図面 (/)

技術 遊技機

出願人 株式会社藤商事
発明者 坂井良太
出願日 2015年11月25日 (2年0ヶ月経過) 出願番号 2015-229839
公開日 2017年6月1日 (6ヶ月経過) 公開番号 2017-093851
状態 特許登録済
技術分野 弾球遊技機(パチンコ等)
主要キーワード 設定コントローラ Nチャンネル シーケンスステップ D動作 使用区分 遷移態様 入出力比 消音レベル

この技術の活用可能性のある市場・分野

関連する未来課題
重要な関連分野

この技術に関連する成長市場

関連メディア astavision

  • 高度運転支援・自動運転

    2015年1月、米国ラスベガスで開催された「2015 International CES (Cons…

  • ロコモーティブ症候群・関節疾患

    加齢や過負荷のほか、スポーツ損傷や肥満によっても引き起こされる変形性関節症(OA:osteoarth…

  • 地下大空間・地下構造物

    周口店洞窟の北京原人、ラスコーやアルタミラの壁画洞窟に象徴されるように、人類は太古から地下空間を生活…

後で読みたい技術情報を見つけたら、ブックマークしておきましょう!

ページの右上にあるブックマークボタンからこのページをブックマークできます。
あなたがブックマークした技術情報は、いつでもマイページのリストから閲覧することが出来ます。

この項目の情報は公開日時点(2017年6月1日)のものです。
また、この項目は機械的に抽出しているため、正しく解析できていない場合があります

図面 (20)

課題

斬新な音声演出を容易に実現できる遊技機を提供する。

解決手段

所定の音声制御レジスタRGj2に設定される動作指示に基づいて機能して、動作間隔を設けた間欠動作によって、音声メモリ43から読み出し動作パラメータを、音声制御レジスタRGiに間欠設定可能な設定コントローラSQを音声プロセッサ42に設け、放音するスピーカ個数,位置,又は音量が変化するスピーカ演出について、必要な動作パラメータが、設定コントローラSQによって間欠設定される。

背景

パチンコ機などの弾球遊技機は、遊技盤に設けた図柄始動口と、複数の表示図柄による一連図柄変動態様を表示する図柄表示部と、開閉板開閉される大入賞口などを備えて構成されている。そして、図柄始動口に設けられた検出スイッチが遊技球の通過を検出すると入賞状態となり、遊技球が賞球として払出された後、図柄表示部では表示図柄が所定時間変動される。その後、7・7・7などの所定の態様で図柄が停止すると大当り状態となり、大入賞口が繰返し開放されて、遊技者に有利な遊技状態を発生させている。

このような遊技状態を発生させるか否かは、図柄始動口に遊技球が入賞したことを条件に実行される大当り抽選で決定されており、上記の図柄変動動作は、この抽選結果を踏まえたものとなっている。例えば、抽選結果が当選状態である場合には、リーチアクションなどと称される演出動作を20秒前後実行し、その後、特別図柄を整列させている。一方、ハズレ状態の場合にも、同様のリーチアクションが実行されることがあり、この場合には、遊技者は、大当り状態になることを強く念じつつ演出動作の推移注視することになる。そして、図柄変動動作の終了時に、停止ライン所定図柄が揃えば、大当り状態であることが遊技者に保証されたことになる。

上記した演出動作は、液晶表示装置での画像演出が中心となるが、この画像演出に連動して、各種のランプを点滅させるランプ演出や、遊技者を盛り上げ音声を出力する音声演出などが実行される。

概要

斬新な音声演出を容易に実現できる遊技機を提供する。所定の音声制御レジスタRGj2に設定される動作指示に基づいて機能して、動作間隔を設けた間欠動作によって、音声メモリ43から読み出し動作パラメータを、音声制御レジスタRGiに間欠設定可能な設定コントローラSQを音声プロセッサ42に設け、放音するスピーカ個数,位置,又は音量が変化するスピーカ演出について、必要な動作パラメータが、設定コントローラSQによって間欠設定される。

目的

本発明は、上記の問題に鑑みてなされたものであって、斬新な音声演出を容易に実現できる遊技機を提供する

効果

実績

技術文献被引用数
0件
牽制数
0件

この技術が所属する分野

ライセンス契約や譲渡などの可能性がある特許掲載中! 開放特許随時追加・更新中 詳しくはこちら

請求項1

データ記憶手段から読み出し一群原音データに基づいて所定の単位演出再生する複数の再生チャンネル、及び、各再生チャンネルの再生動作を規定する動作パラメータ記憶可能な一群の音声制御レジスタを有する音声合成手段と、所定の音声制御レジスタに、所定の動作パラメータを設定することで、一又は複数の再生チャンネルの動作を制御して、一又は複数の単位演出による音声演出を実現する演出制御手段と、音声合成手段が再生した音声信号を受ける複数のスピーカと、を設けた遊技機であって、時間経過と共に変化する所定の音声演出を実現するべく、一群の動作パラメータを前記データ記憶手段に予め記憶させると共に、所定の音声制御レジスタに設定される動作指示に基づいて機能して、動作間隔を設けた間欠動作によって、データ記憶手段から読み出した動作パラメータを、音声制御レジスタに間欠設定可能な設定コントローラを音声合成手段に設け、放音するスピーカの個数又は位置又は音量が変化するスピーカ演出の全部又は一部については、スピーカ演出に必要な動作パラメータが、前記設定コントローラによって間欠設定されるよう構成されていることを特徴とする遊技機。

請求項2

複数のスピーカから異なる音声信号が放音される音声演出は、前記設定コントローラが機能して実現される請求項1に記載の遊技機。

請求項3

複数のスピーカから放音される異なる音声信号は、一の楽曲を構成する異なる音声パートである請求項2に記載の遊技機。

請求項4

一の楽曲を構成する異なる音声パートは、同一タイミングで放音が開始されるよう前記設定コントローラが機能する請求項3に記載の遊技機。

請求項5

前記データ記憶手段には、一群の動作パラメータが複数組記憶されており、前記設定コントローラは、一組の動作パラメータの設定処理を終えた後、その時に、所定の音声制御レジスタに設定されている動作パラメータが規定する待機時間を経て、次の一組の動作パラメータの設定処理に移行するよう構成されている請求項1〜4の何れかに記載の遊技機。

請求項6

前記設定コントローラを複数個設け、各設定コントローラは、並列的に動作可能に構成されている請求項1〜5の何れかに記載の遊技機。

請求項7

スピーカの音量レベル段階的に推移させるフェード動作は、前記設定コントローラが設定する動作パラメータが経時的に変化することで実現される請求項1〜6の何れかに記載の遊技機。

請求項8

スピーカ位置以外からの放音であると認識可能な仮想音が所定のスピーカから放音可能に構成され、遊技者の背面又は元に音像定位制御された仮想音による音像可変演出の全部又は一部については、音像可変演出に必要な動作パラメータが、前記設定コントローラによって間欠設定されることで実現される請求項1〜7の何れかに記載の遊技機。

請求項9

前記動作指示は、演出制御手段が所定の音声制御レジスタに設定することで実現される請求項1〜8の何れかに記載の遊技機。

請求項10

前記動作指示は、演出制御手段が、前記設定コントローラ以外の他の設定コントローラを機能させることで実現される請求項1〜8の何れかに記載の遊技機。

技術分野

0001

本発明は、遊技動作起因する抽選処理によって大当り状態を発生させる遊技機に関し、特に、斬新で迫力のある演出動作が可能な遊技機に関する。

背景技術

0002

パチンコ機などの弾球遊技機は、遊技盤に設けた図柄始動口と、複数の表示図柄による一連図柄変動態様を表示する図柄表示部と、開閉板開閉される大入賞口などを備えて構成されている。そして、図柄始動口に設けられた検出スイッチが遊技球の通過を検出すると入賞状態となり、遊技球が賞球として払出された後、図柄表示部では表示図柄が所定時間変動される。その後、7・7・7などの所定の態様で図柄が停止すると大当り状態となり、大入賞口が繰返し開放されて、遊技者に有利な遊技状態を発生させている。

0003

このような遊技状態を発生させるか否かは、図柄始動口に遊技球が入賞したことを条件に実行される大当り抽選で決定されており、上記の図柄変動動作は、この抽選結果を踏まえたものとなっている。例えば、抽選結果が当選状態である場合には、リーチアクションなどと称される演出動作を20秒前後実行し、その後、特別図柄を整列させている。一方、ハズレ状態の場合にも、同様のリーチアクションが実行されることがあり、この場合には、遊技者は、大当り状態になることを強く念じつつ演出動作の推移注視することになる。そして、図柄変動動作の終了時に、停止ライン所定図柄が揃えば、大当り状態であることが遊技者に保証されたことになる。

0004

上記した演出動作は、液晶表示装置での画像演出が中心となるが、この画像演出に連動して、各種のランプを点滅させるランプ演出や、遊技者を盛り上げ音声を出力する音声演出などが実行される。

先行技術

0005

特開2014−151153号公報
特開2014−144066号公報
特開2014−144065号公報
特開2014−144064号公報
特開2014−144063号公報
特開2014−144062号公報
特開2014−144061号公報

発明が解決しようとする課題

0006

上記した音声演出は、一般に、専用の音声プロセッサに対して、ホストCPUが適切な動作パラメータ設定値)を設定することで実現される(特許文献1〜特許文献7)。

0007

しかし、更に斬新な音声演出を実行したいところ、そのためのホストCPUの制御負担が過大化したのでは、他の演出制御に支障が生じるおそれがある。

0008

本発明は、上記の問題に鑑みてなされたものであって、斬新な音声演出を容易に実現できる遊技機を提供することを課題とする。

課題を解決するための手段

0009

上記の課題を解決するため、本発明は、データ記憶手段から読み出し一群原音データに基づいて所定の単位演出再生する複数の再生チャンネル、及び、各再生チャンネルの再生動作を規定する動作パラメータを記憶可能な一群の音声制御レジスタを有する音声合成手段と、所定の音声制御レジスタに、所定の動作パラメータを設定することで、一又は複数の再生チャンネルの動作を制御して、一又は複数の単位演出による音声演出を実現する演出制御手段と、音声合成手段が再生した音声信号を受ける複数のスピーカと、を設けた遊技機であって、時間経過と共に変化する所定の音声演出を実現するべく、一群の動作パラメータを前記データ記憶手段に予め記憶させると共に、所定の音声制御レジスタに設定される動作指示に基づいて機能して、動作間隔を設けた間欠動作によって、データ記憶手段から読み出した動作パラメータを、音声制御レジスタに間欠設定可能な設定コントローラを音声合成手段に設け、放音するスピーカの個数又は位置又は音量が変化するスピーカ演出の全部又は一部については、スピーカ演出に必要な動作パラメータが、前記設定コントローラによって間欠設定されるよう構成されている。

0010

好ましくは、複数のスピーカから異なる音声信号が放音される音声演出は、前記設定コントローラが機能して実現される。この場合、複数のスピーカから放音される異なる音声信号は、一の楽曲を構成する異なる音声パートであるのが典型的であり、一の楽曲を構成する異なる音声パートは、同一タイミングで放音が開始されるよう前記設定コントローラが機能するのが好適である。

0011

前記データ記憶手段には、一群の動作パラメータが複数組記憶されており、前記設定コントローラは、一組の動作パラメータの設定処理を終えた後、その時に、所定の音声制御レジスタに設定されている動作パラメータが規定する待機時間を経て、次の一組の動作パラメータの設定処理に移行するよう構成されているのが好ましい。

0012

上記何れの構成でも、前記設定コントローラを複数個設け、各設定コントローラは、並列的に動作可能に構成されているのが好ましい。また、スピーカの音量レベル段階的に推移させるフェード動作は、前記設定コントローラが設定する動作パラメータが経時的に変化することで実現されるのが好ましい。

0013

スピーカ位置以外からの放音であると認識可能な仮想音が所定のスピーカから放音可能に構成され、遊技者の背面又は元に音像定位制御された仮想音による音像可変演出の全部又は一部については、音像可変演出に必要な動作パラメータが、前記設定コントローラによって間欠設定されることで実現されるのも好ましい。

0014

何れにしても、前記動作指示は、演出制御手段が所定の音声制御レジスタに設定することで実現されるのが好適であり、前記動作指示は、演出制御手段が、前記設定コントローラ以外の他の設定コントローラを機能させることで実現されるのが好適である。なお、本発明は、弾球遊技機に限定されず、回胴遊技機やその他の遊技機に適用するのも好適である。

発明の効果

0015

上記の通り、本発明の遊技機によれば、斬新な音声演出を容易に実現することができる。

図面の簡単な説明

0016

本実施例のパチンコ機を示す斜視図である。
本実施例の遊技盤の概略正面図である。
本実施例の全体回路構成を示すブロック図である。
電源基板の回路構成と回路動作を説明する図面である。
演出制御部の回路構成を示すブロック図である。
音声プロセッサの内部構成と出力信号を説明する図面である。
シーケンサの動作を説明する図面である。
音声プロセッサの内部構成を詳細に示す図面である。
シーケンサによるフレーズ再生チャンネルのパンポット設定を説明する図面である。
遊技状態に応じて、フレーズ再生チャンネルを使い分けることを説明する図面である。
バーチャルサラウンド原理を説明する図面である。
前方音及び後方音から耳への伝達関数を説明する図面である。
バーチャルサラウンド部と再ミックス部の構成を説明する図面である。
演出制御部の動作内容を説明するフローチャートである。
演出制御部のメイン処理を構成するシナリオ更新処理を説明するフローチャートである。
シナリオ更新処理を構成するサブシナリオ更新処理を説明するフローチャートである。
サブシナリオ更新処理とメイン処理の一部を説明するフローチャートである。
サブシナリオ更新処理による動作内容を説明するための図面である。
フェード動作を説明するための図面である。
リフレッシュ動作マスク動作を説明する図面である。
入賞音やボタン操作有効音について説明する図面である。
予告演出時の音量抑制動作を説明する図面である。
多重演奏を実現する変形構成を説明する図面である。

実施例

0017

以下、実施例に基づいて本発明を詳細に説明する。図1は、本実施例のパチンコ機GMを示す斜視図である。このパチンコ機GMは、島構造体着脱可能に装着される矩形枠状の木製外枠1と、外枠1に固着されたヒンジ2を介して開閉可能に枢着される前枠3とで構成されている。この前枠3には、遊技盤5が、裏側からではなく、表側から着脱自在に装着され、その前側には、ガラス扉6と前面板7とが夫々開閉自在に枢着されている。

0018

ガラス扉6の外周には、LEDランプなどによる電飾ランプが、略C字状に配置されている。一方、ガラス扉6の上部の左右位置と、中部の左右位置と、遊技者の腹部に近い下側には、全5個のスピーカ(TL,TR,ML,MRBTM)が配置されている(図2参照)。

0019

部位置に配置された2つのスピーカ(TL,TR)と、中部位置に配置された2つのスピーカ(ML,MR)は、各々、遊技者が認識する左右音を出力するが、必要時には、適宜なパンポット演出を実行している。ここで、パン(PAN)とは、左右のスピーカから聴こえる音の位置(定位)を意味し、パン動作は、具体的には、左右のスピーカの音量バランスを非対称に設定することで実現される。

0020

パンポット演出は、例えば、適宜な予告動作として実行され、(1)左から右に、或いは、右から左に向けて予告音が移動するP1演出、(2)上から下に、或いは、下から上に向けて予告音が移動するP2演出、(3)傾斜方向下方に、或いは、傾斜方向上方に向けて予告音が移動するP3演出、(4)時計方向又は反時計方向に予告音が回転するP4演出などが、パン変位時間やパン変位態様などを変えて種々実行される。

0021

また、ガラス扉6の下方には、遊技者による演出音音量調整が可能な音量スイッチVSWが配置されている。この音量スイッチVSWは、左右に+接点と−接点を有する方向キーであって、例えば、10段階の音量調整を可能にしている。この音量調整のための操作は、音声演出が実行されていない演出待機中に限り許可されるが、音量スイッチVSWの操作に対応して、確認演出音が出力されると共に、その設定レベル表示画面に表示されるようになっている。

0022

本実施例において、各スピーカ(TL,TR,ML,MR,BTM)から出力される音量は、一次ボリュームV1と、二次ボリュームVs(=V2,V3)と、トータルボリュームTVの総合値(V1*Vs*TV)で規定されるが、係員や遊技者が人為的に規定する音量スイッチVSWの設定値は、最終段階トータルボリューム値TVに反映される。なお、遊技者が設定した音量設定値(トータルボリューム値TV)は、遊技者が遊技機を離れたと思われるタイミングでは、設定スイッチSET図3参照)による係員設定値に戻される。

0023

また、遊技中であっても、重大な異常事態が検出された場合には、音量スイッチVSWの操作量に拘わらず、トータルボリューム値TVが最大レベルに変更されることで大音量の異常報知音が出力される。したがって、無音状態違法行為を継続することはできない。なお、この異常報知タイミングでは、異常報知音以外の演出音に対する一次ボリューム値V1が最低レベルマスクされる。

0024

図8に関して後述するように、一次ボリュームV1は、各種の音声圧縮データデコード再生するフレーズ再生チャンネルCHn(図8)ごとに設定可能であるが、通常時は、全てのフレーズ再生チャンネルCH0〜CH31において、規定レベル最高レベル)に設定されている。但し、表示画面を暗転させるブラックアウト演出時などのマスク処理時には、全フレーズ再生チャンネルCHnにおいて、一次ボリュームV1を、最低レベルに変更することで消音化を実現している。なお、マスク処理時において、二次ボリュームVsの値は、それまでのレベルを維持する。

0025

また、前記した異常報知時には、異常報知音を再生するフレーズ再生チャンネルCH28(図8)の一次ボリュームV1を、最高レベルに維持する一方で、その他のフレーズ再生チャンネルの一次ボリュームV1を、最低レベルに変更している。したがって、演出音に邪魔されることなく異常報知音だけを放音することができる。なお、異常報知音以外の音声演出に対する二次ボリュームVsの値は、それまでのレベルを維持する。

0026

このように本実施例では、マスク処理時や異常報知時に、二次ボリュームVsを維持した状態で、一次ボリュームV1だけを変化させるので、二次ボリュームVs(V2,V3,V4)を全て変化させる必要がある先行文献1〜7の構成より、音量変化の制御が容易である。

0027

また、二次ボリューム値Vs(=V2,V3)は、パンポット動作などを伴う予告演出や、その他の音声演出において、適切な音声演出を実現するべくソフトウェア設定される。したがって、各スピーカ(TL,TR,ML,MR,BTM)の音声演出時の音量は、通常時は、専ら、二次ボリューム値Vs(=V2,V3)の設定値を反映して、V1*Vs*TVの音量で出力されることになる。先に説明した通り、通常状態では、一次ボリュームV1は最大値、トータルボリュームTVは、係員や遊技者の設定値に対応した値である。

0028

ところで、本実施例では、スピーカ音量を所定の速度で漸増又は漸減させるフェード動作についても、二次ボリュームVsを変化させることで実現される。そして、このフェード動作時には、複数個の二次ボリュームVs(V2,V3)が同一レベルを維持して変化するので、全てのスピーカ(TL,TR,ML,MR,BTM)の音量が、統一的にフェードされる。なお、パンポット動作やフェード動作については、図7や、図19に関して更に後述する。

0029

図1に示す通り、前面板7には、発射用の遊技球を貯留する上皿8が装着され、前枠3の下部には、上皿8から溢れ出し又は抜き取った遊技球を貯留する下皿9と、発射ハンドル10とが設けられている。発射ハンドル10は発射モータと連動しており、発射ハンドル10の回動角度に応じて動作する打撃槌によって遊技球が発射される。

0030

上皿8の外周面には、チャンスボタン11が設けられている。このチャンスボタン11は、遊技者の左手で操作できる位置に設けられており、遊技者は、発射ハンドル10から右手を離すことなくチャンスボタン11を操作できる。このチャンスボタン11は、通常時には機能していないが、ゲーム状態ボタンチャンス状態となると内蔵ランプ点灯されて操作可能となる。なお、ボタンチャンス状態は、必要に応じて設けられるゲーム状態である。

0031

上皿8の右部には、カード式球貸し機に対する球貸し操作用の操作パネル12が設けられ、カード残額を3桁の数字で表示する度数表示部と、所定金額分の遊技球の球貸しを指示する球貸しスイッチと、ゲーム終了時にカード返却指令する返却スイッチとが設けられている。

0032

図2に示すように、遊技盤5の表面には、金属製の外レール内レールとからなるガイドレール13が環状に設けられ、その略中央には、中央開口HOが設けられている。中央開口HOの4頂点に対応して、ガラス扉6の内側には、4個のスピーカ(TL,TR,ML,MR)が配置され、中央開口HOの右下方には、低音用スピーカBTMが配置されている。なお、これらのスピーカは、図2において仮想的に示されている。

0033

また、中央開口HOには、大型の液晶カラーディスプレイ(LCD)で構成された表示装置DSが配置されている。表示装置DSは、大当り状態に係わる特定図柄を変動表示すると共に背景画像や各種のキャラクタなどをアニメーション的に表示する装置である。この表示装置DSは、中央部に特別図柄表示部Da〜Dcと右上部に普通図柄表示部19とを有している。そして、特別図柄表示部Da〜Dcでは、大当り状態の招来を期待させるリーチ演出が実行されることがあり、特別図柄表示部Da〜Dc及びその周りでは、適宜な予告演出などが実行される。

0034

遊技球が落下移動する遊技領域には、図柄始動口15、大入賞口16、普通入賞口17、及び、ゲート18が配設されている。これらの入賞口15〜18は、それぞれ内部に検出スイッチを有しており、遊技球の通過を検出できるようになっている。そして、遊技球が図柄始動口15を通過すると、遊技球が入賞したとして、特別図柄表示部Da〜Dcで特別図柄の変動動作を伴う一連の画像演出が開始される。また、この画像演出に対応して、背景音楽や演出音を伴う音声演出や、ランプが点滅するランプ演出が実行される。

0035

図柄始動口15は、左右一対開閉爪15aを備えた電動式チューリップで開閉されるように構成され、普通図柄表示部19の変動後の停止図柄が当り図柄を表示した場合には、所定時間だけ、若しくは、所定個数の遊技球を検出するまで、開閉爪15aが開放されるようになっている。

0036

普通図柄表示部19は、普通図柄を表示するものであり、ゲート18を通過した遊技球が検出されると、普通図柄が所定時間だけ変動し、遊技球のゲート18の通過時点において抽出された抽選用乱数値により決定される停止図柄を表示して停止する。

0037

大入賞口16は、前後方向に進退する開閉板16aを有して構成されている。大入賞口16の動作は、特に限定されないが、典型的な大当り状態では、大入賞口16の開閉板16aが開放された後、所定時間が経過し、又は所定数(例えば10個)の遊技球が入賞すると開閉板16aが閉じる。このような動作は、最大で例えば15回まで継続され、遊技者に有利な状態に制御される。なお、特別図柄表示部Da〜Dcの変動後の停止図柄が特別図柄のうちの特定図柄であった場合には、特別遊技の終了後のゲームが高確率状態確変状態)となるという特典付与される。

0038

図3は、上記した各動作を実現するパチンコ機GMの全体回路構成を示すブロック図である。図示の通り、このパチンコ機GMは、AC24Vを受けて各種の直流電圧電源異常信号ABN1,ABN2を出力する電源基板20と、遊技制御動作を中心統括的に担う主制御基板21と、主制御基板21から受けた制御コマンドCMDに基づいてランプ演出及び音声演出を実行する演出制御基板22と、演出制御基板22から受けた制御コマンドCMD’に基づいて表示装置DSを駆動する画像制御基板23と、主制御基板21から受けた制御コマンドCMD”に基づいて払出モータMを制御して遊技球を払い出す払出制御基板24と、遊技者の操作に応答して遊技球を発射させる発射制御基板25と、を中心に構成されている。

0039

主制御基板21が出力する制御コマンドCMDは、中継基板を経由することなく演出制御基板22に伝送されるが、演出制御基板22が出力する制御コマンドCMD’は、画像インタフェイス基板28を経由して、画像制御基板23に伝送される。また、主制御基板21が出力する制御コマンドCMD”は、主基板中継基板32を経由して、払出制御基板24に伝送される。制御コマンドCMD,CMD’,CMD”は、何れも16ビット長であるが、主制御基板21や払出制御基板24が関係する制御コマンドは、8ビット長毎に2回に分けてパラレル送信されている。一方、演出制御基板22から画像制御基板23に伝送される制御コマンドCMD’は、16ビット長をまとめてパラレル伝送されている。そのため、可動予告演出を含む予告演出を、多様化して多数の制御コマンドを連続的に送受信するような場合でも、迅速にその処理を終えることができ、他の制御動作に支障を与えない。

0040

本実施例では、画像インタフェイス基板28と画像制御基板23とは、配線ケーブルを経由することなく、雄型コネクタ雌型コネクタとを直結されて二枚の回路基板が積層されている。そのため、各電子回路の回路構成を複雑高度化しても基板全体収納空間最小化できると共に、接続ライン最短化することで耐ノイズ性を高めることができる。 これら主制御基板21、演出制御基板22、画像制御基板23、及び払出制御基板24には、ワンチップマイコンを備えるコンピュータ回路がそれぞれ搭載されている。そこで、これらの制御基板21〜24とインタフェイス基板28に搭載された回路、及びその回路によって実現される動作を機能的に総称して、本明細書では、主制御部21、演出制御部22、画像制御部23、及び払出制御部24と言うことがある。すなわち、この実施例では、画像制御基板23と画像インタフェイス基板28とで画像制御部23を構成している。なお、演出制御部22、画像制御部23、及び払出制御部24の全部又は一部がサブ制御部である。

0041

また、このパチンコ機GMは、図3破線で囲む枠側部材GM1と、遊技盤5の背面に固定された盤側部材GM2とに大別されている。枠側部材GM1には、ガラス扉6や前面板7が枢着された前枠3と、その外側の木製外枠1とが含まれており、機種の変更に拘わらず、長期間にわたって遊技ホールに固定的に設置される。一方、盤側部材GM2は、機種変更に対応して交換され、新たな盤側部材GM2が、元の盤側部材の代わりに枠側部材GM1に取り付けられる。なお、枠側部材GM1を除く全てが、盤側部材GM2である。

0042

図3の破線枠に示す通り、枠側部材GM1には、電源基板20と、払出制御基板24と、発射制御基板25と、枠中継基板35と、ランプ駆動基板36とが含まれており、これらの回路基板が、前枠3の適所に各々固定されている。

0043

ランプ駆動基板36には、複数のLEDが接続されており、これらのLED群を駆動する駆動データSDATAは、シリアル信号として、演出制御基板22→枠中継基板34→枠中継基板35を経由して、ランプ駆動基板36に搭載された複数のLEDドライバに伝送されている。

0044

遊技盤5の背面には、主制御基板21、演出制御基板22、画像制御基板23及び画像インタフェイス基板28が、表示装置DSやその他の回路基板と共に固定されている。そして、枠側部材GM1と盤側部材GM2とは、一箇所集中配置された接続コネクタC1〜C4によって電気的に接続されている。

0045

電源基板20は、接続コネクタC2を通して、主基板中継基板32に接続され、接続コネクタC3を通して、電源中継基板33に接続されている。電源基板20の内部構成は、図4(a)に示す通りであり、外部から受けるAC24Vを全波整流するブリッジ型整流回路61と、整流回路61の出力を受ける力率改善回路62と、整流回路の過渡電流を抑制する突入電流防止回路63と、4個のDC−DCコンバータRG1〜RG4及びその付属回路と、交流電源遮断直流出力電圧の異常を監視する交流監視回路64と、を有して構成されている。

0046

力率改善回路62は、チョークコイルL1と、スイッチングトランジスタQ1,Q2と、2つのトランジスタをON/OFF制御してチョッパ動作を実現する昇圧タイプ力率制御回路PFCと、平滑コンデンサC1とを有して構成され、入力電圧ピーク値33.9V(=24*SQR2)を昇圧して、設計値DC35Vの直流電圧を出力している。そして、この直流電圧DC35Vは、主制御基板21と、払出制御基板24と、演出制御基板22に各々配電されている。

0047

力率制御回路PFCは、トランジスタQ1,Q2を相補的にON/OFF制御することで、AC24Vの電源ラインに、低振幅ノコギリ波状充放電流を流している(図4(d)参照)。すなわち、トランジスタQ1のON時(Q2がOFF)に、チョークコイルL1に蓄積されたエネルギーが、トランジスタQ2のON時(Q1がOFF)に、平滑コンデンサC1に充電されることで、AC24Vの電源ラインの入力電流略正弦波状改善している。

0048

突入電流防止回路63は、NチャンネルMOS型のスイッチングトランジスタQ3と、トランジスタQ3のドレイン端子ソース端子間に配置されたサーミスタTHと、トランジスタQ3のゲート電圧を規定するバイアス素子ZD1,R1,R2,C2)とで構成されている。図示の通り、バイアス素子にはツェナーダイオードZD1が含まれているので、ツェナーダイオードZD1が降伏してON動作するまでの過渡状態では、ゲート端子バイアス電圧が加わらず、トランジスタQ3がOFF状態となる。

0049

そのため、電源投入直後は、AC24Vの電源ラインの入力電流が、整流回路61→力率改善回路62→サーミスタTH→整流回路61の経路を通ることになり、電源投入時の過渡電流(突入電流)がサーミスタTHによって最適に制限される。

0050

交流監視回路64は、ダイオードD5,D6及び負荷抵抗R3で構成された全波整流回路と、電流制限抵抗R4と、コンバータRG4とで構成されている。負荷抵抗R3の両端電圧は、ピーク値34V程度の脈流波形となり(図4(b)参照)、この脈流電圧が電流制限抵抗R4を経由して、コンバータRG4の監視端子Sin1に供給されている。そして、コンバータRG4は、監視端子Sin1に供給される電圧に基づいて、交流電源AC24Vの遮断を判定している。

0051

4個のコンバータRG1〜RG4は、同一レベルの直流電圧(DC35V)をDC入力端子Vin受けて動作して、不図示の受動素子(R,L,C)と共に機能することで、降下レベルの直流電圧(12V又は5V)を出力している。すなわち、コンバータRG1とコンバータRG2は、各々、12Vを生成して出力端子Voutに出力しており、コンバータRG1の出力電圧DC12Vは、演出制御基板22に配電され、コンバータRG2の出力電圧DC12Vは、主制御基板21と払出制御基板24に配電されている。

0052

コンバータRG3は、演出制御基板22に配電されるDC5Vを生成してコンバータRG3の出力端子Voutから出力し、コンバータRG4は、主制御基板21と払出制御基板24に配電されるDC5Vを生成して、コンバータRG4の出力端子Voutから出力する。このように、本実施例の電源基板20では、3種類の直流電圧(35V,12V,5V)だけを生成し、これらの直流電圧の配電を受けた各制御基板20,21,22では、必要に応じて、降下レベルの一又は複数の電源電圧を生成する構成を採っており、遊技機全体として電源回路の構成に無駄がない。

0053

なお、コンバータRG4の出力に基づいてDC5Vのバックアップ電源BAKが生成され、主制御基板21と払出制御基板24に配電されている。ここで、バックアップ電源BAKとは、営業終了停電により交流電源24Vが遮断された後も、主制御部21と払出制御部24のワンチップマイコンの内蔵RAMのデータを保持するDC5Vの直流電源である。

0054

また、コンバータRG1〜RG4には、各回路素子のDC−DC変換動作許否を制御する制御端子CTLが設けられており、制御端子CTLがHレベルであることを条件に内部回路が機能してDC−DC変換動作が実行される。例えば、コンバータRG2とRG4の内部構成は、図4(c)に示す通りであり、制御端子CTLがHレベルであることを条件に内部回路(DC変換回路CNV)が機能してDC−DC変換動作が実行される。

0055

更に説明すると、図4(a)に示す通り、コンバータRG2の出力端子Sout2は、自らの制御端子CTLと共に、コンバータRG1の制御端子CTLに接続されている。同様に、コンバータRG4の出力端子Sout2は、自らの制御端子CTLと共に、コンバータRG3の制御端子CTLに接続されている。そのため、直流電圧DC35Vが降下して、コンバータRG2やコンバータRG4の出力端子Sout2の出力電圧がLレベルに遷移すると、その後は、4つのコンバータRG1〜RG4が、一斉にDC−DC変換機能を停止することになる。このように、本実施例では、DC−DC変換すべき入力電圧(DC35V)が、異常レベルまで降下すると、DC−DC変換動作が自動的に停止されるので、その後の異常動作の発生のおそれがない。

0056

ところで、本実施例の電源基板20では、交流電源の投入を示す電源リセット信号を生成しておらず、電源リセット信号が主制御基板21、払出制御基板24、演出制御基板22などに伝送されることはなく、各制御基板21,24,22は、配電された直流電圧(5V,12V)に基づいて電源リセット信号を生成している。そのため、電源リセット信号を電源基板から各制御基板に伝送する信号線ノイズ重畳することで、CPUが異常リセットされるおそれがない。

0057

以上、電源基板20について説明したので、図3に戻って、遊技機GMの他の構成について説明する。図3に示す通り、主制御基板21は、主基板中継基板32を経由して電源基板20に接続されており、3種類の直流電圧DC35V,DC12V,DC5Vと、バックアップ電源BAKと、電源異常信号ABN1とを受けている。一方、払出制御基板24は、中継基板を介することなく、電源基板20に直結されており、主制御部21が受けると同様の電源異常信号ABN2や、バックアップ電源BAKを、3種類の直流電圧DC35V,DC12V,DC5Vと共に直接的に受けている。

0058

この実施例では、RAMクリア信号CLRは、主制御部21で生成されて主制御部21と払出制御部24のワンチップマイコンに伝送されている。ここで、RAMクリア信号CLRは、各制御部21,24のワンチップマイコンの内蔵RAMの全領域を初期設定するか否かを決定する信号であって、係員が操作する初期化スイッチSWのON/OFF状態に対応した値を有している。

0059

図3に示す通り、主制御部21は、主基板中継基板32を経由して、払出制御部24に制御コマンドCMD”を送信する一方、払出制御部24からは、遊技球の払出動作を示す賞球計数信号や、払出動作の異常に係わるステイタス信号CONや、動作開始信号BGNを受信している。ステイタス信号CONには、例えば、補給切れ信号、払出不足エラー信号、下皿満杯信号が含まれる。動作開始信号BGNは、電源投入後、払出制御部24の初期動作が完了したことを主制御部21に通知する信号である。

0060

また、主制御部21は、遊技盤中継基板31を経由して、遊技盤5の各遊技部品に接続されている。そして、遊技盤上の各入賞口16〜18に内蔵された検出スイッチのスイッチ信号を受ける一方、電動式チューリップなどのソレノイド類を駆動している。ソレノイド類や検出スイッチは、主制御部21から配電された電源電圧VB(12V)で動作するよう構成されている。また、図柄始動口15への入賞状態などを示す各スイッチ信号は、電源電圧VB(12V)と電源電圧Vcc(5V)とで動作するインタフェイスICで、TTLレベル又はCMOSレベルのスイッチ信号に変換された上で、主制御部21に伝送される。

0061

図3に示す通り、演出制御部22は、主制御部21から制御コマンドCMDとストローブ信号STBとを受けている。そして、演出制御部22は、ランプ駆動基板29やランプ/モータ駆動基板30に搭載されたLEDドライバに、ランプ駆動データSDATA(シリアル信号)を供給している。特に限定されるものではないが、ランプ駆動基板29やランプ/モータ駆動基板30に搭載されているLEDドライバは、ランプ駆動基板36に搭載されたLEDドライバと同一構成である。

0062

また、本実施例では、同じLEDドライバを使用してステッピングモータを駆動しており、破線に示すように、ランプ/モータ駆動基板30を経由して、演出モータ群M1〜Mnを駆動している。この場合、モータ駆動データは、ランプ駆動データと同様のシリアル信号であり、演出内容豊富化するべく演出モータ個数を増やしても、配線ケーブルが増加することがなく、機器構成が簡素化される。

0063

演出制御部23は、電源基板20から3種類の直流電圧(12V,5V,32V)を受けており、直流電圧32Vは、そのままランプ/モータ駆動基板30に転送されて、演出モータなどの駆動電源として活用している。一方、直流電圧5Vは、演出制御基板22の各種デジタル回路の電源電圧として活用され、直流電圧12Vは、デジタルアンプ46a,46bの電源電圧とされると共に、駆動基板29,30にも転送されてランプ演出やモータ演出に活用される。

0064

図3及び図5に示す通り、演出制御部22は、画像制御部23に対して、制御コマンドCMD’及びストローブ信号STB’と、2種類の直流電圧(12V,5V)と、システムリセット信号SYSを出力している。ここで、システムリセット信号SYSは、電源基板20から受けた直流電圧(12V,5V)に基づいて、演出制御部22のリセット回路RST&WDTにおいて生成された信号である。

0065

そして、画像制御部23は、演出制御部22から受けるシステムリセット信号SYSに基づいて、各種の半導体IC素子を電源リセットし、演出制御部22から受ける制御コマンドCMD’に基づいて表示装置DSを駆動して各種の画像演出を実行している。なお、表示装置DSは、LEDバックライトによって発光しており、画像インタフェイス基板28から5対のLVDS(低電圧差動伝送Low voltage differential signaling)信号と、バックライト電源電圧(12V)とを受けて駆動されている(図5参照)。

0066

続いて、上記した演出制御部22の構成を、図5に基づいて更に詳細に説明する。図5(a)に示す通り、演出制御部22は、音声演出・ランプ演出・演出可動体による予告演出・データ転送などの処理を実行するワンチップマイコン40(以下、演出制御CPU40と言うことがある)と、演出制御CPU40の制御プログラムや各種の演出データを記憶する制御メモリ(flash memory)41と、内蔵レジスタRG0〜RGnに設定された演出制御CPU40の指示に基づいて音声信号を再生して出力する音声プロセッサ(音声合成回路)42と、再生される音声信号の元データである圧縮音声データなどを記憶する音声メモリ43と、音声プロセッサ42から出力される音声信号を受けるデジタルアンプ46と、を有して構成されている。

0067

また、演出制御部23は、3つのDC−DCコンバータ(CONV1〜CONV3)で構成された電源回路と、リセット回路RST&WDTとを有して構成されている。電源回路(CONV1〜CONV3)は、電源基板20から受ける直流電圧12Vに基づいて三種類の直流電圧(1.0V,1.8V,3.3V)を生成して、ワンチップマイコン40、制御メモリ41、音声プロセッサ42、及び音声メモリ43の電源電圧としている。そのため、ワンチップマイコン40、制御メモリ41、音声プロセッサ42、及び音声メモリ43の電源電圧の一部だけが、電圧降下する可能性が事実上ほぼゼロであって、局所的な機能停止の可能性が事実上生じない。

0068

実施例のリセット回路RST&WDTは、システムリセット信号SYSを生成するだけでなく、ウォッチドッグタイマとしても機能している。そして、演出制御CPU40から受けるべきクリア信号CLRが途絶えた場合には、異常リセット信号RSETを出力して、演出制御CPU40、制御メモリ41、及び、音声プロセッサ42を強制リセットしている。したがって、演出制御CPU40が正常に機能しない異常時には、音声演出を直ちに初期状態に戻すことができる。

0069

次に、本実施例の音声プロセッサ42は、演出制御CPU40から内蔵レジスタ(音声制御レジスタ)RG0〜RGnに受ける動作パラメータ(音声コマンドSNDによる設定値)に基づいて、音声メモリ43をアクセスして、必要な音声信号を再生して出力している。図5に示す通り、音声プロセッサ42と、音声メモリ43とは、26ビット長の音声アドレスバスと、16ビット長の音声データバスで接続されている。そのため、音声メモリ43には、1Gビット(=226*16)のデータが記憶可能となる。

0070

本実施例の場合、音声メモリ43に記憶された圧縮音声データは、13ビット長のフレーズ番号NUM(000H〜1FFFH)で特定されるフレーズ(phrase)圧縮データであり、一連の背景音楽の一曲分(BGM)や、ひと纏まりの演出音(予告音)などが、最高8192種類(=213)、各々、フレーズ番号NUMに対応して記憶されている。そして、このフレーズ番号NUMは、演出制御CPU40から音声プロセッサ42の音声制御レジスタRG0〜RGnに伝送される音声コマンドSNDの設定値(動作パラメータ)によって特定される。

0071

ところで、本明細書では、以下の説明において、一のフレーズ番号NUMで特定されるひと纏まりの演出音を、特に、「単位演出」ということがある。この意味では、一連の背景音楽の一曲分(BGM音)も「単位演出」の一種であり、遊技球の図柄始動口への入賞で開始され、当否抽選結果を報知して終了する一連の変動演出を構成する音声演出は、複数の「単位演出」を適宜に組み合わせて実現されることになる。

0072

音声コマンドSNDは、音声プロセッサ42に内蔵された多数の音声制御レジスタRG0〜RGnの何れか一の音声制御レジスタ(RGi)に、1バイト長の設定値を伝送するIndividual Write用途か、又は、連続する一連N個の音声制御レジスタ群(RGi・・・)に、一群N個の設定値を伝送するBlock Write 用途で使用される。

0073

また、本実施例の音声コマンドSNDは、フレーズ番号NUMなどの設定値を書込むWrite 用途だけでなく、所定の音声制御レジスタRGiからステイタス情報STSエラー情報など)を読み出すRead用途でも使用される。なお、図6には、演出制御CPU40と、音声プロセッサ42の音声制御レジスタ51(RG0〜RGn)との関係が示されている。

0074

何れにしても、アクセス対象となる音声制御レジスタRGiは、1バイト長のレジスタアドレスで特定され、各音声制御レジスタRGiの記憶容量は1バイトである。そして、本実施例では、7個のレジスタバンクBN0〜BN6に区分して、多数の音声制御レジスタ(RG0〜RGn)が確保されている。すなわち、レジスタバンクBN0〜BN6が7区分されていることから、音声制御レジスタRGiの総数は、原理的には最大7×256個となる。

0075

本実施例では、全てのレジスタバンクBN0〜BN6において、特定のレジスタアドレス(FDH)は、レジスタバンク設定用の音声制御レジスタとなっている。そのため、7×256個の音声制御レジスタRGiの何れか一個を特定するには、先行する音声コマンドSNDによって、バンク設定用の音声制御レジスタ(レジスタアドレス=FDH)に、レジスタバンクBNjを書込んだ上で、そのレジスタバンクBNjに属する音声制御レジスタRGiを、1バイト長のレジスタアドレスで特定することになる。

0076

ところで、音声制御レジスタRGiへの設定値の設定動作は、必ずしも、設定対象となる音声制御レジスタのレジスタアドレスを直接指定する必要はなく、音声メモリ43に格納されているSACデータ(Simple Access Code Data )や、シーケンスコード(Sequence Code )を指定して、一群の音声制御レジスタRGi〜RGjに対する、一連の設定動作を完了させることもできる。そして、このような動作を実現するため、音声プロセッサ42には、図6(b)に示すシンプルアクセスコントローラSAC(simple Access Controller)4個と、シーケンサSQ(Sequencer )16個とが内蔵されている。

0077

シンプルアクセスコントローラSACを機能させるためのSAC(Simple Access Code)データから説明すると、SACデータは、音声制御レジスタRGiのレジスタアドレス(1バイト)と、その音声制御レジスタRGiへの設定値(1バイト)とを対応させた最大512組(=1024バイト)のデータ群であって、SAC終了コード(FFFFH)で終端される集合体を意味する(図6(b)参照)。

0078

本実施例の場合、このようなSACデータを、音声メモリ43に、最高8192種類(=213)設けることができ、CPUは、13ビット長のSAC番号を、SAC制御用の音声制御レジスタRGj1(図6(b))に書込むことで、シンプルアクセスコントローラSACを機能させることができる。機能を開始したシンプルアクセスコントローラSACは、SAC番号で特定される一群のSACデータを、音声メモリ43から順番読出し、SACデータが示す音声制御レジスタRGiに、SACデータが示す設定値を設定することになる。

0079

そのため、CPUは、SAC制御用の音声制御レジスタRGj1に、SAC番号を書込むだけで足り、音声制御レジスタRGiのレジスタアドレスを個々的に指定することなく、一連の設定動作を指示することができる。後述するように、本実施例では、音声合成回路42の初期設定動作図10のST10)や、複数の再生チャンネルCH0〜CH29に対するボリューム設定動作(図20(b)〜(e))などで、シンプルアクセスコントローラSACを活用している。

0080

なお、SAC制御用の音声制御レジスタRGj1には、一連の設定動作の開始タイミングを規定する待機時間(付属データとしての待機情報)を設定することもでき、SAC制御用の音声制御レジスタRGj1へのSAC番号の書込みタイミングから、シンプルアクセスコントローラSACによる音声制御レジスタRGiへの設定開始タイミングを遅延させることもできる。

0081

続いて、シーケンサSQを機能させるためのシーケンスコード(Sequence Code )について説明する。シーケンスコードも、SACデータと同様、音声制御レジスタRGiのレジスタアドレス(1バイト)と、その音声制御レジスタRGiへの設定値(1バイト)とを対応させた複数組のデータである(図6(b)参照)。但し、SACデータとは異なり、シーケンスコードは、所定の待機時間を経て、間欠的に実行可能な複数の動作ステップ(複数のシーケンスステップ)を規定することができる。

0082

また、シーケンサ(Sequencer )制御用の音声制御レジスタRGj2には、各シーケンサSQ0〜SQ15について、一連のシーケンス動作を実現する複数(最高8個)のシーケンスコード番号を指定できる共に、各設定動作の開始タイミングを規定する待機時間(待機情報)や、繰り返し動作の有無、及びその繰り返し回数ループ情報)を、含ませることができるようになっている。したがって、一又は複数のシーケンスコード番号は、所定時間を要して実行される一連の音声演出を特定することになる。

0083

図6(b)に示す通り、一のシーケンスコード番号(13ビット)で特定される一群のシーケンスコードには、複数の動作ステップを規定できるよう構成されている。複数の動作ステップは、ステップ終了コード(FFFEH)で区切られ、複数の動作ステップの最後は、シーケンス終了コード(FFFFH)で終端されている。先に説明した通り、各シーケンサSQ0〜SQ15には、各々、最高8個のシーケンスコード番号を指定できるので、結局、各シーケンサSQkは、シーケンスコード番号で特定される一群のシーケンスコードの動作を、最高8組、連続的又は間欠的に実行できることになる。

0084

本実施例の場合、音声メモリ43に、最高8192種類(=213)のシーケンスコードを格納することができるが、CPUは、13ビット長のシーケンスコード番号(最高8個)と、シーケンサの動作を規定する付属データとを、シーケンサ(Sequencer )制御用の音声制御レジスタRGj2に書込むことで、一連の設定動作を、シーケンサSQに指示できることになる。なお、シーケンサ制御用の音声制御レジスタRGj2に書込まれるデータは、20バイト程度であって煩雑であるので、この20バイトを、SACデータとして音声メモリ43に確保しておくのも好適である。

0085

改めて確認すると、本実施例では、このようなSACデータやシーケンスコードが、必要組だけ、予め音声メモリ43に記憶されており、一群のSACデータや、一群のシーケンスコードは、SAC番号やシーケンスコード番号で特定される。したがって、本実施例の場合、Write 用途の音声コマンドSNDは、音声制御レジスタRGiへの直接的な設定動作を規定する場合だけでなく、シンプルアクセスコントローラSACやシーケンサSQを経由した間接的な設定動作を規定する場合も含まれる。

0086

図5に戻って説明を続けると、上記の動作を実現するため、演出制御CPU40と音声プロセッサ42は、1バイトデータを送受信可能なパラレル信号線データバス)CD0〜CD7と、動作管理データ送信可能な2ビット長の動作管理データ線(アドレスバス)A0〜A1と、読み書き(read/write)動作を制御可能な2ビット長の制御信号線WR,RDと、音声プロセッサ42を選択するチップセレクト信号線CSとで接続されている。

0087

パラレル信号線CD0〜CD7は、ワンチップマイコン40に内蔵された演出制御CPU40のデータバスで実現され、また、動作管理データ線A0〜A1は、演出制御CPU40のアドレスバスで実現されている。そして、音声プロセッサ42には、上位6ビットが共通し、下位2ビットが00,01,10となる3個のポート番号PORTが付与されており、演出制御CPU40が、これらのポート番号PORTに対するI/OREAD命令や、I/OWRITE命令を実行すると、何れの場合も、チップセレクト信号CSがアクティブレベルになるよう回路構成されている。

0088

そして、I/OREAD命令や、I/OWRITE命令の実行時にアドレスバスの下位2ビットA0〜A1に出力されるデータは、音声プロセッサ42に対する動作管理データA0〜A1となり、この2ビットA0〜A1に基づいて、その時のデータバスCD0〜CD7の1バイトデータが、レジスタアドレスであるか、それとも、書込みデータ又は読み出しデータであるかが特定されるようになっている。

0089

すなわち、アドレスデータA0〜A1が、[00]であれば、そのタイミングのデータバスのデータCD0〜CD7が、レジスタアドレスと評価され、一方、アドレスデータA0〜A1が[01]であれば、そのタイミングのデータバスのデータCD0〜CD7が、書込みデータ又は読み出しデータとなる。なお、I/OREAD命令を実行した場合が読み出しデータ、I/OWRITE命令を実行した場合が書込みデータである。

0090

したがって、所定の設定値を、所定の音声制御レジスタRGi,RGjに書込む音声コマンドSNDの送信動作は、図5(b)のタイムチャートに示す通りとなり、音声プロセッサ42のポート番号PORTの下位2ビットA0,A1を推移させつつ、I/OWRITE命令を連続的に実行することで実現される。具体的には、アドレスデータの下位2ビットA0〜A1を、[00]→[01]と推移させる一方で、データバスの1バイトデータを、[音声制御レジスタRGiのレジスタアドレス]→[音声制御レジスタRGiへの書込みデータ]と推移させることで、所定の音声コマンドSNDの送信動作が実現される。

0091

SAC番号(13ビット)やシーケンスコード番号(13ビット)、及び、これに付随する制御データ(待機情報やループ情報など)を送信する場合のように、書込みデータが複数バイト長であって、制御レジタのレジスタアドレスが連続する場合には、[01]の動作管理データA0〜A1を、[00]→[01]→[01]→[01]と繰り返しつつ、複数バイトの書込みデータを送信する。

0092

このようにして送信された音声コマンドは、通信異常がない限り、その後、音声プロセッサ42内部で実効化される。但し、複数バイト長のデータが互いに整合しないなど、通信異常が認められる場合には、その音声コマンドSNDが実効化させることはない。そして、音声制御レジスタRGnのエラーフラグセットされるが、このエラーフラグ(ステイタス情報STS)は、アドレスバスの動作管理データA0〜A1を、[01]から[10]に推移させたI/OREAD命令の実行によって受信することができる(図5(d)参照)。

0093

このように、この実施例では、動作管理データA0〜A1を、[00]→[01]→・・・[01]→[10]と推移させる最終サイクルにおいて、複数ビット長のエラー情報(異常時はFFH)を取得することができる。そして、正当にパラレル送信できなかった音声コマンドSNDを再送することで、音声演出を適切に進行させることができる。したがって、本実施例の構成によれば、音声演出が突然、途絶えるような不自然さを確実に解消されることができる。

0094

一方、I/OREAD動作によるデータ読み込み動作は、図5(c)のタイムチャートに示す通りであり、音声プロセッサ42のポート番号PORTの下位2ビットA0,A1を推移させつつ、I/OWRITE命令と、I/OREAD命令を連続的に実行することで実現される。なお、読み出しデータが複数バイト長の場合には、必要バイト数だけI/OREAD命令を連続させる。

0095

具体的に確認すると、先ず、I/OWRITE動作として、アドレスデータの下位2ビットA0〜A1が[00]となるポート番号PORTに対して、[動作ステイタスなどを記憶する音声制御レジスタRGiのレジスタアドレス(1バイト長)]を出力する。次に、アドレスデータの下位2ビットA0〜A1が[01]となるポート番号PORTに対して、I/OREAD命令を実行すれば、所定の音声制御レジスタから動作ステイタスなどの必要データを取得することができる。

0096

以上のような構成を有する音声プロセッサ42が再生した音声は、音声プロセッサ42のデジタル音声信号として、5ビット信号(SCLK,LRO,SD0,SD1,SD2)の形式で、デジタルアンプ46a,46bに伝送され、各デジタルアンプでD級増幅され、アナログ音声信号として、各スピーカに供給される。具体的には、デジタルアンプ46aの増幅出力(アナログ音声信号)は、低音用の下方スピーカBTMに供給されており、デジタルアンプ46bの増幅出力(アナログ音声信号)は、遊技者に対して上下左右位置にほぼ整列配置された4個のスピーカTL,TR,ML,MRに供給されている。

0097

次に、演出制御部22の他の回路構成について図5に基づいて説明する。先ず、ワンチップマイコン40には、係員が操作する設定スイッチSETから4ビット長のスイッチ信号が供給されている。また、ワンチップマイコン40には、図5に示す通り、複数のパラレル入出力ポートPIO(Pi+Pi’+Po+Po’)と、複数のシリアル出力ポートSIと、が内蔵されている。シリアル出力ポートSIは、より詳細には、3チャンネルシリアルポート(S0〜S2)を含んで構成されており、ランプ駆動基板36、29、30に搭載された複数個のLEDドライバに、各々、シリアル駆動データSDATA0〜SDATA2を、クロック信号CK0〜CK2に同期して出力している。

0098

すなわち、シリアルポートS0〜シリアルポートS2は、クロック同期方式に基づいて、対応するランプ駆動基板36、29、30に、シリアル駆動データSDATA0〜SDATA2を伝送している。なお、シリアル駆動データSDATA0〜SDATA2は、その殆どが、各LEDの発光輝度PWM制御(pulse width modulation)によって輝度調整するため輝度データ(ランプ駆動データ)であるが、演出モータM1〜Mnを駆動するモータ駆動データも含まれている。

0099

また、パラレル出力ポートPo’は、3ビット長の動作許可信号ENABLE0〜ENABLE2を、ランプ駆動基板36、29、30に出力しており、各ランプ駆動基板36、29、30に搭載されたLEDドライバは、動作許可信号ENABLE0〜ENABLE2の何れかに基づいて動作を開始している。また、出力ポートPo’からは、デジタルアンプ46a,46bの出力を消音するためのMUTE信号が出力されている。このMUTE信号は、例えば、動作が不安定となる可能性のある電源投入時や、音声プロセッサ42の異常動作が検出された場合などに使用される。

0100

このような構成に対応して、演出制御基板22には、ワンチップマイコン40のパラレル出力ポートPo’や、シリアルポートSIや出力される各種の信号を伝送する出力バッファ回路47,48,49が設けられている。ここで、出力バッファ47は、第0チャンネルのLED群に関連しており、ワンチップマイコン40が出力するランプ駆動データSDATA0、クロック信号CK0、及び、動作許可信号ENABLE0を、枠中継基板34に出力している。そして、出力された3ビットの信号は、枠中継基板34、及び、枠中継基板35を経由して、ランプ駆動基板36のLEDドライバに伝送される。

0101

同様に、出力バッファ48は、ワンチップマイコン40が出力するランプ駆動データSDATA1、クロック信号CK1、及び、動作許可信号ENABLE1をランプ駆動基板29のLEDドライバに伝送しており、出力バッファ49は、ランプ駆動データSDATA2、クロック信号CK2、及び、動作許可信号ENABLE2をランプ/モータ駆動基板30のLEDドライバに伝送している。なお、ランプ駆動基板29のLEDドライバは、第1チャンネルのLED群を駆動し、ランプ/モータ駆動基板30のLEDドライバは、第2チャンネルのLED群と、演出モータM1〜Mnとを駆動している。

0102

一方、パラレル入出力ポートPIOの入力ポートPiには、入力バッファ44を経由して、主制御部21からの制御コマンドCMD及びストローブ信号STBが入力され、コマンド出力ポートPoからは、出力バッファ45を経由して、制御コマンドCMD’及びストローブ信号STB’が出力されるよう構成されている。

0103

具体的には、入力ポートPiには、主制御基板21から出力された制御コマンドCMDとストローブ信号(割込み信号)STBとが、入力バッファ44において、ワンチップマイコン40の電源電圧3.3Vに対応する論理レベルに変換されて8ビット単位で、ワンチップマイコン40に供給される。割込み信号STBは、ワンチップマイコン40の割込み端子に供給され、受信割込み処理によって、演出制御部22は、制御コマンドCMDを取得するよう構成されている。

0104

演出制御部22のワンチップマイコン40が取得する制御コマンドCMDには、(1)異常報知その他の報知用制御コマンドなどの他に、(2)図柄始動口への入賞に起因する各種演出動作の概要特定する制御コマンド(変動パターンコマンド)や、図柄種別を指定する制御コマンド(図柄指定コマンド)が含まれている。ここで、変動パターンコマンドで特定される演出動作の概要には、演出開始から演出終了までの演出総時間と、大当たり抽選における当否結果とが含まれている。

0105

また、図柄指定コマンドには、大当たり抽選の結果に応じて、大当たりの場合には、大当たり種別に関する情報(15R確変、2R確変、15R通常、2R通常など)を特定する情報が含まれ、ハズレの場合には、ハズレを特定する情報が含まれている。変動パターンコマンドで特定される演出動作の概要には、演出開始から演出終了までの演出総時間と、大当り抽選における当否結果とが含まれている。なお、これらに加えて、リーチ演出や予告演出の有無などを含めて変動パターンコマンドで特定しても良いが、この場合でも、演出内容の具体的な内容は特定されていない。 そのため、演出制御部22(ワンチップマイコン40)では、変動パターンコマンドを取得すると、これに続いて演出抽選を行い、取得した変動パターンコマンドで特定される変動演出の演出概要を具体化している。例えば、リーチ演出や予告演出について、その具体的な内容を決定して一連の変動演出が特定される。そして、決定された具体的な遊技内容にしたがい、LED群などの点滅によるランプ演出や、スピーカによる音声演出の準備動作を行うと共に、画像制御部23に対して、ランプやスピーカによる演出動作に同期した画像演出に関する制御コマンド(演出コマンド)CMD’を出力する。

0106

本実施例では、一連の変動演出の種類に対応して、複数のメインシナリオテーブルMj(図15(b)参照)が用意されており、演出抽選の結果に基づき、複数のメインシナリオテーブルMjの何れか一以上が特定される。例えば、一連の変動演出を実現するメインシナリオテーブルM0と、適宜なタイミングで機能する一又は複数の予告演出を実現するメインシナリオテーブルMx、My・・・が特定される。なお、変動パターンコマンド受信時に全てのメインシナリオテーブルMjを特定する必要はなく、例えば、図柄指定コマンドの受信時に、そのコマンドで指定された図柄に対応して、一又は複数のメインシナリオテーブルMjを特定してもよい。

0107

何れにしても、メインシナリオテーブルMjには、互いに関連して実行されるべき音声演出、ランプ演出、及びモータ演出について、その演出内容を特定するシナリオ情報と、その演出の実行継続時間が記載されているが、図15(b)のメインシナリオテーブルMjには、便宜上、ランプ演出やモータ演出に関する記載を省略している。

0108

図15(b)に例示するように、音声演出についてのシナリオ情報は、具体的には、サブシナリオテーブルSkのサブシナリオ番号である。そして、サブシナリオ番号で特定されるサブシナリオテーブルSkには、単位演出を特定するフレーズ番号NUMや、その単位演出の再生ボリューム値などが規定されている(図15(c)参照)。

0109

ところで、演出制御部22の演出動作に同期した画像演出を実現するため、演出制御部22は、コマンド出力ポートPoを通して、画像制御部23に対するストローブ信号(割込み信号)STB’と共に、16ビット長の制御コマンドCMD’を画像インタフェイス基板28に向けて出力している。そして、演出抽選に関わる演出コマンドCMD’を受けた演出制御部22は、演出コマンドCMD’に対応する画像シナリオテーブルを特定し、その画像シナリオテーブルに規定された画像演出を開始する。

0110

上記した演出制御基板22の構成に対応して、出力バッファ45が設けられており、16ビット長の制御コマンドCMD’と1ビット長の割込み信号STB’を画像インタフェイス基板28に出力している。そして、これらのデータCMD’,STB’は、画像インタフェイス基板28を経由して、画像制御基板23に伝送される。これらの信号は、ワンチップマイコン40の電源電圧3.3Vに対応する論理レベルである。

0111

次に、図6(a)には、音声プロセッサ42の概略内部構成と共に、音声プロセッサ42と、ワンチップマイコン40(演出制御CPU)と、音声メモリ43と、の接続関係も示されている。

0112

図6(a)に示す通り、音声プロセッサ42は、演出制御CPU40からアクセスされる多数の音声制御レジスタ51(RG0〜RGn)と、音声再生動作を統括的に制御するサウンドコントロールモジュール52と、音声メモリ43から読み出されたフレーズ圧縮データをデコードすると共に、複数のフレーズ再生チャンネルCH0〜CH31のデコードデータを適宜な音量比率混合させるメインジェネレータ53と、デジタルフィルタ処理によって所望周波数特性を実現するイコライザ機能入出力ゲイン特性を変化させるコンプレッサ機能を実現するエフェクト部54と、最終音量を規定するトータルボリュームTVと、シリアル伝送用の5種類の信号SCLK,LRO,SD0,SD1,SD2を生成するデジタルIF部55と、を備えて構成されている。

0113

図示の通り、メインジェネレータ53には、再生チャンネルCH0〜CH31に区分されて圧縮データを再生するデコーダ60と、音量を調整するボリュームV1〜V3と、デコーダ60の再生音を混合するチャンネルミックス部61と、再生音の放音位置を背面側や耳元側に変更した仮想音を生成するバーチャルサラウンド部VSと、最終的な混合動作を実行する再ミックス部RMと、を有して構成されている。

0114

サウンドコントロールモジュール52は、音声制御レジスタ51(RGi)に書込まれた演出制御CPU40からの指示に基づいて機能するが、シンプルアクセスコントローラSAC(Simple Access Controller)と、シーケンサSQ(Sequencer )とを有して構成されている。先に説明した通り、シンプルアクセスコントローラSACや、シーケンサSQは、一群のSACデータや、一群のシーケンスコードを音声メモリ43から読み出して、所定の音声制御レジスタRGiに、設定データを設定する機能を有している。

0115

図6(b)は、この関係を図示した図面であり、音声メモリ43には、最高8192種類のシーケンスコード群と、最高8192種類のSACデータ群が格納されている。そして、シーケンスコードや、SACデータは、各々、13ビット長のシーケンスコード番号やSAC番号で特定されており、8192=213の関係にある。

0116

本実施例の場合、シーケンサSQとして、並列的に動作する16系列(SQ0〜SQ15)が設けられ、また、シンプルアクセルコントローラSACとして、並列的に動作する4系列(SAC0〜SAC3)が設けられている。この構成に対応して、音声制御レジスタRGiには、シーケンサ(SQ0〜SQ7)制御用の音声制御レジスタRGj2と、SAC(SAC0〜SAC3)制御用の音声制御レジスタRGj1とが設けられている。

0117

そして、演出制御CPU40が、音声コマンドSNDの送信動作に基づいて、SAC制御用の所定の音声制御レジスタRGj1に、SAC番号と、その付属情報を書込むと、対応するシンプルアクセスコントローラSACが機能を開始し、そのシンプルアクセスコントローラSACは、SAC番号で特定される一群の設定データを、SACデータが指示する一群の音声制御レジスタに書込むことになる。この点は、既に説明した通りであり、本実施例では、煩雑な設定動作を一のSAC番号とその付属情報の送信で終えることができる。

0118

一方、演出制御CPU40が、音声コマンドSNDの送信動作に基づいて、シーケンサ(SQ0〜SQ7)制御用の所定の音声制御レジスタRGj2に、シーケンスコード番号と、その付属情報を書込むと、対応するシーケンサSQiが機能を開始して、シーケンスコードで特定される一群の設定データを、シーケンスコードが指示する一群の音声制御レジスタに書込むことになる。

0119

ここで、音声制御レジスタRGj2には、任意のシーケンサSQiに対して、複数(最高8個)のシーケンスコード番号と、各シーケンスコード番号の演出に対するループ情報を記入できるようになっている。したがって、例えば、シーケンサSQiに対して、n+1個のシーケンスコード番号(X0,X1,・・・,Xn)が指定された場合には、図7(a)に示す通り、シーケンスコード番号X0の設定動作→シーケンスコード番号X1の設定動作→・・・・シーケンスコード番号Xnの設定動作が順番に実行されることになり、設定動作に対応する音声演出が実行されることになる。 また、繰り返し回数などのループ情報は、シーケンスコード番号ごとに指定可能であるので、シーケンスコード番号で特定される音声演出を、所定回数繰り返した後に、次のシーケンスコード番号で特定される音声演出に移行することができる(図7(a))。

0120

このように、シーケンサSQiに設定すべきデータは多岐にわたっており、これらシーケンスコード番号及び付随データを、シーケンサ制御用の音声制御レジスタRGj2に、適宜に設定する必要がある。そこで、本実施例では、シーケンスコード番号と付随データの全体を、1バイト単位で分割すると共に、分割された1バイトデータと、この1バイトデータを設定すべきシーケンサ制御用レジスタRGj2のレジスタアドレスと、を一組とする一群のSACデータを、音声メモリ43に確保している(以下、これをシーケンサ起動用SACデータという)。

0121

そして、CPUは、SAC制御用の音声制御レジスタRGj1に、所定のSAC番号を指定することで、シンプルアクセスコントローラSACを起動させている。ここで、SAC番号は、シーケンサ起動用SACデータを特定しているのは勿論である。そして、SAC(Simple Access Controller)の動作に基づいて、必要なデータを、シーケンサ制御用レジスタRGj2に展開させている。したがって、シーケンサSQ0〜SQ15の起動用データの設定動作が容易である。

0122

ところで、図6(b)に関して先に説明した通り、一のシーケンスコード番号で特定される一群のシーケンスコードには、ステップ終了コード(FFFEH)で区切った複数の動作単位(シーケンスステップ)が記載されているので、結局、一のシーケンスコード番号で特定される複数のシーケンスステップを全て実行した後に、次のシーケンスコード番号で特定される複数のシーケンスステップが実行されることになる。

0123

そして、各シーケンサには待機時間を設定することもできるので、最初のシーケンスステップ(一群の設定データの書込み動作)は、CPUから指摘された待機時間後に開始され、ステップ終了コード(FFFEH)まで実行すると、更に、待機時間の後に、次の一群の設定データが一群の音声制御レジスタに書込まれる。なお、待機時間は、シーケンサ(SQ0〜SQ7)毎に、単一の時間情報が設定可能であるが、例えば、先行するシーケンスステップにおいて、これに連続する後続シーケンスステップに適用される待機時間を設定することで、シーケンスステップ毎の待機時間を任意に設定できる。

0124

したがって、例えば、ステップ終了コード(FFFEH)で区切られた三群のシーケンスコードによって、図7(b)に示すようなパン動作を設定することもできる。図7(b)の場合には、(1)シーケンサの動作開始に対応して、左スピーカだけが放音する第1設定動作(Δ1の設定を含む)を実行し、(2)第1設定動作から待機時間Δ1後に、右スピーカだけが放音する第2設定動作(Δ2の設定を含む)を実行し、(3)第2設定動作から待機時間Δ2後に、左右スピーカが放音する動作を実現する第3設定動作(Δ3の設定を含む)を実行した後、待機時間Δ3後に、最初の左スピーカの放音動作に戻るようなシーケンス設定動作が可能となる。なお、図7(b)は、便宜上、Δ1=Δ2=Δ3と図示している。

0125

パンポット比VL:VRについて具体的に確認すると、(1)左スピーカだけの放音は、左右パンポット比VL:VRを0:−∞dBに設定することで、(2)右スピーカだけの放音は、左右パンポット比VL:VRを−∞:0dBに設定することで、(3)左右スピーカの等比放音、左右の左右パンポット比VL:VRを0:0dBに設定することで実現される。ここで、パンポット比VL:VRは、例えば、VL=20*Log(SQR(2)*Cos(π/2*VL/128))と、VR=20*Log(SQR(2)*Sin(π/2*VR/128))とで与えられ、0dB:0dBは1:1を意味し、−∞dBは消音を意味している。また、Logは、10を底とする対数であり、SQR(2)は2の平方根を意味する。何れにしても、このような変則的な音量設定を個別の音声コマンドSNDで実現するのは非常に煩雑であるが、本実施例では、シーケンサSQを利用して、制御負担を大幅に軽減している。

0126

また、16系列のシーケンサ(SQ0〜SQ15)は、互いに独立的に動作できるだけでなく、所定条件下、設定動作を一斉に開始することもできるよう構成されている。所定条件としては、特定の再生音が終わったことをトリガ条件とする「オフトリガ機能」を例示することができる。

0127

したがって、例えば、図7(d)に示すように、(1)シーケンサSQ0を経由して再生されるボーカル音、(2)シーケンサSQ1を経由して再生されるギター音、(3)シーケンサSQ2を経由して再生されるベース音、(4)シーケンサSQ3を経由して再生される左コーラス音、(5)シーケンサSQ4を経由して再生される右コーラス音の5パートとで構成されている楽曲について、個別パートのフレーズ圧縮データを、別々に音声メモリ43に用意しておくと共に、先行する所定の再生動作が終わったことを条件(オフトリガ機能)に、シーケンサSQ0〜SQ4の設定動作を同期して開始させることで、個別パートのフレーズ圧縮データの再生動作を一斉に開始させることもできる。したがって、複数パートの音声を時間ズレなく再生することができる。なお、この点は、図9に関して更に後述する。

0128

次に、メインジェネレータ53の内部構成を更に詳細に示すと、図8に示す通りである。図示の通り、メインジェネレータ53は、独立してデコード処理が可能な32個のフレーズ再生チャンネル(CH0〜CH31)に区分されたデコーダ60と、一次ボリュームV1、二次ボリュームVs(=V2,V3,V4)、及び、パンポット部を有して音声ボリュームや音量バランスを調整可能なチャンネルボリュームと、32個のフレーズ再生チャンネル(CH0〜CH31)の音声を混合するチャンネルミックス部61と、バーチャルサラウンド部VSと、再ミックス部RMと、を有して構成されている。

0129

図8に示す通り、フレーズ再生チャンネル(CH0〜CH31)毎に、L0信号、R0信号、R1信号、L1信号、SUB0信号、SUB1信号が出力されるが、これら6種類(合計32×6個)の信号は、チャンネルミックス部61と再ミックス部RMで混合されて、混合L0信号、混合R0信号、混合R1信号、混合L1信号、混合SUB0信号、混合SUB1信号として出力される。

0130

但し、本実施例では、低音スピーカBTMが一個であるので(図2参照)、SUB1信号や混合SUB1信号を使用していない。また、この構成に関連して、二次V3で低音スピーカBTMのボリューム調整をすることとし、もう一方の二次ボリュームV4を使用していない。

0131

そして、混合L0信号と混合R0信号は、各々、デジタルアンプ46bでD級増幅された後、上部左右のスピーカTL,TRに供給され、また、混合L1信号と混合R1信号についても、各々、デジタルアンプ46bでD級増幅された後、中部左右のスピーカML,MRに供給される。一方、混合SUB0信号については、デジタルアンプ46aでD級増幅された後、低音用のスピーカBTMに供給される。

0132

なお、6チャンネルの信号L0,R0,R1,L1,SUB0,SUB1は、メインジェネレータ53→エフェクト部54→トータルボリュームTV→デジタルIF部55を経由する過程では、何れもPCMデータであり、デジタルアンプ46a,46bを経由することでアナログ信号となる。また、6チャンネルの信号L0,R0,L1,R1,SUB0,SUB1が、3チャンネルの音声シリアル信号SO0〜SD2に纏められて、デジタルアンプ46a,46bに伝送される。但し、信号SUB1を使用していないことは先に説明した通りであり、信号SUB1は、無為に伝送される。

0133

先に概略的に説明した通り、音声プロセッサ42の音声制御レジスタ51(RGi)は、音声プロセッサ42を意図通りに機能させるために、演出制御CPU40がWrite 処理する書込みレジスタと、音声プロセッサ42の動作状態を把握するために、演出制御CPU40がRead処理する読出しレジスタと、に区分されている。

0134

書込みレジスタへの書込みデータには、(1)再生すべきBGM音や演出音の単位演出を特定するフレーズ番号NUM、(2)その再生音のボリューム(V1,V2,V3)指示、(3)再生回数を規定するループ指示、(4)再生開始一時停止などの動作指示、(5)上下スピーカや左右スピーカの音量バランスであるパンポット比の指示、(6)最終的なボリューム(TV)指示などが含まれている。ここで、演出音には、一連の変動動作中に大当り状態に移行する可能性があることを所定の信頼度(≦100%)で予告する予告音が含まれる。

0135

また、(1)フレーズ番号NUMの指定、(2)ボリューム(V1,V2,V3)指示、(3)ループ指示、(4)動作指示、及び(5)パンポット指示は、全て、デコーダ60のフレーズ再生チャンネルCH0〜CH31を指定して行われるよう構成されている。そのため、フレーズ再生チャンネルCH0〜CH31に対応して、最高32種類のフレーズ圧縮データが、各々、上記の指示(1)〜(5)に基づいて同時に独立して再生され、チャンネルミックス部61及び再ミックス部RMでミキシングされて出力されることになる。

0136

なお、本実施例では、音声信号のボリューム値を段階的に遷移させるボリューム遷移動作を、CPU処理として、ソフトウェア的に実現しており、一次ボリュームV1、二次ボリュームV2,V3、及びトータルボリュームTVに対してボリューム遷移動作が可能となる。但し、本実施例では、制御負担を考慮して、主として、二次ボリュームV2,V3についてだけ、ボリューム遷移動作を実行している。

0137

特に限定されるものではないが、一次ボリュームV1や二次ボリュームVs(V2,V3,V4)の設定値Viに対する信号の入出力比は、20*Log(Vi/128)となり、本実施例では、設定値Viを0≦Vi≦128に制限することで、入出力比は、実際には減衰比を意味して、−∞dB以上0dB以下の減衰率となる。ここで、Logは、10を底とする対数である。

0138

そして、二次ボリュームV2,V3の遷移動作時には、音声演出用の全フレーズ再生チャンネルCHnにおいて、2つの二次ボリュームV2,V3は、常に同一値とされる。したがって、上部や中部のスピーカの音量が、漸増又は漸減しているときには、下部スピーカの音量も、それに追随することになり、遊技者に対して明確なボリューム遷移動作が実現される。

0139

二次ボリュームV2,V3のボリューム遷移動作は、具体的には、フェードアウト動作フェードイン動作を意味する。そして、ボリューム遷移動作は、後述するサブシナリオテーブルSkに記載されている指示値に基づき、(1)最終的なボリューム値である目標値と、(2)その目標値に至るまでの遷移速度とを先ず特定し、二次ボリュームV2,V3のボリューム指示値を段階的に推移させることで実現される。

0140

なお、本実施例では、フェードアウト動作やフェードイン動作だけでなく、パンポット演出における左右パンポットや上下パンポットにおいて、急にパン(定位)が上下左右に変化する動作や、ゆっくりパンが変位する動作も含め、全てのボリューム遷移動作が、演出制御CPU40によるソフトウェア処理によって実現される。なお、このようなパンポット動作時のボリューム遷移は、左右パンポット比の遷移や、上下パンポット比の遷移によって実現されるので、二次ボリュームV2が変化することはなく、したがって、パンポット動作時も含め2つの二次ボリュームV2,V3は同一値とされる。

0141

何れにしても、左右パンポットや上下パンポットにおいて、適宜な速度のボリューム遷移動作を実現するには、CPUの制御負担が増加する。しかし、本実施例では、シンプルアクセスコントローラSACやシーケンサSQ(図6(b))を利用することで、パンポット比の段階的な変化による、音量比の段階的遷移を実現している。図7(c)は、シーケンサSQによって実現される動作を例示したものであり、パンポット比をdBで図示している。

0142

具体的に確認すると、図示例の場合、+3dB:−∞dB(一方だけ放音)から0dB:0dB(双方同じ音量)に至り、更に、−∞dB:+3dB(他方だけ放音)まで変化させる遷移動作となっている。その後は、0dB:0dB(双方同じ音量)を経由して、+3dB:−∞dB(一方だけ放音)に推移している。

0143

なお、図7(b)や図9(b)に示すように、+0dB:−∞dB(一方だけ放音)や、−∞dB:+0dB(他方だけ放音)の音量比も可能であり、また、必要に応じて、−∞dB:−∞dB(双方が消音状態)を設定することもできる。したがって、上下左右のスピーカのパン設定を−∞dB:−∞dBに設定することで、例えば、二次ボリュームV2=V3の状態を維持しつつ、中段上段のスピーカを消音化して、下部スピーカBTMだけが放音する遊技状態を作ることができる。何れにしても、本実施例では、必要に応じて、シンプルアクセスコントローラSACや、シーケンサSQを活用することで、複雑高度な音声演出を簡易に実現している。

0144

以上のパンポット比の設定を踏まえて、シーケンサSQのオフトリガ機能による同期演奏について図9に基づいて確認的に説明する。図7(d)に関して説明した通り、シーケンサSQ0〜SQ4は、先行する単位演出が終わったことを条件に、並列的に動作を開始して、必要な動作パラメータを、所定の音声制御レジスタRGiに設定する。

0145

そして、この動作パラメータには、先ず、(1)シーケンサSQ0が設定するボーカル音のフレーズ番号NUMa、(2)シーケンサSQ1が設定するギター音のフレーズ番号NUMb、(3)シーケンサSQ2が設定するベース音のフレーズ番号NUMc、(4)シーケンサSQ3が設定する左コーラス音のフレーズ番号NUMd、(5)シーケンサSQ4が設定する右コーラス音のフレーズ番号NUMeが含まれる(図9(a)参照)。

0146

また、この楽曲演奏の再生では、ステレオ効果を高めるために、上下パンポットや左右パンポットのパンポット比を適宜に設定したフレーズ再生チャンネルCH14〜CH21を使用している(図9(b)参照)。その一例を説明すると、例えば、シーケンサSQ0は、フレーズ再生チャンネルCH14とCH15において、フレーズ番号NUMaのボーカル音を再生するよう設定すると共に、フレーズ再生チャンネルCH14のパンポット比を図示の通りに設定して、上部の左右スピーカと下部低音スピーカから放音させている。なお、一次ボリュームV1と二次ボリュームVs(V2,V3)は、全てのフレーズ再生チャンネルCHnにおいて、それまでの設定値と同じであり、入出力比は、例えば、全て0dBレベルとされる。

0147

パンポット比について、具体的に確認すると、フレーズ再生チャンネルCH14の上下パンポット比を、0dB:−∞dBに設定することで、中部スピーカの音量をゼロにしている。また、上部スピーカに関して、左右パンポット比を、0dB:0dBに設定することで、左右スピーカの音量を同一レベルにしている。なお、中部スピーカに関して、左右パンポット比を−∞dB:−∞dBに設定しているが、この設定を省略しても良い。

0148

その他のフレーズ再生チャンネルCH15〜CH21についても、上下パンポットや左右パンポットのパンポット比を適宜に設定することで、
CH14の再生音(ボーカル音)→上部左右スピーカTL,TRに放音、
CH15の再生音(ボーカル音)→中部左右スピーカML,MRに放音、
CH16の再生音(ギター音)→上部左スピーカTLに放音、
CH17の再生音(ギター音)→中部左スピーカMLに放音、
CH18の再生音(ベース音)→上部右スピーカTRに放音、
CH19の再生音(ベース音)→中部右スピーカMRに放音、
CH20の再生音(コーラス左音)→中部左スピーカMLに放音、
CH21の再生音(コーラス右音)→中部右スピーカMRに放音、の動作を実現している。

0149

図9(c)は、この放音配置を図示したものであり、左側スピーカからギター音が再生され、右側スピーカからベース音が再生され、ステレオコーラス音が左右のスピーカから再生される。また、全てのフレーズ再生チャンネルCH15〜CH21において、二次ボリュームは有意レベルにおいてV2=V3であるので、下部スピーカBTNからは、全ての混合音が放音される。

0150

このような楽曲演奏は、好適には、大当り中の遊技者を、効果的に盛り上げる用途で活用される。このようは楽曲演奏を実現するには、パンポット比の設定が煩雑であるが、本実施例では、シーケンサSQiやシンプルアクセスコントローラSACを活用することで、CPUの制御負担を抑制しつつ複雑高度な音声演出を実現している。

0151

次に、図6(a)に戻って、メインジェネレータ53について更に説明する。図8に関し、先に説明した通り、メインジェネレータ53は、複数のフレーズ再生チャンネル(CH0〜CH31)に区分されたデコーダ60と、一次ボリューム部V1と二次ボリューム部Vs(=V2,V3)を有するチャンネルボリュームと、を有して構成されている。

0152

そこで、このような構成に対応して、本実施例の演出制御CPU40は、BGM音の再生には、フレーズ再生チャンネルCH0〜CH1のデコーダを使用し、重大な異常事態の発生を報知するエラー報知には、フレーズ再生チャンネルCH29のデコーダを使用するようにしている。また、予告演出などを実現する演出音の再生には、25個のフレーズ再生チャンネルCH2〜CH26の何れか空き状態のデコーダを使用している。

0153

一方、操作有効音の再生にはフレーズ再生チャンネルCH27を使用し、入賞音の再生にはフレーズ再生チャンネルCH28を使用するようにしている。ここで、操作有効音とは、例えば、チャンスボタン11の押下を許可するチャンス状態が招来したことを示す演出音、及び、その後に発生する演出音を意味する。また、入賞音とは、図柄始動口15に遊技球が入賞したことを示す演出音である。

0154

本実施例では、演出内容が比較的画一的で、且つ、高頻度には発生しない操作有効音と入賞音について、専用のフレーズ再生チャンネルCH27,CH28を確保することで、音声制御の更なる容易化を図っている。なお、フレーズ再生チャンネルCH30〜31は製造検査の用途で使用しているが、本発明の趣旨に関連しないので説明を省略する。

0155

このように、本実施例では、発生頻度が低く、且つ、音声パターンが、ほぼ画一化されているエラー報知音、操作有効音、及び、入賞音については、使用するフレーズ再生チャンネルを固定化している。一方、予告演出などを実行する場合には、多種類の音声(フレーズ番号NUMで特定される単位演出)を多重的に組み合わせる必要があるので、残り25個のフレーズ再生チャンネルCH2〜CH26のうち、その時に空き状態のデコーダを選択的に使用するようにしている。

0156

但し、空き状態のデコーダの検索処理の円滑化すると共に、機種変更に拘わらず汎用的に転用可能なプログラム構成を実現するため、本実施例では、25個のフレーズ再生チャンネルCH2〜CH26を、(1)主に予告音を再生する効果音チャンネルSEと、(2)パンポット演出を含む高度な音声演出を実現する高度演出チャンネルPANと、(3)仮想音に変換されるべき演出音を再生するバーチャルチャンネルVSと、に区分している。後述するように、バーチャルチャンネルVSでは、遊技者の背面、又は耳元に音像定位制御された仮想音による音像可変演出が実行される。

0157

また、本実施例では、遊技状態に応じて最適な音声演出を効果的に実現するべく、チャンネル区分を適宜に変更している。図10は、この関係を図示したものであり、通常時は、CH2〜CH21を効果音チャンネルSE、CH22〜CH23を高度演出チャンネルPAN、CH24〜CH26をバーチャルチャンネルVSとしている。

0158

また、遊技者が盛り上がる確変動作中は、遊技者を更に盛り上げる音声演出を実現するべく、高度演出チャンネルPANをCH18〜CH23に増加させ、大当り中は、更に派手な音声演出を実現するべく、高度演出チャンネルPANをCH14〜CH23に増加させている。したがって、大当り中は、多数の楽器演奏や、ボーカル音声を個々的に再生した最高10チャンネルの多重音声演出(10種類のフレーズ圧縮データの重複再生)を実現することもできる。先に説明した図9の演出は、8チャンネル(CH14〜CH21)の多重音声演出である。

0159

このように区分されたフレーズ再生チャンネルCHnを有効に機能させるには、フレーズ再生チャンネルCHnに対応する一群の音声制御レジスタRGiに、各々、最適な動作パラメータを設定する必要がある。そこで、本実施例では、効果音チャンネルSEに必要な動作パラメータの多くは、シンプルアクセスコントローラSACを機能させて設定される。なお、SAC機能を活用する点は、CH0,CH1,CH27,CH28などの専用チャンネルについても同様である。

0160

一方、高度演出チャンネルPANや、バーチャルチャンネルVSに必要な動作パラメータは、シンプルアクセスコントローラSACやシーケンサSQを機能させて設定される。なお、シーケンサSQを機能させるには、CPU40は、シーケンサ制御用の音声制御レジスタRGj2に、シーケンスコード番号と、これに付属するデータを設定すれば足り、シーケンスコード番号及び付属データは、SACデータとしてシンプルアクセスコントローラSACによって設定されることは、先に説明した通りである。

0161

ところで、CPUは、必要に応じて、音声制御レジスタを直接アクセスして、動作パラメータを設定するが(直設定)、高度演出チャンネルPANとバーチャルチャンネルVSについては、直設定の機会が皆無となるよう構成するのが好適である。このような構成にすれば、遊技機の開発において複数人分担して遊技制御プログラム構築する上で有効である。

0162

また、本実施例では、効果音チャンネルSEを、演出優先度に応じて、上位チャンネルSE1(例えばCH2〜CH7)と下位チャンネルSE2(例えばCH8〜CH21)に二分している。なお、優先度とは、同時に再生される複数の単位演出の各ボリューム値の大小を意味し、優先度の高い単位演出を上位チャンネルで再生し、優先度の低い単位演出を下位チャンネルで再生することで、重複演出時におけるボリューム値の管理を容易化している。

0163

すなわち、本実施例では、必要に応じて、上位チャンネルSE1のボリューム値を纏めて増大させ、逆に、下位チャンネルSE2のボリューム値を纏めて減少させることで、時間的に重複する複数の予告演出を効果的に再生している。また、必要に応じて、BGM音の音量を抑制することで、演出音の聞き漏らしを防止している。なお、以下の説明では、上位チャンネルSE1で再生される演出音を、予告音SE1又は演出音SE1と表現し、下位チャンネルSE2で再生される演出音を、予告音SE2又は演出音SE2と表現することがある。

0164

さて、図6に戻って、音声プロセッサ42の内部構成の説明を続けると、図6(a)や図7に示すように、チャンネルミックス61の6チャンネルの出力信号(混合L0,混合R0,混合L1,混合R1,混合SUB0,混合SUB1)は、エフェクト部54において、所定の音声制御レジスタ51(RGi)に規定された動作パラメータに基づくデジタルフィルタ処理がされた後、トータルボリューム部TVに供給され、トータルボリューム値TVに基づいて増幅される。

0165

トータルボリューム値TVは、対応する音声制御レジスタ51(RGi)に書込まれる動作パラメータで規定されるが、この動作パラメータは、先に説明した通り、本実施例では、原則として、係員が操作する設定スイッチSET(図3)に基づいて規定される。但し、遊技者が遊技動作中(但し、音声演出待機中)に、音量スイッチVSW(図1)を操作した場合には、その設定値に基づいてトータルボリュームTVが規定される。

0166

以下、概念的に確認すると、各スピーカから出力される音声信号の音量は、演出制御CPUが規定する一次ボリュームV1及び二次ボリュームVsの積と、遊技者の意図に基づくトータルボリュームTVとの積で規定されるので、全ての音声演出は、遊技者の意図する音量で実現されることになる。

0167

但し、重大な異常事態の検出時には、係員や遊技者の意図に拘わらず、トータルボリュームTVが最高レベルとなり、フレーズ再生チャンネルCH29以外の一次ボリュームV1は最小値となり、フレーズ再生チャンネルCH29の一次ボリュームV1及び2次ボリュームVsが最高レベルとなるので、違法行為時の警報音(異常報知音)を、音量スイッチVSWその他の操作で隠蔽することはできない。

0168

ところで、本実施例では、トータルボリュームTVの値を、表1に示すように、スピーカの配置位置した値に設定している。すなわち、設定スイッチSETや音量スイッチVSWの設定値に基づき、以下の何れかの値が、チャンネルミックス61の出力信号(混合L0,混合R0,混合L1,混合R1,混合SUB0)に対して設定される。なお、混合SUB1を使用しないことは先に説明した通りである。

0169

0170

トータルボリュームTVは、詳細には、混合L0及び混合R0の音量を設定するTV0と、混合L1及び混合R1の音量を設定するTV1と、混合SUB0の音量を設定するTV2の合計3個であり、表1に示す設定値(VL<256)を、ボリューム設定用の音声制御レジスタRGiに設定することで、入出力比を、例えば、20*Log(VL/128)dBに設定することができる。

0171

但し、本実施例では、CPUは、ボリューム設定用の音声制御レジスタRGiを、直接アクセスすることなく、シンプルアクセスコントローラSACを機能させてボリューム設定を終えている。具体的に説明すると、設定レベルは、ゼロレベルを含めて8段階であるので、これに対応して、音声メモリ43に、8種類のSACデータ(SACV0〜SACV7)を用意しており、CPUは、必要なタイミングでSAC制御用の音声制御レジスタRGj1に、SAC番号を設定することで、全てのトータルボリュームTV0〜TV2の設定処理を終えている。

0172

ところで、表1に示す通り、最高音量時には、中段スピーカに対して上段スピーカが高レベルであり(TV0>TV1)、また、下部スピーカが上段スピーカより高レベルに規定されている(TV2>TV0)。また、全段階において、TV0≧TV1、TV2≧TV0であるので、遊技者の耳との位置関係において、最適な音量バランスが維持される。

0173

先に説明した通り、本実施例では、二次ボリュームV2,V3は、原則として、常に同一値に維持されるが、トータルボリュームTVが、各スピーカの配置位置に対応して最適設定されているので、上下左右のパン演出を含んだ全ての音声演出が、遊技者にとって最適な音量バランスとなる。

0174

このような意義を有するトータルボリューム部TVを経過した音声信号(混合L0,混合R0,混合L1,混合R1,混合SUB0,混合SUB1)は、出力バッファBUFに格納され、デジタルIF部55に基づいて3チャンネルのシリアル信号SD0,SD1,SD2に変換される。先に説明した通り、シリアル信号SD0とSD1は、遊技機の上部と中部に配置された左右スピーカTR,TL,MR、MLを駆動するステレオ信号R,Lに関するPCMデータを特定するシリアル信号であり、シリアル信号SD2は、遊技機下部に配置された低音用スピーカを駆動するモノラル信号に関するPCMデータを特定するシリアル信号である。そして、これらのシリアル信号SD0,SD1,SD2は、ビットクロック信号BCOに同期して、チャンネル制御信号(ワードクロック信号)LROと共に出力される(図8)。

0175

最後に、チャンネルミックス61(図8)の後段に位置するバーチャルサラウンド部VSと再ミックス部RMについて説明する。図11は、前方又は後方からインパルス音源FR,BRを放音した場合の、右耳及び左耳位置でのインパルス応答h(n)を示す図面である(図11(a1)及び図11(b1))。

0176

例えば、図11(a)のように、右前方のインパルス音源FRから放音した場合には、左耳より先に右耳に音波伝わり、且つ、右耳に伝わる音波の方が、左耳に伝わる音波より減衰が少ないので、右耳位置でのインパルス応答h(n)は、早期に高レベルに現れる(図11(a1)参照)。なお、破線で示す対称位置の左前方から放音した場合には、左右の耳位置でのインパルス応答が逆転する。

0177

この関係は、図11(b)のように、右後方のインパルス音源BRから放音した場合も同様であり、右耳位置でのインパルス応答h(n)は、早期に高レベルとなる(図11(b1)参照)。なお、対称位置の左後方から放音した場合には、左右の耳位置でのインパルス応答が逆転する。そして、人間は、この左右の音量差と、到達時間差とに基づいて、音源BRが、後方右側に位置するか、後方左側に位置すると認識できると言われている。

0178

ところで、計測機により測定したインパルス応答h(n)を、入力x(n)と畳み込み演算することで、出力y(n)を、y(n)=Σx(k)*h(n−k)と特定することができる。そして、前式をZ変換することで、Y(z)=H(z)*X(z)の関係式から、伝達関数H(z)を特定することができる。そして、Y(z)=H(z)*X(z)に対応するデジタルフィルタ(例えばFIRフィルタ)を構築すれば、左耳や右耳への音響効果を実現することができることになる。

0179

図11(c)は、Y(z)=H(z)*X(z)の関係式を実現するFIRフィルタであり、FIRフィルタのフィルタ係数(h(0)・・・h(N−1)が、例えば、右後方から右耳への伝達関数RR(z)と、左耳への伝達関数RL(z)とで相違することで、左耳や右耳への出力Yが相違する。実施例のバーチャルサラウンド部VSは、このフィルタ係数を適宜に設定することで、左後方や右後方から放音された仮想音を生成している。

0180

なお、図11(a2)及び、図11(b2)は、z=exp(j2πft)の関係から、左右の耳への伝達関数G(z)を周波数領域に変換したものであり、伝達関数の周波数特性を示している。要するに、正しく特定された伝達関数H(z)の処理を施せば、入出力に図示の周波数特性が付与されることになる。

0181

以下、図12に基づいて説明を続けると、先に説明した通り、図12に示す左後方位置からのインパルス音源SPLに対するインパル応答に基づいて、左右の耳位置における伝達関数LLとLRを特定することができる。同様に、右後方位置からのインパルス音源SPRに対するインパル応答に基づいて、左右の耳位置における伝達関数RLとRRを特定することができる。

0182

0183

したがって、(式1)に示すように、フレーズ再生チャンネルCHnで再生された左右の演出音GL,GRに、伝達関数LL,LR,RL,RRに対応するフィルタ処理を施せば(図11(c)参照)、後方からの左右耳用の仮想音SL,SRを生成でき、例えば、生成音SL,SRをイヤホンから聴く場合には、所定の距離感を発揮する仮想音を実現することができる。

0184

しかし、遊技機の場合には、前方からのスピーカSPL,SPRからの放音しか実現できないので、仮想音SL,SRを、そのまま前方から放音すると、前方スピーカから左右の耳までの伝達関数F1〜F4に基づき、左右の耳に伝送されるのは(式2)の音声となる。

0185

0186

したがって、前方からの伝送で生じる影響を、予めキャンセルしておく必要があり、本実施例では、左右前方位置からのインパルス音源に対するインパルス応答に基づいて、4つの伝達関数F1,F2,F3,F4を特定し、適当なキャンセル演算を施すことで、伝達関数F1,F2,F3,F4の影響を排除している。

0187

0188

ここで、(式3)に示すように、キャンセル関数をA,B,C,Dとすると、キャンセル関数A〜Dによるキャンセル行列が、伝達関数F1〜F4による伝達行列逆関数であれば良いことになる。そこで、本実施例では、(式4)からキャンセル関数A〜Dを特定し、予め仮想音SL,SRにキャンセル行列の処理(クロストークキャンセル処理)を施して左右の仮想音SL’,SR’を生成している。クロストークキャンセル処理を施して補正される仮想音SL’,SR’は、(式5)に示す通りである。

0189

0190

0191

以上、実施例のバーチャルサラウンド部VSの原理的説明をしたので、続いて、図13に基づいて、更に具体的に説明する。図13(a)は、実施例のバーチャルサラウンド部VSが実現する仮想スピーカの仮想的な配置位置を示す図面である。 図示の通り、実施例では、遊技者の耳元左右の仮想スピーカLe,Reと、遊技者の背面側左右の仮想スピーカLs,Rsと、が仮想的に配置されている。特に限定されるものではないが、仮想スピーカLs,Rsは、遊技者からの背面仮想線に対して±60°の対称位置に配置され、遊技者との離間距離は、遊技ホールの騒音を考慮して、60cm以下とされる。なお、本明細書において、Le,Reは、耳元仮想スピーカと共に、耳元仮想スピーカ用の原音Le,Reを示している。同様に、Ls,Rsは、背面仮想スピーカLs,Rsと共に、背面仮想スピーカ用の原音Ls,Rsを示している。

0192

何れにしても、各スピーカの配置位置は、あくまでも仮想的な配置であり、実際には、前方上側の左右スピーカTL,TRから(式1)及び(式5)のように変換した仮想音SL’,SR’を放音している。ここで、仮想音を放音する左右スピーカTL,TRの配置位置は、平均身長の遊技者の耳位置からの仰角が20〜30°程度であることが望ましい。

0193

なお、仮想スピーカが二組あり、各々の仮想配置位置が異なることに対応して、(式1)の伝達関数LL,LR,RL,RRが、原理的には、二組用意されている。但し、耳元スピーカLe,Reと耳との離間距離がゼロであると割り切れば、耳元スピーカLe,Re用の伝達関数LL,LR,RL,RRは不要となる。

0194

また、本実施例では、バーチャルサラウンド効果を実現する前方スピーカを、あえて上部スピーカTL,TRだけに限定しているので、キャンセル処理用の伝達関数F1〜F4は、耳元仮想スピーカLe,Reと、背面仮想スピーカLs,Rsとで共通化される。

0195

図13(c)は、バーチャルサラウンド部VSの内部構成を示したものであり、耳元仮想スピーカLe,Re用の仮想音と、背面仮想スピーカLs,Rs用の仮想音を生成するデジタルフィルタが機能的に記載されている。図13(c)の上側は、背面仮想スピーカLs,Rs用の仮想音を生成するデジタルフィルタを示しており、原音(GL,GR)=(Ls,Rs)に対する(式1)の処理と、仮想音SL,SRに対する(式5)のキャンセル処理とが実現される。

0196

0197

0198

また、図13(c)の下側は、耳元仮想スピーカLe,Re用の仮想音を生成するデジタルフィルタを示しており、原音(GL,GR)=(Le,Re)に対する(式1)の処理と、仮想音SL’,SR’に対する(式5)のキャンセル処理とが実現される。先に説明した通り、耳元スピーカLe,Reについては、耳との距離がゼロであると割り切る場合には、伝達関数LL’,LR’,RL’,RR’による演算が不要となる。

0199

ところで、図13(b)は、図13(c)のバーチャルサラウンド部VSの周囲の回路構成を図示したものである。図示の通り、本実施例では、フレーズ再生チャンネルCH0〜31の何れかに、サランド動作を指定すると(サラウンド指定)、そのフレーズ再生チャンネルCHnは、図8に示す通常構成から、図13(b)の回路構成に切り替わるようになっている。

0200

図13(b)に示す通り、サラウンド指定されたフレーズ再生チャンネルCHxでは、デコーダの出力は、一次ボリュームV1と二次ボリュームV2を経由した後、上下パンポット部に伝送される。そして、実スピーカTL,TRと、背面仮想スピーカLs,Rsとの音量比がパンポット処理された後、実スピーカ及び背面仮想スピーカについて、左右の音量比が、各々、パンポット処理されて4種類の音声信号となる。具体的には、実スピーカTL,TRに伝送される前方信号Lf,Rfと、バーチャルサラウンド部VSに供給される後方信号Ls,Rsと、が生成される。ここで、後方信号Ls,Rsは、背面仮想スピーカ用の原音Ls,Rsに他ならない。

0201

また、二次ボリュームV2の出力は、耳元ゲイン部EV音量ボリューム設定された後、耳元仮想スピーカLe,Reについて、左右音量比がパンポット処理されて、耳元スピーカ用の原音Le,Reが生成される。なお、耳元ゲイン部EVを使用しない場合には、破線で示す通りの回路構成となって、前後パンポット部の後方出力が、耳元ゲイン部EVの出力となる。

0202

このようにして生成された耳元スピーカ用の原音Le,Reは、背面仮想スピーカ用の原音Ls,Rsと共に、バーチャルサラウンド部VSにおいて、図13(c)に示されるデジタルフィルタ処理を受けることで、各々、音像が、耳元と遊技者背面に定位される(音像定位制御)。そして、バーチャルサラウンド部VSの出力Lv,Rvは、再ミックス部RMにおいて、各々、所定レベル(S3、S4)に設定され、別レベル(S1、S2)に設定された前方信号Lf,Rfと混合されて、混合L0信号と混合R0信号として、エフェクト部54(図6図8)に供給される。

0203

ところで、図13(b)の構成において、各パンポット部のパンポット比は、先に説明した場合と同じである。すなわち、+3dB:−∞dBから−∞dB:+3dBまで設定できるだけでなく、+0dB:−∞dB(一方だけ放音)や、−∞dB:+0dB(他方だけ放音)、−∞dB:−∞dB(双方が消音状態)を設定することもできる。したがって、本実施例では、4種類の原音Ls,Rs,Le,Reに対して、各々、0dB又は−∞dBに設定をするようにしている。そして、各パンポット比を適宜に組み合わせることで、24=16通りの仮想音についての音声演出が可能となる。

0204

典型例を説明すると、実スピーカTL,TRに伝送される前方信号Lf,Rfを消音レベル(−∞dB:−∞dB)にした状態で、背面仮想スピーカ用の原音Ls,Rsを同一レベル(0dB:0dB)にする一方、耳元仮想スピーカ用の原音Ls,Rsを消音レベル(−∞dB:−∞dB)にすれば、遊技者の後方だけから演出音が聴こえることになり、遊技者に極めて強いインパクトを与えることになる。

0205

逆に、背面仮想スピーカ用の原音Ls,Rsを消音レベル(−∞dB:−∞dB)にして、耳元仮想スピーカ用の原音Ls,Rsを同一レベル(0dB:0dB)にすれば、遊技者の耳元だけから演出音が聴こえることになり、この場合も、遊技者に極めて強いインパクトを与えることができる。なお、この場合には、サラウンド指定されたフレーズ再生チャンネルCHxを除く他のフレーズ再生チャンネルCHnの一次ボリュームV1を最小設定(マスク処理)することで、仮想音の効果を高めることができる。この場合、更に、フレーズ再生チャンネルCHxの二次ボリュームV3を最小設定しても良い。

0206

また、背面左側だけの放音、背面右側だけの放音、耳元左側だけの放音、耳元右側だけの放音、左スピーカTLだけの放音、右スピーカTRだけの放音、も可能であり、音声演出のバリエーションを大幅に増やすことができる。なお、これの動作の実現するためのパンポット設定は、非常に煩雑であるが、本実施例ではシンプルアクセスコントローラSACや、シーケンサSQを機能させるので、パンポット設定の処理が極めて簡易化される。なお、シーケンサSQを使用することで、異なる継続時間が適宜に設定された経時的なパンポット演出を、CPUが一気に設定できることは先に説明した通りである。

0207

以上、高度な音声演出を簡易に実現する回路構成を詳細に説明したので、続いて、音声演出動作のうち、本実施例に特徴的な部分を中心に演出制御部22の動作を説明する。図14は、演出制御部22の動作内容の特徴部分を示すフローチャートである。演出制御部22の動作は、演出制御CPU40がリセットされた後、無限ループ状に実行されるメイン処理(図14(a))と、1mS毎に起動されるタイマ割込み処理図14(b))と、主制御部21が送信する制御コマンドを受信する受信割込み処理(不図示)と、音声プロセッサ42から受ける割込み信号で起動される再生完了割込み処理図14(c))と、を含んで実現される。

0208

まず、図14(b)に示すタイマ割込み処理の要部を説明すると、タイマ割込み処理では、割込みカウンタインクリメント(+1)すると共に(ST20)、送信すべき演出コマンドCMD’が準備されている場合には、その演出コマンドCMD’を画像制御部23に送信する(ST21)。そして、その他の処理を実行して割込み処理を終える(ST22)。その他の処理としては、演出モータを使用したモータ演出や、LEDランプを点滅させるランプ演出を進行させる処理が含まれている。

0209

続いて、図14(a)に示すメイン処理を説明すると、CPUリセット後、演出制御CPUは、最初に、RAMワーク領域や、ワンチップマイコン40及び音声プロセッサ42の内部回路について適宜な初期設定動作を実行する(ST10)。先に説明した通り、音声プロセッサ42の初期設定動作は、SAC制御用の音声制御レジスタRGj1に、所定のSAC番号を設定することで完了するので、演出制御CPUの制御負担が大幅に緩和される。

0210

次に、タイマ割込み処理で1ms毎に更新される割込みカウンタが16に達するのを待ち(ST11)、割込みカウンタが16に達すると、その割込みカウンタをゼロクリアした上で(ST12)、ステップST12〜ST19のループ処理を実行する。

0211

したがって、ステップST12〜ST19のループ処理は16mS毎に繰り返し実行されることになる。ループ処理では、前回スイッチ入力処理(ST15)で取得されたスイッチ信号や、受信割込み処理で取得した制御コマンド(エラーコマンド)に基づいてエラー処理が実行される(ST13)。このエラー処理には、エラーシナリオに基づいて実行されるエラー報知処理が含まれており、検出された異常事態に対応するエラーシナリオが、先ず、特定される。

0212

次に、非遊技状態が所定時間継続しているか否かが判定され、遊技動作が認められない場合には、所定のデモシナリオに基づいてデモ処理が実行される(ST14)。続いて、係員が操作した設定スイッチSETや、遊技者が操作するチャンスボタン11の押圧操作を判定するスイッチ入力処理が実行される(ST15)。そして、このタイミングがボタンチャンス状態であれば、ボタンチャンス遊技チャンスシナリオが特定され、そのシナリオに基づいてチャンス遊技が開始される。

0213

次に、受信割込み処理で取得した制御コマンドCMDを解析するコマンド解析処理が実行される(ST16)。そして、所定の制御コマンド(変動パターンコマンド)を受けた場合には、具体的な演出内容を決定するための演出抽選を実行し、決定結果に対応して特定される演出シナリオに基づいて一連の変動演出が開始される(ST16)。

0214

一連の変動演出は、表示装置DSを使用した画像演出と、ランプを点滅させるランプ演出と、スピーカを使用した音声演出と、が連動して同期的に実行され、必要に応じて役物演出が付加される。そのため、これらの一連の変動動作を特定する演出シナリオには、各種の演出の具体的内容が、その実行開始時間や実行継続時間と共に規定されている。なお、所定のシナリオに基づいて、画像演出、ランプ演出、及び音声演出が同期的に実行されることは、前記したエラーシナリオ、デモシナリオ、チャンスシナリオについても同様である。

0215

そして、本実施例では、演出シナリオ、エラーシナリオ、デモシナリオ、チャンスシナリオに関し、一連の変動演出を特定する一又は複数のメインシナリオテーブルMjが用意されており、メインシナリオテーブルMjには、各々、その演出内容を特定するシナリオ情報(サブシナリオ番号)と、その演出の実行継続時間が記載されている。なお、便宜上、図15(b)のメインシナリオテーブルMjには、ランプ演出やモータ演出に関する記載が省略されていることは先に説明した通りである。

0216

何れにしても、エラー報知、デモ演出ボタン演出、変動演出が実行される場合には、その内容を、時間の経過と共に進行させる必要があるので、次に、そのためのシナリオ更新処理が実行される(ST17)。シナリオ更新処理は、16ms毎に実行されるので、必要な切換タイミングに達すると、次に実行すべき演出内容を特定するための処理を実行する。具体的には、実行中のシナリオについて、メインシナリオテーブルMjやサブシナリオテーブルSkの参照位置を更新することになる。

0217

この点を、音声演出に関して説明すると、音声演出は、音声プロセッサ42が、演出制御CPU40から受ける音声コマンドSNDに基づいて実行される。すなわち、音声演出は、音声プロセッサ42が、音声コマンドSNDで特定される所定の単位演出を、所定の音量を再現することで実行される。したがって、音声演出の切換タイミングに達すると、演出制御CPU40は、新たな単位演出と、その再生音量を特定する音声コマンドを音声プロセッサに送信することになり、その一連の処理がシナリオ更新処理に他ならない(ST17)。

0218

以上のような内容のシナリオ更新処理が終われば、次に、フェード処理が実行される(ST18)。ここで、フェード処理とは、実行中の音声演出に関し、その音量を変化させる音量変更処理を意味する。典型的には、重複して再生されるBGM音や演出音(予告音)に関して、互いの音量調整が実行される。例えば、(1)所定の予告音を再生するために、再生中のBGM音の音量を抑制する、(2)再生中の予告音に重ね重要度(信頼度)の高い別の予告音を再生するため、再生中の予告音の音量を抑制する、(3)エラー報知のために、BGM音や演出音の音量を抑制する、などの動作が該当する。

0219

なお、音量調整の態様には、一気に目標音量に変更する瞬時動作だけでなく、段階的の音量を変更するフェードイン動作やフェードアウト動作も含まれる。何れの場合も、フレーズ再生チャンネルCHnと、その再生チャンネルCHnにおける再生音量を特定する音声コマンドSNDを、演出制御CPU40が、音声プロセッサ42の所定の音声制御レジスタ51(RGi)に書込むことで実行される。

0220

再生音量の特定は、一次ボリューム値V1又は二次ボリューム値Vsで特定されるが、BGM音や予告音SE1,SE2の再生音量は、瞬時動作及びフェード動作とも、二次ボリュームVs(V2,V3)の設定値で特定され、エラー報知音の再生音量は、一次ボリュームV1と二次ボリュームVsに対するボリューム設定値で特定される。ボリューム設定値は、適宜に設定されるが、エラー報知時には、フレーズ再生チャンネルCH29の一次ボリュームV1と二次ボリュームVs(V2,V3)を最大値に設定する一方、他のフレーズ再生チャンネルCH0〜28,CH30〜31の一次ボリュームV1を最小値に設定している。なお、これらの動作は、シンプルアクセスコントローラSACや、シーケンサSQによって実行されることは先に説明した通りである。

0221

以上のような内容のフェード処理(ST18)が終われば、他の処理を実行した上でステップST11の処理に移行する。なお、他の処理には、シリアルポートSIからシリアル送信されるランプ駆動データSDATA0〜SDATA2の更新処理や、演出抽選用の乱数値の更新処理などが含まれる。

0222

以上説明した通り、本実施例の演出動作は、エラーシナリオの登録(ST13)、デモシナリオの登録(ST14)、チャンスボタンシナリオの登録(ST15)、演出シナリオのシナリオ登録(ST16)などの登録処理でシナリオテーブルを特定すると共に、初期データを設定することから開始される。後述するように、この登録動作は、空き状態の進行管理チャンネルMCHmに、メインシナリオ番号と、待機時間を書込む処理である。そして、その後は、16mS毎に、演出制御CPU40が、各シナリオテーブルを参照し(ST17)、更新タイミングに達すると、シナリオテーブルの参照位置を推移させて演出動作を進行させることになる。

0223

ここで、演出シナリオテーブルは、メインシナリオテーブルMj(図15(b))と、メインシナリオテーブルMjで特定されるサブシナリオテーブルSk(図15(c))と、に大別されるが、一連の変動演出は、その演出途中で複数のメインシナリオが並走状態となるのが一般的であり、その結果、演出制御CPU40は、複数のメインシナリオテーブルMj〜Mxと、これらに対応する複数のサブシナリオテーブルSk〜Syに基づいて、音声演出を多重的に進行させることになる。なお、本実施例では、シナリオ番号とシナリオテーブルが一対一に対応しているので、以下の説明では、メインシナリオテーブルMjを、メインシナリオ番号mcNoやメインシナリオと同一視し、サブシナリオテーブルSkを、サブシナリオ番号scNoやサブシナリオと同一視することがある。

0224

以上の概略説明を踏まえて、演出シナリオ(ST16参照)を実効化する音声演出について更に詳細に説明する。先に説明した通り、本実施例では、音声プロセッサ42のフレーズ再生チャンネルCH0〜CH31の空きチャンネルCHnを適切に選択するための選択動作と、複数のメインシナリオテーブルMj〜Mx、及び、複数のサブシナリオテーブルSk〜Syに対する適切な参照動作とが必要となる。そこで、これらの動作を円滑化するため、本実施例では、図14(d)に示すような、シナリオ進行テーブルINFO_TBLと、図14(e)に示す使用CH管理テーブルPlayNow_TBL とを設けている。なお、図14(e)には、通常遊技中におけるフレーズ再生チャンネルCH0〜CH29の使用区分(SE,PAN,VS)も合わせて記載している。図10に関して説明した通り、本実施例において、各フレーズ再生チャンネルCH0〜CH29の使用区分は可変であり、確変中や大当り中では、図示の使用区分とは相違する。

0225

図14(d)に示す通り、シナリオ進行テーブルINFO_TBLは、実行中のメインシナリオ番号Mjを特定するための進行管理チャンネルMCHmに、メインシナリオ番号Mjで特定される演出シナリオを進行させるための変数値を、書換え可能に構成された2次元配列となっている。特に限定されるものではないが、進行管理チャンネルMCHmは64チャンネル(m=0〜63)であり、演出シナリオを進行させるための変数値には、(1)メインシナリオ番号mcNo、(2)シナリオタイマscTm、(3)メインシナリオ実行ラインmcIx、(4)サブシナリオ実行ラインscIx、及び、(5)待機時間delay 、が含まれている。

0226

ここで、(1)メインシナリオ番号mcNoは、メインシナリオテーブルMjを特定する番号情報、(2)シナリオタイマscTmは、メインシナリオ番号mcNoで特定される演出シナリオの進行を管理する時間情報、(3)メインシナリオ実行ラインmcIxは、メインシナリオテーブルMjの参照行を特定するライン情報、(4)サブシナリオ実行ラインscIxは、サブシナリオテーブルSkの参照行を特定するライン情報、(5)待機時間delay は、進行管理チャンネルMCHmに、メインシナリオ番号mcNoが書込まれてから、そのメインシナリオ番号mcNoの演出シナリオの実行を開始するまでの遅延時間であり、演出開始タイミングを特定することになる。なお、シナリオタイマscTmや遅延時間delay は、16mSを一単位とした時間情報である。

0227

例えば、図14(d)に例示する進行管理チャンネルMCH0の登録情報は、進行管理チャンネルMCH0への情報登録後、60*16mS後に、メインシナリオM10が開始されることを意味する。また、進行管理チャンネルMCH1の登録情報によれば、進行管理チャンネルMCH1への情報登録後、直ちにメインシナリオM20が開始されることになる。そして、ステップST13,ST14,ST15,ST16の処理で実行されるシナリオ登録処理とは、空き状態の進行管理チャンネルMCHmの何れかに、メインシナリオ番号mcNoと、待機時間delay を書込むことを意味する。また、このシナリオ登録処理では、シナリオタイマscTm、メインシナリオ実行ラインmcIx、及びサブシナリオ実行ラインscIxに初期値を書込むが、これらの値は、シナリオ更新処理(ST17)で適宜に更新される。

0228

図14(e)に示す通り、使用CH管理テーブルPlayNow_TBLは、音声プロセッサ42のフレーズ再生チャンネルCH0〜CH31の使用状態を管理する管理テーブルであり、この実施例では、フレーズ再生チャンネルCH0〜CH29について、「再生中」「停止中」「一時停止中」の何れの状態であるかを記憶している。これらの情報は、音声プロセッサ42の所定の音声制御レジスタ51(RGi)から、ステイタスフラグ値を読み出すことで把握できるが、本実施例では、「再生中」と「一時停止中」については、演出制御CPU40のプログラム制御に基づいて設定している。そのため、本実施例では、再生開始や一時停止の音声コマンドSNDを、音声プロセッサ42に発行してから、音声プロセッサ42が実際に反応するまでの時間遅れが問題となることがない。

0229

この点は、シナリオ進行テーブルINFO_TBLの進行管理チャンネルMCHmを64チャンネル設け(m=0〜63)、各進行管理チャンネルMCHmにおける解析処理で必要となる音声コマンドSNDを連続して送信する本実施例では特に重要である。すなわち、音声コマンドSNDの送信に先行して、音声プロセッサ42をアクセスして、ステイタスフラグからフレーズ再生チャンネルCH0〜CH29の空き状況を調べたのでは、直前に発行した音声コマンドSNDが指定するフレーズ再生チャンネルCHnは、依然として、「停止中」を維持している場合が多く、そのため、直前に指定したフレーズ再生チャンネルCHnを重複して指定する可能性があり、これでは、先の単位演出を消滅させることになる。

ページトップへ

この技術を出願した法人

この技術を発明した人物

ページトップへ

関連する未来の課題

該当するデータがありません

関連する公募課題

該当するデータがありません

ページトップへ

おすすめの成長市場

関連メディア astavision

  • 高性能コンピュータ

    2015年4月、理化学研究所は新規のスーパーコンピュータシステム「HOKUSAI GreatWave…

  • 機械学習・深層学習(Deep Learning)

    2012年6月26日、Google Official Blog は、ネコと思しき1枚の画像とともにあ…

  • ワクチンと自然免疫制御

    2009年6月、世界保健機関(WHO)は、新型インフルエンザA(N1H1)のパンデミック(pande…

ページトップへ

技術視点だけで見ていませんか?

この技術の活用可能性がある分野

分野別動向を把握したい方- 事業化視点で見る -

ページトップへ

新着 最近公開された関連が強い技術

  • 株式会社藤商事の「遊技機」が公開されました。(2017/10/26)

    【課題】演出としての出力画像のために適正な表示データ出力を実現する。【解決手段】制御手段は、複数のフレームバッファ領域について、表示手段で表示される画像の表示データの読み出し行う第1領域と、次のフレー... 詳細

  • 株式会社ジェッターの「メダル類の研磨装置」が公開されました。(2017/10/26)

    【課題】 メダル・コイン等のメダル類を対向する回転ブラシ間を通過させてメダル類の清掃・研磨を行う装置において、回転ブラシのブラシ毛が長時間使用で先端が丸くなってメダル類の表面の凹凸にあるゴミ・汚れ・... 詳細

  • 株式会社サンセイアールアンドディの「遊技機」が公開されました。(2017/10/26)

    【課題】従来の遊技機において、バックアップ機能を搭載した遊技機や、確率設定機能を搭載した遊技機があった。これらの機能を両方搭載した場合、すなわち、バックアップ機能を有する遊技機に確率設定機能を搭載した... 詳細

この技術と関連性が強い技術

関連性が強い技術一覧

この技術と関連性が強い人物

この技術と関連する未来の課題

該当するデータがありません

この技術と関連する公募課題

該当するデータがありません

サイト情報について

本サービスは、国が公開している情報(公開特許公報、特許整理標準化データ等)を元に構成されています。出典元のデータには一部間違いやノイズがあり、情報の正確さについては保証致しかねます。また一時的に、各データの収録範囲や更新周期によって、一部の情報が正しく表示されないことがございます。当サイトの情報を元にした諸問題、不利益等について当方は何ら責任を負いかねることを予めご承知おきのほど宜しくお願い申し上げます。

主たる情報の出典

特許情報…特許整理標準化データ(XML編)、公開特許公報、特許公報、審決公報、Patent Map Guidance System データ