIT)が150MPa、復元仕事率(ηIT)が80%である。この実施例5のレンズシートの光透過部は、ポリエチレングリコールジアクリレート(PEG)70質量部と、ペンタエリスリトールトリアクリレート及びペンタエリスリトールテトラアクリレートの混合物(PETA)30質量部と、光開始剤イルガキュア184(チバ・ジャパン製)1質量部との混合物のUV硬化物により形成されている。

0056

比較例1のレンズシートは、単位レンズ形状の曲率半径Rが10μm、押し込み弾性率(EIT)が40MPa、復元仕事率(ηIT)が25%である。この比較例1のレンズシートの光透過部は、ポリエチレングリコールジアクリレート(PEG)100質量部と、光開始剤イルガキュア184(チバ・ジャパン社製)1質量部との混合物のUV硬化物により形成されている。
比較例2のレンズシートは、単位レンズ形状の曲率半径Rが10μm、押し込み弾性率(EIT)が63MPa、復元仕事率(ηIT)が29%である。この比較例2のレンズシートの光透過部は、ポリエチレングリコールジアクリレート(PEG)85質量部と、ペンタエリスリトールトリアクリレート及びペンタエリスリトールテトラアクリレートの混合物(PETA)15質量部と、光開始剤イルガキュア184(チバ・ジャパン社製)1質量部との混合物のUV硬化物により形成されている。

0057

比較例3のレンズシートは、単位レンズ形状の曲率半径Rが10μm、押し込み弾性率(EIT)が890MPa、復元仕事率(ηIT)が10%である。この比較例3のレンズシートの光透過部は、ペンタエリスリトールトリアクリレート及びペンタエリスリトールテトラアクリレートの混合物(PETA)100質量部と、光開始剤イルガキュア184(チバ・ジャパン社製)1質量部との混合物のUV硬化物により形成されている。
比較例4のレンズシートは、単位レンズ形状の曲率半径Rが120μm、押し込み弾性率(EIT)が750MPa、復元仕事率(ηIT)が53%である。この比較例4のレンズシートの光透過部は、ポリエチレングリコールジアクリレート(PEG)30質量部と、ペンタエリスリトールトリアクリレート及びペンタエリスリトールテトラアクリレートの混合物(PETA)70質量部と、光開始剤イルガキュア184(チバ・ジャパン社製)1質量部との混合物のUV硬化物により形成されている。

0058

なお、実施例及び比較例のレンズシートにおいて、光吸収部の押し込み弾性率(EIT)及び復元仕事率(ηIT)は、それぞれ、900MPa、40%である。また、光吸収部は、アクリレート系樹脂とカーボンブラックを含有するアクリルビーズの混合物のUV硬化物により形成されている。

0059

図8は、実施例及び比較例のレンズシートの耐摺動性の評価方法を模式的に示す図である。
各実施例及び各比較例のレンズシートの単位レンズ形状の表面の耐摺動性は、学振摩耗試験機60を用いて擦り合わせ試験を行い、評価した。
試料Sである実施例1〜5及び比較例1〜4のレンズシートを試料Sとして、単位レンズ形状が形成されたレンズ形状面側が上向きとなるように学振摩耗試験機60の試験台61の上に置き、片面がマット面であるマットフィルム62(鉛筆硬度:2H、光拡散フィラー不定形シリカ平均粒径1.5μm、塗工厚み:2.5μm、ヘイズ:7%)のマット面を、試料Sのレンズ形状面側に向けて配置し、さらにその上に荷重63(荷重面積20mmφ、500g)を配置し、試験台61を水平方向に移動させ(速度33mm/秒、距離50mm×3回(1.5往復))、試料Sとマットフィルム62とを擦り合わせる擦り合わせ試験を行った。

0060

その後、擦り合わせ試験後の試料Sに対して、暗室環境下で3波長蛍光灯(40W)の透過光及び反射光を利用した目視による表面観察を行い、単位レンズ形状の表面に擦り傷視認されるものは不可(後述の表1において×と表示)とし、擦り傷が視認されないものは良(後述の表1において◎と表示)とした。透過光による検査及び反射光による検査は、いずれも、光源(蛍光灯)と試料Sとの距離は30cmとし、観察者は、約20cmの距離から試料Sの表面観察を行った。

0061

図9は、実施例及び比較例のレンズシートの光学密着の評価方法を模式的に示す図である。
光学密着の発生の有無を評価する装置70は、支持台71の上に、20×20mm四方、高さ10mmにカットした消しゴム72(株式会社トンボ鉛筆MONO消しゴム)を配置し、その上に、エッジライト型面光源装置(消しゴム72側から、白反射シート73、導光板74、導光板74側面に複数のLED光源75)、試料S(実施例1〜5及び比較例1〜4のレンズシート)、光拡散フィルム76(株式会社きもと製ライトアップTM SP6Fヘイズ73%)、液晶パネル77(TN液晶、10.6インチ、WXGA)をこの順に積層して配置した。液晶パネル77の画面の法線方向上側から見て、これらの幾何学的中心は、一致している。そして、液晶パネル77上に、カメラ組み立て時にレンズシートにかかる荷重を想定し、消しゴム72上に均等に荷重300gが掛かるようにおもり78(78a,78b)を配置した。

0062

そして、面光源装置のLED光源75を点灯し、液晶パネル77の画面を白色表示して上方向(液晶パネル77の画面中央の垂直方向上側)約20cmの位置から画面を目視で観察する。試料Sの単位レンズ形状が潰れて変形すると、試料Sと導光板74とが密着する面積が増え、その部分は、他の密着していない部分とは異なる方向へ光が抜ける。その結果、面光源装置の表面に染みが広がったような光学ムラウェットアウト)が生じ、液晶パネル77の画面においては、表示画像輝度ムラとして観察される。
従って、液晶パネル77の画面において、輝度ムラが観察された場合、試料S(実施例及び比較例の各レンズシート)と導光板74との間で光学密着が生じているとして不可(表1において×と表示)とし、輝度ムラが多少観察されているが大きな表示不良ではない場合、光学密着は生じているが使用可能な範囲内であるとして可(表1において○と表示)とし、輝度ムラが観察されない場合、光学密着は生じていないとして良(表1において◎と表示)とした。

0063

0064

表1は、実施例1〜5及び比較例1〜4のレンズシートの耐摺動性及び光学密着の有無に関する評価結果をまとめた表である。
表1に示すように、押し込み弾性率(EIT)及び復元仕事率(ηIT)が好ましい範囲を満たしていない比較例1,2のレンズシートは、耐摺動性及び光学密着の評価が不可であった。また、復元仕事率(ηIT)が好ましい範囲を満たしていない比較例3のレンズシートは、耐摺動性が不可であったが、光学密着に関しては良好であった。また、押し込み弾性率(EIT)及び復元仕事率(ηIT)は好ましい範囲を満たしているが、単位レンズ形状の曲率半径Rが好ましい範囲を満たしていない比較例4のレンズシートは、耐摺動性は良好であったが、使用可能ではあるが弱い光学密着が発生した。

0065

これに対して、押し込み弾性率(EIT)、復元仕事率(ηIT)、単位レンズ形状の曲率半径Rが好ましい範囲を満たす実施例1〜5のレンズシートは、擦れ等の傷がつきにくく、耐摺動性が良好であり、光学密着も抑制できた。従って、実施例1〜5のレンズシートは、単位レンズ形状の表面の傷つきや、他部材との光学密着による画質の低下を大幅に改善できる。

0066

以上のことから、本実施形態によれば、前述のカメラ1や撮像モジュール20の薄型化、軽量化等の効果に加えて、以下の効果を奏することができる。
本実施形態によれば、光透過部111,121の押し込み弾性率(EIT)が150〜3500MPaであるので、外力による単位レンズ形状112,122の潰れ等の変形を低減し、光学密着を効果的に抑制できる。
また、本実施形態によれば、光透過部111,121の復元仕事率(ηIT)が30%以上100%以下であるので、外部からの衝撃等による単位レンズ形状112,122表面の擦れ傷等を大幅に抑制でき、かつ、光学密着を効果的に抑制できる。
さらに、本実施形態によれば、単位レンズ形状112,122の曲率半径Rが約10〜80μmであるので、単位レンズ形状が平坦状ではなく十分な凸形状となり、光学密着を低減できる。

0067

(レンズシートユニット10の他の実施形態)
以下、レンズシートユニット10の他の実施形態について説明する。なお、前述した実施形態と同様の機能を果たす部分には、同一の符号又は末尾に同一の符号を付して、重複する説明を適宜省略する。
<各レンズシートのレンズ形状面11a,12aの向きについて>
図10は、第1レンズシート11及び第2レンズシート12のレンズ形状面11a,12aの向きを説明する図である。
なお、図10において、第1レンズシート11及び第2レンズシート12は、理解を容易にするために、Z方向(光軸O方向)において離間している形態を示しているが、実際には、一体に積層されている、もしくは、近接して配置されているものとする。
図10に示すように、レンズシートユニット10の第1レンズシート11及び第2レンズシート12は、そのレンズ形状面11a,12aが被写体側(+Z側)であるか、イメージセンサ21側(−Z側)であるかは、適宜選択できる。

0068

図10(a)に示すように、第1レンズシート11、第2レンズシート12は、そのレンズ形状面11a,12aがいずれも被写体側(+Z側)となるように配置されていてもよい。
また、図10(b)に示すように、第1レンズシート11、第2レンズシート12は、そのレンズ形状面11a,12aがいずれもイメージセンサ側(−Z側)となるように配置されていてもよい。
さらに、図10(c)に示すように、第1レンズシート11は、そのレンズ形状面11aが被写体側(+Z側)となるように配置され、第2レンズシート12は、そのレンズ形状面12aがイメージセンサ側(−Z側)となるように配置されていてもよい。

0069

第1レンズシート11及び第2レンズシート12は、光透過部111,121が好ましい押し込み弾性率(EIT)、復元仕事率(ηIT)を有し、単位レンズ形状112,122が好ましい曲率半径Rを有している。従って、レンズシートユニット10が図10(a),(b)に示す形態である場合には、単位レンズ形状112と裏面12b、単位レンズ形状122と裏面11bとが接し、擦れることによる傷つきを抑制し、かつ、単位レンズ形状112と裏面12b、単位レンズ形状122と裏面11bとの光学密着を抑制する効果を奏する。
また、レンズシートユニット10が図10(b),(c)に示す形態である場合にも、第2レンズシート12の単位レンズ形状122とイメージセンサ21の受光面との擦れによる単位レンズ形状122表面の傷つきを抑制し、単位レンズ形状122とイメージセンサ21の受光面との光学密着を抑制する効果を奏する。

0070

図10(c)に示すように、第1レンズシート11の第2レンズシート12側(−Z側)面が、裏面11b,12bを対面させて配置される場合には、光学密着による迷光の発生を抑制する観点から、第1レンズシート11及び第2レンズシート12との間に、不図示のスペーサを配置してもよいし、双方の裏面11b,12bを、微細凹凸形状が形成されたマット面としてもよい。
また、図10(c)に示す形態の場合、光学密着を抑制する観点から、第1レンズシート11と第2レンズシート12との間に、不図示の接合層を設けて、第1レンズシート11と第2レンズシート12とを一体に接合してもよい。この形態の場合、第1レンズシート11と第2レンズシート12とを接合する接合層は、その接合層と各レンズシート11,12の裏面11b,12bとの界面での光の反射を防ぐ観点から、その屈折率が、光透過部111,121の屈折率N1と等しい、もしくは、屈折率差ができる限り小さいものが好ましい。
上述のような形態のレンズシートユニット10を使用した場合にも、良好な画質で撮像することができる。

0071

<各レンズシートの光透過部111,121の配列方向について>
レンズシートユニット10は、第1レンズシート11の光透過部111が左右方向(X方向)に配列され、第2レンズシート12の光透過部121が上下方向(Y方向)に配列される形態としてもよい。
また、第1レンズシート11の光透過部111(単位レンズ形状112)の配列方向R11と、第2レンズシート12の光透過部121(単位レンズ形状122)の配列方向R12とがなす角度αは、90°±10°の範囲、即ち、80°〜100°の範囲内であれば、レンズシートユニット10として所望される光学的機能は維持される。従って、角度αは、90°に限定されず、80°〜100°の範囲内としてもよい。

0072

これにより、第1レンズシート11、第2レンズシート12を一体に積層してレンズシートユニット10として撮像モジュール0を組み立てる際に、第1レンズシート11の光透過部111の配列方向R11と第2レンズシート12の光透過部121の配列方向R12とのなす角度αを厳密に90°として配置しなくともよく、レンズシートユニット10及び撮像モジュール20の組み立て作業の容易化、作業効率の向上、歩留りの向上を図ることができる。

0073

<レンズシートユニット10のイメージセンサ21側の面について>
前述の図3及び図8(a)に示すように、第2レンズシート12のイメージセンサ21側(−Z側)の面が、単位レンズ形状122が形成されていない裏面12bであり、第2レンズシート12とイメージセンサ21とを接合層で接合しない場合、イメージセンサ21の受光面の傷つきを防止したり、イメージセンサ21と第2レンズシート12との光学密着を防止したりする観点から、裏面12bを微細凹凸形状が形成されたマット面とすることが好ましい。
また、第2レンズシート12とイメージセンサ21との間にスペーサを配置する等して、イメージセンサ21と第2レンズシート12との光学密着やイメージセンサ21の受光面の傷付き等を防止してもよい。

0074

<各レンズシートの光透過部111,121の配列方向とイメージセンサ21の画素の配列方向について>
図11は、レンズシートユニット10の各光透過部111,121の配列方向R11,R12とイメージセンサ21の画素の配列方向G1,G2との関係を示す図である。
実施形態では、図11(a)に示すように、イメージセンサ21の画素が光軸O方向(Z方向)に対して直交する2方向G1,G2(Y方向及びX方向)に配列され、第1レンズシート11の光透過部111の配列方向R11は、画素の配列方向の1つの方向G1(Y方向)に平行であり、第2レンズシート12の光透過部121の配列方向R12は、画素の配列方向のもう1つの方向G2(X方向)に平行である例を示した。
このとき、光軸O方向(Z方向)から見て、第1レンズシート11の光透過部111の配列方向R11と画素の配列方向の1つの方向G1となす角度β、第2レンズシート12の光透過部121の配列方向R12が画素の配列方向のもう1つの方向G2となす角度γは、いずれも0°である。

0075

これに限らず、図11(b)に示すように、例えば、光軸O方向(Z方向)から見て、角度β及び角度γは、0°〜10°の範囲内であれば、光学的な機能は維持されるので、この範囲内で適宜選択して設定してよい。
このような形態とすることにより、イメージセンサ21とレンズシートユニット10(第1レンズシート11及び第2レンズシート12)との位置合わせが容易となり、製造作業の簡略化や作業時間の短縮、歩留りの向上等を図ることができる。
なお、図11(b)では、画素の配列方向G1,G2は、それぞれY方向及びX方向に平行である例を示しているが、これに限らず、光透過部111,121の配列方向R11,R12がY方向及びX方向に平行であり、画素の配列方向G1,G2とそれぞれ角度β,γをなす形態としてもよいし、画素の配列方向G1,G2及び光透過部111,121の配列方向R11,R12が、それぞれ角度β,γをなし、かつ、いずれもY方向及びX方向に平行でない形態としてもよい。

0076

(変形形態)
以上説明した実施形態に限定されることなく、種々の変形や変更が可能であって、それらも本発明の範囲内である。
(1)レンズシートユニット10は、第1レンズシート11及び第2レンズシート12に加えて、他の光学シート等を備えていてもよい。
例えば、第1レンズシート11よりも被写体側(+Z側)に、赤外線、特に、波長が700〜1100nmの領域である近赤外線遮蔽し、その以外の波長域の光を透過する機能を有する赤外線遮蔽シートを備えていてもよい。
赤外線遮蔽シートは、所定の波長域(700〜1100nm)の赤外線を吸収することにより遮蔽するシートとしてもよいし、所定の波長域の赤外線を反射することにより遮蔽するシートとしてもよい。

0077

このような赤外線遮蔽シートを備えることにより、ノイズを発生させ、画質の劣化を招く赤外線(特に、近赤外線)を遮蔽することができ、画質の向上を図ることができる。なお、第1レンズシート11のレンズ形状面11aが赤外線遮蔽シート側に位置する場合(図10(a),(c)参照)であっても、第1レンズシート11は、押し込み弾性率(EIT)、復元仕事率(ηIT)、曲率半径Rが好ましい範囲を満たしており、単位レンズ形状112の傷つきや赤外線遮蔽シートとの光学密着を抑制できる。
なお、この赤外線遮蔽シートは、第1レンズシート11と一体に接合された形態としてもよい。このような形態とすることにより、レンズシートユニット10、撮像モジュール20、カメラ1の組み立て作業を容易とすることができる。

0078

(2)第1レンズシート11は、裏面11bが被写体側(+Z側)である場合に、裏面11b表面に反射防止層や赤外線遮蔽層を設けて、入射光量の向上や、赤外線(特に、近赤外線)によるノイズの低減を図ってもよい。

0079

(3)レンズシートユニット10は、第1レンズシート11と第2レンズシート12とが、接合層により一体に接合された形態としてもよい。このとき、接合層は、例えば、シートの有効部分(光が透過する領域)以外の領域や、光学的に影響の小さい領域(例えば、四隅角部分)等や、第1レンズシート11及び第2レンズシート12の周縁部等に外側へ凸となるように設けられた領域等に形成することが、良好な画像を得る観点から好ましい。

0080

このような形態に用いられる接合層は、粘着剤又は接着剤により形成され、光透過性を有している。また、界面での光の反射による光量の低下を抑制する観点から、この接合層は、その屈折率が、第1レンズシート11の光透過部111及び第2レンズシート12の光透過部121の屈折率N1等しい、もしくは、屈折率N1との屈折率差ができる限り小さいものが好ましい。
また、イメージセンサ21の発熱による第1レンズシート11及び第2レンズシート12の反り等の変形を抑制する観点から、この接合層は、耐熱性を有していてもよい。
このような接合層としては、エポキシ樹脂製、ウレタン樹脂製等の粘着剤、接着剤を用いて形成することが好適である。
なお、この接合層は、その屈折率が、光透過部111及び光透過部121の屈折率N1よりも小さいものも適用可能であり、例えば、シリコーン系粘着剤等が好適である。

0081

(4)第1レンズシート11及び第2レンズシート12は、光透過部111,121よりも裏面11b,12b側に基材層を備える形態としてもよい。この基材層は、光透過性を有する樹脂製のシート状の部材であり、光透過部111,121を紫外線成形等で形成する際に、基材ベース)となる部材である。
第1レンズシート11及び第2レンズシート12は、クロストーク等を抑制する観点から、光吸収部113,123の裏面側端部から裏面までの厚みが小さい方が好ましい。従って、表面に剥離性を有する基材層を用い、基材層上に光透過部111,121及び光吸収部113,123を成形後に、基材層を剥離することが好ましい。しかし、基材層が十分に薄い場合等には、基材層を積層した形態のままレンズシートとして使用してもよい。

0082

また、基材層が剥離性を有していない場合には、基材層に相当する部分を削る等により、光吸収部113,123の裏面側端部から裏面までの厚みを薄くしてもよい。
なお、このような基材層を有する場合には、各レンズシートのランド部を含む光吸収部113,123の裏面11b,12b側先端から裏面11b,12bまでの寸法は、約1〜50μmとすることが、迷光やクロストーク等を抑制する観点から好ましい。

0083

(5)レンズシートユニット10は、図12に示すようなレンズシート15を備える形態としてもよい。
図12は、レンズシートユニット10の変形形態の一例を示す図である。
レンズシート15は、1枚のシート状の基材層151の両面に、単位レンズ形状112,122を有する光透過部111,121及び光吸収部113,123が形成されている。このレンズシート15は、第1レンズシート11と第2レンズシート12とが、基材層151の両面にそれぞれ一体に形成された形態に等しい。
この基材層151は、樹脂製のシート状の部材であり、光透過性を有している。このような基材層151としては、PET樹脂トリアセチルセルロース(TAC)製のシート状の部材等が挙げられる。
また、基材層151の厚さは、可能な範囲で薄いことが、迷光を抑制し、クロストークを低減して、各画素に入射する光の強度や光の入射方向の精度を向上させる観点から好ましい。
また、基材層151の屈折率は、光透過部111,121の屈折率N1に等しい、もしくは、できる限り屈折率差が小さいことが好ましい。

0084

(6)レンズシートユニット10は、3枚以上のレンズシートが光軸O方向(Z方向)に沿って配列された形態としてもよい。
このとき、例えば、3枚目のレンズシート(以下、第3レンズシートという)は、第1レンズシート11及び第2レンズシート12と同様の形状のレンズシートであり、その光透過部の配列方向が、第1レンズシート11及び第2レンズシート12の光透過部111,121の配列方向R11,R12に対して、それぞれ45°±10°をなしているものとすることが好ましい。
第3レンズシートのレンズ形状面は、被写体側(+Z側)であっても、イメージセンサ21側(−Z側)であってもよい。

0085

さらに、第1レンズシート11及び第2レンズシート12と同様の形状のレンズシートである4枚目のレンズシート(第4レンズシート)を配置する場合には、その光透過部の配列方向が、第1レンズシート11及び第2レンズシート12の光透過部111,121の配列方向R11,R12に対して、それぞれ45°±10°をなし、第3レンズシートの光透過部の配列方向に対してそれぞれ90°±10°をなしているものとすることが好ましい。
この第4レンズシートのレンズ形状面は、被写体側(+Z側)であっても、イメージセンサ21側(−Z側)であってもよい。
なお、レンズシートユニット10内の第3レンズシート、第4レンズシートの光軸O方向(Z方向)おける位置については、特に限定しない。

0086

(7)単位レンズ形状112,122は、例えば、光透過部111,121の配列方向及び各レンズシートの厚さ方向(Z方向)における断面形状が、シート面に長軸が直交する楕円の一部形状や、多角形形状等としてもよし、頂部が円弧等の曲線であり、単位レンズ形状の谷部側が直線からなる形状としてもよい。

0087

(8)光透過部111,121と光吸収部113,123との界面は、複数の平面からなる折れ面状となっていてもよいし、複数の平面と曲面とが複数組み合わされている形態としてもよい。

0088

(9)単位レンズ形状112,122の配列ピッチPやレンズ開口幅D1、曲率半径R、光透過部111,121の屈折率N1等は、第1レンズシート11と第2レンズシート12とで異なっていてもよい。

0089

(10)第1レンズシート11及び第2レンズシート12には、その表裏面(レンズ形状面11a,12aと裏面11b,12b)とを区別しやすくするために、表裏判別用の切欠きを設けてもよい。
また、レンズシートユニット10の配置や組み立てを容易にするために、アライメントマークを第1レンズシート11及び第2レンズシート12に設けてもよい。

0090

(11)イメージセンサ21の受光面の大きさは、撮像モジュール20が用いられるカメラ1の大きさや、所望する画質やカメラ性能等に応じて、適宜採用してよい。イメージセンサ21の受光面の大きさは、例えば、スマートフォン等の携帯端末に搭載される場合には横×縦のサイズが、4.8×3.6mmや4.4×3.3mm等、カメラ(主にコンパクトデジタルカメラ)等に搭載される場合には、6.2×4.7mm、7.5×5.6mm等が挙げられる。
また、例えば、23.6×15.8mm、36×24mm、43.8×32.8mm等の大きな受光面を有するイメージセンサ21を使用することにより、ノイズの低減や取得する焦点距離や被写界深度等の情報の精度や情報量の向上を図り、画質のさらなる向上や、カメラ1の性能向上を図ってもよい。

0091

なお、本実施形態及び変形形態は、適宜組み合わせて用いることもできるが、詳細な説明は省略する。また、本発明は以上説明した実施形態等によって限定されることはない。

0092

1カメラ
10レンズシートユニット
11 第1レンズシート
12 第2レンズシート
20撮像モジュール
21イメージセンサ
30筐体
31 開口部
32 保護シート

ページトップへ

この技術を出願した法人

この技術を発明した人物

ページトップへ

関連する挑戦したい社会課題

関連する公募課題

該当するデータがありません

ページトップへ

技術視点だけで見ていませんか?

この技術の活用可能性がある分野

分野別動向を把握したい方- 事業化視点で見る -

ページトップへ

おススメ サービス

おススメ astavisionコンテンツ

新着 最近 公開された関連が強い技術

  • 株式会社ニコンの「 回折光学素子、光学系、光学機器及び回折光学素子の製造方法」が 公開されました。( 2020/12/17)

    【課題・解決手段】回折効率の低下を最小限に抑えながら、フレアの色づきが小さく、光学性能に影響のない優れた回折光学素子、この回折光学素子を用いた光学系及び光学機器を提供する。光学機器であるカメラ1の光学... 詳細

  • 广州鐘穎眼鏡有限公司の「 光学コンポーネント組立機の光学センサーを調節できる架台」が 公開されました。( 2020/12/17)

    【課題】光学コンポーネント組立機のセンサーを調節できる架台の提供。【解決手段】ボディー10及びボディーの中に設置された前後に貫通している操作チャンバ37を含み、操作チャンバの中にはスライドフレーム90... 詳細

  • AGC株式会社の「 カバー部材」が 公開されました。( 2020/12/17)

    【課題・解決手段】本発明は、第1凹凸部を有する第1主面と第2凹凸部を有する第2主面とを備えた透明基材;高屈折率層;及び樹脂層を備え、前記高屈折率層と前記樹脂層とがこの順に前記透明基材の前記第2主面側に... 詳細

この 技術と関連性が強い人物

関連性が強い人物一覧

この 技術と関連する社会課題

関連する挑戦したい社会課題一覧

この 技術と関連する公募課題

該当するデータがありません

astavision 新着記事

サイト情報について

本サービスは、国が公開している情報(公開特許公報、特許整理標準化データ等)を元に構成されています。出典元のデータには一部間違いやノイズがあり、情報の正確さについては保証致しかねます。また一時的に、各データの収録範囲や更新周期によって、一部の情報が正しく表示されないことがございます。当サイトの情報を元にした諸問題、不利益等について当方は何ら責任を負いかねることを予めご承知おきのほど宜しくお願い申し上げます。

主たる情報の出典

特許情報…特許整理標準化データ(XML編)、公開特許公報、特許公報、審決公報、Patent Map Guidance System データ